A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl)

joint work with Chunhan Wu and Xingyuan Zhang from the PLA University of Science and Technology in Nanjing

Christian Urban

TU Munich

A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl)

joint work with Chunhan Wu and Xingyuan Zhang from the PLA University of Science and Technology in Nanjing

Christian Urban

TU Munich

Motivation:

I want to teach students with theorem provers (especially for inductions).

Motivation:

I want to teach students with theorem provers (especially for inductions).

- fib, even and odd

Motivation:

I want to teach students with theorem provers (especially for inductions).

- fib even odd
- formal language theory
\Rightarrow nice textbooks: Kozen, Hopcroft \& Ullman...

Formal language theory...

in Nuprl

- Constable, Jackson, Naumov, Uribe
- 18 months for automata theory from Hopcroft \& Ullman chapters 1-11 (including Myhill-Nerode)

Formal language theory...

in Coq

- Filliâtre, Briais, Braibant and others
- multi-year effort; a number of results in automata theory, e.g.
- Kleene's thm. by Filliâtre ("rather big")
- automata theory by Briais (5400 loc)
- Braibant ATBR library, including Myhill-Nerode (>2000 loc)
- Mirkin's partial derivative automaton construction (10600 loc)

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions
- combining automata/graphs
$\left\{A_{1}\right\}\left\{A_{2}\right\}$

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions
- combining automata/graphs

$$
\left\{A_{1}\right\}\left\{A _ { 2 } \xi \Rightarrow \{ A _ { 1 } \} \left\{A_{2} \xi\right.\right.
$$

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions
- combining automata/graphs

$$
\left\{A_{1}\right\}\left\{A_{2} \xi \Rightarrow A_{1}\right\}\left\{A_{2} \xi\right.
$$

disjoint union:
$A_{1} \uplus A_{2} \stackrel{\text { def }}{=}\left\{(1, x) \mid x \in A_{1}\right\} \cup\left\{(2, y) \mid y \in A_{2}\right\}$

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions

Problems with definition for regularity (Slind):
is_regular $(\boldsymbol{A}) \stackrel{\text { def }}{=} \exists M$. is_dfa $(M) \wedge \mathcal{L}(M)=A$

$$
A_{1} \uplus A_{2} \stackrel{\text { def }}{=}\left\{(1, x) \mid x \in A_{1}\right\} \cup\left\{(2, y) \mid y \in A_{2}\right\}
$$

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions
- combining automata/graphs

$$
\left\{A_{1}\right\}\left\{A_{2}\right\} \Rightarrow\left\{A_{1}\right\} A_{2} \xi
$$

A solution: use nat \Rightarrow state nodes

Formal language theory...

in HOL

- automata \Rightarrow graphs, matrices, functions
- combining automata/graphs

$$
\left\{A_{1}\right\}\left\{A_{2}\right\} \Rightarrow\left\{A_{1}\right\}\left\{A_{2} \xi\right.
$$

A solution: use nat \Rightarrow state nodes
You have to rename states!

Formal language theory...

in HOL

- Kozen's "paper" proof of Myhill-Nerode: requires absence of inaccessible states
is_regular $(A) \stackrel{\text { def }}{=} \exists M$. is_dfa $(M) \wedge \mathcal{L}(M)=A$

Definition:

A language A is regular, provided there exists a regular expression that matches all strings of A.

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Definition:

A language A is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

- pumping lemma

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

- pumping lemma
- closure under complementation

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

- pumping lemma
- closure under complementation
- regular expression matching

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

- pumping lemma
- closure under complementation
- regular expessimatching (\Rightarrow Owens et al)

Definition:

A language \boldsymbol{A} is regular, provided there exists a regular expression that matches all strings of A.
. . . and forget about automata

Infrastructure for free. But do we lose anything?

- pumping lemma
- closure under complementation
- regular expessimatching (\Rightarrow Owens et al)
- most textbooks are about automata

The Myhill-Nerode Theorem

- provides necessary and sufficient conditions for a language being regular (pumping lemma only necessary)
- key is the equivalence relation:

$$
x \approx_{A} y \stackrel{\text { def }}{=} \forall z . x @ z \in A \Leftrightarrow y @ z \in A
$$

The Myhill-Nerode Theorem

- finite ($U N I V / / \approx_{A}$) $\Leftrightarrow A$ is regular

The Myhill-Nerode Theorem

- finite (UNIV // $\left.\approx_{A}\right) \Leftrightarrow A$ is regular

The Myhill-Nerode Theorem

Two directions:
1.) finite \Rightarrow regular
finite $\left(U N I V / / \approx_{A}\right) \Rightarrow \exists r . A=\mathcal{L}(r)$
2.) regular \Rightarrow finite finite $\left(\right.$ UNIV $\left./ / \approx_{\mathcal{L}(r)}\right)$
$\cdots 1$ an equivalence class

- finite $\left(U N I V / / \approx_{A}\right) \Leftrightarrow A$ is regular

Initial and Final Sass

Equivalence Classes

- finals $A \stackrel{\text { def }}{=}\left\{\| x \rrbracket_{\approx_{A}} \mid x \in A\right\}$
- we can prove: $\boldsymbol{A}=\bigcup$ finals \boldsymbol{A}

Initial and Final Sts

Equivalence Classes

- finals $A \stackrel{\text { def }}{=}\left\{\rrbracket x \rrbracket_{\approx_{A}} \mid x \in A\right\}$
- we can prove: $\boldsymbol{A}=\bigcup$ finals \boldsymbol{A}

Initial and Final Sts

Equivalence Classes

- finals $A \stackrel{\text { def }}{=}\left\{\| x \rrbracket_{\approx_{A}} \mid x \in A\right\}$
- we can prove: $\boldsymbol{A}=\bigcup$ finals \boldsymbol{A}

Transitions between Eq-Classes

$$
X \xrightarrow{c} \boldsymbol{Y} \stackrel{\text { def }}{=} X ; c \subseteq Y
$$

Systems of Equations

Inspired by a method of Brzozowski '64:

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

Systems of Equations

Inspired by a method of Brzozowski '64:

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{X}_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& \boldsymbol{X}_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$$
X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[]
$$

$$
X_{2}=X_{1} ; a+X_{2} ; a
$$

by Arden

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

by Arden

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{2} ; b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$$
X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[]
$$

$$
X_{2}=X_{1} ; a \cdot a^{\star}
$$

$$
\begin{aligned}
& X_{1}=X_{2} ; b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; a \cdot a^{\star} \cdot b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

by Arden

by Arden
by substitution

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$$
X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[]
$$

$$
X_{2}=X_{1} ; a \cdot a^{\star}
$$

$$
\begin{aligned}
& X_{1}=X_{2} ; b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; a \cdot a^{\star} \cdot b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
X_{1}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star}
$$

by Arden

by Arden
by substitution

by Arden

$$
X_{2}=X_{1} ; a \cdot a^{\star}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{2} ; b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; a \cdot a^{\star} \cdot b \cdot b^{\star}+\lambda ; b^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

by Arden
by Arden
by substitution
by Arden
by substitution
substitution

$$
\begin{aligned}
& X_{1}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \\
& X_{2}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \cdot a \cdot a^{\star}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[] \\
& X_{2}=X_{1} ; a+X_{2} ; a
\end{aligned}
$$

$\boldsymbol{X}_{2}=\Lambda_{1} ; \boldsymbol{u} \cdot \boldsymbol{u}$

$$
\begin{aligned}
& X_{1}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \\
& X_{2}=X_{1} ; a \cdot a^{\star}
\end{aligned}
$$

by Arden

$$
X_{1}=X_{1} ; b+X_{2} ; b+\lambda ;[]
$$

$$
X
$$

$$
\begin{aligned}
& X_{1}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \\
& X_{2}=\lambda ; b^{\star} \cdot\left(a \cdot a^{\star} \cdot b \cdot b^{\star}\right)^{\star} \cdot a \cdot a^{\star}
\end{aligned}
$$

by Arden
by substitution
by Arden
by substitution

The Other Direction

One has to prove
finite($\left.U N I V / / \approx_{\mathcal{L}(r)}\right)$
by induction on r. Not trivial, but after a bit of thinking, one can find a refined relation:

UNIV // $\approx_{\mathcal{L}(r)}$

UNIV//R

Partial Derivatives

- ... (set of) regular expressions after a string has been parsed
- pders $\times r=$ pders y r refines $x \approx_{\mathcal{L}(r)} y$

Partial Derivatives

- ... (set of) regular expressions after a string has been parsed
- $\underbrace{\text { pders } \times r=\text { pders y } r}_{R}$ refines $\times \approx_{\mathcal{L}(r) \text { y }}$

Antimirov '95

- finite($U N I V / / R$)

Partial Derivatives

- ... (set of) regular expressions after a string has been parsed
- $\underbrace{\text { pders } \times r=\text { pders y } r}_{R}$ refines $\times \approx_{\mathcal{L}(r) \text { y }}$

Antimirov '95

- finite(UNIV//R)
- Therefore finite($\left.U N I V / / \approx_{\mathcal{L}(r)}\right)$. Qed.

What Have We Achieved?

- finite $\left(U N I V / / \approx_{A}\right) \Leftrightarrow A$ is regular

What Have We Achieved?

- finite $\left(U N I V / / \approx_{A}\right) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy

$$
U N I V / / \approx_{A}=U N I V / / \approx_{\bar{A}}
$$

$$
x \approx_{A} y \stackrel{\text { def }}{=} \forall z . x @ z \in A \Leftrightarrow y @ z \in A
$$

What Have We Achieved?

- finite $\left(U N I V / / \approx_{A}\right) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy

$$
U N I V / / \approx_{A}=U N I V / / \approx_{\bar{A}}
$$

- non-regularity ($a^{n} b^{n}$)

If there exists a sufficiently large set B (for example infinitely large), such that

$$
\forall x, y \in B . x \neq y \Rightarrow x \not \approx_{A} y
$$

then A is not regular.

What Have We Achieved?

- finite $\left(U N I V / / \approx_{A}\right) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy

$$
U N I V / / \approx_{A}=U N I V / / \approx_{\bar{A}}
$$

- non-regularity ($a^{n} b^{n}$)

If there exists a sufficiently large set B (for example infinitely large), such that

$$
\forall x, y \in B . x \neq y \Rightarrow x \not \nsim_{A} y .
$$

then A is not regular.

$$
\left(B \stackrel{\text { def }}{=} \bigcup_{n} a^{n}\right)
$$

Conclusion

- We have never seen a proof of Myhill-Nerode based on regular expressions.

Conclusion

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)

Conclusion

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
- first direction (790 loc)
- second direction (400/390 loc)

Conclusion

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
- first direction (790 loc)
- second direction (400/390 loc)
- I have not yet used it in teaching for undergraduates.

Conclusion

- We have never seen a proof of Myhill-Nerode Bold Claim: (not proved!)

95\% of regular language theory can be done without automata!
... and this is much more tasteful ;0)

- I have not yet used it in teaching for undergraduates.

Thank you!

Questions?

