
FORMALISME POUR UNE DESCRIPTION COH�RENTE
DE LÕ�LASTICIT� NON LIN�AIRE DES MILIEUX
ANISOTROPES 

La propagation des ondes �lastiques est g�n�ralement trait�e
sous quatre hypoth�ses :

Ð le milieu est isotrope,

Ð le milieu est homog�ne,

Ð il y a une relation biunivoque entre la tension et la d�formation,

Ð les tensions sont reli�es dÕune fa�on lin�aire aux d�formations
(et de mani�re �quivalente, les d�formations sont reli�es dÕune
fa�on lin�aire aux tensions). 

En g�n�ral au moins une de ces hypoth�ses Ñ et souvent toutes
Ñ nÕest pas v�rifi�e dans les milieux r�els. Une description th�o-
rique valide de la propagation des ondes dans les milieux r�els
d�pend ainsi de la description � la fois qualitative et quantitative de
lÕh�t�rog�n�it�, de lÕanisotropie et de la non-lin�arit� : soit on doit
supposer (ou montrer) que lÕ�cart par rapport � lÕhypoth�se de
d�part peut �tre Ñ pour le probl�me consid�r� Ñ n�glig�, soit on
doit d�velopper une description th�orique, valide m�me en pr�-
sence de ces �carts. Alors que lÕeffet dÕun seul �cart par 
rapport � un �tat id�al est relativement bien connu, les difficult�s
surviennent quand on veut combiner plusieurs de ces �carts. 

Les propri�t�s �lastiques non lin�aires dÕ�chantillons de roche ani-
sotropes (tricliniques) ont �t� �tudi�es, par P. Rasolofosaon et
H. Yin au 6e IWSA � Trondheim (Rasolofosaon et Yin, 1996).
LÕ�lasticit� anisotrope non lin�aire est importante seulement
pour les amplitudes Ç non infinit�simales È, c'est-�-dire dans un
certain voisinage de la source. LÕ�tendue de ce voisinage d�pend
de la pr�cision de lÕobservation et de lÕinterpr�tation que lÕon tente
de maintenir, de lÕintensit� de la source, et du degr� de non-lin�a-
rit�. Cet article traite du dernier aspect, c'est-�-dire de la significa-
tion des nombres au-del� du fait quÕils sont le r�sultat de mesures. 

Pour la mesure de la non-lin�arit� des mat�riaux, on peut utiliser le
seuil de d�formation au niveau duquel le tenseur de rigidit� effec-
tive sÕ�carte sensiblement du tenseur de rigidit� � d�formation
nulle. Il est particuli�rement utile de prendre en compte le syst�me
propre du tenseur de rigidit� (six rigidit�s propres et six d�forma-
tions propres) : les d�formations propres fournissent des Ç types
de d�formation È adapt�s au calcul du tenseur de rigidit� effective,
et la perturbation peut �tre exprim�e par le changement relatif des
rigidit�s propres et par la variation des directions propres asso-
ci�es aux d�formations propres (exprim�es en tant que vecteurs
dans un espace � six dimensions).
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La m�thode sugg�r�e est appliqu�e aux deux mat�riaux �tudi�s
par Rasolofosaon et Yin (1996). Les r�sultats permettent une �va-
luation heuristique de la signification de la Ç d�formation de r�f�-
rence È, d�finie comme la racine carr�e du rapport des normes des
tenseurs de rigidit� du quatri�me et du sixi�me rang. 

Il est � signaler quÕil ne sÕagit pas dÕune nouvelle th�orie de la non-
lin�arit�, mais dÕune nouvelle approche de la th�orie existante et
des r�sultats. 

A FORMALISM FOR THE CONSISTENT DESCRIPTION
OF NON-LINEAR ELASTICITY OF ANISOTROPIC MEDIA

The propagation of elastic waves is generally treated under four
assumptions: 

Ð that the medium is isotropic,

Ð that the medium is homogeneous, 

Ð that there is a one-to-one relationship between stress and strain, 

Ð that stresses are linearly related to strains (equivalently, that
strains are linearly related to stresses). 

Real media generally violate at least someÑand often allÑof these
assumptions. A valid theoretical description of wave propagation in
real media thus depends on the qualitative and quantitative
description of the relevant inhomogeneity, anisotropy, and non-
linearity: one either has to assume (or show) that the deviation from
the assumption canÑfor the problem at handÑbe neglected, or
develop a theoretical description that is valid even under the
deviation. While the effect of a single deviation from the ideal state
is rather well understood, difficulties arise in the combination of
several such deviations.

Non-linear elasticity of anisotropic (triclinic) rock samples has been
reported, e.g. by P. Rasolofosaon and H. Yin at the 6th IWSA in
Trondheim (Rasolofosaon and Yin, 1996). Non-linear anisotropic
elasticity matters only for Ònon-infinitesimalÓ amplitudes, i.e., at least in
the vicinity of the source. How large this vicinity is depends on the
accuracy of observation and interpretation one tries to maintain, on
the source intensity, and on the level of non-linearity. This paper is
concerned with the last aspect, i.e., with the meaning of the numbers
beyond the fact that they are the results of measurements. 

As a measure of the non-linearity of the material, one can use 
the strain level at which the effective stiffness tensor deviates
significantly from the zero-strain stiffness tensor. Particularly 
useful for this evaluation is the eigensystem (six eigenstiffnesses
and six eigenstrains) of the stiffness tensor: the eigenstrains
provide suitable Òstrain typesÓ for the calculation of the effective
stiffness tensor, and the deviation can be expressed by the relative
change of the eigenstiffnesses and by the variation in the direction
of the eigenstrains (expressed as vectors in six-dimensional 
strain space). 

The suggested procedure is applied to the two materials discussed
by Rasolofosaon and Yin (1996). The results allow a heuristic
evaluation of the meaning of the Òreference strainÓ, the square 
root of the ratio of the norms of the fourth-rank and sixth-rank
stiffness tensors.

It is stressed that this is not a new theory of non-linearity, but only
a different way of viewing the existing theory and results. 

FORMALIZACIîN PARA LA DESCRIPCIîN
CONSISTENTE DE LA ELASTICIDAD NO LINEAL EN
MEDIOS ANISOTRîPICOS

La propagaci�n de las ondas el�sticas es tratada en general
suponiendo que :

Ð el medio es isotr�pico,

Ð el medio es homog�neo,

Ð existe una relaci�n uno a uno entre tensi�n de compresi�n y
tensi�n de dilataci�n, 

Ð los tensiones de compresi�n est�n linealmente relacionadas con
las tensiones de dilataci�n (y, de modo rec�proco, que las
tensiones de dilataci�n est�n linealmente relacionadas con las
tensiones de compresi�n). 

Los medios reales violan en general algunas, y a menudo todas,
estas premisas. Una descripci�n te�rica v�lida de la propagaci�n
de ondas en medios reales depende por lo tanto de la descripci�n
cualitativa y cuantitativa de la no-homogeneidad, anisotrop�a y no
linealidad relevantes. Debe suponerse (o demostrarse) que la
desviaci�n con respecto a la premisa puede, en el caso del
problema tratado, considerarse insignificante, o bien puede
desarrollarse una descripci�n te�rica que sea v�lida incluso en
condiciones de desviaci�n. Mientras que el efecto de una
desviaci�n �nica a partir del estado ideal ha sido bastante bien
comprendido, las dif icultades surgen cuando se trata de
combinaciones de varias desviaciones de este tipo.

La elasticidad no lineal de muestras de rocas anisotr�picas
(tricl�nicas) fue mencionada, por ejemplo, por P. Rasolofosaon y
H. Yin en la 6.» IWSA en Trondheim (Rasolofosaon y Yin, 1996).
La elasticidad anisotr�pica no lineal tienen importancia s�lo para
las amplitudes Òno-infinitesimalesÓ, es decir, por lo menos en la
cercan�a de la fuente. La amplitud de esta cercan�a depende de la
precisi�n de la observaci�n y de la interpretaci�n que se trata de
mantener, as� como de la intensidad de la fuente y del nivel de no-
linealidad. Este art�culo se refiere al �ltimo aspecto, es decir, al
significado de los n�meros m�s all� del hecho de que sean el
resultado de mediciones.

Como medici�n de la no-linealidad del material se puede utilizar el
nivel de tensi�n de dilataci�n al cual el tensor de rigidez efectiva
desv�a significativamente el tensor de rigidez con respecto a la
tensi�n cero. Para esta evaluaci�n es particularmente �til el
sistema eigen o de valores espec�ficos (seis rigideces eigen y seis
tensiones eigen) del tensor de rigidez : las tensiones eigen
proporcionan Òtipos de tensi�n de dilataci�nÓ adecuados para el
c�lculo del tensor de rigidez efectivo, y la desviaci�n puede ser
expresada por el cambio relativo de las rigideces eigen as� como
por la variaci�n en la direcci�n de las tensiones eigen (expresadas
como vectores en el espacio hexadimensional de la tensi�n de
dilataci�n).

El procedimiento propuesto se aplica a dos materiales discutidos
por Rasolofosaon y Yin (1996). Los resultados permiten una
evaluaci�n heur�stica del significado de la Òtensi�n de dilataci�n de
referenciaÓ, la ra�z cuadrada de la relaci�n de las normas de los
tensores de rigidez de cuarto orden y de sexto orden.

Se enfatiza que �sta no es una nueva teor�a de no linealidad, sino
un enfoque nuevo de la teor�a y de los resultados ya existentes.
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INTRODUCTION 

The standard description of non-linear elasticity
is based on the expression of the six components
of the stress tensor as a Taylor series in the components
of the strain tensor, or alternatively on the expression of
the strain energy as a Taylor series in the six components
of the strain tensor. Except for some subtle differences
between the two treatments, the two descriptions are
equivalent: the coefficients of the first terms in the series
are the components of the “standard” elastic tensor of
rank four (of which at most 21 are independent), and the
coefficients of the second terms in the series are the
components of a tensor of rank six (of which at most 56
are independent). Higher terms are not taken into
account. Different authors refer to the components of the
fourth and sixth-rank tensors under different—and
unfortunately conflicting—names: either the
components of the fourth and sixth order tensor are
referred to as “first order” and “second order”
stiffnesses, respectively, or as “second order” and “third
order” stiffnesses, respectively (standard tables of crystal
physics refer to the non-linear terms as “third order”).
Both expressions are justified, depending on the
quantities one expresses by the Taylor series.
Rasolofosaon and Yin (1996) use terms corresponding
to “linear stiffnesses” and “non-linear stiffnesses”. Note
that an equally valid description would be obtained by
developing either the six components of the strain
tensor or the elastic energy into Taylor series in terms of
the six components of the stress tensor. The coefficients
should be given names similar to those quoted, with
“compliance” instead of “stiffness”.

A quantification of non-linearity might be attempted
by comparing the magnitude of (some of) the non-
linear stiffnesses with the linear stiffnesses. There is
some misgiving about the comparison of the
components of tensors of different rank, but at least the
dimension of all coefficients involved are the same (Pa).
However, even this is only apparently correct:
the similarity of the dimensions is due to the fact that
the independent variable in the series (strain) has no
physical dimension, and thus products of the strain
components have apparently the same dimension 
(i.e. none). The fallacy of this argument is illustrated by
an attempt to compare plane angles with solid angles,
or by looking at the components of the fourth- and sixth
order compliance tensors: they have dimensions of Pa–1

and Pa–2, respectively, and thus cannot be compared. 

For plane and solids angles one gets around the
quandary by using the “pseudo units” rad and rad^2.
For the strain one could use “proc” (for Procrustes, who
inflicted strain in his victims to make them fit his bed).
Sometimes the term “strain” is used as the unit
of strain (e.g. “0.5 millistrain” for e = 5 ´ 10–4).
This criticism does not imply that the parameters
of non-linearity based on the ration of the components
of the sixth- and fourth-rank tensors (Johnson and
Rasolofosaon, 1996) are meaningless, only that
a quantitative interpretation of such parameters is
not easy.

The difficulty is completely avoided by expressing
the stiffness tensor formally as a linear function of the
components of the strain tensor with strain-dependent
coefficients, i.e., by using:

(1)

All terms in the braces—the components of the
effective stiffness tensor—are now of equal rank and
equal (pseudo-) dimensions and can be compared
without constraint. 

1 THEORY

The basic ideas put forward in this paper apply
equally to other types of non-linear “constitutive
equations”, thus a few tensors beyond the elastic tensor
are mentioned. The later development is restricted to
elasticity. The tensor relations under discussion are
represented by tensors of rank 2n connecting two
tensors of rank n. Examples are Hooke's Law, where the
“elastic” fourth-rank tensor cijkl connects the second
rank stress-tensor sij with the second-rank strain-tensor
ekl, and the second-rank tensor of magnetic
susceptibility that connects the vector of magnetic flux
density with the magnetic field vector. 

(2)

While the formal tools can be applied to any non-
linear tensor relationship, the current discussion is
primarily concerned with situations as in the two
examples above, where the tensor of rank 2n describes
material properties and the tensors of rank n are
canonically related field tensors. Field tensors are
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canonically related if their scalar product can be
interpreted as an energy density: 

(3)

We shall assume an equilibrium state where
vanishing of one field tensor implies the vanishing of
the other, and further assume that the energy density
vanishes if both field tensors vanish. 

The “material tensors” in (2) and (3) are often
assumed to be constant, but there is no a priori reason
that they should be independent of the field tensors. For
large field vectors (large deformations, strong magnetic
fields), the tensor relationship may be highly non-linear
and completely beyond the domain of the linear theory.
For sufficiently small field vectors it can be linearized.
i.e., approximated by the standard linear relationship.

Most physical theories deal with small field vectors,
i.e., they are linearized theories. The terms “sufficiently
small” and “large” are, at this moment, defined loosely
by the validity (respectively, the non-validity) of the
linearized theory. One of the aims of this paper is to
develop a quantitative norm for these terms. 

2 TERMINOLOGY OF NON-LINEARITY

Linear theories can be generalized to accept “large”
field tensors by regarding the material tensor of rank 2n
as the first coefficient in a Taylor series in terms of the
components of the field tensor. The higher terms are
then tensors of rank 3n, 4n, ... For moderate magnitude
of the field tensor one truncates the series after the first
new term. If one additional term in the Taylor series is
not sufficient, the problem may not be tractable as a
“deviation from linearity”. In this discussion it is
assumed that fields are of moderate magnitude and thus
one additional term in the material tensor is sufficient.

For most material tensors the first new term is a
tensor of rank 3n. This is the case if there is a physical

difference between the two algebraic signs of the field
tensors. For instance, a material might get stiffer under
compression and more compliant under extension.
However, there are situations where the deviation from
linearity must be independent of the sign of the field
vector (an example is the relationship between the
magnetic field and the magnetic flux density in a
diamagnetic material). In such case the tensor of rank 3n
vanishes and the first new term in the Taylor series is 
of rank 4n.

The Taylor series can be established either for 
the field equation, or for the energy density. For an
example, see (4) at the bottom of this page.

The non-linearity tensor cijklmn is called sometimes
the “second order stiffness tensor”, because in the
expression (4.1) its components are the factors of
second order products of components of the strain
tensor, but with equal justification the “third order
stiffness tensor”, because in the expression (4.3) its
components are the factors of third order products of
components of the strain tensor. Similarly, mijkl is called
either the third order susceptibility tensor or the fourth
order susceptibility tensor. We shall avoid these terms
and use, where necessary, the unambiguous rank of the
different tensors. 

Note that, in general, the different coefficient tensors
in the Taylor series (3) have different dimensions:

[mij] = V s A–1 m–1 [Mij] = A m V–1 s–1

[mijkl] = V s A–3 m–3 [Mijkl] = A m V–3 s–3

(5)
[cijkl] = Pa [Sijkl] = Pa–1

[cijklmn] = Pa [Sijklmn] = Pa–2

The exception are the stiffness tensors C of rank 4, 
6, 8, ...This is so because the “independent” field tensor
in the stress-strain relation—the strain eij Å (ui,j + uj,i)/2
—is dimensionless. This is only an apparent
simplification that might even lead to confusion: in 
the inverse strain-stress relation the coefficients (the
compliance tensors S) have again different dimensions.
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In similar cases one introduces pseudo-dimensions
like “rad” for the dimensionless planar angle and rad2

for the equally dimensionless solid angle. For the strain
we might use “Proc” (named after Procrustes, who
forcibly shortened or extended his guests to fit his bed).
The corresponding dimensions in (4) would then be
Pa/Proc, Pa/Proc2, Proc/Pa, and Proc/Pa2, in full
agreement with other field relationships.

In this context, the stress-strain relationship—
Hooke's law—is exceptional also in another sense. The
full definition of (Lagrangian) strain is:

(6)

The third term is quadratic in the components of the
displacement gradient and thus neglected in the linear
theory, which assumes infinitesimal strain. For
moderate and large strain this term cannot be neglected,
thus for the stress-strain relationship there is—in
addition to any “material non-linearity” also a
“geometric non-linearity”. Even the hypothetical ideal
elastic material shows this geometrical non-linearity. To
compound matters, for limited samples of a material
there is a third type of non-linearity, the “structural non-
linearity”. This has to do with the change of the
geometric relationship between different parts of the
sample. As an example I refer to the stiffness of a
helical spring (Fig. 1). Under extension the diameter of
the helix decreases and the pitch increases. For very
large extensions, the wire in the spring is fully
stretched. For small extension, the stiffness (change of
length divided by change of load) of the spring is
controlled by the (extension dependent) geometric
parameters of the helix, the shear stiffness m of the wire,
and the axial “moment of inertia” of the cross section of
the wire. At very large extensions, the stiffness is
controlled entirely by the dimensions of the “wire” and
by the corresponding Young modulus (Fig. 1).

For discrete pieces of matter —rods, cantilevers,
shells, geophone springs— structural non-linearity is
the most significant type of non-linearity. It plays
hardly any role in the extended medium. Thus it can be
neglected for the description of wave propagation,
though one has to take into account that laboratory
measurements are invariably done on small samples. 

In numerical modelling by, e.g. Finite Element (FE)
Algorithms, one comes across still another type of non-
linearity in the program manuals: in a linear FE
simulation of stress-strain behaviour, one calls the

  
e ij i j j i k i k ju u u u= + + +( )1
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Figure 1

Extension-load curve for a helical spring as example for
“structural non-linearity”. This spring stiffens under
extension. It also stiffens under compression once the turns
make contact (not shown).

calculation “linear” if the initial stiffness parameters are
maintained throughout the calculation. If the parameters
are updated at intermediate stages, one calls the
calculation “non-linear”. To distinguish this type 
of non-linearity, one might call it “computational 
non-linearity”.

The following discussion is not concerned with
structural and computational non-linearity. No distinction
is made between material and geometric non-linearity.



3 QUANTIFICATION OF NON-LINEARITY 

A quantification of non-linearity is not a simple
matter. One would prefer a dimensionless number that
allows to compare different materials, ideally even
different kinds of field tensors. A direct comparison of
the different coefficient tensor of the Taylor series is—
except for Hooke's law—not possible since they have
different dimensions. For Hooke's law this difficulty
does not seem to exist, thus it has been suggested to use
the ratio of the second term to the first term. Of course,
the quotient of two tensors of different rank is defined
only in special cases. Even then, this quotient is, in
general, itself a tensor. If:

aij = bijklmn cklmn (7)

one might say with some justification that:

(8)

but such a relationship does not exist between the
coefficient tensors in the Taylor series.

The difficulty of comparing tensors of different rank
might be overcome by forming the ratio of the norms of
two tensors or the rms values of the components of the
two tensors. Such a quantity is still not dimensionless
(for the stiffness tensor it has the pseudo-dimension
Proc, but in most other cases it has dimensions Pa, 
A2 m2, V2 s2, ... Such a ratio might be a meaningful
guide, but it is not the unambiguous measure we are
looking for. 

From a physical standpoint one should rather
describe the problem as “strain-dependent stiffness”
and “field-dependent susceptibility”, respectively. This
leads immediately to: 

(9)

In the parentheses one compares tensors of equal
rank. One can compare component for component,
or globally via the magnitude of the two tensors.

The magnitude of a tensor is the root of its norm, i.e.,
the root of the sum of the squares of all components.

The magnitude of the field tensor for which the two
tensors are of equal magnitude (or at which the
magnitude of the correction term is a given fraction of
the magnitude of the small-field term) might be used as
a “measure” for the non-linearity. Even the “magnitude
of the field tensor at which the correction term is a
given fraction of the small-field term” cannot be used in
this simple form, since the correction term does not
depend on the magnitude of the field tensor alone. If the
field tensor is a vector (e.g. the magnetic field Hk), one
could let the end point of a unit field vector range over
the entire unit sphere and then either average the
corresponding corrections or plot them in a 3D plot. 

If the field tensor is of rank 2 (e.g. the strain eij),
matters are even more complicated. A tensor of rank 2
in n dimensions can be mapped on a vector (tensor of
rank 1) in n (n – 1)/2 dimensions. A 3D strain tensor
thus becomes a 6D strain vector. 

We then either have to average the correction over a
6D unit sphere, or somehow visualize the distribution
of the correction in 6-space.

We leave this point for a moment and look at the
much simpler case of the non-linearity of a scalar, e.g.
the spring as in Figure 1. The load-deflection
relationship with a load-dependent stiffness can be
written as a two-term Taylor series:

(10)

The upper line refers to a spring that stiffens under
load, the lower one to a spring that softens under load.
Note that the change of the stiffness depends on the
sign of the deflection: if the spring hardens under
extensions, it softens under compression (and vice
versa). The reference-extension s2 is defined through:

(11)
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Instead of the reference extension s2 one can use
or s1.1 or any other convenient definition. 

Equation (12) is the corresponding expression for a
spring with symmetric load-deflection relationship, 
i.e., one which stiffens (or softens, as the case may be)
for any deflection, i.e., for both compression and
extension. A typical example is the ideal geophone
spring (prestressed to be flat at rest):

(12)

with reference extensions defined in the same way as
above. The corresponding load-deflection curves are
shown in Figure 2.

These scalar concepts can be applied to tensors in
general—and to the elastic tensor in particular—in
different ways. The simplest is to use as reference strain
any finite strain that changes the original stiffness norm
by a pre-set amount. The set of all such reference
strains defines a surface in 6-space that is indicative of
the magnitude and directional dependence of the non-
linearity. There are a few drawbacks:
– Every real medium is, of course, stable, and it is

likely that it remains stable at any realizable strain
below the level of permanent deformation. However,
this does not mean that the two-term Taylor
representation remains stable too. In a later example,
the strains have been increased until the two-term
approximation became unstable. This would be
another unambiguous measure of non-linearity, if
there were always a strain level to cause instability.
However, if the medium stiffens under strain, this
does not necessarily happen. 

– The set of all reference strains is conceptually
simple, but difficult to obtain even at moderate
sampling of the 6D unit sphere.

– Meaningful visualization of a 6D surface is a
difficult matter.
The first of these drawbacks can be remedied by

using a “modest” definition of the reference strain. The
other two can be mitigated somewhat by using the
eigensystem of the medium. This eigensystem consists
of six mutually perpendicular eigenstrains and six
corresponding eigenstiffnesses. 
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Figure 2

Two deflection-load curves as examples of non-linearity.
Top: unsymmetric non-linearity. Bottom: symmetric non-
linearity. At the reference deflections s2 and s3 the slope of
the curve has changed by a factor 2.

The eigenstrains provide a preferred coordinate
system, and it might be sufficient to use as test strains
only (positive and negative) multiples of the
eigenstrains. This reduces the high number of test
strains to twelve. 

4 STABILITY AND THE EIGENSYSTEM
OF A MATERIAL TENSOR

For material tensors that connect canonically related
field tensors the concept of stability is meaningful: a
material tensor is stable if and only if any deviation



from the equilibrium requires energy. This is the case if
all eigenvalues of the material tensor are positive, or—
equivalently—if the matrix representing the tensor is
positive definite. A square matrix is positive definite if
all its leading principal minors are positive. 

A second rank tensor can be regarded as its own
matrix representation. To establish the stability of the
tensor then requires only the evaluation of the principle
minors. For tensors of higher rank it is convenient to
determine the eigensystem (eigen-values and
eigenvectors or their equivalents). 

Since in the coordinate system of the eigenvectors
the material tensor is represented by a diagonal matrix,
the condition of stability reduces to the requirement that
all six eigenvalues (“eigenstiffnesses”) be positive. 

The eigensystem is formally obtained by solving, e.g.:

(cijkl – dik djl L) ekl = 0 (13)

with subscripts i, j, k, l assuming all values between 1
and 3. Equation (13) is a system of homogeneous
equations in second rank tensors, which has non-trivial
solutions if and only if the determinant of the
coefficient matrix vanishes. This conditions leads to a
polynomial in L. The six solution of this system of
equations are the eigenvalues (eigenstiffnesses,
eigencompliances, eigensusceptibilities, etc.). 

There is a shortcut to the determination of the
determinant of the system (13): one can map the tensors
in (13) isomorphically—i.e., without loss of any
physical significant information—on a relationship
between first-rank tensors (vectors) in 6-spaces
specified by a second-rank tensor. This changes (13) to: 

(Cpq – dpq L) eq = 0 (14)

with subscripts p and q assuming all values between 
1 and 6. 

The mapping is accomplished by the Kelvin
mapping (Kelvin, 1856; Helbig, 1994): 

sij ® s(K)
p ekl ® e(K)

q  cijkl ® c(K)
pq

with p = diji + (1 – dij) (9 – i – j)

q = dklk + (1 – dkl) (9 – k – l)

s(K)
p   = a sij, a= dij + (1 – dij) (15)

e(K)
q    = b ekl, b = dkl + (1 – dkl)

c(K)
pq  = a bcijkl = a bcpq,

where cpq is the customary Voigt matrix representation
of the elastic tensor. The Kelvin mapping assures that
the norms of the tensors and the eigensystem of the
stiffness tensor are preserved. 

In Kelvin notation the system of six linear equations
(14) is an ordinary eigenvalue-eigenvector problem
which leads, in general, to a sextic in L. Though a
general sextic cannot be solved analytically, numerical
solution poses no difficulty. The same mapping process
maps cijklmn on Cpqr which reduces (9.1) to:

sp = (Cpq + Cpqr er + …) eq (16)

A search algorithm to find the reference strains
according to any of these conditions is easily program-
med. A few examples based on a Mathematica
implementation show the application of these concepts. 

5 CAUSES OF NON-LINEARITY

There are several causes that can render the stress-
strain relationship non-linear:
– material non-linearity refers to effects that have their

root ultimately in microstructure (at any level below
grain size);

– geometric non-linearity is due to the linearization in
the definition of strain: the full definition of
(Lagrangian) strain is:

(17)

The third term is quadratic in the components of 
the displacement gradient and thus neglected in the
linear theory, which assumes infinitesimal strain. 
For moderate and large strain this term cannot be
neglected, thus for the stress-strain relationship there is
—in addition to any “material non-linearity” also a
“geometric non-linearity”. 

Even the hypothetical ideal elastic material shows
this geometrical non-linearity.

6 TWO EXAMPLES

The concepts are tested on the elastic data of a calcite
single crystal (taken from Landoldt-Börnstein, 1966)
and on the elastic data of a marble sample obtained by
P. Rasolofosaon and H. Yin in the rock physics
laboratory of the IFP (Rasolofosaon and Yin, 1996). 

  
e ij i j j i k i k ju u u u= + + +( )1

2 , , , ,

2

2

A FORMALISM FOR THE CONSISTENT DESCRIPTION
OF NON-LINEAR ELASTICITY OF ANISOTROPIC MEDIA

REVUE DE L’INSTITUT FRANÇAIS DU PÉTROLE
VOL. 53, N° 5, SEPTEMBRE-OCTOBRE 1998

700



The calcite crystal is trigonal, as indicated by the
characteristic surfaces of the (linear) rank four stiffness
tensor and the (non-linear) rank six stiffness tensor
(Fig. 3), i.e. the graphic representation of the
homogeneous forms:

Cijkl xi xj xk xl = 1 and Cijklmn xi xj xk xl xm xn = 1 (18)

Similarly, the corresponding tensors for the marble
sample both show no symmetry, i.e., they are triclinic.
The components of the four tensors are listed in (16)
and (17), respectively.

For both media the “standard reference strain”, the
square root of the ratio of the norms of the fourth-rank
and sixth-rank tensors, is given. Note that the standard
reference strain is used as a qualitative indication for
the starting level at which the effects of non-linearity
have reached a certain level. This reference strain is the
inverse of the commonly used “non-linearity
coefficient”. 

(21)
b

eNL
linear

nonlinear ref

C

C
= =

1
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Figure 3

Characteristic surfaces of the rank four
stiffness tensors (left) and the rank six
stiffness tensors (right) of a calcite single
crystal (top) and a marble sample. After
Rasolofosaon and Yin (1996).
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For the calcite single crystal the standard reference
strain is eref = 0.1262. This means that one has to expect
significant changes in the stiffness tensor only for
unrealistically large strains (~1/8). The reference strain
for marble is only 0.000761. Strains of this order of
magnitude can occur in experiments, thus it is likely
that the non-linearity has to be taken into account.

To check this estimates, numerical tests were run
with the data for the two materials. In these tests, a test

strain parallel and antiparallel to one of the (unstrained)
eigenstrains was increased in steps of 10–0.25 from
a level well below the reference strain until one of the
break-off criteria was satisfied: either the increase was
larger than five orders of magnitude, or one of the six
eigenstiffnesses had changed by a factor of . 

For each run, all six eigenstiffnesses and the
direction of all six eigenstrains were monitored. The
results are shown in the following figures.

2

Figure 4a

Relative change of the system of
eigenvalues of a calcite single crystal
under strains “parallel” to the six
eigenstrains. Each panel describes the
effect of one eigenstrain, sorted according
to the size of the corresponding eigen-
values. Abscissae: logarithm of the strain.
Ordinates: logarithm of the relative change
of the eigenvalues.
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Figure 4b

As in Figure 4a for strains antiparallel to
the six eigenstrains. 
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Figure 5b

As in Figure 5a for strains antiparallel to
the six eigenstrains. 
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Figure 5a

Change of the direction of eigenstrains of a
calcite single crystal under strains
“parallel” to the six eigenstrains. Each
panel describes the effect of one eigen-
strain, sorted according to the size of the
corresponding eigenvalues. Abscissae:
logarithm of the strain. Ordinates: angle
between the eigenstrains (defined as the
inverse cosine of the scalar product of two
unit vectors).
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Figure 6a

Relative change of the system of
eigenvalues of a triclinic marble sample
under strains “parallel” to the six
eigenstrains. Each panel describes the
effect of one eigenstrain, sorted according
to the size of the corresponding
eigenvalues. Abscissae: logarithm of the
strain. Ordinates: logarithm of the relative
change of the eigenvalues. 

Figure 6b

As in Figure 6a for strains antiparallel to
the six eigenstrains. 
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Figure 7a

Change of the direction of eigenstrains of
a triclinic marble sample under strains
“parallel” to the six eigenstrains. Each
panel describes the effect of one
eigenstrain, sorted according to the size of
the corresponding eigenvalues. Abscissae:
logarithm of the strain. Ordinates: angle
between the eigenstrains (defined as the
inverse cosine of the scalar product of two
unit vectors).

Figure 7b

As in Figure 7a for strains antiparallel to
the six eigenstrains.
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CONCLUSIONS

There are a few rules of thumb one can tentatively
deduce from the two examples:
– At the standard reference strain one has to expect

drastic changes of the eigensystem: at a third of the
reference strain, eigenstiffnesses may change as
much as 25% (corresponding to a decimal logarithm
of ± 0.1). The effect on the direction of the eigen-
strains is similar: a change of 5° can occur already
for 3% of the standard reference strain.

– The 72 deviation curves for the direction of eigen-
strains are similar in appearance, but can be separated
by a factor of at least ten in strain. Thus an individual
test calculation—or a simple estimate based on the
reference strain—can be significantly in error. Note
that this cautionary remark does not automatically
apply to isotropioc media, where the orientation
eigentrains are arbitrary.

– The sets of curves for strains “parallel” and “anti 
parallel” to an eigenstrain can differ significantly both

for the magnitude of eigenvalues and for the direction
of eigenstrains. Note that an eigenstrain has no a
priori direction: after multiplication with -1 it is still
an eigenstrain.
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