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Abstract. The notion of relevance is used in many technical fields. In the areas of machine learning and data
mining, for example, relevance is frequently used as a measure in feature subset selection (FSS). In previous
studies, the interpretation of relevance has varied and its connection to FSS has been loose. In this paper a
rigorous mathematical formalism is proposed for relevance, which is quantitative and normalized. To apply the
formalism in FSS, a characterization is proposed for FSS: preservation of learning information and minimization
of joint entropy. Based on the characterization, a tight connection between relevance and FSS is established:
maximizing the relevance of features to the decision attribute, and the relevance of the decision attribute to the
features. This connection is then used to design an algorithm for FSS. The algorithm is linear in the number of
instances and quadratic in the number of features. The algorithm is evaluated using 23 public datasets, resulting
in an improvement in prediction accuracy on 16 datasets, and a loss in accuracy on only 1 dataset. This provides
evidence that both the formalism and its connection to FSS are sound.
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1. Introduction

There has been an interest in explicitly studying and usingrelevancein a wide range of areas;
in particular, in the area of machine learning for feature subset selection (FSS) (Greiner
& Subramanian, 1994). But what do we mean by the termrelevance? Relevance has been
studied for over fifty years (Keynes, 1921), and it has an agreed, commonsense meaning to
do with the relationships between objects. We believe that it can be given a more rigorous
definition, and that this definition can be useful in FSS.

Broadly speaking, the purpose of FSS is to select a subset of features from the feature
space which isgoodenough regarding its ability to describe the training dataset and to predict
for future cases. There is a wealth of algorithms for FSS (Littlestone, 1988; Almuallim &
Dietterich, 1991; Kira & Rendell, 1992; Aha & Bankert, 1994; Caruana & Freitag, 1994;
Kononenko, 1994; John, Kohavi, & Pfleger, 1994; Skalak, 1994; Kohavi & Sommerfield,
1995; Kononenko, Simec, & Robnik-Sikonja, 1997; Liu & Setiono, 1997). With regard to
how to evaluate the goodness (quality) of a subset of features, the FSS methods fall into
two broad categories: thefilter approachand thewrapper approach. In the filter approach,
a good feature set is selected as a result of pre-processing based on properties of the data
itself and independent of the learning algorithm. In the wrapper approach, FSS is done with
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the help of learning algorithms. The FSS algorithm conducts a search for a good feature set
using the learning algorithm itself as part of the evaluation function. Typically, the feature
subset which performs best for the learning algorithm will be selected.

FSS has a traditional close link with the notion of relevance. For example, FOCUS
(Almuallim & Dietterich, 1991), RELIEFF (Kira & Rendell, 1992) and Schlimmer’s model
(Schlimmer, 1993) use “relevance” to estimate the goodness of the feature subset in one
way or another. Although the wrapper approach does not use a relevance measure directly, it
is shown by Kohavi and Sommerfield (1995) that the “optimal” feature subset obtained this
way must be from the relevant feature set (strongly relevant and weakly relevant features).
This can be seen from the following overview.

1.1. The use of relevance in FSS

Although the notion of relevance is used by many FSS algorithms, the measure of relevance
varies and the relationship between relevance and FSS is of an intuitive nature. In this section
we describe the use of relevance in FSS briefly. In the filter category we look at RELIEFF
(Kira & Rendell, 1992), FOCUS (Almuallim & Dietterich, 1991; Almuallim & Dietterich,
1994) and Schlimmer’s approach (Schlimmer, 1993), and in the wrapper category we look
at the work by John, Kohavi, and Pfleger (1994).

In RELIEFF, a good subset of features is one where each feature has a “relevance level”
greater than a given threshold. The notion of relevance1 has not been rigorously justified
against the agreed common understanding of this notion. The algorithm works by associating
with each feature a weight indicating the relevance level of that feature to the decision
attribute and returns a set of features whose weights exceed a threshold.

In RELIEFF, the selected feature subset is highly dependent on the user-specified thresh-
old. It is clear that a threshold value which works well for one dataset doesn’t necessarily
work well in another.

In FOCUS a good feature subset is a minimal subset which is consistent with the training
dataset. Minimality is in the sense of set cardinality, and consistency is in the sense that
the selected feature subset preserves the dependence in the original dataset. Such a feature
subset is then regarded as relevant.

In Schlimmer’s approach, a good subset is one of the minimal determinations2 which
is then regarded as relevant, but nothing is mentioned as to which one isoptimal. The
algorithm carries out a systematic search through the space of feature subsets for all minimal
determinations (not just one) which are consistent with the training dataset. The feature
subset selected by FOCUS is a determination, while Schlimmer’s approach aims to find all
determinations.

John, Kohavi, and Pfleger (1994) were the first to present the wrapper idea as a general
framework for FSS. The generic wrapper technique uses some measure to select among
alternative features. One natural scheme involves running the learning algorithm over the
training dataset using a given set of features, then measuring the accuracy of the learned
structure on the testing dataset.

The wrapper approach does not use a relevance measure directly; rather, it uses the
accuracy obtained by applying a learning algorithm as the measure for the goodness of
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feature subsets. However, Kohavi and Sommerfield (1995) show that the optimal feature
subset obtained this way must be from the relevant feature subset (strongly relevant and
weakly relevant features).

1.2. Our approach

From the above discussion we can see that the notion of relevance has been used extensively
in FSS literature, but its interpretation varies in different cases. We start off from a common
understanding of this notion, develop a rigorous and quantified formalism for it, use the
formalism to establish a tight connection between relevance and FSS, and finally develop
an algorithm for FSS making use of our relevance concept. Our study on FSS in this paper
is of the filter type.

In the rest of the paper, we first present a brief review of relevance; then we introduce
our information theoretic formalism of relevance, which is justified with regard to the
axiomatization of relevance. To demonstrate the usefulness of this relevance formalism,
we apply it to the problem of FSS in the areas of machine learning and data mining. We
characterize FSS with two requirements, and based on the characterization we formally
establish the quantitative relationship between FSS and relevance. This is then used to
develop an algorithm for FSS based on the relevance formalism. The algorithm is evaluated
using public datasets.

2. A brief review of relevance

There are basically two current lines of research on relevance in the context of AI: the formal-
ization of the commonsense notion of relevance, and the problem oriented characterization
of relevance. This review is presented along these two lines.

2.1. Formalization of the commonsense notion of relevance

The notion of relevance has been formally investigated in the philosophy literature (Keynes,
1921; Carnap, 1962; G¨ardenfors, 1978). The focus of the discussion was on formalizing a
concept of relevance that would fit the commonsense notion of the word. There is a widely
agreed traditional understanding in broad terms of this concept, expressed by G¨ardenfors
as follows:

Definition 2.1(Gärdenfors, 1978). On the basis of prior evidencee, a hypothesish is
considered, and the change in the likelihood ofh due to additional evidencei is examined.
If the likelihood ofh is changed by the addition ofi to e, i is said to be relevant toh on the
evidencee; otherwise it is irrelevant. In particular, if the likelihood ofh is increased due to
the addition ofi to e, i is said to be positively relevant toh; if the likelihood is decreased,i
is said to be negatively relevant.

However investigators of matters pertaining to the concept differ in the formal technical
details, and in how to define therelevance functionin attempts to quantify the concept.
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These differences have led to arguments as to which can best capture the commonsense
notion of relevance from first principles.

Keynes and Carnap each have their own definitions of relevance function. Keynes uses
the relevance quotient (Keynes, 1921), and Carnap uses the probability difference (Carnap,
1962). Following the work of Keynes and Carnap, G¨ardenfors (1978) proposes a set of six
axioms (or in Gärdenfors’ terms, logical conditions), which he argues should be observed
by an appropriate definition of relevance with regard to the commonsense meaning of the
concept. G¨ardenfors has shown that both Keynes’ and Carnap’s relevance functions satisfy
the first five axioms, but not the sixth. He then replaces the traditional definition with a
stronger one that yields a relevance relation which, in his opinion, agrees well with the
commonsense term (G¨ardenfors, 1978). He further shows that this definition satisfies all
six axioms above.

2.2. Conditional independence

Conditional independence among variables finds its application in belief networks (Pearl,
1988), where irrelevance is identified with conditional independence, and relevance is iden-
tified with the negation of irrelevance (Lakemeyer, 1995). Irrelevance is in fact the basis of
constructing belief networks.

The study of conditional independence is summarized by Pearl (1988), where a number
of properties are identified. Here we re-state these properties as a set of axioms.

Axiom 2.1(Pearl, 1988). LetX ,Y, andZ be three disjoint sets of variables. If=(X ,Z,Y)
stands for the relation “X is independent ofY givenZ” in some probability distributionp,
then “=” must satisfy the following four independent conditions:

– Symmetry:=(X ,Z,Y)⇐⇒ =(Y,Z,X );
– Decomposition:=(X ,Z,Y ∪W)⇒ =(X ,Z,Y) and=(X ,Z,W);
– Weak union:=(X ,Z,Y ∪W)⇒ =(X ,Z ∪W,Y);
– Contraction:=(X ,Z,Y) and=(X ,Z ∪ Y,W)⇒ =(X ,Z,Y ∪W);

2.3. Machine learning

There are many contributions in this domain (Blum, 1994; Almuallim & Dietterich, 1991;
Gennari, Langley, & Fisher, 1989; John, Kohavi, & Pfleger, 1994). The definitions identify
a feature as either relevant or irrelevant to a concept or task. John, Kohavi, and Pfleger
(1994) and Kohavi (1994) show that these definitions give unexpected results, and that the
dichotomy of relevance vs irrelevance is not enough. An alternative definition of relevance
is then proposed which distinguishes betweenstrong relevanceandweak relevance.

Definition 2.2(John,Kohavi,& Pfleger, 1994; Kohavi, 1994). Let Si be the set of all
features exceptXi , i.e.,Si = {X1, . . . , Xi−1, Xi+1, . . . , Xm}, and letY be a decision at-
tribute not inSi . Denote bysi a value-assignment to all features inSi . ThenXi is strongly
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relevant iffthere exist somexi , y, andsi with P(Xi = xi ,Si = si ) > 0 such that

P(Y = y |Si = si , Xi = xi ) 6= P(Y = y |Si = si ).

A featureXi is weakly relevant iffit is not strongly relevant, and there exists a subset of
featuresS ′i of Si for which there exists somexi , y, ands′i with P(Xi = xi ,S ′i = s′i ) > 0
such that

P(Y = y | Xi = xi ,S ′i = s′i ) 6= P(Y = y |S ′i = s′i )

Under this definition,Xi is strongly relevant if the probability of the outcome (given all
features) can change when we eliminate knowledge about the value ofXi . Strong relevance
implies that a given feature isstrongly relevantif it is indispensable in the sense that it
cannot be removed without loss of prediction accuracy. A feature isweakly relevantif it
can sometimes contribute to prediction accuracy.

These definitions are all qualitative by nature and are concerned only with relevance
among features (or attributes, variables). The distinction of strong relevance and weak
relevance (John, Kohavi, & Pfleger, 1994; Kohavi, 1994) has the advantage of flexibility:
using this distinction, we can select either strongly relevant features or weakly relevant
features to satisfy different learning requirements (Kohavi & Sommerfield, 1995). Taking
this one step further, it is then reasonable to expect a finer distinction of relevance, and even
further, a quantitative concept of relevance.

2.4. Our objective

We have briefly reviewed some work on relevance, and in particular, we have identified two
axiomatic characterizations of relevance (G¨ardenfors, 1978; Pearl, 1988) and the underlying
definitions. Clearly there could be other treatments of relevance and other characterizations.3

These studies are rooted in different subject areas and they capture the broad meaning of
the commonsense notion of relevance (in Definition 2.1) in their respective contexts.

Keynes’, Carnap’s and G¨ardenfors’ measures for relevance do not apply directly in FSS,
but they serve as a basis for further study. Conditional independence and strong/weak
relevance are applicable in FSS, but they are largely of a qualitative nature. Our objective is
to establish a quantitative relationship between relevance and FSS in the sense that, ideally,
a certain degree of relevance corresponds to a certain degree of improvement in learning
performance as a result of FSS. For this, we want to find a quantitative formalism which
complies with the commonsense meaning of relevance and is usable for the purpose of FSS
and possibly in other domains.

3. Information theoretic formalism of relevance

Given a set of discrete variables and their joint probability distribution, we can examine
the relevance relationship between variables, as well as between instances of variables. The
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former is referred to asvariable relevance, and the latter asinstance relevance. We stick to
the commonsense meaning of relevance in Definition 2.1.

We will be using the following notational convention throughout this paper. Capital
lettersX,Y, Z, . . . are used to represent variables, lower case letters to represent instances
of variables, and calligraphic lettersX ,Y,Z, . . . to represent sets. A single variable is
regarded as a singleton set of variables. Exceptions will be noted explicitly.

3.1. Variable relevance

The relevance of one variable to another (target) variable is here understood in information
theoretic terms, as themutual information between the two variables relative to the entropy
of the target variable, or in other words, the relative reduction of entropy (uncertainty)
of one variable due to the knowledge of another. The bigger the reduction, the higher the
relevance. Formally we have:

Definition 3.1. Given three sets of variablesX ,Y andZ with a joint probability distribution
p, let I (X ;Y |Z) be the mutual information betweenX andY givenZ, and letH(X |Y)
be the entropy ofX givenY .4 If H(Y |Z) 6= 0, then thevariable relevanceofX toY given
Z, denotedr p(X ;Y |Z), is defined as

r p(X ;Y |Z) = I (X ;Y |Z)
H(Y |Z) =

H(Y |Z)− H(Y |X ,Z)
H(Y |Z)

If H(Y |Z) = 0, thenr p(X ;Y |Z) = 0.

Where there is no ambiguity,p will be dropped for brevity.
This definition says that the relevance ofX to Y givenZ is indicated by the relative

reduction of uncertainty ofY whenX andZ are known. With this notion we can express
a degree of relevance by stating thatX is relevant toY givenZ with degreer (X ;Y |Z).
This is theconditional casein the sense the relevance betweenX andY is conditioned
by Z, andr (X ;Y |Z) is therefore calledconditional relevance. WhenZ is dropped, the
relevance between two variables is not conditioned by any other variable, therefore this is
theunconditional case, andr (X ;Y) is calledunconditional relevance.

Example 3.1. This example is taken from Cover & Thomas (1991). Let(X ,Y) have the
following joint distribution:

Y \ X 1 2 3 4

1 1/8 1/16 1/32 1/32

2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0

By definition we haver (X ;Y) = 0.187500,r (Y;X ) = 0.214286.
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Theorem 3.1. The following properties for variable relevance follow Definition3.1 and
the properties of mutual information and entropy(Cover & Thomas, 1991).

– Uniformity: 0 ≤ r (X ;Y |Z) ≤ 1. That is, the relevance value lies between two fixed
extremes.

– Reflexiveness: r (X ;X |Z) = 1. If Y ⊆ X , then r(X ;Y) = 1.
– Weak symmetry: r (X ;Y |Z) > 0 ⇐⇒ r (Y;X |Z) > 0. But in general, r (X ;Y |Z) 6=

r (Y;X |Z).
– Monotonicity: If 6 ⊆ Ä, then r(Ä;Y) ≥ r (6;Y).
– Intransitivity: In general r(X ;Y |Z) > 0 and r(Y;W |Z) > 0 6⇒ r (X ;W |Z) > 0,

and r(X ;Y |Z) = 0 and r(Y;W |Z) = 0 6⇒ r (X ;W |Z) = 0.
– Saturizability: If r (X ;Y |Z) = 1, then r(W;Y |Z,X ) = 0, whereW is any set of

variables.

Theorem 3.2(Dependence vs independence). SupposeX , Y, andZ are three sets of
variables with a joint distribution p. Then r(X ;Y |Z) = 1⇐⇒ Y is conditionally fully
dependent onX givenZ; r (X ;Y |Z) = 0⇐⇒ Y is conditionally independent ofX
givenZ.

The proof is in the Appendix.
This theorem shows that the definition of variable relevance agrees with two extreme cases

of probabilistic dependence: full dependence and full independence. In other words, two
extreme cases can be identified by our variable relevance measure: 0 for extreme irrelevance
(conditional independence) and 1 for extreme relevance (full dependence).

Theorem 3.3(Chain rule of variable relevance). Given three sets of variablesX ,Y and
Z,

r (X ,Y;Z) = r (X ;Z)+ r (Y;Z |X )− r (X ;Z)× r (Y;Z |X )
= r (Y;Z)+ r (X ;Z |Y)− r (Y;Z)× r (X ;Z |Y).

The proof is in the Appendix. This theorem establishes the relationship between the rele-
vance of a set of variables and the relevance of its subsets.

The following theorem shows that variable relevance satisfies Pearl’s axiomatic charac-
terization (Axiom 2.1 above).

Theorem 3.4. Identifying Pearl’s notation=(X ,Z,Y) as r(X ;Y |Z) = 0, we can re-
produce Pearl’s conclusions in Axiom2.1. In other words, the extreme irrelevance in the
above definition, i.e., r (X ;Y |Z) = 0satisfies Pearl’s axioms as in Axiom2.1. Specifically,
letX ,Y, andZ be three disjoint sets of variables. Then we have

– Symmetry: r (X ;Y |Z) = 0 ⇐⇒ r (Y;X |Z) = 0;
– Decomposition: r (X ;Y ∪W |Z) = 0⇒ r (X ;Y |Z) = 0 and r(X ;W |Z) = 0;
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– Weak union: r (X ;Y ∪W |Z) = 0⇒ r (X ;Y |Z ∪W) = 0.
– Contraction: r (X ;Y |Z) = 0 and r(X ;W |Z ∪ Y) = 0⇒ r (X ;Y ∪W |Z) = 0.

The proof is in the Appendix.

3.2. Instance relevance and event relevance

Given two (sets of) variables and the joint distribution, instance relevance concerns the
relationship between instances of one variable and instances of the other: for any two
instancesx and y of the two variablesX and Y respectively, the relevance ofx to y
concerns the relative change of likelihood ofy when x is known. Instance relevance is
defined similarly to variable relevance using mutual information and entropy. It has been
shown (Wang, 1996) that variable relevance is the averaged instance relevance across all
possible pairs of instances, and that instance relevance satisfies Subramanian’s axiomatic
characterization of irrelevance (Subramanian & Genesereth, 1987).

Event relevance is another type of relevance definable in terms of instance relevance.
Given a set of objects, we can consider the relevance between events, which are subsets of
objects. We have two reasons for this. Firstly, it has logical implications. WhenA is an event,
we can talk about the event happening (A) as well as not happening (Ā). Secondly, some
existing and important work (Keynes, 1921; Carnap, 1962; G¨ardenfors, 1978) falls into this
category. It has been shown that, similar to Keynes’ and Carnap’s relevance formalisms,
event relevance satisfies 5 of G¨ardenfors’ 6 axioms (G¨ardenfors, 1978).5

3.3. Discussion

In this section we have discussed variable relevance in detail and have briefly introduced
instance relevance and event relevance, since we believe that variable relevance is more
useful in machine learning than the other two types. All these types of relevance are defined
in a uniform way: mutual information between variables (instances, events) relative to en-
tropy of target variable (instance, event). We have shown that variable relevance satisfies
Pearl’s axiomatic characterization of dependence among variables (Theorem 3.4). It is also
shown by Wang (1996) that instance relevance satisfies Subramanian’s axiomatic character-
ization of irrelevance (Subramanian & Genesereth, 1987), and that event relevance satisfies
Gärdenfors’ relevance axioms (except one) (Wang, 1996). This implies that our uniform
approach to relevance is sound.

Strong and weak relevance as in Definition 2.2 can be characterized in terms of our
relevance formalism as follows. From Theorem 3.2, we know that with the inequalities
in the definition, the variable relevance is greater than zero. Then Definition 2.2 can be
re-stated in terms of variable relevance as follows:Xi is strongly relevant if r(Xi ;Y |Si ) >

0⇒ r (Xi ;Y) > 0;6 and Xi is weakly relevant if r(Xi ;Y |S ′i ) > 0 for a subsetS ′i of Si .
Hence a featureXi is irrelevant toY if r (Xi ;Y |S ′i ) = 0 for any subsetS ′i of Si . Therefore
r (5;Y) > 0 where5 is the feature subset selected by the wrapper approach due to the
monotonicity of variable relevance, as well as the fact that all features are in the relevant
set (Kohavi & Sommerfield, 1995).
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4. Application of relevance in FSS

In this section we attempt to characterize FSS in order to establish a tight connection between
relevance and FSS. Based on this we devise an algorithm for FSS, which is evaluated using
real world data.

4.1. Characterization of FSS

We first of all define the problem of FSS in the context of machine learning. LetX =
{X1, X2, . . . , Xn}be a set of features, and letY be a decision attribute. Letd(X1), d(X2), . . . ,

d(Xn) andd(Y) be their respective domains. ForQ ⊆ X ∪{Y}, letU(Q) =∏x∈Q d(x), and
D(Q) denote a subset ofU(Q). D(Q) can be understood as a database relation (Ullman,
1989) except that no key is required.

The input to a supervised learning algorithm is a datasetD(X ,Y) whereX = {X1,

X2, . . . , Xn}. The task of learning is to induce a structure (e.g., a decision tree, a neural
network) such that, givent ∈ U(X ), it is possible to accurately predict a labely ∈ d(Y) for t .

The problem of FSS is then to search for a subset5 of X which not only performs
well on the training dataset, but also predicts well on unseen new cases—this is what we
mean when we say a subset of features is good enough. Our objective in this section is to
characterize an optimal feature subset, from first principles and some known principles.

4.1.1. The preservation of learning information.Given a datasetD(X ,Y), the learning
task is to characterize the hidden relationship betweenX andY so that this relationship
can be used to predict on future cases (either one in the dataset or a new case). We call
this relationshiplearning information. A natural measure of this relationship is the mutual
information (Cover & Thomas, 1991). Specifically, given a datasetD(X ,Y), the learning
information is the mutual informationI (X ;Y).

A feature subset may lose learning information. Therefore any good feature subset should
preserve the learning information in the dataset. For5 ⊆ X , if I (5;Y) = I (X ;Y), then
5 is said to have preserved the learning information. This leads to the following definition.

Definition 4.1. 5 ⊆ X is a sufficient feature subset, or SFSfor short, if and only if
I (5;Y) = I (X ;Y).

Therefore a basic requirement for FSS is that any selected feature subset should be an
SFS.

From information theory (Cover & Thomas, 1991) we know that for any5 ⊆ X ,
I (5;Y) ≤ I (X ;Y), and equality holds if5 is an SFS. From this and the additivity of
mutual information we know that given an SFS,5, removing all of the other features,
called collectively6 (6 = X \5), will not lose learning information contained in the
original dataset. In other words,Y is conditionally independent of6 given5, when5
is an SFS. Having such a5, any superset,6, of 5 is also an SFS. This property helps
in determining SFSs without having to calculate the mutual information. This property is
exploited in the design of an FSS algorithm later.
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4.1.2. Minimization of joint entropy: Occam’s razor.Given a dataset, there may be a
number of SFSs. However they may not all be equally good for prediction. An optimal feature
subset should perform best in prediction. However it is not easy to determine which of two
subsets of features predicts better without seeing how they actually perform, since the future
is rather misty. What we can do is to focus on the training dataset itself and then apply some
empirical principles. There are a number of empirical principles: Occam’s razor (Wolpert,
1990), the maximum entropy principle (Shore & Johnson, 1980), the minimum description
length (Rissanen, 1986; Quinlan & Rivest, 1989), the minimum message length (Wallace &
Freeman, 1987) and the relative least general generalization principle (Muggleton, 1992).
Here we use the Occam’s razor principle.

Occam’s razor, also known asthe principle of parsimony, is a tool that has application in
many areas of science, and it has been incorporated into the methodology of experimental
science. It is also becoming influential in machine learning, where it can be formulated as:
given two hypotheses that are both consistent with a training set of examples of a given task,
the simpler one should perform better on future examples of this task (Blumer et al., 1987;
Wolpert, 1990). It has been shown (Blumer et al., 1987) that, under very general assumptions,
Occam’s razor produces hypotheses that with high probability will be predictive of future
cases.

One basic question concerns the meaning of “simplicity”, usually calledOccam simplicity.
Typically Occam simplicity is associated with the difficulty of implementing a given task,
viz. complexity of implementation. Examples of complexity measures are: the number of
hidden neurons in neural networks (Amirikian and Nishimura, 1994); the number of leaf
nodes of a decision tree (Fayyad & Irani, 1990; Fayyad & Irani, 1992); the minimum descrip-
tion length (MDL) (Rissanen, 1986; Quinlan and Rivest, 1989); and the encoding length
(Schweitzer, 1995). The first 3 are all model-dependent while the fourth is model indepen-
dent. Since we are looking at FSS independently of any learning model, we choose to use
encoding length. In particular we use Shannon’s entropy as the encoding length measure.

Using entropy as the Occam simplicity measure in our context, we then have: given
a datasetD(X ,Y), Occam’s razor dictates the selection of an SFS,5, which minimizes
H(5,Y), whereH is Shannon’s entropy function. This leads to the following definition.

Definition 4.2. 5 ⊆ X is anoccam-optimal feature subsetif and only if5 is an SFS and
there is no6 such thatH(6,Y) < H(5,Y). In other words,5 is an SFS that minimizes
the joint entropy of the features and the decision attribute.

The following lemma shows that the feature subset5 which minimizes the joint entropy
minimizes the marginal entropy.

Lemma 4.1. Given a dataset D(X ,Y), consider two SFSs5,6 ⊆ X . H(5,Y) ≤
H(6,Y)⇐⇒ H(5) ≤ H(6).

Proof: Since both5 and6 are SFSs, by definition we haveI (5;Y) = I (6;Y) =
I (X ;Y). SoH(Y)− H(Y |5) = H(Y)− H(Y |6)⇐⇒ H(Y |5) = H(Y |6). Further-
more we haveH(5)≤H(6)⇐⇒ H(5)+H(Y |5)≤H(6)+H(Y |6)⇐⇒ H(5,Y)≤
H(6,Y). 2



RELEVANCE AND FEATURE SUBSET SELECTION 185

According to this lemma, an occam-optimal feature subset would be the sufficient one
which has the least marginal entropy.

4.1.3. Occam-optimal feature subset maximizes relevance.In the previous two sections
we have derived two characterizations of FSS: preservation of mutual information, and
minimization of joint entropy. In this section we are going to show the above two charac-
terizations can be re-stated in terms of relevance in an even more concise form.

From the definition of relevance in Section 3, we haveI (5;Y)= I (X ;Y)⇐⇒ r (5;Y)=
r (X ;Y) for any 5 ⊆ X . So preserving learning information amounts to preserving
the relevance relationship. Sincer (5;Y) ≤ r (X ;Y) in general (due to the fact that
I (5;Y) ≤ I (X ;Y)), any5 which preserves learning information in fact also maximizes
the relevancer (X ;Y).

Let 5 and6 be SFSs. Since, by definition,I (5;Y)= I (6;Y)= I (X ;Y), we have
H(5,Y)≤ H(6,Y) ⇐⇒ H(5)≤ H(6) ⇐⇒ I (5;Y)/H(5)≥ I (6;Y)/H(6) ⇐⇒
r (Y;5) ≥ r (Y;6). Therefore, in conjunction with the previous requirement, an occam-
optimal feature subset,5, would be the SFS which maximizes the relevancer (Y;X ).

Summarizing the above discussion we have the following theorem:

Theorem 4.1. Given a dataset D(X ,Y), 5 ⊆ X is an occam-optimal feature subset if
and only if5 maximizes both r(5;Y) and r(Y;5).

This theorem formalizes the intuitive connection between relevance and FSS.

4.2. A relevance-based algorithm for FSS

From the previous section we know that an occam-optimal feature subset should be such
that it is a sufficient subset of features and it has the highestr (Y;X ) relevance value.
A straightforward algorithm based on this will systematically examine all feature subsets
and find one which satisfies Theorem 4.1. Unfortunately, as shown by Davies and Russell
(1994), the class of problems, which examines all subsets of features to search for the one
which satisfies some optimal conditions, turns out to be NP-hard. So we should be satisfied
with a heuristic algorithm.

In this section we present a simple and usable heuristic FSS algorithm which is based
on the characterization in the previous section. Instead of evaluating each possible subset
of features, our approach endeavors to build one incrementally: initially, we have an empty
feature subset; then we gradually add in features one by one; this process continues until
the relevance of this feature subset to the decision attribute saturates (usually with value 1).

The question is, how to select the feature to be added at each stage? Our objective is
to find an SFS,5, such thatr (Y;5) is maximal among all possible SFSs. This is the
globally occam-optimal solution, which is NP-hard. Then we turn to find locally occam-
optimal solutions at each stage, which as a whole leads to a quasi-optimal solution at last.
Specifically, let5i be the current feature subset, and6i be the current set of features that
are not in5i . We calculater (Y;5i ∪ {X}) for every X ∈ 6i and let5i+1 be5i ∪ {X0}
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whereX0 is such thatr (Y;5i ∪ {X0}) is largest. This process is repeated untilr (5i ;Y)
saturates.

Based on the above discussion, we design the following FSS algorithm.

Algorithm 4.1 (RELFSS: FSS based on relevance). Given a dataset D(X ,Y), where
|X | = N,

5 = {}, and 6 = X;
Repeat:

Let X ∈ 6 be such that r (Y;5 ∪ {X}) is largest for
all elements in 6.

Let 5 = 5 ∪ {X} and 6 = 6\{X}.
Until r (5;Y) = r (X ;Y)
Return 5.

From the monotonicity of relevance,r (5;Y) = r (X ;Y) is certain to happen and5 is
then an SFS. After this, no other features can improve the relevance strength.

Now we look at the time complexity of the algorithm. The algorithm iterates fromk = N
down tok = k0, wherek is the number of features in6. Suppose there arem instances
in the training dataset. At iterationk, we need to compute the relevancer (Y;5 ∪ {X}) for
all k features, hence we have a step complexity ofO(mk). To find the feature with largest
relevance value, we needk− 1 comparisons, hence a complexity ofO(k− 1). In the worst
case we need to iterate fromk = N to k = 1, hence the complexity is

∑1
k=N(mk+k−1) =

O(mN2). Therefore the overall complexity for the above algorithm isO(mN2).
The5 selected by RELFSSis guaranteed to be an SFS. It is also guaranteed to be locally

occam-optimal at each stage in the sense thatr (Y;5) is locally maximal, but it is not
guaranteed to be globally occam-optimal across all stages.

In our implementation, we assume a uniform distribution on the tuples. The distribution
on individual features are projections of the uniform distribution. In the case of discrete
features, we useH(X) = −∑x∈d(X) p(x) log p(x). In the case of continuous features, we
useh(X) = H(X4)− logm, whereX4 is the quantizedX in such a way thatX is simply
treated as discrete, andm is the number of distinct values ofX4.

Modifying the stopping condition of RELFSSas “until6 is empty”, we can get an ordering
of the features. The selected feature subset is in fact the collection of the firstk features in
the ordering. By adding or removing one or two features in this ordering and evaluating the
new feature subset by a learning algorithm, we may sometimes get a better feature subset.
This is a kind of wrapper/filter hybrid approach.

4.3. An example

In this Section we are going to illustrate the RELFSSalgorithm using the Heart dataset. This
dataset has a mixture of discrete and continuous features: 4 discrete and 9 continuous.

There are 14 features in this dataset,X1, X2, . . . , X14
7 whereY

def= X14 is decision at-
tribute. At the first level,5 is empty and we calculater (Y; Xi ) (i = 1, 2, . . . ,13) resulting in
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the following:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

0.03 0.07 0.11 0.03 0.09 0.00 0.02 0.06 0.15 0.06 0.09 0.11 0.18

Sincer (Y; X13) is maximal,X13 is selected and added into5. At the second level, we
calculater (Y;5 ∪ {Xi }) resulting in the following:

X13 X13 X13 X13 X13 X13 X13 X13 X13 X13 X13 X13

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

0.08 0.12 0.13 0.08 0.11 0.12 0.11 0.09 0.14 0.09 0.11 0.13

X9 is then selected and added into5. We then calculater (Y;5 ∪ {Xi }) resulting in

X13 X13 X13 X13 X13 X13 X13 X13 X13 X13 X13

X9 X9 X9 X9 X9 X9 X9 X9 X9 X9 X9

X1 X2 X3 X4 X5 X6 X7 X8 X10 X11 X12

0.10 0.11 0.11 0.09 0.12 0.12 0.10 0.11 0.10 0.10 0.12

FeatureX12 is then selected. SimilarlyX3, X5 are subsequently selected and5 is {X13, X9,

X12, X3, X5}, whereX9 is discrete and the rest are continuous. Sincer (5;Y) = 1, we stop
the selection process and5 is the selected subset of features.

4.4. Experiment and evaluation

In order to evaluate the RELFSSalgorithm, we ran RELFSSon some public datasets available
from the UCI repository, from which the appropriate references of origin can be obtained.
Most of the datasets are frequently used in literature. Some general information about these
datasets is given in Table 1.

Because most of the datasets contain missing values, a preprocessing step was necessary
to apply the RELFSS algorithm to these datasets. Missing values were replaced by the
mean value in case of ordinal features, and by the most frequent value (i.e., the mode)
otherwise.

We ran the RELFSSalgorithm for each dataset, fed the selected feature subsets to C4.5, and
then cross-validated (5-fold cross-validation was used) the datasets with selected features.
Table 2 shows the C4.5 results with and without RELFSS. The C4.5 module we used is the
one in the Clementine package.8 To validate our relevance measure we varied the RELFSS

algorithm by replacing the relevance measurer (Y;5 ∪ {x}) with the mutual information
measure,I (Y;5∪ {x}). We refer to the varied RELFSSalgorithm as RELFSS’. We repeated
the same experiment with RELFSS’ and recorded the prediction accuracy, which is also
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Table 1. General information about the datasets.

Datasets Features Train size Test size Classes

Annealing (Ann.) 38 798 CV-5 6

Australian (Aus.) 14 690 CV-5 2

Auto 25 205 CV-5 6

Bands (Ban.) 39 512 CV-5 2

Breast (Bre.) 9 286 CV-5 2

Breast-W (Bre.W) 10 683 CV-5 2

Crx 15 690 CV-5 2

Horse-Colic (Col.) 22 368 CV-5 2

Diabetes (Dia.) 8 768 CV-5 2

Heart (Hea.) 13 270 CV-5 2

German (Ger.) 20 1000 CV-5 2

Glass (Gla.) 9 214 CV-5 6

Hepatitis (Hep.) 19 155 CV-5 2

Iris 4 150 CV-5 3

Lenses (Len.) 4 24 CV-5 3

Monk-1 (M-1) 6 124 432 2

Monk-2 (M-2) 6 169 432 2

Monk-3 (M-3) 6 122 432 2

Mushroom (Mus.) 22 8124 CV-5 2

Sonar (Son.) 60 208 CV-5 2

Tic-Tac-Toe (TTT) 9 958 CV-5 2

Vehicle (Veh.) 18 846 CV-5 4

Vote 18 232 CV-5 2

shown in Table 2. Besides, we also cite the results about feature subset selection from the
wrapper literature (Kohavi, 1994), which provide complementary information.

From Table 2 we see that applying the RELFSSalgorithm improves prediction accuracy
consistently for almost all of the datasets while applying the RELFSS’ algorithm does not.
Note that the average improvement is 2.93%, clearly not a dramatic improvement. A prob-
able explanation is that most UCI datasets do not have a lot of irrelevant attributes. Another
probable explanation is that RELFSSis a filter type FSS algorithm which only searches for
a subspace in the original data space which can improve learning performance. A general
FSS method for consistently improving learning performance dramatically has yet to be
discovered, but the feature transformation type of FSS has shown some promise (Liu &
Setiono, 1998).

Parity problems are well known to be difficult for many machine learning algorithms, as
well as for feature subset selection algorithms. We evaluated the RELFSSalgorithm using
a well known parity dataset—Monks-2.9 We added some random (irrelevant) features into
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Table 2. Prediction accuracy on decision trees generated by C4.5 without and with RELFSSor RELFSS’, together
with the selected feature subsets. Note that RELFSS’ is a variation of RELFSS in that its relevance measure is
replaced by the mutual information measure. Results from the wrapper literature with respect to feature subset
selection are also cited. Here, the postfixW means wrapper.

C4.5-RELFSS C4.5-RELFSS’

Data C4.5 Acc. Selected features Acc. Selected features Acc. C4.5-W Acc.

Ann. 91.8 1,3,4,9,11–14,16 93.7 1,3,5,6,8,10,12,20,25,33,35 93.0 –

Aus. 85.2 2,3,8–10,13,14 85.7 2,3,8,14 84.2 –

Auto 72.2 2,6,9–13,17 76.1 11,14,26 61.5 –

Ban. 68.8 1,2,6,9,12,33 69.0 1,2 61.1 –

Bre. 74.7 2,3,5–7,10 74.7 2–10 74.7 74.7

Bre.W 93.8 3–7,9 95.3 1,3 91.8 –

Crx 85.9 2,3,9–11,14,15 86.4 2,3,9,15 85.1 –

Col. 80.9 1,10,17,22 85.9 1,4,7,8,10–12,16–18,20,22 84.5 85.3

Dia. 72.9 2,5–8 74.2 2,6,7 73.3 –

Hea. 77.1 3,5,9,12,13 82.2 5,8,10 69.6 79.2

Ger. 70.5 1,2,3,5,6,15,20 74.1 1,5 68.8 –

Gla. 63.9 2–4,6,8 72.3 1–9 63.9 62.5

Hep. 80.7 12–14 84.4 12,13,15,16,18,19 79.4 84.6

Iris 94.0 3,4 94.0 1,3,4 94.0 92.0

Len. 83.3 4,5 86.7 1 63.5 –

M-1 74.31 1,2,4,5 88.89 1,4,5 70.0 –

M-2 65.05 1–6 65.05 1–6 65.05 –

M-3 97.22 1,2,4–6 97.22 1,2,5,6 97.22 –

Mus. 100.0 6,9,13,20,21 100.0 6,10,21 99.4 –

Son. 69.4 9–13 73.1 9–13,49 66.9 –

TTT 86.2 1–9 86.2 1–7,9 85.5 –

Veh. 69.9 3,6–9,11,12 66.0 7,11,12 55.0 –

Vote 96.1 1,2,4–17 97 1,2,4–17 97 95.2

Average 80.60 N/A 82.96 N/A 77.59 N/A

the original dataset to see whether RELFSScan select the original (relevant) features. The
result is reported in Table 3. From this table we can see that RELFSS can select a large
proportion of relevant features from parity datasets when irrelevant features abound. But as
the number of irrelevant features increases beyond a certain point (in this experiment, this
point is 7 times the number of relevant features), the proportion of relevant features selected
starts to decrease. The reason why RELFSScan select a large proportion of relevant features
in parity problem is the fact that RELFSSis incremental: the selection of individual features
is dependent on the previous selection.10 So if oneai is selected, then it is very likely that
anotheraj will stand out with higher relevance value and hence be selected.
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Table 3. Feature subsets selected by RELFSSfor Monks-2 data when extra irrelevant features are artificially added.
The original features are labeled byai (i = 1, 2, . . . ,6) and the added features are labeled byn j ( j = 0, 1, . . .).
Note that NIF is short forNumber of Irrelevant Featuresand NOFS is short forNumber of Original Features
Selected.

Dataset NIF Features selected NOFS

Monk-2 0 a4,a5,a6,a1,a2,a3 6

Monks-2-1 1 a5, a3, a1, n0, a4, a6, a2 6

Monks-2-5 5 a5, a3, a1, n0, n3, a2, n1, a6 5

Monks-2-10 10 a5, a3, n1, n8, n0, a6, n2, n4 3

Monks-2-15 15 a5, a3, n1, n8, n0, a6, n4, n12 3

Monks-2-20 20 a5, a3, n1, n8, n0, a6, n16, a2 4

Monks-2-25 25 a5, a3, n1, n8, n0, a6, n16, a2 4

Monks-2-30 30 a5, a3, n1, n8, n0, a6, n16, a2 4

Monks-2-35 35 a5, a3, n1, n8, n0, a6, n16, a2 4

Monks-2-40 40 a5, a3, n1, n8, n0, a6, n16, a2 4

Monks-2-45 45 n42, n23, a5, n11, n24, n7, a2, n32 2

Monks-2-50 50 n42, n23, a5, n48, n29, n8, a1, a6 3

Monks-2-55 55 n42, n23, a5, n48, n29, n8, a1, a6 3

Monks-2-60 60 n42, n23, a5, n48, n22, n58, a1, n34 2

The program, datasets, and other related information are available athttp://www.infj.
ulst.ac.uk/~cbcj23/relfss.html.

5. Summary and conclusion

Relevance is a familiar notion in daily life. It has been used frequently in the study of FSS.
However, a quantitative and rigorous formalism usable for FSS has not been available to
date. In this paper we have proposed a quantitative formalism for relevance based on mutual
information and entropy. The formalism was rigorously validated against the common
understanding of the notion, and against the existing axiomatic characterizations.

The formalism was then used to establish a tight connection between relevance and
FSS. For this purpose, we first proposed two requirements for any feature subset to qual-
ify as good: preservation of learning information and minimization of joint entropy. We
then showed that, when identified with the variable relevance in the relevance formalism,
relevance gives a direct underpinning for FSS: maximizing relevance in both ways (i.e.,
r (X ;Y) andr (Y;X )) will result in an occam-optimal feature subset.

Based on this connection, a heuristic FSS algorithm, RELFSS, was designed and presented.
This algorithm selects features incrementally using relevancer (Y;X ) until the r (X ;Y)
relevance saturates. Although it is not guaranteed to find the globally occam-optimal feature
subset, it can find a locally occam-optimal feature subset. It is shown to have a polynomial
complexity of O(mN2), wherem is the number of instances in the dataset andN is the
number of features.
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The RELFSSalgorithm is evaluated using 23 public datasets, resulting in an improvement
in accuracy on 16 datasets, and a loss in accuracy on only 1 dataset. The experimental
results provide evidence that the relevance formalism and the proposed relationship between
relevance and FSS are sound.

Appendix

A. Proof of Theorem 3.2

By definition we have

r (X ;Y) = 1

⇐⇒ H(Y)− H(Y |X )
H(Y) = 1

⇐⇒ H(Y |X ) = 0

⇐⇒ −Ep(x,y) log p(Y |X ) = 0, by the definition of conditional entropy

Consider now the relative entropy betweenp(x, y) and p(x),11

D(p(x, y)||p(x)) = Ep(x,y) log
p(X ,Y)

p(X ) = |Ep(x,y) log p(Y |X )|

Therefore we haveD(p(x, y) | p(x)) = 0 ⇐⇒ p(x, y) = p(x). That is,Y is fully depen-
dent onX .

Similarly r (X ;Y) = 0 ⇐⇒ H(Y) = H(Y |X ) ⇐⇒ I (X ;Y) = 0. Moreover by the
definition of mutual information, we haveI (X ;Y) = Ep(x,y)

p(x,y)
p(x)p(y) ⇐⇒ p(x, y) =

p(x)p(y). That is,Y is independent ofX .
For the conditional case, we have

r (X ;Y |Z) = 1⇐⇒ H(Y |X ,Z) = 0 ⇐⇒ −Ep(x,y | z) log p(Y |X ,Z) = 0

⇐⇒ D(p(x, y | z) | p(x | z)) = Ep(x,y | z) log
p(X ,Y |Z)

p(X |Z)
= −Ep(x,y | z)p(y | x, z) = 0

⇐⇒ p(x, y | z) = p(x | z) ⇐⇒ Y is fully dependent onX givenZ.

Similarly r (X ;Y |Z) = 0 ⇐⇒ Y is independent ofX givenZ. 2

B. Proof of Theorem 3.3

r (X ,Y;Z) = I (X ,Y;Z)
H(Z) = I (X ;Z)+ I (Y;Z |X )

H(Z)

= r (X ;Z)+ I (Y;Z |X )
H(Z)
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= r (X ;Z)+ I (Y;Z |X )
H(Z |X ) ×

H(Z |X )
H(Z)

= r (X ;Z)+ r (Y;Z |X )× H(Z |X )
H(Z)

= r (X ;Z)+ r (Y;Z |X )× −H(Z)+ H(Z |X )+ H(Z)
H(Z)

= r (X ;Z)+ r (Y;Z |X )× [1− r (X ;Z)]
= r (X ;Z)+ r (Y;Z |X )− r (X ;Z)× r (Y;Z |X )

Similarly r (X ,Y;Z) = r (Y;Z)+ r (X ;Z |Y)− r (Y;Z)× r (X ;Z |Y). 2

C. Proof of Theorem 3.4

– Symmetry: We only prove the “sufficient” part. The “necessary” part can be proved
similarly. r (X ;Y |Z) = 0 means eitherH(Y |Z) = 0 or I (X ;Y |Z) = 0. For the
first case, i.e.,H(Y |Z) = 0, by the “conditioning reduces entropy” property we have
H(Y |X ,Z) = H(Y |Z) = 0, which leads toI (X ;Y |Z) = 0. By the symmetry
property of mutual information, we haveI (Y;X |Z) = 0, which rendersr (Y;X |Z) =
0. For the second case,I (X ;Y |Z) = 0 ⇐⇒ I (Y;X |Z) = 0, which also renders
r (Y;X |Z) = 0. This concludes our proof.

– Decomposition: Ifr (X ;Y,W |Z) = 0 then

H(Y,W |Z) = 0 or

I (X ;Y,W |Z) = 0.

For the first case, we have

H(Y,W |Z) = 0

⇐⇒ H(Y |Z)+ H(W |Y,Z) = 0

⇐⇒ H(Y |Z) = 0 andH(W |Y,Z) = 0

Thereforer (X ;Y |Z) = 0 andr (X ;W |Y,Z) = 0.
Similarly we have

H(Y,W |Z) = 0

⇐⇒ H(W |Z)+ H(Y |W,Z) = 0

⇐⇒ H(W |Z) = 0 andH(Y |W,Z) = 0

Thereforer (X ;W |Z) = 0 andr (X ;Y |W,Z) = 0.
For the second case, we have

I (X ;Y,W |Z) = 0

⇐⇒ H(Y,W |Z)− H(Y,W |X ,Z) = 0
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⇐⇒ H(Y |Z)+ H(W |Y,Z)− H(Y |X ,Z)− H(W |X ,Y,Z) = 0

⇐⇒ r (X ;Y |Z)+ r ((X ;W |Y,Z) = 0

⇐⇒ r (X ;Y |Z) = 0 andr (X ;W |Y,Z) = 0.

Similarly we also have

I (X ;Y,W |Z) = 0

⇐⇒ H(W,Y |Z)− H(W,Y |X ,Z) = 0

⇐⇒ H(W |Z)+ H(Y |W,Z)− H(W |X ,Z)− H(Y |X ,W,Z) = 0

⇐⇒ r (X ;W |Z)+ r ((X ;Y |W,Z) = 0

⇐⇒ r (X ;W |Z) = 0 andr (X ;Y |W,Z) = 0.

– Weak union: The proof is already included in the proof of “decomposition” as above.
– Contraction: To showr (X ;Y,W |Z) = 0, we need

H(Y,W |Z) = H(Y,W |X ,Z)
⇐⇒ H(Y |Z)+ H(W |Y,Z) = H(Y |X ,Z)+ H(W |X ,Y,Z).

Let’s see if this requirement can be met by the conditions provided. SupposeH(Y |Z) 6=
0 andH(W |Y,Z) 6= 0. Then

r (X ;Y |Z) = 0 andr (X ;W |Y,Z) = 0

⇒ H(Y |Z) = H(Y |X ,Z) andH(W |Y,Z) = H(W |X ,Y,Z).

This certainly meets the needs. If insteadH(Y |Z) = 0, we haveH(Y |X ,Z) = 0
by the “conditioning reduces entropy” property. This also leads tor (X ;Y,W |Z) = 0.
Similar for theH(W |Y,Z) = 0 case. Therefore in any case, given the conditions, we
always haver (X ;Y,W |Z) = 0.

This concludes our proof. 2

Notes

1. In RELIEFF, therelevance levelof featureXi is defined byE(δi ) over all instances in the dataset, where
δi = −(xi −near-hiti )2+ (xi −near-missi )2 andxi is a member in the domain ofXi . For an instancet in the
dataset, anear-hitof t is such an instance that belongs to the close neighborhood oft and also to the same
class ast , and anear-missis such an instance that belongs to the properly close neighborhood oft but not to
the same class ast .

2. In the context of feature subset selection, adeterminationis a set of features that completely determines
the decision attribute (Schlimmer, 1993). In other words the decision attribute is fully dependent on a deter-
mination.

3. An excellent approach is presented in Lakemeyer (1995).
4. If X is discrete with a probability distributionp(x), the entropyH(X) is defined byH(X) = −∑x p(x) log

p(x). If X is continuous with a density functionf (x), then the differential entropyh(X) of X is defined
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by h(X) = − ∫S f(x) log f (x) dx. If X is n-bit quantized (i.e., with 2n distinct values) asX4, thenh(X) is
approximated byH(X4) − n. If X andY are discrete, the mutual informationI (X;Y) betweenX andY
is I (X;Y) = H(Y) − H(Y | X); if X andY are continuous,I (X;Y) = h(Y) − h(Y | X) ≈ I (X4;Y4).
I (X;Y) is a measure of the amount of information one variable contains about another. For details, readers
are invited to consult Thomas (1991).

5. For a detailed discussion on G¨ardenfors’ axioms as well as instance relevance and event relevance, readers
are invited to consult Wang (1996).

6. A brief proof of I (Xi ;Y |Si ) > 0 ⇒ I (Xi ;Y) > 0: AssumeI (Xi ;Y |Si ) > 0 but I (Xi ;Y) = 0.
The latter meansXi and Y are independent. ThenH(Xi |Si ,Y) = H(Xi |Si ). By definition we have
I (Xi ;Y |Si ) = H(Xi |Si )− H(Xi |Si ,Y) = 0, contradicting the assumption.

7. X1: age,X2: sex,X3: chest pain type,X4: resting blood pressure,X5: serum cholestoral,X6: (fasting blood
sugar> 120 mg/dl, 1= true, 0= false),X7: resting electrocardiographic results,X8: maximum heart rate
achieved,X9: exercise induced angina (1= yes; 0= no), X10: ST depression induced by exercise relative
to rest,X11: the slope of the peak exercise ST segment,X12: number of major vessels (0–3) colored by
flourosopy,X13: thal (3= normal; 6= fixed defect; 7= reversable defect), andX14: diagnosis of heart
disease.

8. Integral Solutions Limited (ISL):http://www.isl.co.uk/
9. The target concept associated to MONK-2: EXACTLY TWO ofa1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1,

a6 = 1.
10. Note thatr (Y;5∪{Xi }) is used as the individual selection criterion, where5 is the set of previously selected

features.
11. All logs in this paper are to base 2.
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