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Abstract. Hereditarily finite (HF) set theory provides a standard uni-
verse of sets, but with no infinite sets. Its utility is demonstrated through
a formalisation of the theory of regular languages and finite automata,
including the Myhill-Nerode theorem and Brzozowski’s minimisation al-
gorithm. The states of an automaton are HF sets, possibly constructed
by product, sum, powerset and similar operations.

1 Introduction

The theory of finite state machines is fundamental to computer science. It has
applications to lexical analysis, hardware design and regular expression pat-
tern matching. A regular language is one accepted by a finite state machine,
or equivalently, one generated by a regular expression or a type-3 grammar [6].
Researchers have been formalising this theory for nearly three decades.

A critical question is how to represent the states of a machine. Automata
theory is developed using set-theoretic constructions, e.g. the product, disjoint
sum or powerset of sets of states. But in a strongly-typed formalism such as
higher-order logic (HOL), machines cannot be polymorphic in the type of states:
statements such as “every regular language is accepted by a finite state machine”
would require existential quantification over types. One might conclude that
there is no good way to formalise automata in HOL [5, 15].

This paper sets out to show that finite automata theory can be formalised
within the theory of hereditarily finite sets: set theory with the negation of the
axiom of infinity. It admits the usual constructions, including lists, functions and
integers, but no infinite sets. The type of HF sets can be constructed from the
natural numbers within higher-order logic. We could just use numbers, but with
ugly coding everywhere. Using HF sets, we retain the textbook definitions.

The paper introduces HF set theory and automata (Sect. 2). It presents a
formalisation of deterministic finite automata and results such as the Myhill-
Nerode theorem (Sect. 3). It also treats nondeterministic finite automata and
results such as the powerset construction and closure under regular expression
operations (Sect. 4). Next come minimal automata, their uniqueness up to iso-
morphism, and Brzozowski’s algorithm for minimising an automaton [3] (Sect. 5).
The paper concludes after discussing related work (Sect. 6–7). The proofs, which
are available online [12], also demonstrate the use of Isabelle’s locales [1].



2 Background

An hereditarily finite set can be understood inductively as a finite set of hered-
itarily finite sets [14]. This definition justifies the recursive definition f(x) =∑
{2f(y) | y ∈ x}, yielding a bijection f : HF→ N between the HF sets and the

natural numbers. The linear ordering on HF given by x < y ⇐⇒ f(x) < f(y)
can be shown to extend both the membership and the subset relations.

The HF sets support many standard constructions, even quotients. Equiva-
lence classes are not available in general — they may be infinite — but the linear
ordering over HF identifies a unique representative. The integers and rationals
can be constructed, with their operations (but not the set of integers, obviously).
Świerczkowski [14] has used HF as the basis for proving Gödel’s incompleteness
theorems, and I have formalised his work using Isabelle [13].

Let Σ be a nonempty, finite alphabet of symbols. Then Σ∗ is the set of words:
finite sequences of symbols. The empty word is written ε, and the concatenation
of words u and v is written uv. A deterministic finite automaton (DFA) [6, 7] is
a structure (K,Σ, δ, q0, F ) where K is a finite set of states, δ : K × Σ → K is
the next-state function, q0 ∈ K is the initial state and F ⊆ K is the set of final
or accepting states. The next-state function on symbols is extended to one on
words, δ∗ : K ×Σ∗ → K such that δ∗(q, ε) = q, δ∗(q, a) = δ(q, a) for a ∈ Σ and
δ∗(q, uv) = δ∗(δ∗(q, u), v). The DFA accepts the string w if δ∗(q0, w) ∈ F . A set
L ⊆ Σ∗ is a regular language if L is the set of strings accepted by some DFA.

A nondeterministic finite automaton (NFA) is similar, but admits multiple
execution paths and accepts a string if one of them reaches a final state. Formally,
an NFA is a structure (K,Σ, δ,Q0, F ) where δ : K × Σ → P(K) is the next-
state function, Q0 ⊆ K a set of initial states, the other components as above.
The next-state function is extended to δ∗ : P(K) × Σ∗ → P(K) such that
δ∗(Q, ε) = Q, δ∗(Q, a) =

⋃
q∈Q δ(q, a) for a ∈ Σ and δ∗(Q, uv) = δ∗(δ∗(Q, u), v).

An NFA accepts the string w provided δ∗(q, w) ∈ F for some q ∈ Q0.
The notion of NFA can be extended with ε-transitions, allowing “silent”

transitions between states. Define the transition relation q
a→ q′ for q′ ∈ δ(q, a).

Let the ε-transition relation q ε→ q′ be given. Then define the transition relation
q
a⇒ q′ to allow ε-transitions before and after: ( ε→)∗ ◦ ( a→) ◦ ( ε→)∗.
Every NFA can be transformed into a DFA, where the set of states is the

powerset of the NFA’s states, and the next-state function captures the effect of
q

a⇒ q′ on these sets of states. Thus, we can use DFAs and NFAs interchange-
ably. Regular languages are easily shown to be closed under intersection and
complement, therefore also under union. They are closed under repetition (the
Kleene-star operation). Two especially important results are discussed below:

– The Myhill-Nerode theorem gives necessary and sufficient conditions for a
language to be regular. It defines a canonical and minimal DFA for any given
regular language. Minimal DFAs are unique up to isomorphism.

– Reorienting the arrows of the transition relation transforms a DFA into an
NFA accepting the reverse of the given language. We can regain a DFA using
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the powerset construction. Repeating this operation yields a minimal DFA
for the original language. This is Brzozowski’s minimisation algorithm [3].

This work has been done using the proof assistant Isabelle/HOL. Documen-
tation is available online at http://isabelle.in.tum.de/. The work refers to
equivalence relations and equivalence classes, following the conventions estab-
lished in my earlier paper [11]. If R is an equivalence relation on the set A, then
A//R is the set of equivalence classes. If x∈A, then its equivalence class is R‘‘{x}.
Formally, it is the image of x under R : the set of all y such that (x,y) ∈ R. More
generally, if X⊆A then R‘‘X is the union of the equivalence classes R‘‘{x} for x∈X.

3 Deterministic Automata; the Myhill-Nerode Theorem

When adopting HF set theory, there is the question of whether to use it for
everything, or only where necessary. The set of states is finite, so it could be
an HF set, and similarly for the set of final states. The alphabet could also be
given by an HF set; then words—lists of symbols—would also be HF sets. Our
definitions could be essentially typeless.

The approach adopted here is less radical. It makes a minimal use of HF,
taking the maximum advantage of types. Standard HOL sets (which are effec-
tively predicates) are intermixed with HF sets. Definitions are polymorphic in
the type ’a of alphabet symbols, while words have type ’a list.

3.1 Basic Definition of DFAs

The record definition below declares the components of a DFA. The types make
it clear that there is indeed a set of states but only a single initial state, etc.

record ’a dfa = states :: "hf set"

init :: "hf"

final :: "hf set"

nxt :: "hf ⇒ ’a ⇒ hf"

Once we have decided upon the representation of the DFA, the natural ap-
proach in Isabelle is to package up the axioms of the DFA as a locale [1]:

locale dfa =

fixes M :: "’a dfa"

assumes init: "init M ∈ states M"

and final: "final M ⊆ states M"

and nxt: "
∧
q x. q ∈ states M =⇒ nxt M q x ∈ states M"

and finite: "finite (states M)"

The assumptions listed above form a local context, and are available within the
locale. It is then easy to define the accepted language. Note that language is not
a function but a constant within the locale, referring to one particular DFA.
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primrec nextl :: "hf ⇒ ’a list ⇒ hf" where
"nextl q [] = q"

| "nextl q (x#xs) = nextl (nxt M q x) xs"

definition language :: "(’a list) set" where
"language ≡ {xs. nextl (init M) xs ∈ final M}"

Equivalence relations play a significant role below. The following relation regards
two strings as equivalent if they take the machine to the same state [7, p. 90].

definition eq nextl :: "(’a list × ’a list) set" where
"eq nextl ≡ {(u,v). nextl (init M) u = nextl (init M) v}"

3.2 Myhill-Nerode Relations

The Myhill-Nerode theorem asserts the equivalence of three characterisations
of regular languages. The first of these is to be the language accepted by some
DFA. The other two are connected with certain equivalence relations, called
Myhill-Nerode relations, on words of the language.

The definitions below are outside of the locale and are therefore independent
of any particular DFA. The predicate dfa refers to the locale axioms and ex-
presses that its argument, M, is a DFA. The predicate dfa.language refers to the
constant language : outside of the locale, it takes a DFA as an argument.

definition regular :: "(’a list) set ⇒ bool" where
"regular L ≡ ∃ M. dfa M ∧ dfa.language M = L"

The other characterisations of a regular language involve abstract finite state
machines derived from the language itself, with certain equivalence classes as the
states. A relation is right invariant if it satisfies the following closure property.

definition right invariant :: "(’a list × ’a list) set ⇒ bool" where
"right invariant r ≡ (∀ u v w. (u,v) ∈ r −→ (u@w, v@w) ∈ r)"

The intuition is that if two words u and v are related, then each word brings the
“machine” to the same state, and once this has happened, this agreement must
continue no matter how the words are extended as u@w and v@w.

A Myhill-Nerode relation for a language L is a right invariant equivalence re-
lation of finite index where L is the union of some of the equivalence classes
[7, p. 90]. Finite index means the set of equivalence classes is finite: finite

(UNIV//R). The equivalence classes will be the states of a finite state machine.
The equality L = R‘‘A, where A ⊆ L is a set of words of the language, expresses
L as the union of a set of equivalence classes, which will be the final states.

definition MyhillNerode :: "’a list set ⇒ (’a list * ’a list)set ⇒ bool"

where "MyhillNerode L R ≡ equiv UNIV R ∧ right invariant R ∧
finite (UNIV//R) ∧ (∃ A. L = R‘‘A)"

While eq nextl (defined in §3.1) refers to a machine, the relation eq app right

is defined in terms of a language, L . It relates the words u and v if all extensions
of them, u@w and v@w, behave equally with respect to L :
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definition eq app right :: "’a list set ⇒ (’a list * ’a list) set" where
"eq app right L ≡ {(u,v). ∀ w. u@w ∈ L ←→ v@w ∈ L}"

It is a Myhill-Nerode relation for L provided it is of finite index:

lemma MN eq app right:

"finite (UNIV // eq app right L) =⇒ MyhillNerode L (eq app right L)"

Moreover, every Myhill-Nerode relation R for L refines eq app right L.

lemma MN refines eq app right: "MyhillNerode L R =⇒ R ⊆ eq app right L"

This essentially states that eq app right L is the most abstract Myhill-Nerode
relation for L . This will eventually yield a way of defining a minimal machine.

3.3 The Myhill-Nerode Theorem

The Myhill-Nerode theorem says that these three statements are equivalent [6]:

1. The set L is a regular language (is accepted by some DFA).
2. There exists some Myhill-Nerode relation R for L.
3. The relation eq app right L has finite index.

We have (1) ⇒ (2) because eq nextl is a Myhill-Nerode relation. We have
(2)⇒ (3), by lemma MN refines eq app right, because every equivalence class for
eq app right L is the union of equivalence classes of R, and so eq app right L has
minimal index for all Myhill-Nerode relations. We get (3)⇒ (1) by constructing
a DFA whose states are the (finitely many) equivalence classes of eq app right

L. This construction can be done for every Myhill-Nerode relation.
Until now, all proofs have been routine. But now we face a difficulty: the

states of our machine should be equivalence classes of words, but these could
be infinite sets. What can be done? The solution adopted here is to map the
equivalence classes to the natural numbers, which are easily embedded in HF.

This solution is simple but not appealing, and may suggest that there is
no advantage in using the HF sets instead of the natural numbers. However,
mapping sets to integers turns out to be convenient only occasionally, and even
here, it is not necessary. If symbols are HF sets, then so are words; we could
represent the states of the DFA by representatives chosen from the equivalence
classes. We can do this even while retaining the polymorphism in type ’a dfa :
via Isabelle’s type-class system, it is easy to define the class of types that can
be embedded into HF, including the integers, booleans, lists of such, etc.

3.4 Constructing a DFA from a Myhill-Nerode Relation

If R is a Myhill-Nerode relation for a language L, then the set of equivalence
classes is finite, and a subset of them determine L . These things describe a DFA
for L . The construction is packaged as a locale, which is used once in the proof of
the Myhill-Nerode theorem, and again to prove that minimal DFAs are unique.
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The locale includes not only L and R, but also the set A of accepting states, the
cardinality n and the bijection h between the set UNIV//R of equivalence classes
and the number n as represented in HF. The locale assumes the Myhill-Nerode
conditions.

locale MyhillNerode dfa =

fixes L :: "(’a list) set" and R :: "(’a list * ’a list) set"

and A :: "(’a list) set" and n :: nat and h :: "(’a list) set ⇒ hf"

assumes eqR: "equiv UNIV R"

and riR: "right invariant R"

and L: "L = R‘‘A"

and h: "bij betw h (UNIV//R) (hfset (ord of n))"

The DFA is defined within the locale. The states are given by the equivalence
classes. The initial state is the equivalence class for the empty word; the set of
final states is derived from the set A of words that generate L ; the next-state
function maps the equivalence class for the word u to that for u@[x]. Equiva-
lence classes are not the actual states here, but are mapped to integers via the
bijection h. As mentioned above, this use of integers is not essential.

definition DFA :: "’a dfa" where
"DFA = (|states = h ‘ (UNIV//R),

init = h (R ‘‘ {[]}),

final = {h (R ‘‘ {u}) | u. u ∈ A},

nxt = λq x. h (
⋃
u ∈ h−1 q. R ‘‘ {u@[x]}) |)"

This can be proved to be a DFA easily. One proof line, using the right-invariance
property and lemmas about quotients [11], proves that the next-state function
respects the equivalence relation. Four more lines are needed to verify the proper-
ties of a DFA, somewhat more to show that the language of this DFA is indeed L .

The facts proved within the locale are summarised (outside its scope) by the
following theorem, stating that every Myhill-Nerode relation yields an equivalent
DFA. (The obtains form expresses existential and multiple conclusions.)

theorem MN imp dfa:

assumes "MyhillNerode L R"

obtains M where "dfa M" "dfa.language M = L"

"card (states M) = card (UNIV//R)"

This completes the (3) ⇒ (1) stage, by far the hardest, of the Myhill-Nerode
theorem. The three stages are shown below. Lemma L2 3 includes a result about
cardinality: the construction yields a minimal DFA, which will be useful later.

lemma L1 2: "regular L =⇒ ∃ R. MyhillNerode L R"

lemma L2 3:

assumes "MyhillNerode L R"

obtains "finite (UNIV // eq app right L)"

"card (UNIV // eq app right L) ≤ card (UNIV // R)"

lemma L3 1: "finite (UNIV // eq app right L) =⇒ regular L"

6



4 Nondeterministic Automata and Closure Proofs

As most of the proofs are simple, our focus will be the use of HF sets when defin-
ing automata. Our main example is the powerset construction for transforming
a nondeterministic automaton into a deterministic one.

4.1 Basic Definition of NFAs

As in the deterministic case, a record holds the necessary components, while a
locale encapsulates the axioms. Component eps deals with ε-transitions.

record ’a nfa = states :: "hf set"

init :: "hf set"

final :: "hf set"

nxt :: "hf ⇒ ’a ⇒ hf set"

eps :: "(hf * hf) set"

The axioms are obvious: the initial, final and next states belong to the set of
states, which is finite. An axiom restricting ε-transitions to machine states was
removed: it did not simplify proofs. Working with ε-transitions is messy. Allowing
multiple initial states instead of one reduces the need for ε-transitions. It also
helps to provide special treatment for NFAs having no ε-transitions.

locale nfa =

fixes M :: "’a nfa"

assumes init: "init M ⊆ states M"

and final: "final M ⊆ states M"

and nxt: "
∧
q x. q ∈ states M =⇒ nxt M q x ⊆ states M"

and finite: "finite (states M)"

The following function “closes up” a set Q of states under ε-transitions. Inter-
section with states M confines these transitions to legal states.

definition epsclo :: "hf set ⇒ hf set" where
"epsclo Q ≡ states M ∩ (

⋃
q∈Q. {q’. (q,q’) ∈ (eps M)∗})"

The remaining definitions are straightforward. Note that nextl generalises nxt

to take a set of states as well is a list of symbols.

primrec nextl :: "hf set ⇒ ’a list ⇒ hf set" where
"nextl Q [] = epsclo Q"

| "nextl Q (x#xs) = nextl (
⋃
q ∈ epsclo Q. nxt M q x) xs"

definition language :: "(’a list) set" where
"language ≡ {xs. nextl (init M) xs ∩ final M 6= {}}"

4.2 The Powerset Construction

The construction of a DFA to simulate a given NFA is elementary, and is a good
demonstration of the HF sets. The strongly-typed approach used here requires a
pair of coercion functions hfset :: "hf ⇒ hf set" and HF :: "hf set ⇒ hf"

to convert between HF sets and ordinary sets.
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lemma HF hfset: "HF (hfset a) = a"

lemma hfset HF: "finite A =⇒ hfset (HF A) = A"

With this approach, type-checking indicates whether we are dealing with a set
of states or a single state. The drawback is that we occasionally have to show
that a set of states is finite in the course of reasoning about the coercions, which
would never be necessary if we confined our reasoning to the HF world.

Here is the definition of the DFA. The states are ε-closed subsets of NFA
states, coerced to type hf. The initial and final states are defined similarly, while
the next-state function requires both coercions and performs ε-closure before
and after. We work in locale nfa, with access to the components of the NFA.

definition Power dfa :: "’a dfa" where
"Power dfa = (|dfa.states = HF ‘ epsclo ‘ Pow (states M),

init = HF(epsclo(init M)),

final = {HF(epsclo Q) | Q. Q ⊆ states M ∧ Q ∩ final M 6= {}},

nxt = λQ x. HF(
⋃
q ∈ epsclo (hfset Q). epsclo (nxt M q x)) |)"

Proving that this is a DFA is trivial. The hardest case is to show that the
next-state function maps states to states. Proving that the two automata accept
the same language is also simple, by reverse induction on lists (the induction
step concerns u@[x], putting x at the end). Here, Power.language refers to the
language of the powerset DFA, while language refers to that of the NFA.

theorem Power language: "Power.language = language"

4.3 Other Closure Properties

The set of languages accepted by some DFA is closed under complement, inter-
section, concatenation, repetition (Kleene star), etc. [6]. Consider intersection:

theorem regular Int:

assumes S: "regular S" and T: "regular T" shows "regular (S ∩ T)"

The recognising DFA is created by forming the Cartesian product of the sets of
states of MS and MT, the DFAs of the two languages. The machines are effectively
run in parallel. The decision to represent a set of states by type hf set rather
than by type hf means we cannot write dfa.states MS × dfa.states MT, but
we can express this concept using set comprehension:

"(|states = {〈q1,q2〉 | q1 q2. q1 ∈ dfa.states MS ∧ q2 ∈ dfa.states MT},

init = 〈dfa.init MS, dfa.init MT〉,
final = {〈q1,q2〉 | q1 q2. q1 ∈ dfa.final MS ∧ q2 ∈ dfa.final MT},

nxt = λ〈qs,qt〉 x. 〈dfa.nxt MS qs x, dfa.nxt MT qt x〉|)"

This is trivially shown to be a DFA. Showing that it accepts the intersection of
the given languages is again easy by reverse induction.

Closure under concatenation is expressed as follows:

theorem regular conc:

assumes S: "regular S" and T: "regular T" shows "regular (S @@ T)"
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The concatenation is recognised by an NFA involving the disjoint sum of
the sets of states of MS and MT, the DFAs of the two languages. The effect is
to simulate the first machine until it accepts a string, then to transition to a
simulation of the second machine. There are ε-transitions linking every final
state of MS to the initial state of MT . We again cannot write dfa.states MS +

dfa.states MT, but we can express the disjoint sum naturally enough:

"(|states = Inl ‘ (dfa.states MS) ∪ Inr ‘ (dfa.states MT),

init = {Inl (dfa.init MS)},

final = Inr ‘ (dfa.final MT),

nxt = λq x. sum case (λqs. {Inl (dfa.nxt MS qs x)})

(λqt. {Inr (dfa.nxt MT qt x)}) q,

eps = (λq. (Inl q, Inr (dfa.init MT))) ‘ dfa.final MS |)"

Again, it is trivial to show that this is an NFA. But unusually, proving that it
recognises the concatenation of the languages is a challenge. We need to show,
by induction, that the “left part” of the NFA correctly simulates MS .

have "
∧
q. Inl q ∈ ST.nextl {Inl (dfa.init MS)} u ←→

q = (dfa.nextl MS (dfa.init MS) u)"

The key property is that any string accepted by the NFA can be split into strings
accepted by the two DFAs. The proof involves a fairly messy induction.

have "
∧
q. Inr q ∈ ST.nextl {Inl (dfa.init MS)} u ←→

(∃ uS uT. uS ∈ dfa.language MS ∧ u = uS@uT ∧
q = dfa.nextl MT (dfa.init MT) uT)"

Closure under Kleene star is not presented here, as it involves no interesting
set operations. The language L∗ is recognised by an NFA with an extra state,
which serves as the initial state and runs the DFA for L including iteration. The
proofs are messy, with many cases. To their credit, Hopcroft and Ullman [6] give
some details, while other authors content themselves with diagrams alone.

5 State Minimisation for DFAs

The Myhill-Nerode theorem describes a DFA for a regular language L having
the minimum number of states. But it does not yield a minimisation algorithm.
It turns out that a DFA is minimal if it has no unreachable states and if no
two states are indistinguishable (in a sense made precise below). This again does
not yield an algorithm. Brzozowski’s minimisation algorithm involves reversing
the DFA to create an NFA, converting back to a DFA via powersets, removing
unreachable states, then repeating those steps to undo the reversal. Surprisingly,
it performs well in practice [3].

5.1 The Left and Right Languages of a State

The following developments are done within the locale dfa, and therefore refer
to one particular deterministic finite automaton.
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The left language of a state q is the set of all words w such that q0
w

→∗ q, or
informally, such that the machine when started in the initial state and given the
word w ends up in q. In a DFA, the left languages of distinct states are disjoint,
if they are nonempty.

definition left lang :: "hf ⇒ (’a list) set" where
"left lang q ≡ {u. nextl (init M) u = q}"

The right language of a state q is the set of all words w such that q
w

→∗ qf ,
where qf is a final state, or informally, such that the machine when started in q
will accept the word w. The language of a DFA is the right language of q0. Two
states having the same right language are indistinguishable: they both lead to
the same words being accepted.

definition right lang :: "hf ⇒ (’a list) set" where
"right lang q ≡ {u. nextl q u ∈ final M}"

The accessible states are those that can be reached by at least one word.

definition accessible :: "hf set" where
"accessible ≡ {q. left lang q 6= {}}"

The function path to returns one specific such word. This function will even-
tually be used to express an isomorphism between any minimal DFA (one having
no inaccessible or indistinguishable states) and the canonical DFA determined
by the Myhill-Nerode theorem.

definition path to :: "hf ⇒ ’a list" where
"path to q ≡ SOME u. u ∈ left lang q"

lemma nextl path to:

"q ∈ accessible =⇒ nextl (dfa.init M) (path to q) = q"

First, we deal with the problem of inaccessible states. It is easy to restrict
any DFA to one having only accessible states.

definition Accessible dfa :: "’a dfa" where
"Accessible dfa = (|dfa.states = accessible,

init = init M,

final = final M ∩ accessible,

nxt = nxt M |)"

This construction is readily shown to be a DFA that agrees with the orig-
inal in most respects. In particular, the two automata agree on left lang and
right lang, and therefore on the language they accept:

lemma Accessible language: "Accessible.language = language"

We can now define a DFA to be minimal if all states are accessible and no two
states have the same right language. (The formula inj on right lang (dfa.states

M) expresses that the function right lang is injective on the set dfa.states M.)
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definition minimal where
"minimal ≡ accessible = states M ∧ inj on right lang (dfa.states M)"

Because we are working within the DFA locale, minimal is a constant referring
to one particular automaton.

5.2 A Collapsing Construction

We can deal with indistinguishable states similarly, defining a DFA in which the
indistinguishable states are identified via equivalence classes. This is not part
of Brzozowski’s minimisation algorithm, but it is interesting in its own right:
the equivalence classes themselves are HF sets. We begin by declaring a relation
stating that two states are equivalent if they have the same right language.

definition eq right lang :: "(hf × hf) set" where
"eq right lang ≡ {(u,v). u ∈ states M ∧ v ∈ states M ∧

right lang u = right lang v}"

Trivially, this is an equivalence relation, and equivalence classes of states are
finite (there are only finitely many states). In the corresponding DFA, these
equivalence classes form the states, with the initial and final states given by the
equivalence classes for the corresponding states of the original DFA. As usual,
the function HF is used to coerce a set of states to type hf.

definition Collapse dfa :: "’a dfa" where
"Collapse dfa = (|dfa.states = HF ‘ (states M // eq right lang),

init = HF (eq right lang ‘‘ {init M}),

final = {HF (eq right lang ‘‘ {q}) | q. q ∈ final M},

nxt = λQ x. HF (
⋃
q ∈ hfset Q. eq right lang ‘‘ {nxt M q x}) |)"

This is easily shown to be a DFA, and the next-state function respects the equiv-
alence relation. Showing that it accepts the same language is straightforward.

lemma ext language Collapse dfa:

"u ∈ Collapse.language ←→ u ∈ language"

5.3 The Uniqueness of Minimal DFAs

The property minimal is true for machines having no inaccessible or indistin-
guishable states. To prove that such a machine actually has a minimal number
of states is tricky. It can be shown to be isomorphic to the canonical machine
from the Myhill-Nerode theorem, which indeed has a minimal number of states.

Automata M and N are isomorphic if there exists a bijection h between their
state sets that preserves their initial, final and next states. This conception is
nicely captured by a locale, taking the DFAs as parameters:

locale dfa isomorphism = M: dfa M + N: dfa N

for M :: "’a dfa" and N :: "’a dfa" +

fixes h :: "hf ⇒ hf"
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assumes h: "bij betw h (states M) (states N)"

and init : "h (init M) = init N"

and final: "h ‘ final M = final N"

and nxt : "
∧
q x. q ∈ states M =⇒ h(nxt M q x) = nxt N (h q) x"

With this concept at our disposal, we resume working within the locale dfa,
which is concerned with the DFA M . Under the assumption that no two states
have the same right language, there is a bijection between the accessible states
(of M) and the equivalence classes yielded by the relation eq app right language.

lemma inj right lang imp eq app right index:

assumes "inj on right lang (dfa.states M)"

shows "bij betw (λq. eq app right language ‘‘ {path to q})

accessible (UNIV // eq app right language)"

This bijection maps the state q to eq app right language ‘‘ {path to q}. Every
element of the quotient UNIV // eq app right language can be expressed in this
form. And therefore, the number of states in a minimal machine equals the index
of eq app right language.

definition min states where
"min states ≡ card (UNIV // eq app right language)"

lemma minimal imp index eq app right:

"minimal =⇒ card(dfa.states M) = min states"

In the proof of the Myhill-Nerode theorem, it emerged that this index was
the minimum cardinality for any DFA accepting the given language. Any other
automaton, M’, accepting the same language cannot have fewer states. This the-
orem justifies the claim that minimal indeed characterises a minimal DFA.

theorem minimal imp card states le:

" [[minimal; dfa M’; dfa.language M’ = language ]]
=⇒ card (dfa.states M) ≤ card (dfa.states M’)"

Note that while the locale dfa gives us implicit access to one DFA, namely M, it
is still possible to refer to other automata, as we see above.

The minimal machine is unique up to isomorphism because every minimal
machine is isomorphic to the canonical Myhill-Nerode DFA. The construction of
a DFA from a Myhill-Nerode relation was packaged as a locale, and by applying
this locale to the given language and the relation eq app right language, we can
generate the instance we need.

interpretation Canon:

MyhillNerode dfa language "eq app right language"

language min states index f

Here, index f denotes some bijection between the equivalence classes and their
cardinality (as an HF ordinal). It exists (definition omitted) by the definition
of cardinality itself. It is the required isomorphism function between M and the
canonical DFA of Sect. 3.4, which is written Canon.DFA.
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definition iso :: "hf ⇒ hf" where
"iso ≡ index f o (λq. eq app right language ‘‘ {path to q})"

The isomorphism property is stated using locale dfa isomorphism.

theorem minimal imp isomorphic to canonical:

assumes minimal shows "dfa isomorphism M Canon.DFA iso"

Verifying the isomorphism conditions requires delicate reasoning. Hopcroft and
Ullman’s proof [6, p. 29–30] provides just a few clues.

5.4 Brzozowski’s Minimisation Algorithm

At the core of this minimisation algorithm is an NFA obtained by reversing all
the transitions of a given DFA, and exchanging the initial and final states.

definition Reverse nfa :: "’a dfa ⇒ ’a nfa" where
"Reverse nfa MS = (|nfa.states = dfa.states MS,

init = dfa.final MS,

final = {dfa.init MS},

nxt = λq x. {p ∈ dfa.states MS. q = dfa.nxt MS p x},

eps = {} |)"

This is easily shown to be an NFA that accepts the reverse of every word accepted
by the original DFA. Applying the powerset construction yields a new DFA that
has no indistinguishable states. The point is that the right language of a powerset
state is derived from the right languages of the constituent states of the reversal
NFA [3]. Those, in turn, are the left languages of the original DFA, and these
are disjoint (since the original DFA has no inaccessible states, by assumption).

lemma inj on right lang PR:

assumes "dfa.states M = accessible"

shows "inj on (dfa.right lang (nfa.Power dfa (Reverse nfa M)))

(dfa.states (nfa.Power dfa (Reverse nfa M)))"

The following definitions abbreviate the steps of Brzozowski’s algorithm.

abbreviation APR :: "’x dfa ⇒ ’x dfa" where
"APR X ≡ dfa.Accessible dfa (nfa.Power dfa (Reverse nfa X))"

definition Brzozowski :: "’a dfa" where
"Brzozowski ≡ APR (APR M)"

By the lemma proved just above, the APR operation yields minimal DFAs.

theorem minimal APR:

assumes "dfa.states M = accessible"

shows "dfa.minimal (APR M)"

Brzozowski’s minimisation algorithm is correct. The first APR call reverses the
language and eliminates inaccessible states; the second call yields a minimal
machine for the original language. The proof uses the theorems just proved.
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theorem minimal Brzozowski: "dfa.minimal Brzozowski"

unfolding Brzozowski def

proof (rule dfa.minimal APR)

show "dfa (APR M)"

by (simp add: dfa.dfa Accessible nfa.dfa Power nfa Reverse nfa)

next
show "dfa.states (APR M) = dfa.accessible (APR M)"

by (simp add: dfa.Accessible accessible dfa.states Accessible dfa

nfa.dfa Power nfa Reverse nfa)

qed

6 Related Work

There is a great body of prior work. One approach involves working construc-
tively, in some sort of type theory. Constable’s group has formalised automata
[4] in Nuprl, including the Myhill-Nerode theorem. Using type theory in the form
of Coq and its Ssreflect library, Doczkal et al. [5] formalise much of the same ma-
terial as the present paper. They omit ε-transitions and Brzozowski’s algorithm
and add the pumping lemma and Kleene’s algorithm for translating a DFA to
a regular expression. Their development is of a similar length, under 1400 lines,
and they allow the states of a finite automaton to be given by any finite type. In
a substantial development, Braibant and Pous [2] have implemented a tactic for
solving equations in Kleene algebras by implementing efficient finite automata
algorithms in Coq. They represent states by integers.

An early example of regular expression theory formalised using higher-order
logic (Isabelle/HOL) is Nipkow’s verified lexical analyser [9]. His automata are
polymorphic in the types of state and symbols. NFAs are included, with ε-
transitions simulated by an alphabet extended with a dummy symbol.

Recent Isabelle developments explicitly bypass automata theory. Wu et al.
[15] prove the Myhill-Nerode theorem using regular expressions. This is a signif-
icant feat, especially considering that the theorem’s underlying intuitions come
from automata. Current work on regular expression equivalence [8, 10] continues
to focus on regular expressions rather than finite automata.

It is no criticism to say that finite automata cause pervasive issues. Con-
structive logic will not appeal to everybody, and quotient types can cause com-
plications. The HF sets make things simple. This paper describes not a project
undertaken by a team, but a six-week case study by one person.

7 Conclusions

The theory of finite automata can be developed straightforwardly using higher-
order logic and hereditarily finite set theory. We can formalise the textbook
proofs: there is no need to avoid automata or use constructive type theories.
HF set theory can be seen as an abstract universe of computable objects. It
could have many other applications. One possibility is programming language
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semantics: using hf as the type of values offers open-ended possibilities, includ-
ing integer, rational and floating point numbers, ASCII characters, and data
structures built up from them.

Acknowledgements. Christian Urban and Tobias Nipkow offered advice and com-
ments, and suggested Brzozowski’s minimisation algorithm as an example.
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