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Abstract:

Many observables in QCD rely upon the resummation of perturbation theory to retain

predictive power. Resummation follows after one factorizes the cross section into the rele-

vant modes. The class of observables which are sensitive to soft recoil effects are particularly

challenging to factorize and resum since they involve rapidity logarithms. Such observables

include: transverse momentum distributions at pT much less then the high energy scatter-

ing scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form

factor. In this paper we will present a formalism which allows one to factorize and resum

the perturbative series for such observables in a systematic fashion through the notion of

a “rapidity renormalization group”. That is, a Collin-Soper like equation is realized as a

renormalization group equation, but has a more universal applicability to observables beyond

the traditional transverse momentum dependent parton distribution functions (TMDPDFs)

and the Sudakov form factor. This formalism has the feature that it allows one to track the

(non-standard) scheme dependence which is inherent in any scenario where one performs a

resummation of rapidity divergences. We present a pedagogical introduction to the formalism

by applying it to the well-known massive Sudakov form factor. The formalism is then used to

study observables of current interest. A factorization theorem for the transverse momentum

distribution of Higgs production is presented along with the result for the resummed cross

section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are

independent of both the hard scattering amplitude and the soft function, i.e. they are uni-

versal. We present details of the factorization and resummation of the jet broadening cross

section including a renormalization in p⊥ space. We furthermore show how to regulate and

renormalize exclusive processes which are plagued by endpoint singularities in such a way as

to allow for a consistent resummation.
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1 Introduction and Motivation

Many observables in high energy collisions suffer from poorly behaved perturbative expansions

due to the existence of large logarithms. Logarithms of fixed scales, such as masses, are easily

handled by standard renormalization group procedures within the confines of effective field

theories. However, when one is interested in less inclusive observables, it is often the case

that large logarithms of kinematic factors can arise. In particular, when one is interested in
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studying corners of phase space large hierarchies can induce large logarithms. In such cases

resummations allow us to maintain control over theoretical errors [1].

Within the vast class of observables which require resummation there is a large sub-class

which are technically more challenging to handle than others. These observables correspond

generically to those for which the recoil of a collinear jet due to soft radiation is an order

one effect. We will use the acronym SRSO for Soft Recoil Sensitive Observables. A classic

example of an SRSO is jet broadening [2, 3]. Another set of SRSO’s are transverse momentum

distributions when pT /Q≪ 1, where1 logarithms of the ratio pT /Q can invalidate fixed order

results.

In this paper we will be employing effective field theory (EFT) techniques to factorize

and resum large logarithms in these SRSO’s. Traditional EFT’s allow for resummation in a

systematic fashion by morphing these large logarithms into logarithms associated with UV

divergences and then applying standard renormalization group techniques. However, such

traditional methods where one sums logs of invariant mass scales, are insufficient for SRSO’s.

Indeed, as we will see below for such observables, not all the large logarithms are associated

with UV divergences in the effective theory.

Standard SCET methods breakdown when the modal decomposition in the EFT involves

multiple fields with the same invariant mass scalings (such theories fall under the rubric of

what is known as SCETII [4]). These cases exactly correspond to SRSO’s since the soft

radiation, in light-cone coordinates, has momentum scaling (λ, λ, λ), where λ is the small

power counting parameter, while the collinears scale as (1, λ2, λ). For such observables one

can run into a new type of divergence which is not associated with singular behavior in

the UV or IR, but with limits of large rapidities, as was elucidated in [5]. These “rapidity

divergences” have been studied extensively outside the realm of EFT, albeit perhaps with

differing nomenclature, especially within the context of transverse momentum distribution

functions and Sudakov form factor [6–8].

The purpose of this paper is to present a renormalization group program for the treat-

ment of rapidity logarithms. In particular, we show how one can regulate and renormalize

rapidity divergences, and then using a renormalization group technique resum the associated

logarithms, all in a systematic fashion within SCET. To facilitate this procedure we introduce

a regulator that necessarily breaks boost invariance in order to distinguish between modes

which share a mass shell hyperbola. The regulator preserves eikonal exponentiation and man-

ifest gauge invariance in each sector. However, our formalism is also applicable using other

regulators which break boost invariance, as will be discussed below. Once one sums over the

soft and collinear sectors, the rapidity divergences cancel at each order in perturbation the-

ory. The regulator introduces a new scale, ν, which leads to a rapidity renormalization group

(RRG) flow. The solution to the ensuing differential equation has the effect of summing the

large rapidity logarithms which existed in the full theory calculation.

1We will always assume that pT ≫ ΛQCD, so we are away from the “forward region”.

– 2 –



Outline of this paper

We begin in (2) by defining the notion of rapidity logarithms (divergences) and present the

necessary and sufficient criteria for their existence. In (3) we present a physical argument

which allows us to isolate the type of generic observable where one expects them to arise.

In (4) we demonstrate how to regulate the rapidity divergences in context of the massive

Sudakov form factor with massless external lines. This section also illustrates how one can

resum the rapidity logarithms using the rapidity renormalization group (RRG). We then

show how the regulator is applied to generalized soft and collinear jet functions. In (5) we

apply the formalism to the transverse momentum distribution in Higgs production at small

pT , resumming logarithms of p⊥/mh to next to leading log order. This section includes the

definition of a gauge invariant transverse momentum dependent parton distribution function

(TMDPDF). At the end of this section we compare our results with previous works on the

subject. Section (6) gives a factorization theorem for jet broadening including a next to

leading log result for the resummed cross section. Since we have attempted to make this

section available to readers not interested in the Higgs production section there is some formal

overlap with the previous section. Finally in (7) we show how our formalism can be utilized

to renormalize end-point divergences in exclusive decays. We conclude with a summary.

2 Rapidity Divergences

We define a rapidity divergence as arising from momentum region where the invariant mass

k2 is held fixed but the ratio k+/k− (or k−/k+ ) diverges, where k± are light-cone momenta.

Rapidity divergences are not IR in origin, as they do not show up in the full theory, nor should

they be thought of as UV divergences since they can arise from either the upper or lower limit

of an integral, as will be shown later. The existence of the divergence stems from the fact that

to preserve manifest power counting the EFT must be multipole expanded [9] which leads to

eikonal propagators. Furthermore, while rapidity divergences arise in factorized IR sectors of

the theory, i.e. collinear or soft, the sum of EFT sectors will have no rapidity divergences.

Which is to say that rapidity divergences arise as an artifact of factorization. However, in

order to resum logarithms in attempting to save perturbation theory, factorization, and thus

rapidity divergences are inevitable for SRSO’s. In this sense, they are entirely analogous to the

traditional UV divergences which arise in factorization and are necessary for resummations.

To demonstrate how rapidity divergences arise, let us consider an integral of the following

form

I =

∫ Q

µL

dk+
k+

, (2.1)

which may arise when transverse momentum is measured in the real radiation. Q is the scale

of hard scattering and µL is the relevant low energy scale. Suppose that the n-collinear and

soft modes have k+/Q or order 1 and λ ∼ µL/Q, respectively. Then this integral ranges

over both mode regions. To factorize the integral into rapidity regions we introduce a set of
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cut-offs

I =

∫ Λ

µL

dk+
k+

+

∫ Q

Λ

dk+
k+

, (2.2)

corresponding to soft and collinear contributions respectively. In the effective theory, the

cut-off should not be finite, to preserve power counting. Or put differently, each sector should

depend only upon one relevant scale, which follows after performing the multipole expansion.

Taking the limit, Q >> Λ >> µL, the EFT result reads

I =

∫ ∞

µL

dk+
k+

+

∫ Q

0

dk+
k+

, (2.3)

We see that we generate a set of divergences which only cancel in the sum of the sectors.

It should also be emphasized here that these divergences are not regulated by dimensional

regularization, a necessary but not sufficient criteria for rapidity divergences.

Obviously not all observables in QCD will generate rapidity divergences in SCET. A

necessary condition for their appearance is that the observable under consideration receive

contributions from modes with parametrically distinct rigidities, but whose invariant mass

are of the same order. The prototypical observables of this type are transverse momentum

distributions. When pT ≪ Q, pT plays the role of µL in the example above and rapidity

logarithms arise which must be resummed. As such, we will consider in this paper two

observables, namely Higgs production at small transverse momentum, and Jet broadening.

Rapidity divergences also occur in exclusive processes. In [5] the authors show that the end

point singularity problem arises as a consequence of rapidity divergences. We apply our

formalism to this issue and show how one can systematically renormalize the divergences in

these exclusive decays.

3 What Theories Give Rise to Rapidity Divergences: SCETI vs. SCETII

SCET [10–12] (Soft Collinear Effective Theory) is a formalism designed to separate scales in

high energy scattering processes for which the hard scattering scale (Q2) is much greater then

the scale of hadronic physics. Here we will not review SCET but only illuminate the points

that are germane to the main thrust of this paper. In particular we are interested in the

critical issue of (not) double counting regions of phase space. That is, how does one cleanly

separate (factorize) the modes which give rise to IR singularities.

As in any well defined EFT, the scale separation is made manifest at the level of the

action which systematizes the power counting. Power corrections can be included by adding

operators which have definite scalings in powers of µL/Q, where µL is some low scale of

interest. SCET, like its cousin NRQCD, is a “modal” theory whereby fields are decomposed

into a set of sub-fields each of which has momenta with definite scalings. For instance, in

SCETI the gluon field is written as

Aµ = Ac,nµ +Ac,n̄µ +AUSµ + .... (3.1)
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where A
c,(n,n̄)
µ are collinear fields whose momenta scale as Q(1, λ2, λ) and Q(λ2, 1, λ) respec-

tively. While AUSµ is an ultra-soft (US) field whose momentum scales as Q(λ2, λ2, λ2), where

the power counting parameter is λ ≡ µL/Q and µL is the relevant low energy scale2. To

cleanly separate the scales it is helpful to use a dynamical label formalism [14] also used in

SCET [11]. We re-write the full QCD field as

ψ(x) =
∑

n·p,p⊥

e−in·p n̄·x+ip⊥·x⊥ξn·p,p⊥(x) . (3.2)

The purpose of this rescaling is to insure that all derivatives acting on ξ scale as λ2. Note that

(3.2) is written as a sum not an integral. One tessellates the space of possible large momenta

into bins whose dimensions scale with the size of the residual momentum of order λ2 .

The Lagrangian interactions can change the large momentum components of fields. In

particular, collinear gluons can split, changing their large light cone momentum. This im-

plies that there are loops in which one must sum over labels. It is then natural to ask what

happens in the label sum 3 when one of the labels becomes parametrically small4 and modes

begin to overlap. The existence of these overlap regions, when not treated properly, obscures

the physics underlying the effective theory calculations. This is perhaps simplest to see in

NRQCD, where the existence of the overlaps leads to pinch singularities, as well as the in-

ability to clearly distinguish between IR and UV divergences. These points were made clear

in a seminal paper by Manohar and Stewart [5]. In this paper the authors show that one

may exclude these overlap regions by taking a diagram involving a particular mode, Taylor

expanding it around the region of the complementary mode one is trying to exclude, and sub-

tracting this contribution from the original diagram. Doing so eliminates the aforementioned

problems. It has been shown that in SCETI this “zero bin” subtraction [16–18] is often

equivalent to dividing by matrix element of Wilson lines in non-SCET perturbative QCD

factorization formulae [19], which can often be identified with the inverse of the soft-function

in the factorization theorem. In this paper we will also have occasion to comment on the role

of the what we term the “soft-bin” subtractions, and draw a distinction between the soft-bin

and zero-bin, where by zero-bin we always mean an ultra-soft scaling (see appendix (B)).

In SCETI all divergences can be regulated using dimensional regularization and/or off-

shellness, and all modes have distinct virtualities (collinear modes in differing directions being

the exception 5). Zero bin subtractions are relatively simple to utilize to insure that there

is no double counting. Thus we should expect that rapidity divergences should not be an

2The ... represent non-linear terms in the fields that are needed to insure that gauge transformations do

not mix orders in the power counting[13].
3The fact that these are sums and not integrals is a consequence of separating momenta into labels and

residual momenta. This can be thought of as a grid in which labels give the coordinates of a box (or “bin”)

whose size is of order of the residual momentum. One can combine the sum over bins with the residual

momenta integrals when performing loop calculations. See [15] for a discussion.
4In SCETII labels between modes can also overlap by becoming large.
5The soft zero bin will eliminate any such overlap. Given the non-existence of a soft mode in SCETI such

an overlap is necessarily absent.
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issue in SCETI , and indeed this is in fact the case. Note this is not to say that integrals of

the form of (2.2) will not arise in SCETI . In fact they are ubiquitous, however, they should

not be interpreted as rapidity divergences, as they will cancel within each sector. That is

to say, there can, and will be such divergences in the collinear (or US) sector, but when one

sums over graphs, including zero bins, these divergences will cancel as they must within each

sector. A classic example arises in the one loop correction to the parton distribution function

(PDF). In this case in calculating a real correction one encounters an integral of the form

∫
dz

1− z
, (3.3)

where z is the momentum fraction carried by the struck parton. The integral diverges at

the upper end point of integration, where the incoming parton and and the struck parton

carry the same momentum. To regulate this integral one must introduce a new regulator

since dimensional regularization is insufficient. Nonetheless the divergence arises when the

emitted gluon goes ultrasoft, and thus by the Kinoshita, Lee and Nauenberg (KLN) theorem

we expect it to cancel with the corresponding virtual diagram. Thus the divergence cancels

within the collinear sector itself. Note that in this case the zero bin did not play a role, since

they actually cancel in this calculation, again by the KLN theorem. An illustrative example

of the cancellation of divergences, which one might have thought were rapidity divergences in

SCETI can be found in [20]. In summary, SCETI rapidity divergences do not pose a problem

because there is no issue in distinguishing modes of identical virtuality.

For certain observables, such as transverse momentum distributions with p⊥ ≪ Q, SCETI

is not the proper effective theory. The reason is that we must account for real radiation with

momenta that scale as (p⊥, p⊥, p⊥). Given that p⊥ is the IR scale of the theory the collinear

modes scale as either (Q,
p2
⊥

Q , p⊥) or (
p2
⊥

Q , Q, p⊥), and both the soft and collinear mode have

the same invariant mass. As such, these modes can be interchanged by a boosts and the

only real distinction between them is in their relative rapidities. In such cases, the EFT is

called SCETII . The need for SCETII was first pointed out in the context of exclusive B

decays [4] where it was necessary to introduce a second effective theory below SCETI. The

equality of invariant masses of the modes in SCETII leads to complications in the factorization

of physical observables since one must break the boost invariance of operators to cleanly

distinguish between sectors. As was first pointed out in [21], the process of factorization in

SCETII can lead to additional divergences in sectors that can not be regulated by dimensional

regularization, or off-shellness. These divergences will not cancel within each sector as they

do in SCETI. They will cancel only when we sum over sectors, but the lack of cancellation

within a sector changes the RG structure of theory. In fact it is the lack of cancellation that

allows for the resummation of large rapidity logarithms .

Boost Invariance in SCETI and SCETII

In SCET we make a convenient choice of frames where relevant modes are (ultra)soft or

collinear, breaking the full Lorentz symmetry of QCD. However, SCET is invariant under
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boosts along the light-cone direction. This residual boost symmetry of SCET is called RPIIII
[22]. For problems relevant to SCETI this symmetry is preserved in each matrix element

belonging to the collinear or ultrasoft sectors. The natural distinction between the collinear

and ultrasoft sectors of SCETI comes from their parametrically differing invariant masses6.

Since dimensional regularization breaks dilatation symmetry, it is sufficient to distinguish

between collinear and ultrasoft modes7. Since dimensional regularization preserves boost

invariance and is the only regularization required to separate modes in SCETI, each sector

individually remains RPIIII invariant.

In SCETII there is no distinction between the invariant masses of the soft and collinear

modes and they can be interchanged via boosts. Dimensional regularization does not distin-

guish between these modes, so we should introduce a regulator which accomplishes this goal

by breaking the boost invariance along the light-cone direction. Due to the soft recoil, “jet

functions” describing collinear radiation are not exactly aligned with the preferred light-cone

direction used in factorization, in that they carry transverse momentum w.r.t. the light-cone

direction8. A jet function will usually depend upon the transverse momentum and the large

light cone component of the momentum Q± carried by all the collinear particles constituting

the jet. While the transverse momentum is boost invariant, Q± is not and hence one shouldn’t

expect the jet function describing collinear radiation in a physical process to be boost invari-

ant. In contrast, the jets in SCETI are aligned with the preferred light-cone direction since

ultrasofts cannot recoil jets in transverse momentum.

In a back-to-back jet scenario for SRSO’s, like the jet broadening event shape, a small

boost will reduce the number of particles in one jet and increase the number of particles in the

other jet while keeping the number density unchanged in the soft region, when averaged over

all events. Thus it is expected that in a renormalized factorized cross-section boost invariance

will be broken in each sector and will only be restored when all sectors are added. In problems

pertaining to SCETI, boosts alone cannot interchange ultrasoft and collinear excitations and

hence RPIIII must be preserved in each sector. We see that in order to factorize one must

distinguish between soft and collinear radiation, and RPIIII must be broken via regularization

of SCETII matrix elements. This point was emphasized in [24].

4 Rapidity Divergences in SCETII

To understand the nature of rapidity divergences we consider how they arise in the effective

theory. Thus we will begin by considering perhaps the simplest case where such divergences

arise, the Sudakov form factor. In particular we will renormalize and resum the logarithms

6Distinction between two collinear sectors arise essentially from different light-cone directions, so they need

not have different invariant mass for distinction.
7An ultrasoft mode can be transformed into a collinear mode by a dilatation and a boost.
8For example, jet functions in the jet broadening factorization theorem [23] carry non-zero transverse

momentum w.r.t. the thrust axis.
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in the on-shell, massive gauge boson, space-like Sudakov form factor [19] 9 10. As opposed

to the massless form factor, which in isolation, is unphysical, the massive case is IR safe and

in principle observable. This form factor is also relevant to for summing large electro-weak

corrections at energy far above the gauge boson masses.

We defined our power counting parameter as λ ≡ M/Q. The factorization formula

is composed of decomposition in terms of modes which can contribute to the non-analytic

structure of the matrix element. The relevant modes for this observable are the soft with

light-cone momenta scaling as (λ, λ, λ), and collinear and anti-collinear with momenta scal-

ing as (1, λ2, λ) and (λ2, 1, λ) respectively. There are no ultra-soft contributions since their

momentum (λ2, λ2, λ2) will decouple from all the other lines. Given these modes, this defines

an SCETII process. The jets will recoil against the soft virtual emissions and hence, despite

the exclusive nature of this process, it is still an SRSO. However, in the Breit frame the net

transverse momentum exchanged between the jets must vanish.

The factorization of the massless Sudakov form factor in SCET was performed in [26]11.

At leading power we have

Jµ ≡ ū(pn)γ
⊥
µ u(pn̄)F (Q

2,M2) ≈ 〈pn|ξ̄nWnS
†
nγ

⊥
µ C(n · P, n̄ · P)Sn̄W

†
n̄ξn̄|pn̄〉 (4.1)

≡ H(Q2, µ)Jn(M ;µ, ν/Q)γ⊥µ Jn̄(M ;µ, ν/Q)S(M ;µ, ν/M) .

In the last line, we have factorized the form factor F in terms of SCETII matrix elements

Jn, Jn̄, S which are defined as

S(M ;µ, ν/M) = 〈0 | S†S | 0〉
Jn(M ;µ, ν/Q) = 〈pn|ξ̄nWn|0〉
Jn̄(M ;µ, ν/Q) = 〈0|W̄ †

n̄ξn̄ | pn̄〉 (4.2)

S and W are Wilson lines composed of soft and collinear lines respectively.

Finally we must mention the cumbersome issue of the Glauber modes. These modes,

which scale as (λ2, λ2, λ) will in general contribute IR singular pieces at the level of the

amplitude. While they have been shown to cancel in certain processes outside the realm of

effective field theory [27, 28], a systematic treatment of such modes 12 within a self-consistent

EFT treatment is still lacking. Here we will assume, as do all SCET treatments, that Glaubers

will not contribute.

9The logarithms in the Sudakov form factor are distinguished from “Sudakov logarithms” which can arise

in running currents in that they contain rapidity divergences.
10 The Sudakov form factor can be regulated by going off-shell in which case the systematics may change

[25].
11This factorization was for the massless case where gauge invariance uniquely fixes the form of the factor-

ization theorem. However, the gauge boson mass does not alter the result. Note that this result was formal in

that the IR scales were not clearly delineated. As such, it was not sharply defined to be living in SCETI or

SCETIIand the factorization formula contained both soft and ultra-soft Wilson lines.
12For a discussion of these modes within the context of SCET see [26, 29, 30].
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k
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k
−

Q

λQ

λ
2Q

λ
2Q λQ Q

n-coll.
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soft

Figure 1. The mass-shell hyperbolae showing the distinction between the different sectors [5]. The

separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft

sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences

arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

∫

[dnk]
1

(k2 −M2)

1

(k2 − n · kn̄ · p1 + iǫ)

1

(k2 − n̄ · kn · p2 − iǫ)
(4.3)

This integral is finite in UV as well as the IR. In the effective theory there are three

contributions. A soft integral coming from taking the limit kµ → (M,M,M)

IS =

∫

[dnk]
1

(k2 −M2)

1

(−n · k + iǫ)

1

(−n̄ · k + iǫ)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

∫

[dnk]
1

(k2 −M2)

1

(k2 − n · k n̄ · p1 + iǫ)

1

(−n̄ · k + iǫ)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the effective theory

graphs. Let us consider the soft graph integrating over k⊥.

IS ∼
∫

[d2k](n · k n̄ · k −M2)−2ǫ 1

(−n · k + iǫ)

1

(−n̄ · k + iǫ)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ∼M2, shown

in figure 1. Off the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram
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we see that it only has divergences associated with the limit where (n · k/n̄ · k) approaches

infinity, and similarly with (n→ n̄) for the In̄ collinear integral, since there is only one border

between a collinear sector and the neighboring soft sector.

There are multiple ways of regulating these rapidity divergences. One can go off the

light cone by setting n2 6= 0 [7, 19], use an analytic regulator [31], or a “delta” regulator as

was done in [32]. Choosing a regulator determines how much of an overlap there is between

modes. For instance, in the case of a delta regulator, where one shifts the eikonal propagators

1

n · k → 1

n · k +∆
, (4.7)

one must perform a soft-bin subtraction to generate the correct result in the effective theory.

In fact, the authors of [32] showed that the sum of the integrands, once properly soft-bin

subtracted leaves a finite integral with no rapidity divergences. With an analytic regulator

the soft function vanishes explicitly. In this case there is no double counting as half of the

soft contribution comes from each of the collinear sectors, and thus there is no zero bin.

While physically it seems clear that a sensible rapidity regulator should cancel in the

sum over sectors, we should have a proof of this assertion. A direct proof follows noting that

if all of the regulated EFT diagrams arise from an asymptotic expansion of the full theory

diagrams, then given that the full theory has no rapidity divergence the finiteness of the EFT

sum then follows. By this reasoning the delta regulator must also cancel in the sum over

sectors, as will any rapidity regulator if we assume that it preserves the equality between

the full theory integrals and their asymptotic expansion in regions. It is important however,

to recall that the method of regions is distinct from EFT in that, in the latter, it is not

necessarily true that there is a one to one correspondence between the IR of a full theory

diagram and a corresponding diagram in the EFT. All that is necessary is that the sum of

the EFT graphs reproduces the IR of the full theory. Such cases arise when one uses the

equations of motion in the effective theory to remove redundant operators.

4.1 Regulating the Rapidity Divergences

Given that EFT’s are created to sum logarithms we would like to be able to regulate the

theory in a way that makes an RG treatment manifest. There are multiple ways in which

to regulate the rapidity divergences, and the formalism developed here can be applied using

any sensible choice, such as the delta regulator [32]. Here we will concentrate on the regu-

larization introduced in [23], where we utilized a rapidity regulator which is closely related

to dimensional regularization. It is implemented by modifying the momentum space Wilson

lines in the following fashion.

Wn =
∑

perms

exp

[

− gw2

n̄ · P
| n̄ · Pg |−η

ν−η
n̄ ·An

]

(4.8)

Sn =
∑

perms

exp

[

− gw

n · P
| 2Pg3 |−η/2
ν−η/2

n ·As
]

(4.9)
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We have introduced a new dimensionful parameter ν which will play the role of an effective

rapidity cut-off. Here Pµ is the momentum operator and we have essentially regulated the

longitudinal momenta, and since |2P3| → |n̄ · P| in the collinear limit. Note the differing

powers of η in the soft and collinear Wilson lines. The appropriate power is fixed by ensuring

that the rapidity divergences cancel to all orders which we shall show below. Alternatively,

and equivalently, the power is fixed by regulating the full theory diagram and taking limits of

the integrand. The relative factor of two comes from that fact that for a given gluon line in

the full theory there are two soft eikonal vertices (connecting the two eikonal lines) relative

to the one collinear eikonal vertex. We have also introduced the bookkeeping parameter w

for convenience, which eventually will be set to one. It will play a role when we derive RG

equations. The g subscript on the momentum (label) operator will only play a role when we

consider going to higher orders as is explained in section (4.4) and appendix (A).

With this regulator the effective theory will have divergences in both the η and ǫ go

to zero limits. The order of the limits is crucial to sensibly renormalize the theory. Given

our physical arguments regarding the nature of the rapidity divergences, the proper order of

limits must be: η → 0, then ǫ → 0 with η/ǫn → 0 for all n > 0. The physical reason for

this ordering is clear since we must remain on the invariant mass hyperbola when we take the

rapidity cut-off to its limit. To see how this works in practice let us evaluate the integrals IS
and In using this regulator.

The IS integral is most simply evaluated by first doing the k0 integral by contours. The

result, after repristinating the expression with the coupling, group theory factor and the

relevant numerator for the Sudakov form factor, in Feynman gauge, is given by 13

IS = −g2CF (eγEǫ2−η−2π−5/2)
( µ

M

)2ǫ ( ν

M

)η Γ(1/2− η/2)Γ(ǫ+ η/2)

η
(4.10)

Expanding first in η and then in ǫ we find

IS = g2CF

[

−e
γEǫΓ(ǫ)

( µ
M

)2ǫ

4π2η
+

1

4π2

(
ln(µν )

ǫ
+ ln2(

µ

M
)− 2 ln(

µ

M
) ln(

ν

M
) +

1

2ǫ2

)

− 1

96

]

(4.11)

Similarly, the collinear integral In is given by

In = g2CF

[

eγEǫΓ(ǫ)
( µ
M

)2ǫ

8π2η
+

1

4π2

(

ln(
µ

M
) ln(

ν

n̄ · p1
) + ln(

µ

M
) +

1

2ǫ

(

1 + ln(
ν

n̄ · p1
)

)

+
1

2

)

− 1

48

]

,

(4.12)

and In̄ by replacing n̄ · p1 with n · p2. Summing the sectors we find

IS+In̄+In = g2CF

[

1

4π2

(

1

2ǫ2
+

ln( µQ)

ǫ
+

1

ǫ
+ ln2(

µ

M
) + 2 ln(

µ

M
) + 2 ln

M

µ
ln
Q

M
+ 1

)

− 5

96

]

,

(4.13)

13w has been set to one, and is utilized below when we derive the renormalization group equation. We have

also absorbed the MS factor into µ to simplify the expressions.
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where we have used n̄ ·p1 = n ·p2 = Q. We see that the η (rapidity) divergences vanish, there

is no dependence on the scale ν and the answer is boost [22] invariant.

In addition, note that the soft-bins are all scaleless and vanish. However, this does not

mean that they should be ignored, as explained in appendix (B). Indeed, as emphasized in [5],

these subtractions can play a crucial role in being able to discern IR and UV singularities. In

the case of the η regulator this scaleless, vanishing, soft-bin contribution has the effect shifting

the rapidity cut-off to its proper place. That is, if we are regulating the a collinear integral

the effect of the soft-bin will (formally) to shift the cut-off to its proper place separating the

collinear from the soft.

4.2 The Rapidity Renormalization Group

An advantage of the regulator we have introduced is that it allows one to write down a

renormalization group equation in a rather straightforward manner. We begin by examining

the Sudakov form factor of the space-like current in terms of the SCETII fields,

Jµ = H(Q2, µ)Jn(M ;µ, ν/Q)γ⊥µ Jn̄(M ;µ, ν/Q)S(M ;µ, ν/M) (4.14)

The one loop values of matrix elements Jn, Jn̄, S defined in (4.2), are given by (4.11,4.12).

The renormalizaton group follows from the set of equations

d

d ln[µ]
(Jn, S)

bare =
d

d ln[ν]
(Jn, S)

bare = 0. (4.15)

Moreover the independence of µ and ν leads to

[
d

d ln[µ]
,

d

d ln[ν]
] = 0 , (4.16)

which is of course true for any observable not just the Sudakov form factor.

Defining the anomalous dimension under µ and ν variations as (γµ, γν) respectively, such

that

γn,Sµ = −Z−1
n,S(

∂

∂ ln[µ]
+ β

∂

∂g
)Zn,S , (4.17)

γn,Sν = −Z−1
n,S

∂

∂ ln ν
Zn,S , (4.18)

equation (4.16) imposes the constraint

(
∂

∂ ln[µ]
+ β

∂

∂g
)γν =

d

d ln[ν]
γµ = ZΓcusp , (4.19)

which holds for any observable of interest. Z is an integer whose value depends upon whether

we are considering an amplitude or the square of an amplitude. For the Sudakov form factor

Z is either 1 or 2 (see below). The last equality comes from the consistency of µ-anomalous
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dimension with the hard anomalous dimension which is linear in the logarithm with coefficient

Γcusp. The universal relation between the collinear c and soft S anomalous dimension

− 2Zc = ZS (4.20)

follows automatically from the ν independence of the hard function, as will be discussed

below.

Let us now apply the RRG to the Sudakov case we studied above. Since our regulator

allows us to define the jet and soft functions independently we may renormalize them in

standard fashion by absorbing 1
ǫ and 1

η divergences in the renormalization constants, and

then run renormalized quantities individually. We define the renormalization factor Zn, ZS
via

JRn = Z
1/2
ψ Z−1

n JBn SR = Z−1
S SB (4.21)

where IB corresponds to bare quantities and IR to renormalized. Then using our result from

above, at one loop we have

ZS = 1− g(µ)2w2CF
4π2

[

eǫγEΓ(ǫ)
( µ
M

)2ǫ

η
− 1

2ǫ2
− ln µ

ν

ǫ

]

,

Zn = 1 +
g(µ)2w2CF

4π2

[

eǫγEΓ(ǫ)
( µ
M

)2ǫ

2η
+

1

2ǫ

(

1 + ln
ν

n̄ · p1

)]

, (4.22)

where Zψ is wave function renormalization which is the same as in full QCD.

Zψ = 1− g(µ)2CF
16π2ǫ

. (4.23)

The µ anomalous dimensions are given by

γnµ =
g2(µ)CF

4π2

(
3

4
+ ln

ν

n̄ · p1

)

,

γn̄µ =
g2(µ)CF

4π2

(
3

4
+ ln

ν

n · p2

)

, (4.24)

γSµ =
g2(µ)CF

4π2
ln
µ2

ν2
.

As a consistency check see that

γnµ + γn̄µ + γSµ = −γH =
g2(µ)CF

4π2

(

ln
µ2

Q2
+

3

2

)

, (4.25)

where γH is the anomalous dimension of the hard matching coefficient.

The calculation of the ν anomalous dimensions necessitates care. The bare book keeping

parameter is ν independent and thus, in analogy with the coupling g, the “renormalized”14

w obeys

ν
∂

∂ν
w = −η

2
w (4.26)

14It is important to remember that w is not a coupling, but strictly a calculational tool.

– 13 –



we find at one loop

γnν =
g2(µ)CF

8π2
ln

µ2

M2
,

γSν = −g
2(µ)CF
4π2

ln
µ2

M2
. (4.27)

These correctly obey the consistency equation

γnν + γn̄ν + γSν = 0 . (4.28)

Both the large logarithms, due to large invariant mass ratio and large rapidity ratio, can

be resummed by the RG equations

µ
d

dµ
(Jn, S) = γn,Sµ (Jn, S) ,

ν
d

dν
(Jn, S) = γn,Sν (Jn, S) . (4.29)

The relation (4.19) guarantees that the µ and ν evolutions commute, hence, the evolution

in µ-ν plane is path independent. However, care must be taken when solving the ν-RG

equation. γν contains terms of form αns (µ) ln
m(µ/M) with m ≤ n. For instance, one can

see from Fig. 2 that the one loop result will be multiplied by a series of logarithms of the

form
∑

n[β0αs ln(µ/M)]n. These logarithms can be large if µ ≫ M , for example, and would

require resummation. This is easily obtained by solving the consistency relation (4.19) up to

the required order in perturbation theory,

γν =

∫ lnµ

d ln(µ′)
d

d ln(ν)
γµ(µ

′) + const.

∝
∫ lnµ

d ln(µ′)Γcusp(µ
′) + const. , (4.30)

where integration constant is fixed by the fixed order calculation of anomalous dimension

and corresponds to its non-cusp piece. From eqn. (4.27) we see that non-cusp piece is zero

at one loop. Eqn. (4.30) completely fixes the logarithmic (µ) structure of γν to all orders

in perturbation theory when expanded in αs(µ). If we had calculated γν to higher orders

we would see these logarithms explicitly. Thus, it constitutes a check on the higher order

calculations. In its integrated form γν resums the set of diagrams which renormalize the

coupling, which in the Abelian case, arise from the bubble chain shown in figure 2, thus

taking into account the running of αs. Fixed order form of γν suffices when evolution is done

along path 1 shown in figure 3 with µi ∼ νi ∼ M ≪ µf ∼ νf . However, the integrated

form (4.30) is required when evolution is done along path 2. Since µf ≫ M there are large

logarithms in γν that require resummation in addition to the rapidity logs. In figure 3, U

and V are the evolution factors in µ and ν respectively and µi, νi are the scales for the initial

conditions. The notation U(µf , µi; νa) implies running µ from µi to µf at fixed ν = νa;
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Figure 2. Coupling renormalization (Abelian) contributes to γν and is missed in the fixed order one

loop result.

µ

ν

νfνi

µi

µf

V (νf , νi;µi)

V (νf , νi;µf )

U
(µ

f
,µ

i
;ν

f
)

U
(µ

f
,µ

i
;ν

i
) final

initial

path 1

path 2

Figure 3. Two alternate paths are shown for evolution in µ-ν plane. Due to independence of µ and

ν scales evolution along either path will yield the same result.

similarly for V (νf , νi;µa). Along path 1, we have chosen to run first in ν and then in µ. Path

2 shows the alternate choice and should yield the same result, thus

V (νf , νi;µf )U(µf , µi; νi) = U(µf , µi; νf )V (νf , νi;µi) . (4.31)

To ensure this in practice, we must use the resummed form of γν when calculating V (νf , νi;µf ).

Notice that these anomalous dimensions depend upon the “low” energy parameter, M ,

which normally would, and should, not show up in the expression for an anomalous dimension.

However, we must recall as far as the rapidity divergences are concerned M is not a low

energy parameter, but just the invariant mass of the hyperbola along which the rapidity

renormalization group flows.

To sum the large logarithms we first identify the natural scales for the Hard, Soft and

Jet Function which are given by (µH), (µS , νS) and (µJ , νJ) respectively. Numerically they
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can be read off from (4.11,4.12)

µH ∼ Q,µS ∼ νS ∼ µJ ∼M, νJ ∼ Q. (4.32)

To eliminate the large logarithms we may run in both µ and ν to some fixed scale, while

evaluating the fixed order functions at their natural scales. That is, we may write

S(µ, ν) = VS(ν, νS ;µ)(US(µ, µS ; νS)S(µS , νS))

Jn(µ, ν) = VJ(ν, νJ ;µ)(UJ(µ, µJ ; νJ)Jn(µJ , νJ))

H(µ) = H(µH)U(µ, µH) , (4.33)

where Un,S and Vn,S are respectively µ and ν evolution factors for jet and soft functions. In

(4.33) we have chosen to run first in µ and then in ν. We could equally well have switched

the order leading to the same result. Note that in the ordering of eqn. (4.33) we are required

to use the integrated form of γν of eqn. (4.30) in order to resum all the large logs due to the

running coupling. We get,

US(µ, µS ; νS) = exp

[

−8πCF
β20

(
1

α(µ)
− 1

α(µS)
− 1

α(νS)
ln

α(µ)

α(µS)

)]

(4.34)

VS(ν, νS ;µ) = exp

[
2CF
β0

ln

(
α(µ)

α(M)

)

ln

(
ν2

ν2S

)]

(4.35)

UJ(µ, µJ ; νJ) = exp

[

−2CF
β0

(
3

4
+

1

2
ln

(
ν2J
Q2

))

ln
α(µ)

α(µJ)

]

(4.36)

VJ(ν, νJ ;µ) = exp

[

−CF
β0

ln

(
α(µ)

α(M)

)

ln

(
ν2

ν2J

)]

(4.37)

UH(µ, µH) = exp

[

−8πCF
β20

(
1

α(µH)
− 1

α(µ)
− 1

α(Q)
ln

α(µ)

α(µH)

)]

(4.38)

with

S(µS , νS) = 1 +
α(µS)CF

π

[

ln2(
µS
M

)− 2 ln(
µS
M

) ln(
νS
M

)− π2

24

]

(4.39)

Jn(µJ , νJ) = 1 +
α(µJ)CF

π

[

ln(
µJ
M

) ln(
νJ
n · p1

) +
3

4
ln(

µJ
M

)− π2

12
+

1

2

]

. (4.40)

Using relations (4.34) to (4.37) we can explicitly verify the commutation relation (4.31)

at the order we are working. Equations (4.33) to (4.39) give the resummation for the most

general choice of scales µ and ν. However, in order to resum all the logarithms, the most

convenient choice of scales is µ = µJ = µS ∼ M and ν = νJ ∼ Q. Running with this choice

of scales only requires running the hard function in µ and soft function in ν to the natural

scales of the jet function. This strategy is shown in figure 4. With this strategy, it is not

required to use the integrated form (4.30) and the fixed order form of γν suffices.

The physics of the RRG flow can be understood from figure 5. A change in the scale ν

corresponds to a flow between the soft and collinear regions. The natural scale for the soft
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Figure 4. Simplest running strategy to resum all the large logarithms in the Sudakov Form Factor.
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Figure 5. Running in ν corresponds to flow along the mass-shell hyperbola.

function is n · k ∼ n̄ · k ∼ M whereas the collinear functions sit at the scale Q. To sum the

logarithms we may slide the cut-off(s) of the soft function up the hyperbola, such that the

scale ν minimizes the logarithms in the collinear sectors.

4.3 The Necessity for RRG

The RRG is critical in establishing the µ independence of the resummed form factor. To

illustrate this we can combine the evolution factors, and present the completely resummed

form factor as

F (Q2,M2) = E(µ, µH , µJ , µS ; νJ , νS)H(Q2, µ2H)Jn(µJ , νJ ;M ;Q)Jn̄(µJ , νJ ;M ;Q)S(µS , νS ;M)

(4.41)

where we have made clear that the jet and soft function depend explicitly on the scales M

and Q. The µ dependence in E is always sub-leading, and would cancel in the exact result.

We will keep µ to be arbitrary to show how the µ dependence cancels to any given working
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order. Minimizing the logarithms in all sectors can be accomplished by the choices:

µH = Q µJ = µS =M ∼ µ (4.42)

νJ = Q νS =M. (4.43)

Then the total evolution factor then at one loop is:

E = exp







−

µ RG
︷ ︸︸ ︷

8πCF
β20

(
1

α(Q)
− 1

α(µ)
− 1

α(Q)
ln

(
α(µ)

α(Q)

))

+2
CF
β0

ln

(
α(µ)

α(M)

)

ln

(
Q2

M2

)

︸ ︷︷ ︸

RRG







,

(4.44)

To the logarithmic order we are working, the exponent of the form factor is µ-independent.

We achieved this critically important feature because of the rapidity renormalization group.

The variation of the hard double logarithms must be canceled by the variation of the jet and

soft sectors. Given the two scale nature of our SCETII problem, it is not possible to cancel

the variation of the hard double log without the presence of a large logarithm in the low-scale

matrix elements.

Schematically we can write for a generic soft-collinear factorization of a physical process

featuring large double logarithms:

σresum = exp
[

Γ[α]L2 − 2Γ[α]L L̃+ ...
]

f(L̃) (4.45)

L = ln
(Q

µ

)

(4.46)

L̃ = ln
(M

µ

)

(4.47)

Where M is the infra-red scale, Q is the hard scale, and µ is assumed to be of order M (thus

L≫ L̃). The function f is the low scale matrix elements of the collinear and soft sector, and

should have no large logarithms. We have neglected the running in α, but its inclusion does

not change the substance of our argument. Varying µ we find that the leading µ variation in

the logarithmic power counting (i.e., terms that scale as LδL) is given by:

δσresum = σresumδ
(

Γ[α]L2 − 2Γ[α]L L̃
)

+ ... (4.48)

= 0 + ... (4.49)

The exponent has the required form to cancel the leading variation, since δL = δL̃. In general

terms in the resummed exponent such as Γn−1α
nL2 get canceled by an RRG resummation of

the form 2Γn−1α
nLL̃. There are further sub-leading variations that scale as αnL̃ or αn, but

these variations are canceled by the matrix elements as the low scale since they involve no

large logarithm.
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This form of the exponent is found in both SCETI and SCETII as the hard double loga-

rithmic terms appear generically when there are collinear and soft modes, irrespective of the

scaling of the soft modes themselves. SCETI differs from SCETII in that the corresponding

LL̃ term in SCETI comes solely as a consequence of traditional RG techniques. One can

see that the low/high-scale mixed double logarithms can be generated through traditional re-

summations since the virtuality of the various modes are separated by an equivalent amount,

namely
Q2

J

Q2
H

∼ Q2
US

Q2
J

∼ λ2. Hence in the running from the jet to the ultra-soft sectors, a double

log of the form LL̃ is generated 15. Since SCETII is bereft of the invariant mass separation in

the infra-red physics, one can conclude that something like the RRG must exist in all SCETII

factorizations to generate the required LL̃ term in the exponent.

It is important to note that the inclusion of the rapidity logs in the exponent, necessary

for insuring µ independence, also leads to an ambiguity in the scale of the rapidity logs. In

previous SCET treatments, µ independence is achieved by explicitly exponentiating the large

logarithm found in the low scale matrix elements [33]. 16 However, doing things in this

way obscures the errors at higher orders in perturbation theory, due to an ambiguity in the

choice of low scale in the exponentiated single logarithm. µ independence only tells us that

we must have a ln(µ/A) in the exponent, but the scale A is arbitrary. The dependence on

A should of course cancel between the matrix element of the exponent (at any given order),

which is achieved automatically in the RRG. One can exponentiate the rapidity logs by hand,

without recourse to the RRG, but then it becomes difficult to track the scheme dependence

(i.e. how varying the choice of A affects the sub-leading pieces). In contrast, RRG provides an

independent scale ν to vary so that size of all the sub-leading logarithms is properly captured.

We propose to quantify error estimates by independently varying in µ and ν in a suitable

range and then adding the errors in quadrature.

Finally, in earlier, non-EFT, treatments of the form factor, the µ independence was

achieved via the Collins-Soper equation [7]. In the CSS approach to the form factor the

resummed exponent is written as [19]

d

d lnQ2
lnF (Q2,M2) = G(α(µ), ln(Q/µ)) +K(α(µ), ln(M/µ)). (4.50)

By running in Q, this effectively mixes rapidity and µ running since the hard function depends

upon the scale Q. By introducing the scale ν we avoid this issue, which allows us to cleanly

separate the rapidity logs from the invariant mass logs. However, note that this methodology

will lead to two independent integration constants just as in our formalism. Having two such

integration constants allows one to systematically control scale variation errors.

15This statement is of course contingent on the arbitrary choice of which functions to run. Different choices

would have these logs appear in other evolution factors. But their appearance is intimately tied to the invariant

mass scale separation of the effective theory sectors.
16 In this work it was shown that there is at most one log in the low scale matching.
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4.4 Gauge Invariance and the Structure of Rapidity Divergences at Higher Or-

ders

In any approach to renormalization, one does not want the procedure to violate gauge in-

variance. That the total contribution, i.e. the sum of the soft and collinear pieces, is gauge

invariant follows from the same argument used to show the rapidity divergences cancel in the

effective theory. One first introduces the regulator in the full theory, where the regulator is

not needed to make integrals well defined. Since the rapidity regulator is inherited by each

sector (in appendix A, we show how this is specifically accomplished for the η-regulator) from

the full theory, it is guaranteed to cancel in the sum of sectors. Gauge invariance follows

similarly. That is, the full theory is gauge invariant, and under the assumption that the

effective theory is properly reproducing the infrared physics, then the sum of the effective

theory diagrams must also be gauge invariant.

Given the intimate connection between Lorentz invariance the gauge symmetry is might

seem surprising that the regulated sectors are themselves gauge invariant. Nonetheless, as we

prove in appendix (A) the regulated sectors are indeed gauge invariant to all orders, in covari-

ant gauges. This result follows once one introduces the notion of non-abelian exponentiation

[34, 35], (see [36] for a nice modern approach) which strongly constrains the structure of the

rapidity divergences. The diagrammatic expansion of any generalized soft function can be

rewritten as the exponential of a distinct subset of diagrams contributing to the series. That

is, a generalized soft function can be written as the exponential of two eikonal line irreducible

graphs with a particular color weight. The sum of these graphs is known as a CWEB. Since

only a single rapidity divergence can appear in the logarithm of a generalized soft function

[37, 38], it follows that only a single rapidity divergence can appear in a CWEB, regardless

of the number of loops involved. Hence CWEBs are minimally divergent with respect to

rapidity divergences 17. Indeed, this fact is critical in establishing the gauge independence

of the rapidity anomalous dimension. Given this marginal divergence, the gauge dependent

piece of the covariant gauge polarization tensor, which is proportional to kµkν , will lead to

an integral with no rapidity divergence.

To see this, consider an n loop CWEB. Since the marginal nature of the divergence implies

that there are no sub-divergences, we may perform the n− 1 loop integrals leaving one loop

integral left over with a gluon attaching to an eikonal line. Given that we have performed

all the loop integrals except one, the gauge dependent piece of the polarization of this gluon

must be proportional to the momentum carried by the Wilson line itself. Contraction with the

eikonal vertex will then cancel the denominator which is the cause of the rapidity divergence.

In appendix (A) we give details of this argument, and show how one needs to generalize

the Wilson line regulator at higher orders. This appendix also contains a discussion of the

17For rapidity divergences, this statement is expressing the fact that the anomalous dimensions is at most

linear in logarithm associated with the rapidity divergence. There are of course other UV renormalization point

dependent logarithms in the rapidity anomalous dimension, since a CWEB at higher orders have multiple sub-

loops. But these logs are predicted by the UV divergences of QCD: see (4.30).
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delta regulator. In either case, organizing the calculation in terms of CWEBs greatly reduces

the amount of work necessary.

5 Transverse Momentum Spectrum in Higgs Production

The differential cross-section for producing the Higgs boson with fixed momentum in hadronic

collisions is an observable of obvious relevance. It has been shown that the p⊥ distribution can

be used as a smoking gun for new physics [39]. Thus having a reliable theoretical prediction

is a worthwhile enterprise. In the limit where p⊥ ≪ mh this cross section provides another

important instance where factorization proceeds in SCETII, involving rapidity divergences.

The Higgs p⊥ spectrum is kinematically and formally very similar to the Drell-Yan p⊥ spec-

trum. Much effort has been devoted to both understanding factorization in SCET framework

[40–43] and resummation of logarithms of the form ln(p2⊥/mh), usually in the context of the

CSS resummation formalism [44–49].

To see why this observable fits into SCETII, let us consider the kinematics. We impose the

kinematical constraint that the transverse momentum of the Higgs relative to the colliding

beam be small compared to the Higgs mass, λ ∼ p⊥
mh

≪ 1. Thus all final state radiation

recoiling against the Higgs must fulfill this same condition. Taking the Higgs momenta to

scale as

ph ∼ mh(1, 1, λ), (5.1)

it is simple to see that the on-shell radiation that can recoils against the Higgs scales as:

ph = pc + pc̄ + ps +
∑

pCJ ,

pc ∼ mh(1, λ
2, λ) ,

pc̄ ∼ mh(λ
2, 1, λ) ,

ps ∼ mh(λ, λ, λ) , (5.2)

pCJ ∼ mh(1, 1, 1),

where (pc, pc̄, ps) stand for collinear, anti-collinear and soft momentum respectively. We have

allowed for the possibility of jets in the central region with momentum pCJ . These jets each

have large transverse momenta, but their net transverse momentum must scale as λ, and they

impart little transverse momentum to the Higgs itself. At fixed order in QCD, these jets do

not appear until NLO in the p⊥ spectrum (or NNLO in total Higgs production). In what

follows we will prove a factorization theorem that robustly accounts for all such radiation,

and calculate the resummation to NLL.

5.1 QCD cross-section

Incorporating the most recent bounds from the LHC [50, 51] we will assume the Higgs is

sufficiently light that its dominant production mechanism is gluon fusion. Given this as-

sumption, we may work within the Higgs effective theory where the top quark is integrated
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out, generating the dimension six operator

H(x) = h(x)Tr[Gµν(x)Gµν(x)]. (5.3)

The matching coefficient for this operator is known to two loops and is given by [52, 53]

Ct =
αs
12π

+
α2
s

64π2

(5

3
CA − CF

)

. (5.4)

The differential cross-section in Higgs boson transverse momentum (p⊥) and rapidity (y) is

given by

dσ

dp2⊥dy
=

C2
t

8v2S

∫

d4x
∑

spins

〈pnpn̄|H(x) δ

(

y − 1

2
ln

P+
h

P−
h

)

δ(p2⊥ − |~Ph⊥|2)H(0)|pnpn̄〉. (5.5)

Ph is the momentum operator that picks out the Higgs momentum. consider it a derivative.

|pnpn̄〉 is the incoming proton state with momenta pn and pn̄. v is electro-weak symmetry

breaking scale, and
√
S is center of mass energy. When there exists central jets the cross

section will become sensitive to higher dimensional operators, but as we will see below, this

region of phase space is power suppressed. We can simplify (5.5) by writing

〈0|h(x)δ
(

y − 1

2
ln

P+
h

P−
h

)

δ(p2⊥ − |~Ph⊥|2)h(0)|0〉

=

∫
d4ph
(2π)4

(2π)δ+(p2h −m2
h)e

−iph.xδ

(

y − 1

2
ln
p+h
p−h

)

δ(p2⊥ − |~ph⊥|2), (5.6)

the cross-section then becomes

dσ

dp2⊥dy
=

C2
t

8v2S

∫
d4ph
(2π)4

(2π)δ+(p2h −m2
h)δ

(

y − 1

2
ln
p+h
p−h

)

δ(p2⊥ − |~ph⊥|2)
∫

d4xe−iph.x
∑

spins

〈pnpn̄|Tr[Gµν(x)Gµν(x)]Tr[Gαβ(0)Gαβ(0)]|pnpn̄〉 , (5.7)

where δ+(p2h −m2
h) = θ(p0h)δ(p

2
h −m2

h).

5.2 Factorization in SCETII

5.2.1 Central Jets are Power Suppressed

To match to the effective theory, one should perform an OPE that matches the full theory

operator in (5.7) to a product of effective theory operators at the hard scale, as is done in the

case of inclusive Drell-Yan [54]. As long as one can show that the contributions due to hard

colored particles crossing the cut in a given full theory diagram is power-suppressed in the p⊥
mh

expansion, then effectively there is no OPE since the currents are still separated by distance

scales large compared to mh. If there are no hard partons crossing the cut, then matching at

the hard scale reduces to matching the full theory operator Tr[GG](x) onto effective theory
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Figure 6. A contribution to the production cross section with central jets.

currents Bµan⊥Ban̄⊥µ(x) , where Bµan⊥ will be defined below. In what follows, we will establish

that the central jets are power suppressed, and so one can simply match currents.

At leading order in the p⊥/mh expansion, the only full theory diagrams that contribute

must come with a δ(p2⊥) or the
1
p2
⊥

singularity, as both of these distributions are leading order

in the power counting. Delta function and power like singularities are associated with virtual

and collinear contributions respectively, neither of which can arise from central jets. When

matching at the high scale we expand in powers of p⊥. Since the central jets only depend on

the hard scales, one can set transverse momentum to zero in diagrams containing the central

jets. Thus the part of the full QCD amplitude-squared that produce any modification of the

Higgs transverse momentum by central jets is power suppressed.

More formally (pedantically), consider a full theory diagram that contains central jets,

such as in Figure 6. The diagram has the form:

ICJ =

∫
ddk1
(2π)d

δ+(k21)
ddk2
(2π)d

δ+(k22)
ddph
(2π)d

δ+(p2h−m2
h)δ

(d)(pn+pn̄−k1−k2−ph)P (pn, pn̄, k1, k2, ph).

(5.8)

The hard contribution to the matching from this diagrams can be obtained by simply con-

sidering the k1 and k2 momenta to be large, and asymptotically expanding the integrand

accordingly (along with the power counting of the external momenta pn, pn̄, ph). Then the

above integral becomes:

ICJ |hard =
∫

dΩδ(n̄.pn − n̄.k1 − n̄.k2 − n̄.ph)δ(n.pn̄ − n.k1 − n.k2 − n.ph)

δ(d−2)(~k1⊥ + ~k2⊥)Pasym(pn, pn̄, k1, k2, ph) (5.9)

dΩ =
ddk1
(2π)d

δ+(k21)
ddk2
(2π)d

δ+(k22)
ddph
(2π)d

δ+(p2h −m2
h) (5.10)

Since all propagators in the integrand Pasym have a hard scaling and the momentum conser-

vation delta function lacks the scale p⊥, the integral is completely independent of p⊥. Hence
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it has no contribution that scales as 1
p2
⊥

. Thus the hard contribution from this diagram is

power suppressed. The argument easily generalizes to more complicated diagrams.

5.2.2 Matching

Having established that central jets are power-suppressed, we first match the non-local oper-

ator H(x)H(0) onto the product of SCET currents:

〈pnpn̄|Tr[Gµν(x)Gµν(x)]Tr[Gαβ(0)Gαβ(0)]|pnpn̄〉

=
∑

n

H(mh)〈pnpn̄|
(

Baµn⊥(x)Ban̄⊥µ(x)
)(

Bbνn⊥(0)Bbn̄⊥ν(0)
)

|pnpn̄〉+O(λ) . (5.11)

The interaction is non-local only along the light cone and the transverse directions as there

are no hard partons crossing the cut18. The hard matching can depend only upon mh and is

given by

H(mh) = 4m4
h|C(mh)|2 , (5.12)

where C(mh) is the matching coefficient from current matching19. Furthermore

Baµ
n⊥(x) =

2

g
Tr
[

T a
[

W †
n(x)iD

µ
n⊥Wn(x)

]]

(5.13)

and

Baµn⊥(x) = Saa
′

n (x)Ba′µ
n⊥ (x). (5.14)

Wn is a collinear Wilson line in the fundamental representation defined in x-space by

Wn(x) = P exp

(∫ x

−∞
n̄ ·An(n̄λ)dλ

)

. (5.15)

Saa
′

n (x) is a soft Wilson line in the adjoint representation

Saa
′

n (x) = P exp

(∫ x

−∞
n ·As(nλ)dλ

)aa′

. (5.16)

Now we factorize the matrix element:

(5.11) = H(mh)〈pn|Ba′µ
n⊥ (x)Bc′ν

n⊥(0)|pn〉〈pn̄|Bb′µ
n̄⊥(x)B

d′ν
n̄⊥(0)|pn̄〉

〈0|Saa′n (x)Sab
′

n̄ (x)Sbc
′

n (0)Sbd
′

n̄ (0)|0〉 (5.17)

=
H(mh)

(N2
c − 1)2

〈pn|tr[Bµ
n⊥(x)B

ν
n⊥(0)]|pn〉〈pn̄|tr[Bµ

n̄⊥(x)B
ν
n̄⊥(0)]|pn̄〉

〈0|Sacn (x)Sadn̄ (x)Sbcn (0)Sbdn̄ (0)|0〉 (5.18)

18We would see this non-locality in the transverse direction by transforming to momentum space which

would place a momentum conserving delta function in the transverse plane between the operators.
19Formally, the matching coefficient C is a function of SCET label operators but they only appear in a

Lorentz invariant combination reducing to m2
h.
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The hadronic states fix the sum over collinear directions to be along the protons’ initial states,

and we have made use of the color singlet constraint on the hadronic matrix elements. Finally,

we have assumed that the so-called Glauber mode does not contribute to the physical cross

section. Proofs that these modes don’t contribute have been given in the more traditional

approach to factorization [27, 28] but within the EFT, where it is known that Glaubers may

contribute at the level of amplitudes [26, 29], a proof is still lacking.

5.2.3 Factorization

Given the factorized matrix element we now multipole expand it to generate an expression

for the cross-section which scales homogeneously in the power counting parameter

dσ

dp2⊥dy
=

C2
t

8v2S(N2
c − 1)

∫
d4ph
(2π)4

(2π)δ+(p2h −m2
h)δ

(

y − 1

2
ln
p+h
p−h

)

δ(p2⊥ − |~ph⊥|2)

4(2π)8
∫

d4xe−ix·phH(mh)f
µν
⊥ g/P (0, x

+, ~x⊥)f⊥ g/P µν(x
−, 0, ~x⊥)S(0, 0, ~x⊥) (5.19)

which is valid at leading order in λ. We have defined the functions, with spin averaging

implicit20:

S(0, 0, ~x⊥) =
1

(2π)2(N2
c − 1)

〈0|Sacn (x)Sadn̄ (x)Sbcn (0)Sbdn̄ (0)|0〉 ,

fµν⊥ g/P (0, x
+, ~x⊥) =

1

2(2π)3
〈pn|[BAµ

n⊥(x
+, ~x⊥)B

Aν
n⊥(0)]|pn〉 , (5.20)

fµν⊥ g/P (x
−, 0, ~x⊥) =

1

2(2π)3
〈pn̄|[BAµ

n̄⊥(x
−, ~x⊥)B

Aν
n̄⊥(0)]|pn̄〉

We Fourier transform now to express the factorization theorem directly in transverse momen-

tum space:

fµν⊥ g/P (x
+, ~x⊥) =

∫
dz

4π
e

i
2
z(x+p−n )

∫
d2~p⊥
(2π)2

ei~x⊥.~p⊥fµν⊥ g/P (z, ~p⊥) (5.21)

fµν⊥ g/P (z, ~p⊥) = (n̄ · pn)〈pn|[BAµ
n⊥(0)δ(pnz − Pn)δ

(2)(~p⊥ − ~P⊥)B
Aν
n⊥(0)]|pn〉 , (5.22)

S(0, 0, ~p⊥) =
1

(N2
c − 1)

〈0|Sacn (0)Sadn̄ (0)δ2(p⊥ − P⊥)S
bc
n (0)Sbdn̄ (0)|0〉 , (5.23)

where P is the SCET label-momentum operator. Using the on-shell constraint for the hogs

and the rapidity delta function, we may set p±h = mhe
±y, then, in terms of the momentum

space TMDPDF21, we get:

dσ

dp2⊥dy
=

πC2
tH(mh)

2v2S2(N2
c − 1)

∫

d2~p1⊥

∫

d2~p2⊥

∫

d2~ps⊥δ(p
2
⊥ − |~p1⊥ + ~p2⊥ + ~ps⊥|2)

fµν⊥ g/P

(mh√
S
e−y, ~p1⊥

)

f⊥ g/P µν

(mh√
S
ey, ~p2⊥

)

S(~ps⊥). (5.24)

20In what follows, we will denote both the function and its Fourier transform by the same symbol.
21TMDPDF with analogous definitions has been discussed intensely in various contents[55–62].
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5.3 Renormalization of Higgs pt Distribution

Note that to renormalize the soft function and the TMDPDF in transverse momentum space,

one must adopt a scheme like ’t Hooft-Veltmann or CDR2 [63]. This ensures that the bare

operator has an integral number of mass dimensions. In ’t Hooft-Veltmann, any observed

degree of freedom is in four space-time dimensions. Any loop momenta, spin averages or

sum, or internal polarization sums in loops are performed in d space-time dimensions. This

implies for the TMDPDF fµν⊥ g/P (z, ~p⊥), the polarizations µ and ν are in four space-time

dimensions, and the transverse momentum ~p⊥ is in 2-dimensions. The proton is spin averaged,

and thus this is performed in d-dimensions. In CDR2, one allows the polarizations µ and ν

to be continued to d dimensions, while keeping the observed transverse momentum in two

dimensions.

5.3.1 Renormalization of the TMDPDF

In perturbation theory, the bare TMDPDF suffers from infra-red, ultra-violet, and rapidity

divergences. We can renormalize the ultra-violet and rapidity divergences, while the infra-

red divergence is part of the matrix element. Non-perturbatively, this infra-red divergence

is cutoff in the hadronic matrix element. For perturbative values of transverse momentum,

which we will focus on in this paper, we can match the TMDPDF onto traditional PDF’s

and other higher twist hadronic matrix elements (c.f., (5.40)). In the matching procedure,

the infra-red divergence is canceled, leaving a finite matching coefficient.

The relation between the bare and renormalized TMDPDF is given as:

fB µν⊥ g/P (z, ~p⊥) = Zf⊥(µ, ω/ν, ~p⊥)⊗⊥ f
Rµν
⊥ g/P (z, ~p⊥, µ, ω/ν), (5.25)

where ω is the large momentum component carried by the struck parton, the superscripts B

and R mean bare and renormalized respectively, and we make use of the notation:

g ⊗⊥ f(~p) =

∫
d2~q⊥
(2π)2

g(~p⊥ − ~q⊥)f(~q⊥). (5.26)

In this space we normalize the identity operator as follows

I ≡ (2π)2δ(2)(~k) =

∫
d2~k′

(2π)2
Z−1
f⊥

(~k − ~k′)Zf⊥(
~k′). (5.27)

The anomalous dimensions of the TMDPDF are then given by

γf⊥ν (~p⊥, µ) = −(Zf
⊥

)−1 ⊗ ν
d

dν
Zf⊥(~p⊥, µ, ω/ν) ,

I γf⊥µ (~p⊥, µ, ω/ν) = −(Zf
⊥

)−1µ
d

dµ
Zf⊥(~p⊥, µ, ω/ν). (5.28)

Notice that γµ must necessarily be proportional to δ(2)(~p⊥) since hard anomalous dimen-

sion must be diagonal in ~p⊥ space and the sum of the anomalous dimensions must vanish. In
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principle there could be plus function dependence on ~p⊥ in the TMDPDF µ-anomalous di-

mension which could cancel with the soft function contribution, but given that the TMDPDF

and the soft function both are renormalized at the same µ scale, were such contributions to

the anomalous dimensions to appear they would not contribute to any running. Thus from

here on we will drop the implied p⊥ dependence in γµ for both the TMDPDF and the soft

function.

The renormalized function then satisfies the RG and RRG equations:

ν
d

dν
fRµν⊥ g/P (z, ~p⊥, µ, ω/ν) = γf⊥ν (~p⊥, µ)⊗⊥ f

Rµν
⊥ g/P (z, ~p⊥, µ, ω/ν) ,

µ
d

dµ
fRµν⊥ g/P (z, ~p⊥, µ, ω/ν) = γf⊥µ (µ, ω/ν)fRµν⊥ g/P (z, ~p⊥, µ, ω/ν) . (5.29)

5.3.2 Renormalization of the Soft and Hard Functions

The treatment of the bare soft and hard functions follows in the same way,

HB(mh) = ZH(µ,m2
h)H

R(mh, µ) , (5.30)

SBi (~p⊥) = ZS(µ, µ/ν)⊗⊥ SR(~p⊥, µ, µ/ν) . (5.31)

The anomalous dimensions of the soft function are

γSν (~p⊥, µ) = −(ZS)−1 ⊗⊥ ν
d

dν
ZS(~p⊥, µ, ω/ν) ,

γSµ (µ, µ/ν)IS = −(ZS)−1 ⊗⊥ µ
d

dµ
ZS(~p⊥, µ, ω/ν). (5.32)

The renormalized soft function then satisfies the RG and RRG equations:

ν
d

dν
SR(~p⊥, µ, µ/ν) = γSν (~p⊥, µ)⊗⊥ SR(~p⊥, µ, µ/ν) , (5.33)

µ
d

dµ
SR(~p⊥, µ, µ/ν) = γSµ (µ, ω/ν)SR(~p⊥, µ, µ/ν) , (5.34)

where again the µ running can only change the large momentum component. The hard

function has anomalous dimension:

γHµ (mh, µ) = −(ZH)−1µ
d

dµ
ZH(µ,mh) , (5.35)

and satisfies the RG equation:

µ
d

dµ
HR(mh, µ) = γHµ (mh, µ)H

R(mh, µ) . (5.36)

As in the case of the Sudakov form factor we have a set of constraints which the anomalous

dimensions must obey. The independence of the physical cross section from µ and ν gives

0 = γHµ (mh, µ) + γSµ (ν, µ) + 2γf⊥µ (ω/ν, µ) (5.37)

0 = γSν (µ, ~p⊥) + 2γf⊥ν (µ, ~p⊥). (5.38)
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This provides an important consistency check on the calculations of each sector. Furthermore,

we also have the commutativity of the µ and ν running, leading to

µ
d

dµ
γf⊥ν = I ν

d

dν
γf⊥µ = Γcusp I , (5.39)

µ
d

dµ
γSν = I ν

d

dν
γSµ = −2Γcusp I.

Here we have used the linearity of µ-anomalous dimensions in its logarithmic term and its

relationship to the cusp anomalous dimension.

5.4 TMDPDF

In calculating the transverse momentum dependent PDF, it is useful to consider its matching

onto the PDF. This will allow us to separate the ultra-violet from infra-red divergences. So as

long as p⊥ > ΛQCD, we can perform this matching so that the non-perturbatively effects lie

in the PDF and its power corrections. The matching onto the PDF is similar to the matching

of the so-called beam function in [64]

fRµν⊥g/P (z, ~p⊥) =
∑

k

1

z

∫ 1

z

dz′

z′

{gµν⊥
2
I⊥1 g/k(z/z

′, ~p2⊥)

+
(~pµ⊥~p

ν
⊥

~p 2
⊥

+
gµν⊥
2

)

I⊥2 g/k(z/z
′, ~p2⊥)

}

fRk/P (z
′) +O

(ΛQCD
|~p⊥|

)

, (5.40)

where the sum is on species of partons, and the gluon PDF22 is defined as

fg/P (z) = −z n̄ · pnθ(z) g⊥µν〈pn |
[
Bcµ
n⊥(0)δ(z n̄ · pn − P̄)Bcν

n⊥(0)
]
| pn〉. (5.41)

We adopt the mostly minus metric such that conventions that ~pα⊥~p
β
⊥g⊥αβ = −~p 2

⊥. We make use

of the ’t Hooft-Veltmann scheme, so the external transverse momenta remains in 2 dimensions,

as do the external polarizations on the operator (the free Lorentz induces). The scheme choice

is advantageous, as it allows one to renormalize the operator directly in ~p⊥ space. At tree

level in perturbation theory we have for the TMDPDF and its matching coefficient to the

PDF:

f
(0)αβ
⊥ g/g (z, ~p⊥) = δ(1− z)δ(2)(~p⊥)

gαβ⊥
2

(5.42)

I
(0)
⊥1 g/g(z, ~p⊥) = δ(1− z)δ(2)(~p⊥) (5.43)

I
(0)
⊥2 g/g(z, ~p⊥) = 0 (5.44)
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Figure 7. Diagrams which contribute to the TMDPDF at one loop. Diagram (f) corresponds to

quark mixing that does not contribute to the one loop running. Diagram (e) vanishes in Feynman

gauge.

5.4.1 One-Loop Calculation

At one loop we have for the sum of diagrams in fig. 7(a)-(e),

f
(1)αβ
⊥ g/g (z, ~p⊥) =

g2CAµ
2ǫ

2

∫
ddk

(2π)d
δ
(
ω−(1− z)− k−

)

ω−
δ(2)(~p⊥ − ~k⊥)

δ(+)(k2)

(k+)2

×
[

gαβt

(
ω−k

+

2
+ ~k 2

⊥ + νη
ω−k

+(2ω− − k−)

2(k−)1+η

)

+ (1− ǫ)
2ω2

−
~k α⊥
~k

β

⊥

(ω− − k−)2

]

. (5.45)

Note that ~p⊥ is strictly two-dimensional, and ~k⊥ is in 2 − 2ǫ dimensions. The momentum

conservation delta function constrains only the components of ~k⊥ that overlap physical space.

ω− is the large component of the light-cone momenta of the incoming parton. Performing the

integrals we get the bare TMDPDF at one-loop:

f
(1)αβ
⊥ g/g (z, ~p⊥) =

g2CAπ
−ǫ

(2π)3−2ǫ

Γ(1 + ǫ)

2

µ2ǫ

(~p2⊥)
(1+ǫ)

×
[(

−2z + 3 +

(
ν

ω−

)η 1 + z

(1− z)1+η

)

gαβ⊥ − 4(1− ǫ2)
1− z

z2
~pα⊥~p

β
⊥

~p 2
⊥

]

. (5.46)

The virtual diagrams vanished in dimensional regularization. Their effects however are non-

vanishing and will be accounted for when we match onto the PDF below. Plus function

22Quark mixing is irrelevant for the purposes of this paper.
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expanding in η and inserting the MS factor gives:

f
(1)αβ
⊥ g/g (z, ~p⊥) =

g2CAπ
−ǫ

(2π)3−2ǫ

Γ(1 + ǫ)

2

µ2ǫeǫγE

(~p 2
⊥)

(1+ǫ)

[(

− 2
δ(1− z)

η

( ν

ω−

)η
+
pgg∗
z

(z)− 2ǫ2
(1− z)

z2

)

gαβ⊥

−4
(1− z)

z2
(1− ǫ2)

(

~pα⊥~p
β
⊥

~p 2
⊥

+
gαβ⊥
2

)]

. (5.47)

Where we have written the expression in terms of the gluon splitting function:

pgg∗(z) =
2z

[1− z]+
+ 2 θ(1− z)

[1− z

z
+ z(1− z)

]

. (5.48)

5.4.2 Matching and Renormalization

As we used dimensional regularization to regulate both the UV and IR of the TMDPDF, we

match onto the PDF which allows us to distinguish the 1
ǫUV

and 1
ǫIR

poles. Since the effective

theory containing the PDFs (where the scale set by the transverse momentum has been

integrated out) must have the same infra-red divergence as the effective theory containing

the TMDPDFs, any IR poles will cancel in the matching procedure. Any poles left over must

be UV in origin, and are removed by the Z-factor in the high scale theory. The effects of

the virtuals, which vanish in dimensional regularization, will arise via the conversion of an

IR pole into a UV pole. To determine the matching and Z-factor to one loop, we derive a

relation by expanding equations (5.40) and (5.25) to order αs:

− Z
(1)
f⊥

⊗⊥ f
(0)αβ
⊥ g/g (z, ~p⊥) + f

(1B)αβ
⊥ g/g (z, ~p⊥)

=
1

z

∫ 1

z

dz
′

z′

gαβ⊥
2

(

I
(1)
⊥1 g/g(

z

z′
, ~p⊥)f

(0)
g/g(z

′

) + I
(0)
⊥1 g/g(

z

z′
, ~p⊥)f

(1R)
g/g (z

′

)
)

. (5.49)

We split the bare TMDPDF into divergent and finite pieces, f
(1B)
⊥ = f

(1div)
⊥ + f

(1fin)
⊥ ,

f
(1div)αβ
⊥ g/g (z, ~p⊥) = −αsCA

2π2
Γ(1 + ǫ)

eγEǫµ2ǫ

(~p 2
⊥)

(1+ǫ)

δ(1− z)

η
gαβ⊥

− αsCA
4π

δ(2)(~p⊥)

ǫ
gαβ⊥

(
pgg∗(z)

z
− δ(1− z) ln

ν2

ω2
−

)

(5.50)

f
(1fin)αβ
⊥ g/g (z, ~p⊥) =

αsCA
π

L0

(

µ,
~p⊥
µ

)gαβ⊥
2

(

− ln
( ν2

ω2
−

)

δ(1− z) +
1

z
pgg∗(z)

)

− 2
αsCA
π

1− z

z
L0

(

µ,
~p⊥
µ

)
(

~pα⊥~p
β
⊥

~p 2
⊥

+
gαβ⊥
2

)

. (5.51)

where we have written the expression in terms of plus distribution Ln = 1
2πµ2

[
µ2

~p 2 ln
n
(
µ2

~p2

)]1

+
,

whose definition and properties are collected in the appendix (F). Given that the renormalized

PDF at one-loop only contains IR divergences,

f
(1R)
g/g (z) = −1

ǫ

αs
2π

[

CApgg∗(z) +
1

2
β0δ(1− z)

]

, (5.52)
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we compare ǫ divergences in eqn. (5.49) to obtain the renormalization constant Zf⊥ at one

loop

Z
(1)
f⊥

(z, ~p⊥) = (2π)2δ(2)(~p⊥)− 4αsCA

(

w2Γ(1 + ǫ)
eγEǫµ2ǫ

(~p 2
⊥)

(1+ǫ)

1

η
− π

δ(2)(~p⊥)

ǫ

(1

2
ln
ν2

ω2
−

+
1

4CA
β0

)
)

.

(5.53)

Comparing finite pieces in (5.49), we get the matching coefficients

I
(1)
⊥1 g/g(z, ~p⊥) =

αsCA
π

L0 (µ, ~p⊥)

(

− ln
( ν2

ω2
−

)

δ(1− z) + pgg∗(z)

)

,

I
(1)
⊥2 g/g(z, ~p⊥) = −2

αsCA
π

1− z

z
L0(µ, ~p⊥) . (5.54)

Note that there is no real singularity as p⊥ → 0 in I⊥2 since the traceless tensor itself

vanishes in that limit and hence the plus prescription in I
(1)
⊥2 g/g may be dropped. There are

finite contributions to the matching from the quark PDF’s. These contributions do not effect

the running of the TMDPDF and hence for the purposes of this paper, we neglect these

contributions.

The one loop anomalous dimensions can be calculated from Z
(1)
f⊥

,

γf⊥µ (ν) =
αsCA
π

ln
( ν2

ω2
−

)

+
αsβ0
2π

, (5.55)

γf⊥ν

(

µ,
~p⊥
µ

)

= −8παsCAL0

(

µ,
~p⊥
µ

)

. (5.56)

Notice that as long as the scale µ is taken at the low scale this anomalous dimensions captures

all the physics at NLO. That is, we need not integrate the µ anomalous dimensions (γµ) as

in (4.30) to calculate γν since the difference involves no large logarithms. Using the identity

µ
d

dµ
L0

(

µ,
~p⊥
µ

)

= −δ(2)(~p⊥) (5.57)

we see that the results for the anomalous dimensions are consistent with RRG commutativity

(5.39).

5.5 The pT Dependent Soft Function

The tree level soft function is simply:

S(0)(~p⊥) = δ(2)(~p⊥) . (5.58)

The calculation of the one-loop soft function proceeds as:

S(1)(~p⊥) = 4CAg
2µ2ǫνη

∫
ddk

(2π)d
∣
∣2k3

∣
∣
−η δ(+)(k2)δ(2)(~p⊥ − ~k⊥)

k−k+
. (5.59)
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Using the delta functions and performing the transverse momentum integrals gives

S(1)(~p⊥) =
2CAg

2(π)−ǫ

(2π)3−2ǫ

Γ(1 + ǫ+ η/2)

Γ(1 + η/2)

νηµ2ǫ

(~p 2
⊥)

1+ǫ

∫ ∞

0

dk−

k−

∣
∣
∣
∣
k− − ~p2⊥

k−

∣
∣
∣
∣

−η

. (5.60)

The last integral contains the rapidity divergences coming from both the large k− and k+ =
~p2
⊥

k−
limits. This is critical for the soft function in order to cancel the rapidity divergences

found in both of the jet sectors, as well as consistent with the isotropic nature of soft radiation.

Finally for the bare soft function we have (including the MS factor):

S(1)(~p⊥) =
2CAg

2

(2π)3
eǫγEνηµ2ǫ

(~p 2
⊥)

1+ǫ+ η
2

Γ(1 + ǫ+ η
2 )

Γ
(
1 + η

2

)
2−ηΓ(12 − η

2 )Γ(
η
2 )√

π
. (5.61)

Since the soft function is IR safe, expanding the p⊥-space soft function, we have for the

divergences and renormalized part:

Z
(1)
S (~p⊥) = (2π)2δ(2)(~p⊥) + 4αsCA

[

2w2Γ(1 + ǫ)
1

η

eǫγEµ2ǫ

(~p 2
⊥)

1+ǫ
+ πδ(2)(~p⊥)

(

1

ǫ2
−

ln ν2

µ2

ǫ

)]

,

S(1R)(~p⊥) = 2
αsCA
π

(

− π

24
δ(2)(~p⊥) + ln

(ν2

µ2

)

L0

(

µ,
~p⊥
µ

)

− L1

(

µ,
~p⊥
µ

)
)

, (5.62)

where w is the book-keeping parameter that tracks the number of eikonal vertices, see section

(4.1). The plus distribution Ln = 1
2πµ2

[
µ2

~p 2 ln
n
(
µ2

~p2

)]1

+
is defined in appendix (F).

Then the anomalous dimensions at one loop order are:

γSµ = −2
αsCA
π

ln
(ν2

µ2

)

,

γSν (~p⊥, µ) = 16παsCAL0

(

µ,
~p⊥
µ

)

. (5.63)

This verifies the constraint (5.39) for the soft anomalous dimensions, and on comparing with

(5.55) we see that we correctly reproduce the constraints

γSν + 2γf⊥ν = 0 . (5.64)

Using the result for the hard anomalous dimension,

γH = −αs
π

(

2CA ln
µ2

Q2
+ β0

)

, (5.65)

in conjunction with (5.55) (and its partner with ω− → ω+) and (5.63) we find that the

constraint

γH + γSµ + 2γf⊥µ = 0 (5.66)

is also satisfied after making the identification ω−ω+ = Q2.
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5.6 Resummation of Rapidity Logarithms and Handling Undesired Singularities

To calculate the resummed cross-section we must evolve the soft function in ν up to the jet

scale νJ ∼ ω as shown in fig. 4. For this purpose we need to solve the ν-RGE and obtain VS at

NLL. First we solve in b-space, and transform back to present the p⊥ space solution. We will

show that a naive solution will lead to a well-known unwanted singularity [65] of the classic

CSS result [44]. Then we will discuss a careful solution to avoid the undesired singularity.

Solving (5.33) in impact-parameter space gives:

S̃(b, µ, ν) = Exp

[

− 2αsCA
π

ln
(µ2b2e2γE

4

)

ln
( ν

ν0

)
]

S̃(b, µ, ν0)

=
(µ2b2e2γE

4

)−ωs

S̃(b, µ, ν0) , (5.67)

where

ωs(µ, ν/ν0) =
2αsCA
π

ln
( ν

ν0

)

. (5.68)

Performing the inverse transform gives the resummed soft function in p⊥ space,

S(~p⊥, µ, ν) =

∫
d2~p ′

⊥

(2π)2
VS(~p

′
⊥, µ, ν, ν0)S(~p⊥ − ~p ′

⊥, µ, ν0) , (5.69)

where,

VS(~p⊥, µ, ν, ν0) = 2π

∫ ∞

0
db b J0(b|~p⊥|)

(µ2b2e2γE

4

)−ωs

(5.70)

= 4πe−2ωsγE
Γ(1− ωs)

Γ(ωs)

1

µ2

[(µ2

~p2⊥

)1−ωs
]∞

+
. (5.71)

Now, the NLL cross-section for p⊥ > ΛQCD is given by

dσ

d~p2⊥dy

∣
∣
∣
∣
~p2
⊥
>0

=
πC2

tH(mh)

2v2S2(N2
c − 1)

UH(m
2
h, µ

2)
( S

2m2
h

)e−2ωsγE

π

Γ(1− ωs)

Γ(ωs)

1

µ2

(µ2

~p2⊥

)1−ωs

× fg/P

(mh√
S
e−y
)

fg/P

(mh√
S
ey
)

. (5.72)

Note the singularity at ωs = 1 in eqn. (5.72) and (5.71). This is unavoidable because ωs > 0

and is typically ∼ 1. Thus relation (5.72) is not useful for phenomenology, but is useful for

generating the fixed order logs at higher orders in perturbation theory.

This singularity arises due to the naive inverse transform performed in eqn. (5.70). Note

that integral in (5.70) gets a singular contribution from b ≪ 1/p⊥ ∼ 1/µ. In particular

when ωs = 1, the integrand goes like 1/b for small b and integral diverges. This shows up as

singularity at ωs = 1 in (5.71). This is a UV problem since b is small, and is an unexpected

situation because only impact parameters of order 1/p⊥ are expected to contribute to the
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inverse Fourier transform. Therefore, care must be taken at this step to avoid contributions

from the region b≪ 1/p⊥.

By making a choice for the scale ν0 = 1/b in ωs, before performing the inverse transform

in eqn. (5.70), the b ≪ 1/p⊥ region is exponentially suppressed, removing the singularity23.

One would typically choose ν0 ∼ p⊥ in the p⊥ space NLL cross-section, to ensure all the large

logarithms are resummed. Making a choice ν0 = 1/b is an equivalent one up to higher order

effects in resummation24. With this choice we have

V̂S(~p⊥, µ, ν) = 2π

∫ ∞

0
db b J0(b|~p⊥|)

(µ2b2e2γE

4

)−ωs(µ,νb)
, (5.73)

and soft function is given by

S(~p⊥, µ, ν) =

∫
d2~p ′

⊥

(2π)2
V̂S(~p

′
⊥, µ, ν)Ŝ(~p⊥ − ~p ′

⊥, µ) , (5.74)

where

Ŝ(~p⊥, µ) = 2π

∫ ∞

0
db bJ0(b|~p⊥|)S̃(b, µ, ν0 = 1/b) . (5.75)

It is difficult to obtain a closed form expression of (5.73), but it is certainly implementable

numerically and is free from the undesired singularities. We leave this implementation for a

future work. Since the scale ν0 does not appear in the coupling, the choice of scale setting

does not involve any Landau pole, as µ is left arbitrary in the transforms.

A similar approach was taken in [40] to cure the singularities, however, there the singu-

larity was interpreted to be some indication of non-perturbative physics. In contrast, it was

argued in [65], the problem is completely perturbative: it is solvable by a rearrangement of

sub-leading terms of the resummed series, and occurs in regions where αs is still perturbative.

We agree with this and have verified that the problem simply arises from a naive inverse trans-

form that includes contributions from a UV region inappropriate to the soft matrix elements

being resummed.

5.7 Fixed Order Cross-section

Substituting the tree level matching onto PDFs, and integrating over p⊥ and y we obtain

properly normalized integrated cross-section at LO,

σ0 =
πC2

tH(mh)

2v2S2(N2
c − 1)

S2

2m2
h

∫

dz1dz2δ
(

m2
h − z1z2S

)

fg/P (z1)fg/P (z2). (5.76)

This agrees the leading order cross-section given in [66].

23We thank Wouter Waalewijn for making this suggestion.
24Typically we can only argue ν0 ∼ 1/b but the arbitrariness is still captured by varying ν ∼ mh in a

reasonable range, thus ν0 = 1/b is justified.
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For the next to leading order transverse momentum spectrum we get

dσ

dp2⊥dy

∣
∣
∣
p⊥>0

=
πC2

tH(mh)

2v2S2(N2
c − 1)

( S

m2
h

)αsCA
4π

1

p2⊥

{

2ln
(m2

h

p2⊥

)

fg/P

(mh√
S
ey
)

fg/P

(mh√
S
e−y
)

(5.77)

+ fg/P

(mh√
S
e−y
)

(pgg∗ ⊗ fg/P )
(mh√

S
ey
)

+ fg/P

(mh√
S
ey
)

(pgg∗ ⊗ fg/P )
(mh√

S
e−y
)
}

where g ⊗ h(z) =
∫ 1
z
dx
x g(x)h(z/x). Note that an overall factor of π comes from the angular

integrations in the transverse momentum convolution variables. This agrees with the result

found in [67].

5.8 Comparison to Previous Resummation Formalisms

Working within an EFT formalism, a result nearly identical to (5.72) was derived in [40] at

NLL. However, the rapidity logs were exponentiated by hand after summing over sectors25,

without introducing a new scale. Thus it is not clear how the scale dependence arising at

higher orders can be tracked. As explained in detail in the conclusions of sections (4.3)

and (6), there is a fundamental ambiguity in the exponentiation of the rapidity logarithms,

since there is freedom in choosing what goes into the exponent one is free to include sub-

leading logarithms in the resummation power counting in the exponent or the low-scale matrix

elements. In our formalism this ambiguity corresponds to the choice of ν matching scale.

Varying this scale shuffles sub-leading contributions into or out of the matrix element. Hence

the residual ν dependence (which is not exponentiated) of the resummed cross-section, can be

included in the theoretical error of our prediction by varying ν in the same way one varies µ to

get a handle on errors form sub-leading term in traditional RG calculations. Such an analysis,

at least in the context of Higgs tranverse momentum distributions, is presently absent from

the literature 26.

It is also worth noting that our calculation of the transverse momentum distribution

is distinct from the work [40]. Therein, they do not include the soft mode of the effective

theory. It is stated that the “soft mode” cancels because the typical soft momenta is order

(λ2, λ2, λ2). We would call this mode ultra-soft, which is the relevant mode for SCETI. The

use of the analytic regulator 27 renders integrals in the actual soft function (having modes

Q(λ, λ, λ)) scaleless and hence zero. While technically correct, this method seems to obscure

the physics, given that soft radiation clearly plays a role at small p⊥, and thus is must be

25This sum over sectors is necessary due to the regulator chosen to give meaning to their low-scale matrix

elements. Given the regulator implemented in [40], each sector is not well-defined and nor renomalizable, but

only the combination is.
26Such an analysis can also be performed in the CSS formalism using Collins most recent definition of the

TMDPDF. For a discussion see [68].
27The traditional analytic regulator breaks the eikonal identities needed for exponentiation of the soft func-

tion. This complicates the claim made for factorization, though this breaking of eikonal identities has been

remedied in a more recent the paper [69].
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hidden in other sectors. Finally, the implementation of the analytic regulator in [40] renders

the expanded results in the two collinear sectors different in form, even though the operators

in the effective theory look identical, and thus one can not define universal TMDPDFs.

The classic CSS formalism utilized the so-called Collins-Soper equation to accomplish

the rapidity resummation. In particular, it played a key role in establishing the formal µ-

independence of the double logarithmic terms in the resummation exponent [7]. Using this

formalism, a resummed formula for transverse momentum distributions was derived [44].

Nonetheless, the classic CSS formalism suffers from a number of mild deficiencies according

to one of the authors[70]. In particular, the Collins-Soper equation itself suffered from hard to

control power corrections, and the hard matching coefficient is ambiguous. These issues stem

from the way the rapidity divergences were regulated in the original Collins-Soper approach,

where a non-light like axial gauge regulated the divergences. The regulating parameter did

not cancel between the low-scale matrix elements, so the choice of the axial gauge vectors

that defined the collinear matrix element also affected the hard matching. Nor was the

regulating parameter divergences ever removed from the matrix element, so the regulating

parameter could not be set to zero. This malady remained true in more modern versions of

the Collins-Soper approach adopted in [19, 71] where the Wilson lines are deformed off the

light-cone.

The authors of [48, 49, 72] who have performed the highest order resummations of the

transverse momentum spectrum to date have used the resummation formula given in [44]. The

anomalous dimensions and matching needed for resummation were derived by comparison to

full QCD calculations in soft and collinear limits, not by direct calculation of the low-scale

matrix elements in the Collins-Soper formalism. From this procedure, it is not clear that they

can gauge the residual effects of the rapidity resummation, since they do not make use of the

Collins-Soper equation directly, nor calculate the resummation from the factorized matrix

elements.

Recently Collins has improved further upon the CSS approach in [70], fixing the above

problems. This new method has many similarities to our approach. In [70], the square root

of the soft function is included in the collinear sector, and a series of soft-bin subtractions

(explicitly represented by inverse soft functions) are carried out to cancel the regulator de-

pendence in the sector. This introduces explicitly a ln p−

µ in the TMDPDF, where p− is the

large light-cone momentum. The soft factors remove the rapidity regulator dependence and

introduce a µ dependence in its place. Thus if p− is large, a single µ scale cannot eliminate

all large logarithms. However, through use of the Collins-Soper equation, the extra large log-

arithms can be exponentiated by evolving the TMDPDF from low energies, where p− ∼ p⊥,

to the relevant high energies. In the low energy region, all logs can by minimized by a single

choice of µ. All logarithms remain minimized when evolving the low-energy TMDPDF via the

Collins-Soper equation to the high scale where the experiment takes place. This accomplishes

the same effect as our rapidity RG, but we do not need the low-energy TMDPDF as an initial

condition (just the PDF). We can take the TMDPDF at fixed energy and transverse momen-

tum to be renormalized at any µ, ν point, and evolve to any other point in order to minimize
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logarithms. Finally, we must mention that there is one important way in which the claims28

[70] are stronger then ours. In particular the proof in [73] allows for the possible contribution

of Glauber gluons. In SCET an understanding of Glauber gluons in hard scattering processes

[26, 74] is still lacking.

Another attempt at defining a TMDPDF within the SCET context was presented in

[75]. Using a δ-style regulator, and including a square-root of the inverse soft function in the

collinear sector, they were able to eliminate the rapidity divergences within the bare matrix

element as in Collins’ approach. They do not discuss resummation, nor indicate how, after

eliminating the rapidity divergence with no auxiliary parameter, they will accomplish the

specific resummation of the rapidity logarithms. As it stands no choice of µ will minimize all

logarithms in their TMDPDF if the light-cone momentum is large.

Finally, it is worth noting that the approaches taken in [75] assumes the equivalence of

soft-bin subtractions and the inverse soft function. While this is true in many situations for

many regulators, this is complicated in the case of a soft function depending on multiple

parameters. This is illustrated below, when we factorize the cross-section for left and right

broadening. Here the soft function depends on the broadening in both hemispheres, while

the jet function only depends on the broadening of a single hemisphere. Thus the soft bin

of the jet sector cannot be the the same as the inverse soft function, as the soft-bin will

continue to only depend on the broadening of a single hemisphere. Including the square-

root of the (inverse) soft function to make the jet function free of rapidity divergences would

introduce dependence on the dynamics of the other hemisphere. The fact that the soft function

depends on both hemispheres complicates a straightforward definition of a square-root of the

soft function, especially since non-global logarithms seem to be a generic feature of multi-

region soft functions [76–78]. Thus it is hard to see how one would generalize Collins’ recent

approach to the TMDPDF to cases such as jet broadening where one cannot eliminate the

soft function by splitting it up the between the jet functions without inducing dependence on

the broadening of both hemispheres in each jet function.

Finally, for other works within SCET transverse momentum factorization [41–43] only

the hard logarithms from running the currents are resummed. The rapidity logarithms are

left unsummed.

6 Jet Broadening

Event shapes have played an important role in precision measurements of the strong coupling

αs[79]. A generalized event shape for event e−e+ → X at center of mass energy
√
s, can be

defined [80] in terms of a parameter a via

e(a) =
∑

i∈X

|~pi⊥|√
s
e−|ηi|(1−a) (6.1)

28We use this terms simply because we have not been able to reconstruct the proof ourselves.
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where pi⊥ is the transverse momentum with respect to the thrust axis t̂ of the event, and ηi
is the rapidity of the i’th particle. The thrust axis t̂ is defined by maximizing thrust T [81],

T = max
t̂

∑

i∈X

|~pi · t̂|√
s

. (6.2)

T close to 1 corresponds to the special case a = 0, e(0) ≈ 1 − T and is also loosely called

“thrust”. Another interesting event shapes is the limit a = 1 corresponding to “total jet

broadening” B [3], e(1) = 2B. The limit e(a) ≪ 1 isolates events composed of back to back

jets. In the case of thrust, jets are composed of collinear radiation, and the recoil due to soft

(ultra-soft in this case) radiation does not affect the jet axis. For jet broadening all radiation

with parametrically similar transverse momentum can contribute, so the soft radiation of

order Q(λ, λ, λ) recoils the jet off the thrust axis, where λ ∼ e(1). In both of these cases

fixed order perturbation theory will fail when e(a) is small. However, as long as eQ≫ ΛQCD,

we expect non-perturbative effects to be suppressed, though large logarithms of e need to be

resummed.

The pioneering work on jet broadening resummations [3] utilized the coherent branching

formalism [82]. It was later stated [2] that the results in [3] neglected terms due to recoil of

soft gluons. In this section we will provide a factorization theorem for jet broadening. The

factorization proofs for angularity observables (6.1) in [83] are known to fail as a approaches 1,

since there are growing power corrections in this limit. The reason for the apparent breakdown

of factorization is the fact that in this limit the soft radiation has the same invariant mass

as collinear radiation and one must change the power counting accordingly to factorize in a

consistent fashion. Which is to say that thrust can be analyzed using SCETI whereas jet

broadening necessitates the use of SCETII.

6.1 Factorization Theorem

We start with the expression for differential cross section in QCD for broadening e (strictly

speaking, angularity for a = 1),

dσ

de
=

1

2Q2

∑

i=A,V

∫

d4xLiµν(q)e
ix.q〈0|j†µi (x) (δ(e− ê)jνi (0)) |0〉

=
1

2Q2

∑

i=A,V

Liµν(q)
∑

X

(2π)4δ(4)(q − PX)〈0|j†µi (0) δ(e− ê)|X〉〈X|jνi (0)|0〉 , (6.3)

where ê is the jet broadening operator that first maximizes thrust for a given state |X〉 to

determine the thrust axis t̂ and then measures broadening via, ê|X〉 =
∑

i∈X
|p⊥i|
Q |X〉, where

p⊥i is transverse momentum measured w.r.t. t̂. Here Q is center of mass energy and QCD

current jµ is given by

jµi (x) = q(x)Γµi q(x) , (6.4)
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with Γµ = γµ or γ5γ
µ. Lµν is the leptonic tensor given by

LVµν = −16π2α2
em

3Q2

(

gµν −
qµqν
Q2

)[

Q2
q +

v2q (v
2
e + a2e)− 2Qqvqve(1−m2

Z/Q
2)

(1−m2
Z/Q

2)2 + Γ2
Z/m

2
Z

]

,

LAµν = −16π2α2
em

3Q2

(

gµν −
qµqν
Q2

)[

Q2
q +

a2q(v
2
e + a2e)

(1−m2
Z/Q

2)2 + Γ2
Z/m

2
Z

]

, (6.5)

where subscript q denotes the (anti)quark flavor, Qq is the quark charge in units of |e|, vq,e
and aq,e are the vector and axial couplings of the (anti)quark q and the electron to the Z as

e.g. in eq.(A3) of ref. [84]. Here mZ and ΓZ denote the mass and the width of the Z boson.

In what follows, by requiring e ∼ λ ≪ 1, we will prove a factorization theorem of the

form

dσ

de
= HJn ⊗ Jn ⊗ S , (6.6)

where each function is a vacuum matrix element of operators that depend on either collinear

or soft modes that do not interact.

We begin by first matching the QCD currents onto the SCETII currents
29 as follows,

jµ(0) = Cn1n2

∑

n1,n2

χ̄n1(0)S
†
n1
(0) Γµ Sn2(0)χn2(0) , (6.7)

where Cn1n2 = C(n̄1 ·P, n̄2 ·P), is only a function of large label momentum operators. χn1,n2

are SCET collinear fields while the Sn are soft Wilson lines extending to infinity along the n

direction. Inserting eqn. (6.7) into eqn. (6.3) we have

dσ

de
=

1

2Q2
Liµν

∑

n1,n2

∑

ñ1,ñ2

Cn1n2C
∗
ñ1ñ2

∑

X

(2π)4δ(4)(q − PX) (6.8)

〈0|χ̄n1S
†
n1

Γµi Sn2 χn2 δ(e− ê)|X〉〈X|χ̄ñ2S
†
ñ2

Γνi Sñ1 χñ1 |0〉 ,

where it is implicitly understood that all fields are evaluated at space-time coordinate x = 0.

Now we decompose the complete set of states as
∑

X |X〉〈X| =
∑

n̂

∑

Xn̂
|Xn̂〉〈Xn̂| where Xn̂

are states with thrust axis along n̂. Here, the states that may have an ambiguity in the choice

of the thrust axis, without loss of generality, can be associated with either n̂. For qµ = (Q,~0)

we have

dσ

de
=

(2π)4

2Q2
Liµν

∑

n1,n2

∑

ñ1,ñ2

∑

n̂

Cn1n2C
∗
ñ1ñ2

(6.9)

〈0|χ̄n1S
†
n1

Γµi Sn2 χn2







∑

Xn̂

δ(EX −Q) δ(3)(PX)δ(e− ê)|Xn̂〉〈Xn̂|






χ̄ñ2S

†
ñ2

Γνi Sñ1 χñ1 |0〉

=
(2π)4

2Q2
Liµν

∑

n1,n2

∑

ñ1,ñ2

∑

n̂

Cn1n2C
∗
ñ1ñ2

〈0| χ̄n1S
†
n1

Γµi Sn2 χn2 Xn̂ χ̄ñ2S
†
ñ2

Γνi Sñ1 χñ1 |0〉 ,

29In principle we should include ultra-soft Wilson lines Yn’s as well, but since ultrasoft modes do not

contribute to the process the Yn Wilson lines will cancel. Therefore we drop them already and resort to the

phrase “SCETII current”.
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where we identify the term in braces as the broadening projector Xn̂, which simplifies as

Xn̂ =
∑

Xn̂

δ(Ê −Q) δ(3)(P̂ ) δ(e− ên̂) |Xn̂〉〈Xn̂|

=
∑

Xn̂

δ(Ê −Q) δ(3)(P̂ ) δ(e− ên̂) δPn⊥,0 δP̄n⊥,0 |Xn̂〉〈Xn̂|

=
∑

X

δ(Ê −Q) δ(3)(P̂ ) δ(e− ên̂) δPn⊥,0 δP̄n⊥,0 |X〉〈X|

= δ

(
1

2
n̄ · P̂+

1

2
n · P̂ −Q

)

δ

(
1

2
n̄ · P̂− 1

2
n · P̂

)

δ(2)(P̂⊥ ) δ(e− ên̂) δPn⊥,0 δP̄n⊥,0 ,

= 2 δ(n̄ · P̂ −Q) δ(n · P̂ −Q) δ
P̂⊥,0

δ(e− ên̂) δ
(2)(Pn⊥) δ

(2)(P̄n⊥)

(∫

d2kr⊥

)

= 2 δ(n̄ · P̂ −Q) δ(n · P̂ −Q) δ(e− ên̂) δ
(2)(Pn⊥) δ

(2)(P̄n⊥)

(∫

d2kr⊥

)

, (6.10)

where Pn⊥ and P̄n⊥ are defined as

Pn⊥|X〉 =
∑

j∈X

θ(n̂ · ~pj)~pj⊥ |X〉

P̄n⊥|X〉 =
∑

j∈X

θ(−n̂ · ~pj) ~pj⊥ |X〉 . (6.11)

In the second line we have simply used δPn⊥,0|Xn̂〉 = |Xn̂〉 and δ
P̄n⊥,0

|Xn̂〉 = |Xn̂〉 owing

to the property of the thrust axis that total transverse momentum in each hemisphere de-

fined by the plane perpendicular to the thrust axis is zero. This form of the broadening

projector implements the kinematic constraints imposed by the choice of thrust axis, since

zero-transverse momentum flow in each hemisphere defined by n̂ along with small broadening

w.r.t. n̂ uniquely fixes the thrust axis to be n̂. Hence in the third line we have promoted the

state |Xn̂〉 to a generic state |X〉. In the fourth line of eqn. (6.10) we have summed over the

complete set of states. For convenience in factorization with continuous labels, we turn the

Kronecker-δs to continuous Dirac-δs, with the general relation:

δ
P̂⊥,0

= δ(2)(P̂⊥)

∫

d2kr⊥ , (6.12)

where
∫
d2kr⊥ is simply the area of the label-transverse momentum unit cell30; kr refers to

the residual momentum. In the final step we have used δ
P̂⊥,0

= δ
Pn⊥+P̄n⊥,0

= δ0,0 = 1. For

e ≪ 1, constraints put in by all the δ-functions ensure that the broadening projector selects

the dijet states with the thrust axis n̂.

Given the properties of the broadening projector for small broadening, the light-cone

directions of the collinear fields must be within a small cone (of radius λ) about the n̂-

collinear directions. Fields whose directions are an order 1 or more displaced from n̂ must

30The Kronecker-δ assures that the discrete-label momentum is zero while the Dirac-δ ensures that

continuous-label momentum is zero up to order λ2, i.e. all momenta belonging to the unit cell are considered

to be zero, hence the area of the unit cell appears as the proportionality constant in the identity (6.12).
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produce too great a broadening, and so are excluded. Therefore by making a parametrization

transformation [5], we can set the directions of the collinear fields to be exactly parallel or

anti-parallel to n̂. With further constraints from quark number conservation we only have two

choices: the quark jet is either along the n̂ or −n̂ direction. Since the observable is symmetric

under charge conjugation, the two are equivalent, and we get

dσ

de
=

(2π)4

2Q2
Liµν 2

∑

n̂

Cnn̄C
∗
nn̄ 〈0| χ̄n̄S†

n̄ Γ
µ
i Sn χn Xn̂ χ̄nS

†
n Γ

ν
i Sn̄ χn̄ |0〉 (6.13)

=
(2π)4Liµν

Q2
2
∑

n̂

|Cnn̄|2 〈0| χ̄n̄S†
n̄ Γ

µ
i Sn χn δ(n̄ · P̂ −Q) δ(n · P̂ −Q)

× δ(e− ên̂) δ(Pn⊥) δ(P̄n⊥) χ̄nS
†
n Γ

ν
i Sn̄ χn̄ |0〉

(∫

d2kr⊥

)

,

where we have used eqn. (6.10). The matrix element in the last equation does not depend

upon the direction n̂ but only on the large labels Q and broadening e. The choice of n inside

the matrix element is only representative of a light cone vector necessary for calculation, but

these calculations would yield identical results for different n. Also, Cnn̄ is only a function of

boost invariant n·P n̄·P = s = Q2, so we define the hard function independent of the light

cone direction, H(Q2, µ) = |Cnn̄|2. Therefore we can safely factor out the matrix element out

of the sum over n̂ and can write

dσ

de
=

(2π)4Liµν
Q2

H(Q2, µ) 〈0| χ̄n̄S†
n̄ Γ

µ
i Sn χn δ(n̄ · P̂ −Q) δ(n · P̂ −Q) (6.14)

× δ(e− ên̂) δ(Pn⊥) δ(P̄n⊥) χ̄nS
†
n Γ

ν
i Sn̄ χn̄ |0〉

(

2
∑

n̂′

∫

d2kr⊥

)

,

where n̂ from here on is a fixed vector, say ẑ, i.e. nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). Now

we use [85]
∫

d2k⊥
∑

cones

= 2
∑

n̂

∫

d2kr⊥ =
Q2

4

∫

dΩ = πQ2 , (6.15)

where k⊥ is the label-momentum and kr⊥ is the residual momentum. The cones subtend an

angular area of order 1, while n̂ directions label cones of order λ. Then we achieve:

dσ

de
= (2π)4πH(Q2, µ)Liµν(q) (6.16)

〈0|χ̄n̄S†
n̄ Γ

µ
i Sn χn δ(n̄ · P̂ −Q) δ(n · P̂ −Q) δ(e− ên̂) δ

(2)(Pn⊥) δ
(2)(P̄n⊥)χ̄nS

†
n Γ

ν
i Sn̄ χn̄|0〉.

We have two choices for lepton tensor which correspond to Γµi = γµ or γ5γ
µ in the hadron

matrix element. We can simplify the lepton tensor by noting that χ̄n̄ (q6 , γ5q6 )χn = 0 for

q⊥ = 0, thus we can safely replace Liµν(q) with L
i(Q2) gµν . We now have

dσ

de
= (2π)4πH(Q2, µ)Li(Q2) (6.17)

〈0| χ̄n̄S†
n̄ Γ

µ
i Sn χnδ(n̄ · P̂ −Q) δ(n · P̂ −Q) δ(e− ên̂) δ

(2)(Pn⊥) δ
(2)(P̄n⊥)χ̄nS

†
n Γ

i
µ Sn̄ χn̄ |0〉.
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We are almost ready to factorize. The operators ên̂, Pn⊥ and P̄n⊥ still mix n-collinear, n̄-

collinear and soft sectors. We take care of this by considering following identity operators

1 =

∫

d2k1⊥ d
2k2⊥ d

2k′1⊥ d
2k′2⊥ δ

(2)(P
(c)
n⊥ − k1⊥) δ

(2)(P̄
(c̄)
n⊥ − k2⊥) δ

(2)(P
(s)
n⊥ − k′1⊥) δ

(2)(P̄
(s)
n⊥ − k′1⊥)

(6.18)

and

1 =

∫

den den̄ des δ(en − ê
(c)
n̂ ) δ(en̄ − ê

(c̄)
n̂ ) δ(es − ê

(s)
n̂ ) , (6.19)

where operators with superscript (c) has the same action as their parent operator on n-

collinear particles and fields but they give zero for all else. Similarly (c̄) for n̄-collinear and

(s) for soft. We now insert (6.18) and (6.19) in the expression (6.17). Since there are only

n-collinear, n̄-collinear and soft sectors contributing to (6.16) we must have P
(c)
n⊥ +P

(s)
n⊥ = Pn⊥,

P̄
(c̄)
n⊥ + P̄

(s)
n⊥ = P̄n⊥ and ên̂ = e

(c)
n̂ + e

(c̄)
n̂ + e

(s)
n̂ . Using this and integrating over k′1⊥ and k′2⊥, we

have

dσ

de
= (2π)4πH(Q2, µ)Li(Q2)

∫

den den̄ des

∫

d2k1⊥ d
2k2⊥ 〈0| χ̄n̄S†

n̄ Γ̄
µ
i Sn χn

× δ(n̄ · P̂ −Q) δ(n · P̂ −Q) δ(e− en − en̄ − es)δ(en − ê
(c)
n̂ )δ(en̄ − ê

(c̄)
n̂ )δ(es − ê

(s)
n̂ )

× δ(2)(P
(c)
n⊥ − k1⊥)δ

(2)(P̄
(c̄)
n⊥ − k2⊥)δ

(2)(P
(s)
n⊥ + k1⊥)δ

(2)(P̄
(s)
n⊥ + k2⊥) χ̄nS

†
n Γ

i
µ Sn̄ χn̄ |0〉 .

(6.20)

The hard work is done, now we can simply factorize because each operator acts only on either

sector (note that n · P̂ and n̄ · P̂ get leading contribution only from n̄-collinear and n-collinear

sectors respectively; in other words multipole expansion ensures that we can safely assume

n · P̂ acts only on χn̄ field and so on). After using color conservation for the collinear matrix

elements and the Fierz transformations, γµabγµ cd → −(n/2 )ad(
n̄/
2 )cb and (γ5γµ)ab(γ

5γµ)cd →
−(n/2 )ad(

n̄/
2 )cb , we have,

dσ

de
= Nc

(−LA(Q2)− LV (Q2)

4π

)

H(Q2, µ)

∫

den den̄ des δ(e− en − en̄ − es)

∫

d2k1⊥ d
2k2⊥

(2π)3

Nc
〈0| χ̄n̄ δ(n · P̂ −Q) δ(en̄ − ên̂) δ

(2)(P̂⊥ − k2⊥)
n/

2
χn̄ |0〉

(2π)3

Nc
tr 〈0| n̄/

2
χn δ(n̄ · P̂ −Q) δ(en − ên̂) δ

(2)(P̂⊥ − k1⊥) χ̄n |0〉
1

Nc
tr 〈0| S†

n̄ Sn δ
(2)(Pn⊥ + k1⊥) δ

(2)(P̄n⊥ + k2⊥) δ(es − ên̂) S
†
n Sn̄ |0〉 , (6.21)

where we have also reduced transverse momentum and broadening operators to their re-

spective parent operators (with a further reduction of transverse momentum operator in the

collinear sectors to label momentum operators). Trace is over both color and Dirac indices. In

eqn. (6.21), we have a factorization theorem in which the third and the fourth lines represent
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the broadening jet function composed only of collinear fields, and in the last line we have

a matrix element composed of the soft Wilson lines only. Written compactly, factorization

theorem is

dσ

de
= σ0H(Q2, µ)

∫

den den̄ des δ(e− en − en̄ − es)

∫

d2k1⊥ d
2k2⊥

Jn(Q, en, ~k21⊥)Jn̄(Q, en̄, ~k22⊥)S(es,~k1⊥, ~k2⊥) (6.22)

where σ0 is the Born cross-section given by (see, for example, appendix A of ref. [84])

σq0 =
4πα2

emNc

3Q2

[

Q2
q +

(v2q + a2q)(v
2
e + a2e)− 2Qqvqve(1−m2

Z/Q
2)

(1−m2
Z/Q

2)2 + Γ2
Z/m

2
Z

]

. (6.23)

A straightforward generalization of this result gives the factorization theorem for the left and

right broadening [86]

dσ

deLdeR
= σ0H(Q2, µ)

∫

den den̄ de
L
s de

R
s δ(eR − en − eRs )δ(eL − en̄ − eLs )

∫

d~k21⊥ d
~k22⊥

Jn(Q, en, ~k21⊥)Jn̄(Q, en̄,~k22⊥)S(eRs , eLs ,~k21⊥,~k22⊥) , (6.24)

where only the soft function changes

S(eRs , eLs ,~k21⊥, ~k22⊥) =
π2

Nc
tr 〈0| S†

n̄ Sn δ
(2)(Pn⊥ + k1⊥) δ(e

R
s − êRn̂ )

δ(2)(P̄n⊥ + k2⊥) δ(e
L
s − êLn̂) S

†
n Sn̄ |0〉 . (6.25)

Here êR,Ln̂ are defined as êR,Ln̂ |X〉 = (
∑

i∈X θ(±pi3)|pi⊥|/Q)|X〉. This simply comes about by

changing the identity insertion (6.19) appropriately. Note that in this form each function only

depends on the magnitude of the transverse momenta which is particularly convenient, thus

we have changed the overall integration measure appropriately. We present the bare definition

of the jet and the soft functions in the next section where we discuss their renormalization.

6.2 Broadening jet and soft functions: definition and renormalization

The naive definitions of the jet and the soft function obtained in the previous section contain

unregulated rapidity and UV divergences. We will regulate the UV divergences in dimensional

regularization as usual and for the rapidity divergences we will adopt the regulator prescribed

in this work. For fermion free abelian theory we can put the rapidity regulator into the

collinear and soft Wilson lines and for the non-abelian case we follow sec. A.2. Bare quark

jet function is given by

J bare
n (Q, en,~k

2
⊥) =

(2π)3−2ǫ

Nc
tr 〈0| n̄/

2
χn(0)δ(n̄ · P̂ −Q) δ(en − ên̂)δ

(2−2ǫ)(P̂⊥ − k⊥)χ̄n(0)|0〉 ,

(6.26)

where P̂ is the standard SCET label operator and here we are working with continuous labels.

There is analogous equation for bare anti-quark jet function but its functional dependence is
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the same as the quark jet function so it is simply obtained by replacing en → en̄. The bare

soft function is given by

Sbare(e
R
s , e

L
s ,
~k21⊥,

~k22⊥) =
π2−2ǫ(~k21⊥)

−ǫ(~k22⊥)
−ǫ

Nc Γ2(1− ǫ)
tr 〈0| S†

n̄(0)Sn(0) δ
(2−2ǫ)(Pn⊥ + k1⊥) δ(e

R
s − êRn̂ )

δ(2−2ǫ)(P̄n⊥ + k2⊥) δ(e
L
s − êLn̂) S

†
n(0)Sn̄(0) |0〉 , (6.27)

where Pn⊥ and P̄n⊥ were defined in eqn. (6.11). For both the jet and soft functions all fields are

evaluated at x = 0. Note that after accounting for the dimensions of the bare fields, bare jet

and soft functions are integer dimensional objects, as required for operator renormalization.

In our formalism rapidity divergences appear as counter terms just like the UV diver-

gences and therefore can be renormalized away via renormalization constants. Renormalized

quantities can be calculated as usual

J ren(e,~k 2;µ, ν/Q) =

∫

de′
∫

d2~k′

(2π)2
Z−1
J (e− e′, (~k − ~k′)2;µ, ν/Q)J bare(e′, ~k′2, Q)

Sren(eR, eL, ~p
2, ~q 2;µ, ν) =

∫

de′Rde
′
L

∫
d2~p ′

(2π)2
d2~q ′

(2π)2
Sbare(e′R, e

′
L, ~p

′2, ~q ′2) (6.28)

Z−1
S (eR − e′R, eL − e′L, (~p− ~p ′)2, (~q − ~q ′)2;µ, ν) ,

where Z−1
J,S only contain terms that are divergent in η and ǫ. Note that after expanding in η

and ǫ all vectors are Euclidean 2-vectors, hence we have a 2-dimensional vector convolution

only. Henceforth, in this section, we drop the subscript ⊥ on 2-vectors. ZJ,S follow the

standard constraints

IJ (e,~k) ≡ (2π)2δ(2)(~k)δ(e) =

∫

de′
∫

d2~k′

(2π)2
Z−1
J (e− e′, (~k − ~k′)2)ZJ (e

′, ~k′2) (6.29)

IS(eL, eR, ~p, ~q) ≡ (2π)4δ(2)(~p)δ(2)(~q)δ(eR)δ(eL) =

∫

de′Rde
′
L

∫
d2~p ′

(2π)2
d2~q ′

(2π)2
ZS(e

′
R, e

′
L, ~p

′2, ~q ′2)

Z−1
S (eR − e′R, eL − e′L, (~p− ~p ′)2, (~q − ~q ′)2) .

Using the consistency condition and the fact that the bare functions do not depend upon

the renormalization scales µ and ν we get the RG equations in µ and ν. The renormalization

group equations for the jet functions are given by

µdJ ren

dµ
= γJµ (µ, ν/Q)J ren(e,~k 2;µ, ν/Q) (6.30)

ν dJ ren

dν
=

∫

de′
∫

d2~k′

(2π)2
γJν (e− e′, (~k − ~k′)2;µ)J ren(e′,~k ′2;µ, ν/Q) ,

where the anomalous dimensions are obtained via

IJ × γJµ (µ, ν/Q) = −
∫

de′
∫

d2~k′

(2π)2
Z−1
J (e− e′, (~k − ~k′)2)

d

d lnµ
ZJ (e

′,~k′2;µ, ν/Q) (6.31)

γJν (e,~k 2;µ) = −
∫

de′
∫

d2~k′

(2π)2
Z−1
J (e− e′, (~k − ~k′)2)

d

d ln ν
ZJ (e

′,~k′2;µ, ν/Q) .
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For the soft function, RG equations are similar with more variable dependencies, therefore

for brevity we only show relevant variables and represent convolutions via ⊗. We have for

RG equations

µdSRena

dµ
= γSµ (µ, ν/µ)Sren(eR, eL, ~p

2, ~q 2;µ, ν/µ) (6.32)

ν dSren

dν
= γSν (eR, eL, ~p

2, ~q 2;µ)⊗ Sren(. . . ;µ, ν/µ) ,

and for anomalous dimensions

IS × γSµ (µ, ν/Q) = −Z−1
S ⊗ d

d lnµ
ZS(. . . ;µ, ν/µ) (6.33)

γSν (eR, eL, ~p
2, ~q 2;µ) = −Z−1

S ⊗ d

d ln ν
ZS(. . . ;µ, ν/µ) .

We emphasize that µ-RG equations do not involve convolutions and γµ does not have any

kinematical dependence. Reasons for this were made clear in section 5.3.1.

We have a few consistency conditions on the anomalous dimensions. Firstly, sum of the

µ-anomalous dimensions in the IR sectors (jets and soft) should add up to the negative of the

hard anomalous dimension, that is

γJµ (µ, ln
ν

Q−
) + γJ̄µ (µ, ln

ν

Q+
) + γSµ (µ, ln

ν

µ
) + γHµ (µ, ln

µ2

Q−Q+
) = 0 , (6.34)

where we have explicitly shown the logarithmic dependence in the anomalous dimensions

which can only be linear. Note that in c.o.m. frame Q+ = Q− = Q. Secondly, we have a

consistency condition for ν-anomalous dimensions analogous to eqn. (4.28)

ν
d

dν

[(
ZJZJ̄

)
⊗ ZS

]
= 0

⇒ IJ̄ (e
′, ~q2)γJν (e, ~p2) + IJ (e, ~p

2) γJ̄ν (e′, ~q2) + γSν (e, e
′, ~p2, ~q2) = 0 . (6.35)

Lastly, the independence of renormalization scales, µ and ν implies that the UV and rapidity

RGs commute, which then gives the constraints

µ
d

dµ
γJν = IJ ν

d

dν
γJµ = Γqcusp IJ ,

µ
d

dµ
γSν = IS ν

d

dν
γSµ = −2Γqcusp IS . (6.36)

Here we have used the linearity of µ-anomalous dimensions in its logarithmic term and its

relationship to the cusp anomalous dimension in γHµ . This concludes the formal discussion on

renormalization and running. We present the calculation and results in rest of this section.
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6.3 Jet Function Calculation up-to NLO

Bare quark jet function was defined in eqn. (6.26), which is what we will calculate here.

Anti-quark jet function is obtained by eR → eL and ~p 2 → ~q 2. For tree level jet function we

have

J (0)(eR, ~p
2) = δ(eR − |~p |/Q) , (6.37)

which is all what we need for the NLL cross-section. For NLO-singular cross-section, we only

need to consider the one-loop jet function at ~p = 0. Non-zero transverse momentum implies

presence of at least a soft radiation, which then gives contribution to the cross-section at

NNLO. We will use η-regulator as prescribed in section 4.1 to regulate rapidity divergences.

To regulate IR and UV divergences we will use dimensional regularization with d = 4 − 2ǫ.

Virtual diagrams all vanish as they will be scaleless. So we need to calculate only the real

diagrams and interpret 1/x1+a as the distribution [ θ(x)
x1+a ]

∞

+
31. We use Feynman gauge for this

calculation. At one-loop, the jet function is simply the sum of all real diagrams32. We get,

for ~p = 0,

p

�

p

�

(a) (b) (c)

(d) (e)

�

p−! p

Figure 8. Diagrams contribution to broadening jet function. Diagram (c) is zero in Feynman gauge

and virtual diagrams (d) and (e) are zero in dim.-reg.

J (1)
bare(eR, 0) =

(eγEµ2

4π

)ǫ 1

2Nc

∫

ddp δ+(p2)

∫
ddℓ

(2π)d−1
δ+(ℓ2) (6.38)

× δ(k− − ℓ− − p−)δd−2(ℓ⊥ + p⊥) δ(eR − |~ℓ⊥|/Q− |~p⊥|/Q)

×
(

tr
[ n̄/

2

i(ℓ6 +p6 )
(ℓ+ p)2

igγµT a p6 (−gµν) igγνT a
i(ℓ6 +p6 )
(ℓ+ p)2

]

+2w2νη tr
[ n̄/

2

i(ℓ6 +p6 )
(ℓ+ p)2

igγµT a p6 (−gµν)
gT an̄ννη

(ℓ−)1+η

])

=
αsCF
2π

eǫγE

Γ(1− ǫ)

(2µ

Q

)2ǫ
[

1

e1+2ǫ
R

]∞

+

[

(1− ǫ)− w2

(
ν

Q

)η 4

η(1− η)

]

.

31this is the plus distribution with boundary at +∞ i.e.,
∫

∞

−∞
dx[ θ(x)

x1+a
]
∞

+ = 0.
32We have verified by using gluon mass as an explicit IR regulator that IR divergences cancel between the

real and virtual diagrams and that we obtain the same results as presented here.
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Expanding in η and then in ǫ we get,

J (1)
bare(eR, 0) =

αs(µ)CF
π

[

− 2w2eǫγE

η Γ(1− ǫ)

(2µ

Q

)2ǫ
[

1

e1+2ǫ
R

]∞

+

+
1

ǫ
ln
ν

Q
δ(eR) +

3

4ǫ
δ(eR)

− 3Q

4µ

[
2µ

QeR

]

+

− Q

µ

[
2µ

QeR

]

+

ln
ν

Q
+

1

4
δ(eR)

]

, (6.39)

where we have expressed the finite parts in terms of the standard plus distributions which

are related to those with the infinity boundary via

[
1

x1+a

]∞

+

= −1

a
δ(x) +

[
1

x

]

+

− a

[
lnx

x

]

+

+ . . . (6.40)

and obey

∫ 1

0

[
lnn x

x

]

+

= 0. (6.41)

Since we did not calculate ~p 2 dependence we only give the renormalized part of the one loop

jet function which is what we need for the NLO cross-section,

Jren(eR, 0) = δ(eR − |~p |/Q) +
αs(µ)CF

π

[

− 3Q

4µ

[
2µ

QeR

]

+

− Q

µ

[
2µ

QeR

]

+

ln
ν

Q
+

1

4
δ(eR)

]

.

(6.42)

6.4 Soft Function Calculation up-to NLO

The bare soft function was defined in eqn. (6.27). The tree-level soft-function is given by

S(0) = δ(eR)δ(eL)δ(~p
2)δ(~q 2) . (6.43)

At one-loop we regulate rapidity divergences with η and use dimensional regularization for

(a) (b) (c) (d)

Figure 9. Diagrams contribution to broadening soft function. The virtual diagrams (c) and (d) are

zero in pure dim.-reg.
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UV and IR divergences, just as in the previous section33. In Feynman gauge only two real

radiation diagrams contribute to the one loop soft function which are identical to each other

leaving

S(1)(eR, eL, ~p
2, ~q 2) = 4g2w2CFµ

2ǫνη
π2−2ǫ(~p 2)−ǫ(~q 2)−ǫ

Γ2(1− ǫ)

∫
ddk

(2π)d−1
δ(+)(k2)

|2k3|−η
n.k n.k

(6.44)

×
[

θ(k3)δ(eR − |~kt|/Q)δd−2(~kt − ~p )δ(eL)δ
d−2(~q ) + θ(−k3)δ(eL − |~kt|/Q)δd−2(~kt − ~q )δ (eR) δ

d−2(~p )
]

=
αsCFw

2

π

eǫγEΓ
(
1
2 − η

2

)
Γ
(η
2

)

2η
√
πΓ(1− ǫ)

νη

Qη
µ2ǫ

Q2ǫ





[

1

e1+2ǫ+η
R

]∞

+

δ(Q2e2R − ~p 2)δ(eL)δ(~q
2) +

(
L↔ R

~p↔ ~q

)


 .

Expanding in η, then in ǫ and combining with the tree-level result we have the bare soft

function at NLO,

Sbare(eR, eL, ~p
2, ~q 2) = δ(eR)δ(eL)δ(~p

2)δ(~q 2) +
αs(µ)CF

π

[(

2w2eǫγE

η Γ(1− ǫ)

µ2ǫ

Q2ǫ

[

1

e1+2ǫ
R

]∞

+

+ δ(eR)

(
1

2ǫ2
− 1

2ǫ
ln
ν2

µ2

)

− 2Q

µ

[
µ ln(QeR/µ)

QeR

]

+

+
Q

µ

[
µ

QeR

]

+

ln
ν2

µ2
− π2

24
δ(eR)

)

× δ(Q2e2R − ~p 2)δ(eL)δ(~q
2) +

(
L↔ R

~p↔ ~q

) ]

. (6.45)

As in the jet case, we have written the rapidity divergences in terms of plus-distributions with

boundary at ∞ and the finite corrections in terms of the standard plus-distributions.

Using eqn. (6.28) we extract the renormalization constant for the soft function,

ZS(eR, eL, ~p
2, ~q 2) = 16π2δ(eR)δ(eL)δ(~p

2)δ(~q 2) + (16π2)
αs(µ)CF

π

[{

2w2eǫγE

η Γ(1− ǫ)

µ2ǫ

Q2ǫ

[

1

e1+2ǫ
R

]∞

+

+ δ(eR)

(
1

2ǫ2
− 1

2ǫ
ln
ν2

µ2

)}

δ(Q2e2R − ~p 2)δ(eL)δ(~q
2) +

(
L↔ R

~p↔ ~q

) ]

, (6.46)

leaving the renormalized soft function

Sren(eR, eL, ~p
2, ~q 2) = δ(eR)δ(eL)δ(~p

2)δ(~q 2) +
αs(µ)CF

π

[{

− 2Q

µ

[
µ ln(QeR/µ)

QeR

]

+

+
Q

µ

[
µ

QeR

]

+

ln
ν2

µ2
− π2

24
δ(eR)

}

δ(Q2e2R − ~p 2)δ(eL)δ(~q
2) +

(
L↔ R

~p↔ ~q

) ]

. (6.47)

33We have verified that regulating IR divergences with gluon mass at one-loop yields the same results as

presented here.
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The anomalous dimensions can be calculated using eqn. (6.33). At one-loop we have,

γSµ (µ, ν/µ) = −2αs(µ)CF
π

ln
ν2

µ2
(6.48)

γSν (eR, eL, ~p
2, ~q 2) =

2αs(µ)CF
π

(16π2)
Q

µ

[
µ

QeR

]

+

δ(Q2e2R − ~p 2)δ(eL)δ(~q
2) +

(
L↔ R

~p↔ ~q

)

.

It is a straightforward exercise to check that constraint (6.36) for soft anomalous dimensions

are satisfied up to order αs. We cannot do a direct check on constraints (6.34) and (6.35) but

an indirect check comes from calculating the cross-section at order αs with the bare matrix

elements. We will perform this check in sec. 6.7.

6.5 NLL Soft Function

To calculate the NLL cross-section for jet broadening we must evolve the soft function in ν

up to the jet scale (Q) as shown in fig. 4. For this purpose we need to solve the ν-RGE and

obtain VS at NLL. Its easiest to solve this equation in conjugate space where we make Fourier

transform w.r.t. ~p, ~q and make Laplace transform w.r.t. eL, eR. In the conjugate space

ν-RGE reads

d

d ln(ν)
S̃(τR, τL, bR, bL;µ, ν/µ) = γ̃Sν (τR, τL, bR, bL;µ) S̃ , (6.49)

where ~bR (~bL) is Fourier conjugate to ~p (~q) and τR,L is Laplace conjugate to eR,L. Since γν
has no explicit dependence on ν solution of this RGE is simply

S̃(. . . ;µ, ν/µ) = exp

(

γ̃Sν (. . . ;µ) ln
ν

ν0

)

S̃(. . . ;µ, ν0/µ) . (6.50)

Therefore,

VS = LF−1

[

exp

(

γ̃Sν (τR, τL, bR, bL;µ) ln
ν

ν0

)]

, (6.51)

where LF−1 refers to the inverse Laplace and inverse Fourier transform on τR,L and bR,L,

respectively. From Laplace-Fourier transform of the result in eqn. (6.48) we find that

γ̃Sν = −2
αs(µ)CF

π

[

ln

(√

b2RQ
2 + τ2R + τR

)

+ ln

(√

b2LQ
2 + τ2L + τL

)

+ ln
µ2e2γE

4Q2

]

(6.52)

which gives

V NLL
S = LF−1

[(
µ

2Q

)−2ωs

e−2ωsγE

(√

b2RQ
2 + τ2R + τR

)−ωs
(√

b2LQ
2 + τ2L + τL

)−ωs

]

,

(6.53)
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where

ωs ≡ ωNLL(αs(µ), ν/ν0) =
2αs(µ)CF

π
ln
ν

ν0
. (6.54)

Using eqns. (E.4) and (E.5), we evaluate inverse Laplace-Fourier transforms in eqn. (6.53),

to obtain the ν-evolution factor VS at NLL in the physical space,

V NLL
S = (16π2)(µQ)−2ωs

ω2
se

−2ωsγE

Γ2(ωs)

[

θ(eR)

e1+ωs

R

]∞

+

[

θ(eL)

e1+ωs

L

]∞

+

θ(QeR − |~p |)
(Q2e2R − ~p 2)1−ωs

θ(QeL − |~q |)
(Q2e2L − ~q 2)1−ωs

.

(6.55)

Note that ωs is always positive for us (ν > ν0), so there is no non-integrable singularity in the

last two fractions and other terms are properly plussed. Convolving this with the tree-level

soft function gives us the NLL soft function,

SNLL = (µQ)−2ωs
ω2
se

−2ωsγE

Γ2(ωs)

[

θ(eR)

e1+ωs

R

]∞

+

[

θ(eL)

e1+ωs

L

]∞

+

θ(QeR − |~p |)
(Q2e2R − ~p 2)1−ωs

θ(QeL − |~q |)
(Q2e2L − ~q 2)1−ωs

.

(6.56)

This very interesting formula illustrates how the soft function changes when we take into

account infinite gluon emissions from a quark between the rapidities of order | ln(ν0/µ)| and
| ln(ν/µ)|. Resummation of all the large rapidity logarithms require that we choose µ ∼ ν0 ∼
QeL,R and ν ∼ Q. This would mean that SNLL accounts for recoil from gluon emissions of

rapidities, |y| . | ln(eL,R)|. Note that the unwanted singularities that arose in section 5.6

do not arise here. Reason being, there is an absolute cutoff on the transverse momentum

governed by the measured eL,R. Thus no unwanted UV contributions can arise in the inverse

transform. Alternately, there is no singularity from b→ 0 in eqn. (6.53) for any value of ωs.

6.6 Jet Broadening Spectrum at NLL

It is a straight forward exercise to calculate NLL differential cross-section now. NLL formula

is given by

dσNLL

deLdeR
= σ0Htree(Q

2, µH)U
NLL
H (Q2, µH , µ)

∫

den den̄ de
L
s de

R
s δ(eR − en − eRs )δ(eL − en̄ − eLs )

∫

d~p 2 d~q 2Jtree(Q, en, ~p
2)Jtree(Q, en̄, ~q

2)SNLL(e
R
s , e

L
s , ~q

2, ~p2) , (6.57)

where Htree = 1 and UNLL
H is the evolution factor for the hard running. It is the same as for

other angularities (for example thrust) and can be found in, for example App. C.2 of ref.

[20]. Tree-level jet functions were given in eqn. (6.37) and are simply δ-functions. Taking the

NLL soft function from eqn. (6.56) and performing straight forward δ-function integrals we

get

dσNLL

deLdeR
= σ0U

NLL
H (Q2, µH , µ)

µ−2ωs

Q−2ωs

ω2
se

−2ωsγE

4Γ2(ωs)

1

e1−ωs

L e1−ωs

R

[
∫ 1

0
dx

x
(
1− x

2

)1+ωs

1

(1− x)1−ωs

]2

(6.58)
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where we have non-dimensionalized the last remaining integral and dropped the plus prescrip-

tion since the integrals are well defined. Performing this integral yields the master formula

for NLL cross-section

dσNLL

deLdeR
= σ0U

NLL
H (Q2, µH , µ)

µ−2ωs

Q−2ωs

e−2ωsγE

Γ2(ωs)

1

e1−ωs

L e1−ωs

R

[

1− ωs
2−ωs

B 1
2
(1 + ωs, 0)

]2
(6.59)

where Bz(a, b) =
∫ z
0 dx x

a−1(1− x)b−1, is the incomplete beta function and ωs was defined in

eqn. (6.54). Using this result we obtain the NLL cross-section for wide jet broadening BW
[3],

dσNLL

dBW
= σ0U

NLL
H (Q2, µH , µ)

µ−2ωs

Q−2ωs

e−2ωsγE

Γ(1 + ωs)Γ(ωs)

21+2ωs

B1−2ωs

W

[

1− ωs
2−ωs

B 1
2
(1 + ωs, 0)

]2
(6.60)

and total jet broadening [3]

dσNLL

dBT
= σ0U

NLL
H (Q2, µH , µ)

µ−2ωs

Q−2ωs

e−2ωsγE4ωs

Γ(2ωs)

1

B1−2ωs

T

[

1− ωs
2−ωs

B 1
2
(1 + ωs, 0)

]2
. (6.61)

6.7 Jet Broadening Spectrum at LO

We will compute the spectrum at LO using the bare matrix elements to elucidate the can-

cellation of rapidity divergences and corresponding scale ν. This distribution accounting for

one real radiation is given by

1

σ0

dσLO

deLdeR
= δ(eL)δ(eR)

(

1 +H
(1)
bare(Q

2)
)

+ δ(eL)J
(1)
bare(eR, ~p

2 = 0) + δ(eL)J
(1)
bare(eL, ~q

2 = 0)

+ 4Q4

∫

denden̄ en en̄ S(1)
bare(eR − en, eL − en̄, Q

2e2n, Q
2e2n̄) (6.62)

which can be computed by using (6.39) and (6.45) along with corresponding tree level results.

We obtain

1

σ0

dσLO

deLdeR
= δ(eR)δ(eL)

(

1 +H
(1)
bare(Q,µ)

)

(6.63)

+
αs(µ)CF

π
δ(eL)δ(eR)

(
1

ǫ2
+

1

ǫ
ln
µ2

Q2
+

3

2ǫ
+

1

2
− π2

12

)

+

{

αs(µ)CF
π

δ(eL)

(

−Q
µ

[
2µ ln(QeR/(2µ))

QeR

]

+

− 3Q

4µ

[
2µ

QeR

]

+

− Q

2µ

[
2µ

QeR

]

+

ln
µ2

Q2

)

+ (L↔ R)

}

.

As expected both the rapidity divergences and ν-dependence cancels out. The sum of the

UV divergences in the IR sector add up to give the expected form consistent with the hard

anomalous dimension, i.e they cancel with the UV divergences in the bare hard function

[38, 87],

H
(1)
bare =

αs(µ)CF
π

(

− 1

ǫ2
− 1

ǫ
ln
µ2

Q2
− 3

2ǫ
− 1

2
ln2

µ2

Q2
− 3

2
ln
µ2

Q2
− 4 +

7π2

12

)

. (6.64)
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Using eqn. (6.63) we calculate the singular contribution to the LO total broadening distribu-

tion

1

σ0

dσLO

dBT
= −αs(µ)CF

π BT
(4 lnBT + 3) , (6.65)

which agrees with [3].

6.8 Numerics

In fig. (10) we have plotted the theory cross section and the data [88]. The resummed error

bands are the geometric mean of the ν-variation and µ-variation. We see that given the large

experimental error bars the agreement with the data is reasonable. Complete jet function

calculation up to NLO, although will not change the NLL resummed spectrum, is expected to

bring down the scale uncertainty significantly. In addition, the NNLL calculation will reduce

the theory errors further. It is worth noting that by including both ν- and µ-variations, we

gain a well controlled theoretical uncertainty estimation, while the uncertainty analysis for

resummation using traditional methods could be ambiguous and may under or over estimate

the uncertainties as we will discuss in the next section. Here we have not included the theory

errors due to power corrections. In the small BT region these are non-perturbative and scale

as ΛQCD/(BTQ) and can be expected to be of order 20-30%.

Q = 130 GeV
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Figure 10. Total Jet Broadening at 130 GeV.

6.9 Comparison to Previous Results

In our previous work [23] where we introduced the rapidity renormalization group, we pre-

sented results for NLL total broadening distribution with an unnecessary approximation that

oversimplified the structure of γSν . As a consequence, our result presented in [23] was not

accurate at NLL when power counting the resummation in exponent. The result presented
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in here in eqn. (6.61) differs from one in [23] by a factor of
[
2ωs − ωs4

ωsB 1
2
(1 + ωs, 0)

]2
. This

extra factor agrees with the extra factor mentioned in the “Note added” of ref. [89] which

also considered jet broadening in the context of SCET. Our result in eqn. (6.61) agrees with

[89] up to the distinction between our ωs given in eqn. (6.54) corresponding to factor η in

[89]. The distinction is conceptual and an important one when gauging scale dependence. We

explain this below.

In the formalism developed in [90], which was also used by Ref. [89], a single logarithm

of Q2 appears in the combined result of the logarithm of IR sectors. The coefficient of

the logarithm of Q2 is extracted and the logarithm is exponentiated when calculating the

resummed cross-section. This coefficient is unique, however, the scale associated with Q2 in

the logarithm is ambiguous in this formalism. Ref. [89] effectively make this choice same as

the renormalization scale µ, hence ln(Q2/µ2) show up in η, the factor corresponding to ωs.

They could have made an alternate choice, for example ln(Q2/(QBT )
2), since µ ∼ QBT . The

two choices differ in that they give significantly different estimate for µ-variation at NLL,

one choice underestimates it while other overestimates. In our formalism such an ambiguity

does not arise since ν is unrelated to µ and can be varied independently to gauge the errors

associated with the choice of this scale. We find that our combined µ and ν-variation errors are

significantly smaller than the result of ref. [89]. This becomes important in phenomenological

applications of the NLL distribution, for example fitting αs from the total jet broadening data.

Ref. [89] state that our “analytic regulator” 34 will not necessarily reproduce full QCD

since we regulate in the effective theory. We have proven in this article that the regulator

leads to a correct cancellation of η divergences, preserves non-Abelian exponentiation, the

soft-collinear gauge invariance and factorization in SCET. In SCET the analytic regulator

leads to gauge dependent collinear and soft functions and breaks non-Abelian exponentiation,

though it appears it can be modified to remedy these faults [69].

7 Application to Exclusive Processes and End Point Singularities

We now discuss the application of RRG to the exclusive processes. There is a long standing

problem in such processes, upon which, we hope to shed some light. In particular, many

exclusive processes such as the pion form factor at large Q2 [91], the ρ − π form factor [92],

and the B → πlν form factor [93] are plagued by end-point divergences. In SCET these

divergences arise in problems that fall with in the domain of SCETII. Thus to avoid this issue

in a sensible fashion one is forced to remain in SCETI [94, 95] at the cost of loss of predictive

power. If we could make sense of the end point singularities in SCETII, this would increase

predictive power by allowing for one to write down the rates in terms of light-cone wave

functions. Overcoming these end point singularities in a systematic fashion is thus highly

desirable.

34Our regulator is not an analytic regulator by any definition that we are aware of, though it has the

appearance of an analytic regulator at one loop for real radiation in the collinear sector only.
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End point divergences arise when integrating over the momentum fractions in light cone

wave functions. Schematically these divergence amplitudes are of the form

A =

∫ 1

0
dxC(x)φH(x) (7.1)

where x is a momentum fraction φH is a light-cone wave function for hadron H, and C is

a perturbative hard matching coefficient. It is often the case that C(x) is singular at the

lower end-point. While we cannot calculate φH from first principles, we can say something

about its form in the limit where the hard scale is taken to infinity [96]. In particular when

x approaches zero φH vanishes linearly in x, whereas it is often the case that C(x) ∼ 1/x2

leading to a divergence. Ref. [5] correctly account for this singularity as a rapidity divergence

and performs a zero bin subtraction. However, in SCETII subtracting the double counting

region can at best move the boundary between the soft and collinear sectors. The rapidity

divergences and their accompanying logarithms still exist after the subtraction since they are

associated with the boundary (see section (2)). As such, the discussion in [5] was incomplete

in the sense that the method does not allow for a resummation. The crucial distinction, to

be discussed below, between their regulator and the one employed here is that they imposed

manifest boost invariance in each sector, whereas we explicitly break it with our regulator

and only ask that the final answer be boost invariant.

We follow [5, 21] in studying this issue within the context of a toy model of B decays. We

will provide a proof in principle that exclusive B-decays can be factorized in SCETII and all

the logarithms can be resummed. We take the example of B → ℓνγ where all fields are taken

to be scalars. The physical case of fermions was considered in [21] but does not suffer from

an endpoint singularity until the subleading order. The scalar case on the other hand does,

and was originally thought to be non-factorizable due to these divergences [24]. Manohar and

Stewart were able to regulate all the integrals and obtained the correct IR divergences after

employing a zero-bin procedure. However, they were unable to resum the rapidity logarithms

that appear in the ratio µ+/µ−, the scales associated with their rapidity regularization. This

was due to a mismatch in hard logarithms and hard anomalous dimension. We will use the

same set up as ref. [5] (see section VII A therein for details) but we employ the regulator

introduced earlier in this paper. We will also include a region that was not discussed in the

analysis of ref. [5] that we find essential for solving the problem in all frames of reference.

We will ignore the wave function renormalization in our analysis as it is straightforward to

include.

At next-to leading order and in partonic approximation, the process B → ℓνγ is repre-

sented by the Feynman diagram in fig. 11(a). In this process, observed in B-meson rest frame,

p is n-collinear with p− ∼ mB and p2 = 0. While, ℓ is soft with ℓ+ ∼ ΛQCD and ℓ2 = 0. After

radiating the vector boson, a hard interaction takes place at vertex A and is only sensitive

to the Lorentz invariant combination p−ℓ+. The external on-shell particles (or particles with

off-shellness at most Λ2
QCD) are at vertices B and C. This full theory integral has IR diver-

gences but is UV finite. To control IR divergences we choose to regulate the (scalar) quark
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Figure 11. (a) W -boson and its decay is not shown. buW vertex is represented by •. u quark

represented with the thick line is the hard parton with off-shellness mBΛQCD. Hard interaction takes

place at vertex A and external on-shell partons are at vertex B and C. (b) Corresponding Sudakov

form factor demonstrating hard interaction at vertex A. On-shell n-collinear parton is at vertex B and

on-shell n̄-collinear parton is at vertex C.

BC with a non-zero mass m, as was done it ref. [5]. We must take m ∼ ΛQCD to ensure proper

scaling of the IR physics. This integral has a double logarithm, ln2(p−ℓ+)/m2, that is large.

A proper factorization should separate the hard scale p−ℓ+ from the non-perturbative scale

m and provide a method for resummation. We will now show that this problem is identical

to the Sudakov form factor at LO as far as the momentum flow is concerned 35.

We make a boost to a frame where ℓ+ = p− ∼
√
mBΛQCD. We will refer to this as

the symmetric frame. In this frame, diagram in fig. 11(a) immediately maps to the familiar

picture of the massive Sudakov form factor at one loop shown in fig. 11(b), where the hard

interaction is at vertex A and (anti-)collinear on-shell quarks are at vertices B and C with

p− = ℓ+ = Q. The hard scale here is p−ℓ+ = Q2 and IR scale is set by the mass m of

the vector boson exchanged between two quarks. The full theory integral is the same in the

two situations when all particles are replaced by the scalars as in the toy example considered

here. Previously we factorized the Sudakov form factor into (n̄)n-collinear and soft regions

corresponding to the situation when the loop momentum k becomes (n̄)n-collinear or soft.

The same factorization applies to B-decays in the symmetric frame with the identification,

Q2 ∼ mBΛQCD, which then yields λ2 = m2/Q2 ∼ ΛQCD/mB.

Ref. [5], analyzed the problem in the B-meson rest frame (or lab frame), but did not

include the region that corresponds to the soft region of the symmetric frame in their analysis.

This region looks like a collinear mode in the lab frame but with a lower rapidity compared

to the collinear modes that have the same scaling as the photon’s momenta. In fig. 12, we

show the three IR modes required for this problem in three very different frames of reference.

To avoid confusion, we will refer to the modes as left, center and right modes corresponding

to their location in the mode diagram. The three frames of reference considered are the

symmetric frame, the lab frame in which B-meson is at rest and the super-boosted frame

where B-meson itself is n-collinear. In the super-boosted frame both the initial parton and

35A similar argument was used in [24], however these authors worked in SCETI power counting with off-

shellness regulator which lead to the erroneous conclusion that the amplitude did not factor due to the existence

of so-called messenger modes which are just the boosted ultra-soft modes.
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shown along with the modes in each frame with their location on the hyperbola.

the final photon are n-collinear with different rapidity hierarchy. We will now demonstrate

a factorization in the symmetric frame which essentially carries over to all other frames.

The calculation of the operators changes between frames along with corresponding rapidity

logarithms but the end result after the resummation stays the same. To get the same result

in all frames it is crucial that our rapidity regulator be employed in a consistent fashion.

For brevity, we will not present the details of the operators and factorization here and

refer the reader to ref. [5]36. After suppressing an overall factor of ieg2G/(p−ℓ+), we have

the full theory integral for the diagram shown in fig. 11(a),

Ifull =
eǫγEµ2ǫ

(4π)ǫ

∫
ddk

(2π)d
1

[k2 − ℓ+k− + i0] [k2 −m2 + i0] [k2 − p−k+ + i0]
(7.2)

=
−i

16π2 (p−ℓ+)

[
1

2
ln2
(
p−ℓ+

m2

)

+
π2

3

]

where we see the large double logarithm that requires resummation. Note that there is no

UV divergence in this full theory result, and that all the IR divergence are regulated by m2.

In the symmetric frame, just like the Sudakov problem, the factorization is accounted for by

the following integrals, each corresponding to a different region and operator,

Ileft =
eǫγEµ2ǫ

(4π)ǫ

∫
ddk

(2π)d
f
(left)
η (k)

[k2 − ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]
,

Icenter =
eǫγEµ2ǫ

(4π)ǫ

∫
ddk

(2π)d
f
(center)
η (k)

[−ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]
,

Iright =
eǫγEµ2ǫ

(4π)ǫ

∫
ddk

(2π)d
f
(right)
η (k)

[−ℓ+k− + i0] [k2 −m2 + i0] [k2 − p−k+ + i0]
. (7.3)

The diagrams corresponding to each of these integrals are shown in figs. 13(b), (c) and (d)

respectively. They collectively provide renormalization to operator Oa shown in fig. 13(a).

Here fη(k) (shown in Table 1) corresponds to the additional rapidity regularization required

to evaluate the integrals which arises from minimally regulating the corresponding operator

by inserting an appropriate factor of fη therein. The presence of the regulator breaks the

36The integral corresponding to the missing region and operator in this reference will be referred here as

Icenter.

– 56 –



p

−`

−k

−k

−k

p
p

−` −`

u

b

−`

p
Oa

γ

ū
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Figure 13. Diagrams in the effective theory contributing to B-decay in the symmetric frame. Each

⊗ corresponds to a different operator.

boost-invariance in the otherwise invariant integrands. Therefore, in all frames generated

by boosts along n̂ the same integrands arise but the regulator takes different forms in each

frame. Our regulator is simply the correct limit of w2νη|2k3|−η in each sector, where w is the

bookkeeping parameter discussed earlier. In Table 1 we show the regulator in each frame for

each mode. We will now discuss the calculation and renormalization in each frame.

7.1 The symmetric frame

Using the rapidity regulator as shown in Table 1 for the symmetric frame and set w = 1 we

get,

Iright =
−i

16π2 (p−ℓ+)

[

−e
γǫ Γ(ǫ)

η

(
µ2

m2

)ǫ

− 1

ǫ
ln

ν

p−
− ln

µ2

m2
ln

ν

p−
+
π2

6

]

(7.4)

Icenter =
−i

16π2p−ℓ+

[
2eγǫ Γ(ǫ)

η

(
µ2

m2

)ǫ

− 1

ǫ2
+

2

ǫ
ln
ν

µ
+

1

2
ln2
(
µ2

m2

)

+ 2 ln
µ2

m2
ln
ν

µ
+
π2

12

]

modes symmetric frame lab or B-meson rest frame super-boosted frame

left w2νη |k+|−η w2νη
∣
∣2k3

∣
∣−η w2νη |k−|−η

center w2νη
∣
∣2k3

∣
∣−η w2νη |k−|−η w2νη |k−|−η

right w2νη |k−|−η w2νη |k−|−η w2νη |k−|−η

Table 1. fη for each mode in each frame.
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Ileft =
−i

16π2 (p−ℓ+)

[

−e
γǫ Γ(ǫ)

η

(
µ2

m2

)ǫ

− 1

ǫ
ln

ν

ℓ+
− ln

µ2

m2
ln

ν

ℓ+
+
π2

6

]

.

We immediately notice that the rapidity divergences cancel out in the sum of the three

integrals, giving for the total bare effective theory contribution

I
(bare)
EFT =

−i
16π2 (p−ℓ+)

[

− 1

ǫ2
+

1

ǫ
ln
p−ℓ+

µ2
+

1

2
ln2
(
µ2

m2

)

+ ln
µ2

m2
ln
p−ℓ+

µ2
+

5π2

12

]

. (7.5)

The UV divergences in this result should be canceled by the counter term of the LO operator

Oa. Therefore we obtain37

δJa =
eg2G

16π2 (p−ℓ+)

(
1

ǫ2
− 1

ǫ
ln
p−ℓ+

µ2

)

, (7.6)

for the counter term of Ja, the matching coefficient toOa. The renormalized EFT contribution

is

I
(ren)
EFT =

−i
16π2 (p−ℓ+)

(
1

2
ln2
(
µ2

m2

)

+ ln
µ2

m2
ln
p−ℓ+

µ2
+

5π2

12

)

. (7.7)

Subtracting this from the full theory result of eqn. (7.2), we get the one-loop matching

coefficient,

Ja = eG+
eg2G

16π2 (p−ℓ+)

(
1

2
ln2
(
ℓ+p−

µ2

)

− π2

12

)

. (7.8)

First thing we note is that the divergences in the counter term (7.6) are consistent with the

logarithms in the matching coefficient Ja, that is anomalous dimension obtained using eqn.

(7.6) can be used to resum logarithms in Ja. Secondly, each operator corresponding to the

left, right and center modes can be run independently in ν to resum the rapidity logarithms

in the infrared sector. Apart from the technicalities of operator mixing, the running strategy

works the same as in the case of the Sudakov form factor discussed earlier. Therefore we

have shown in principle that exclusive B-decays can be factorized and resummed in SCETII,

contrary to the previous claims [24].

7.2 The super-boosted frame

Using the rapidity regulator for the super-boosted frame as shown in Table 1 we need to

calculate Icenter and Ileft only, as Iright is the same in all frames.

Icenter =
−ieǫγEΓ(ǫ)
16π2p−ℓ+

(
µ2

m2

)ǫ ∫ ∞

0
dk−

νη

(k−)1+η
= 0 , (7.9)

Ileft =
eǫγEµ2ǫ

(4π)ǫ
νη
∫

ddk

(2π)d
|k−|−η

[k2 − ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]

=
−i

16π2p−ℓ+

[
eγǫΓ(ǫ)

η

µ2ǫ

m2ǫ
− 1

ǫ2
+

1

ǫ
ln
νℓ+

µ2
+

1

2
ln2
(
µ2

m2

)

+ ln
µ2

m2
ln
νℓ+

µ2
+
π2

4

]

,

37Note that in this toy example couplings e and g are quantities of mass dimension one.
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where Icenter vanished because the last integral in k− was scaleless. Note that the left integral

now has exactly the same η-divergence as it was in the sum of Icenter and Ileft in the previous

case, so are the structure of ν-logarithms. Therefore, the sum of three sectors, I
(bare)
EFT , still

yields the same result as in eqn. (7.5) of the symmetric frame.

7.3 The lab frame

Using the rapidity regulator as shown in Table 1 for the lab frame we note that Iright is

same as in eqn. (7.4) and Icenter = 0 as was in the super-boosted frame. It only remains to

calculate Ileft, whose exact evaluation is cumbersome. Therefore, for this frame we only give

the η-divergence structure of the left integral38,

Ileft =
eǫγEµ2ǫ

(4π)ǫ
νη
∫

ddk

(2π)d
|2k3|−η

[k2 − ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]
(7.10)

=
−i

16π2p−ℓ+

[
eǫγEΓ(ǫ)

η

(
µ2

m2

)ǫ

+ η-finite

]

.

Details of this calculation are shown in app. G. This is exactly the divergence required to

cancel the rapidity divergence in Iright.

8 Conclusion

In this paper we have presented a formalism which allows one to factorize and resum observ-

ables which are sensitive to soft recoil. These observables fall within the confines of SCETII

in which soft and collinear modes have the same invariant mass scalings. It is because of

this equality of scalings that one runs into rapidity divergences which force us to introduce

a new regulator with an associated scale. We presented a proof that while individual sectors

have rapidity divergences when one sums over sectors these divergences cancel as they must,

since they are an artifact of factorization. The sectors contain soft and collinear function

which are gauge invariant, and process independent. For transverse momentum distribution

we are able to define a gauge invariant and universal transverse momentum dependent parton

distribution function. Once the regulator is implemented one can sum the rapidity logarithms

by use of the rapidity renormalization group, which corresponds to sliding the cut-off which

separates collinear and soft modes on the mass shell hyperbola.

We demonstrated our formalism by showing how one can sum the logarithms in the

massive Sudakov form factor, as well as in the Higgs transverse momentum distribution and

jet broadening. In the case of the Higgs distribution we give a generalized factorization

theorem which goes beyond the classic CSS result in that it allows for jets in the central

region. At leading order in the matching at the hard scale our results reduce to those of CSS.

We also showed how our formalism can be used to renormalize exclusive processes with end

38Naively, one may expect that this integral had an overlap with the central region. The overlap integral is

obtained by taking k to be collinear (kµ ∼ Q(λ2, 1, λ)) in the integrand which exactly reproduces Icenter of this

frame once the regulator is transformed as |2k3|
−η → |k−|−η. Thus, there is no overlap between the regions.
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point singularities, which allows one to complete the original calculations of Manohar and

Stewart who showed how to sensibly handle the end point divergences using SCETII and the

zero-bin subtraction method.
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A Gauge Invariance and Rapidity Regulators

In this section, we will prove the gauge invariance is not spoiled by regulating rapidity di-

vergences concentrating on the generalized Wilson line regulator (η). Generalizing the proof

to the delta regulator follows in a simple fashion. We also show that regulating rapidity

divergences with the η or delta regulators is consistent with non-Abelian exponentiation.

A.1 Regularization at Higher Orders in the Sudakov Form Factor

Given our operator definition, which we will see will have to be slightly amended when going

to higher orders, it is not clear at all that gauge invariance is retained once the regulator is

inserted. However, a simple argument shows that, at least within any set of covariant gauges,

the regulator will preserve gauge invariance. Consider first the case of one gluon emission.

In this case the gauge dependent piece of the propagator will generate an extra factor of

n · k which then eliminates any rapidity divergence arising from that term. As such, for the

integral involving the gauge piece we may set η to zero and gauge invariance follows.

At higher orders we must modify the regulator in order to manifestly preserve both gauge

invariance and eikonal exponentiation. We begin by considering the renormalization of the

soft function which, as opposed to the jet function, is a pure Wilson line. Let us recall some

basic facts about Wilson lines and their renormalization: 1) The anomalous dimensions of the

cusped Wilson line is at most linear in logarithms [37, 38]. 2) The result exponentiates at the

level of the integrands [34–36], with each color Casimir appearing only once. At each order

there are a set of graphs which are two eikonal line irreducible (2EPI), i.e. they can not be

disconnected by cutting two eikonal lines. These graphs generate a Casimir which does not

appear in any lower order graphs. The sum of these graphs is called a CWEB. Thus in the

exponent only CWEBs appear. These two facts imply that the sum of integrands which form

a CWEB have no higher order power beyond 1/ǫ2 for UV or 1/η for rapidity. Poles of order

1/η2 would violate condition 1) since all integrals have UV divergent transverse momentum

integrals that are regulated by dim. reg. thus leading to anomalous dimensions which are

not monomials in logarithms.
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Figure 14.

To prove gauge invariance we should choose our regulator so that we may sum the di-

agrams which are part of a CWEB. Doing so allows us to take advantage of the lack of

sub-divergences in this subset of diagrams. Thus instead of regulating the individual mo-

menta, we will regulate the group momenta n · kg. Where kg is the total momentum flowing

into a CWEB on the eikonal line . So we will re-write our regulated Wilson line as

Wn =
∑

perms

exp

[

− gw

n̄ · P
| n̄ · Pg |−η

ν−η
n̄ ·An

]

(A.1)

Sn =
∑

perms

exp

[

− gw

n · P
| 2P3g |−η/2
ν−η/2

n ·As
]

(A.2)

Note that non 2EPI diagrams will thus be regulated differently then 2EPI diagrams. Consider

the 2EPI diagrams which contribute to the O(α2) CWEB shown in Fig. 14. The sum of

the integrands contains no sub-divergences. By regulating only the group momentum the

integrands may still be added. So the sum of the integrands have the general form

ICWEB ∼
∫

ddkgd
dkD(k2, k2g , k·kg)

| k3g |−η
(n̄ · kg + iǫ)(n · kg − iǫ)

N(n · k, n̄ · k, n · kg, n̄ · kg)
D(k2, k2g , k · kg, n · k, n̄ · k, n · kg, n̄ · kg)

(A.3)

Here we have explicitly pulled out the first eikonal propagator. Note that in all contributions

to the CWEB the final gluon attaching to the eikonal line will carry the same momentum as

the eikonal line itself. Therefore, if we now consider a general covariant gauge with polariza-

tion sum
∑

ǫµǫν ∼ gµν + (1− ξ)
kµkν
k2

. (A.4)

The gauge dependent piece will necessarily cancel the final eikonal propagator and since the

CWEB has at most an order 1/η rapidity divergence the gauge dependent piece will always

be finite. Given that the gauge dependent pieces are finite, we may set η to zero in those

contributions, leading to a gauge invariant result.

Now let us consider the set of diagrams which are not 2EPI such as the one shown in

Fig. 15. The order α2 CWEB involves two additional sub-diagrams corresponding to the

vacuum polarization and the Y-graph as in Fig. 14 as well. Eikonal exponentiation implies

that the sum of this diagrams factorize into a product. That is, this contribution comes
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kg2

Figure 15. An example of a diagram composed of two CWEBS. The group momentum for the

CWEBs is labelled kgo.

from interference terms in the expansion of the exponent and will arise with a color factor

C3
FCA. The rapidity regulator preserves this property by regulating the group momentum of

the individual CWEB independently. That is the integrand for this diagrams will be of the

form ∫

ddkg1d
dkg2d

dk | k3g1 |−η| k3g2 |−η .... (A.5)

By defining the regulator in this way we preserve the eikonal identities utilized to show that

the sum of graphs yields the product of a one and two loop integral.

The renormalization and gauge invariant nature of the jet functions follows by a similar

line of reasoning discussed above. However, there is a crucial difference between the jet and

soft functions. Since the jet only involves one Wilson line the notion of a 2EPI diagram is

no longer applicable. However, as will be discussed in the next section, it is simple to define

a CWEB for the jet function when noting that every CWEB diagram in the soft sector has

a parent diagram in the full theory which has a collinear limit. There is also the matter of

pure self energy diagrams. Such diagrams on the non-Wilson line part of the jet function,

obviously have no rapidity divergence since there are no eikonal lines involved, i.e. they are

identical to pure QCD. All of the eikonal self-energy graphs vanish after including the proper

soft-bin subtraction, since the full theory self energy graphs are reproduced by the purely

collinear diagrams. This can be seen from explicit calculation as well.

A.2 Regularization of Generalized Soft and Collinear Functions

For generalized observables the soft functions are more complex then the one which arises in

the Sudakov form factor. Typically we are interested in soft matrix elements which arise from

the amplitude squared and where we measure some aspect of the soft radiation that can be

written as

S(p) ≡ 〈0 | SnS†
n̄δ(p− P)S†

nSn̄ | 0〉 (A.6)

where p stands for a set of momenta components which scale as some non-zero power of λ.

The soft function will necessarily be accompanied by at least one collinear function which can

be written as

J(p) ≡ 〈ψ | (ŌW †
n)δ(p− P)(WnO) | ψ〉. (A.7)
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The operator O here is either a quark or a gluon field and Wn here is a collinear Wilson line

in either adjoint or fundamental representation depending upon the case. The delta function

measures the kinematic quantity of interest and ψ is either a vacuum (“Jet Functions”) or a

hadronic state (“Beam functions”, “TMDPDF’s” or generalizations thereof).

All of these functions will contain rapidity divergences in SCETII upon factorization. It

is only the combination that must be (rapidity) finite. The finiteness of the total result is

predicated on the fact that the diagrams are regulated in a consistent fashion. In particular,

as touched upon in the previous section, the regulated EFT diagrams must come as pieces

of the asymptotic expansion of the “regulated” full theory diagram. We use quotes here to

remind the reader that the full theory has no rapidity divergences. It should be clear that

there are many ways in which to insert our rapidity regulator into the full theory diagram.

However, regulating the full theory diagram does not guarantee that the EFT diagrams will

be regulated. One can imagine that the full theory, upon expansion, has rapidity divergences

in sub-diagrams and that a particular choice of regulator could in general lead to unregulated

EFT diagrams. Furthermore, we should choose a method such that our generalized function

are universal. That is, they should be process independent, though they will always be scheme

dependent just as with any parton distribution function. Finally, we need to ensure that the

regulator preserves eikonal exponentiation. These criteria are not logically independent so it

should not surprise the reader that its relatively simple to ensure that all are satisfied. In

particular once we ensure that we preserve exponentiation, the other criteria are automatically

satisfied.

To discern a proper prescription we begin with the soft function where the notion of a

CWEB is clear. As in the case of the Sudakov form factor we regulate the total momentum

emitted in a CWEB. We will work in the Feynman gauge and the proof of gauge invariance

(covariant gauges) follows by an the identical argument given for the Sudakov form factor.

Note that for the soft function there is no need to ever calculate any diagram which is

not a CWEB. At a fixed order a non-CWEB diagram will not contribute to the anomalous

dimensions. Furthermore, for the purposes of matching, all non-CWEB diagrams can be

determined by expanding the exponent. i.e. non CWEB diagrams are simply products of

CWEBS (recall each CWEB is affiliated with a color Casimir). Summing all the CWEB

integrands ensures that the diagrams are marginally divergent. Thus, we regulate the soft

function by inserting a factor of | k3g |−η where k3g is the total momentum flowing from the n

to n̄ side. The marginal nature of the divergence assures us that this choice of regularization

is sufficient.

We may associate a collinear CWEB with each soft CWEB. This is true despite the fact

that there is only one eikonal line in the jet function. While there is no soft contribution

to the collinear function, after soft-bin subtraction, we may consider the soft limit of the

diagram for the express purpose of determining whether a diagram is part of a CWEB. This

is exactly what happens in the soft limit of the parton distribution function [97]. Thus given

our choice of regulator for the soft function we regulate the collinear function by inserting

a factor of | kg± |−η where kg is the total momentum flowing off the Wilson line. Note
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(a)

(b)

(c)

(d)

Figure 16. The correspondence between the full theory diagram and the diagrams in the effective

theory. The first column on the right is the soft function contribution while the next two columns

correspond to the collinear functions in the n and n̄ directions respectively. Not shown are mirror

diagrams in which n↔ n̄. The blob corresponds to possible hard pieces or soft non-hadronic (e.g. the

Higgs) final states. The darkened lines are eikonalized. The incoming lines in the collinear functions

are either quarks or gluons.

that the rapidity divergences in the collinear function will exponentiate (as required by the

cancellation of rapidity divergences), but the entire function, including UV divergences, does

not.

Let us illustrate how this works at two loops. On the left hand side of Fig. 16 we have

a full theory diagram. We will ignore hard gluons since they are handled trivially. The full

theory diagrams can be expanded around three effective theory diagrams (plus their mirrors).

The possibilities correspond to two softs, one soft one collinear and two collinears (in each

direction). The resulting factorized EFT diagrams are shown on the right hand side of the

figure. The purely soft diagram corresponds to a contribution to the O(α2
s) CWEB. Note that

at two loops the purely soft (or collinear) diagrams will not be marginally divergent, only the

sum of CWEB diagrams will be. The sum of the diagrams has no rapidity divergence. Note

that the factorization which occurs in the middle diagram in general will only occur once all

diagrams have been summed over. In Fig. 17 we have a case where the collinear function is

not purely eikonal. i.e. the gluon running straight across the cut is not part of any CWEB

and multiplies the exponentiated CWEB.

In the end the regularization is straight forward. In the soft function insert a factor of

| 2k3 |−η where k3 is the total momentum in the spatially longitudinal direction flowing from

n to n̄. In the collinear functions (whether they are beam or jet) insert a factor of | k± |−η,
where k is the total momentum flow out of the Wilson line. This defines process independent

collinear and soft functions, including TMDPDF’s. Once any such function is calculated it

can be used in any process as long as all the contributing function are calculated in the same
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(a)
(b)

(c)

Figure 17. The gluon running straight across the cut is not part of any CWEB and does not

exponentiate.

scheme. Note that not all schemes will share this property of universality. For instance,

suppose we chose to regulate the momentum flowing across the cut, in which case purely

virtual diagrams would be set to zero. This scheme is attractive for its relative simplicity of

definition. However, while this would give a sensible beam function or any such generalized

PDF, it would not regulate any collinear function which corresponds to a vacuum matrix

element since the total momentum across the cut will sum to a constant.

Finally we must consider the case of self energy diagrams. As we argued at the end of

the section on the Sudakov form factor, the self energies must be purely collinear since these

graphs are identical to the full theory graphs. All eikonal self energies must therefore vanish

after soft bin subtraction.

A.3 The Use of Other Regulators

As was briefly mentioned previously, it is certainly possible to use other regulators in this

formalism. We emphasize that the rapidity renormalization and resummation itself is reg-

ulator independent formalism, just as the renormalization and resummation of traditional

ultra-violet divergences are independent of dimensional regularization, but are often most

conveniently performed in dimensional regularization. To be able to renormalize and resum

rapidity divergences is also in the same sense a regulator independent procedure, though to

implement in any given instance some regulator must be used. Given that, there are certain

properties a regulator should fulfill:

• Gauge Invariance

• Preserve Non-Abelian Exponentiation

• Have a universal definition for generalized soft and jet functions

• Clearly delineates sectors

As an example of a regulator that can be engineered to satisfy all four conditions, we

consider the δ-regulator of [32]. At first, the δ-regulator does not manifestly preserve eikonal
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exponentiation, as can be seen even at the Abelian level where the famous eikonal identity

∑

i

∑

perms

1

n · k1 + δ

1

n · (k1 + k2) + δ
...

1

n · (k1 + .....ki) + δ
=

i∏

a=1

1

n · ka + δ
+O(δ) (A.8)

is no longer obeyed due to the O(δ) terms. Nonetheless by adding all the elements of a

CWEB only the δ divergences of a single log will appear, and these O(δ) terms can be safely

set to zero. That is to say, only the finite and log divergent pieces survive the δ → 0 limit:

in a CWEB, higher order terms are never needed. Further, the arguments outlined above

illustrating the rapidity integration finiteness of gauge dependent terms work as well with the

δ-regulator: the regulator can safely be set to zero in such terms.

The subtlety of the δ regulator is in the jet sectors. Before one can renormalize the δ

divergence in the jet sector, one must perform a “soft”-bin subtraction. This subtraction

does not remove the rapidity divergence, but rather forces that sector to have the correct

rapidity divergence [32]. This shifting of rapidity divergences in SCETII is analogous to zero-

bin subtractions in SCETI. The zero-bin in SCETI enforces each sector to have the correct

ultra-violet divergences, by removing the ultrasoft divergences which should not be attributed

to that sector. Any rapidity divergence completely disappears (sector by sector) in SCETI

(with the inclusion of the zero-bin) but ultra-violet divergences remain. This accentuates the

fundamental distinction between the two theories. Whereas SCETI has mode factorization

in the invariant mass, SCETII has mode factorization in rapidity. The evidence of such

factorization in a perturbative calculation is the divergences arising in the integrals of each

sector, whose renormalization allows for the resummation of large logarithms.

After the soft-bin subtraction of the jet sector has been performed, one can renormalize

both the rapidity and ultra-violet divergences. In the case of the δ-regulator, this will trade

the regulator δ for an arbitrary parameter analogous to our scale ν. The regulator itself

should be formally removed, and and arbitrary scale corresponding to the renormalization

point introduced. At this point one would see that the inclusion of the terms with a positive

power of δ in (A.8) was unnecessary.

B Soft-Bin Subtractions

In SCET the zero bin subtraction plays an important role even when it formally vanishes.

In SCETI collinear modes have invariant masses which are parametrically larger then the

ultra-soft modes. Thus when we calculate a collinear loop we should not expect an ultra-soft

divergence, only a collinear one. Invariably when calculating loops of the collinear modes one

does generate Ultra-soft (non-collinear) divergences which should be attributed to the ultra-

soft sector. By doing zero-bin subtraction (by zero-bin subtraction, we mean the subtraction

of the ultra-soft contribution to an integral, where the loop momenta is taken to scale as

Q(λ2, λ2, λ2) in light-cone coordinates) this IR divergence is morphed into a UV divergences.

This is sometimes called the “pull-up” mechanism [5, 98].

– 66 –



In SCETII since the soft and collinear modes are on the same mass shell hyperbola we do

a soft-bin subtraction. In doing a “soft-bin” subtraction we subtract the soft region, where

the loop momenta is taken to scale as Q(λ, λ, λ). The soft-bin of the collinear mode serves

the purpose of cutting off the integral at the proper spot on the rapidity hyperbola. This is

most clearly seen when one regulates with a δ regulator as was shown in [32]. In this work the

authors introduce a different regulator for each mode. The particle i propagator get replaced

with
1

(pi + k)2 −m2
i

→ 1

(pi + k)2 −m2
i +∆i

. (B.1)

For the two collinear modes, we will call the momenta p±. ∆ is designed to distinguish (cut-

off) the + momenta from the soft region. However, the emission of a k+ gluon of the p− lines

leads to an eikonal propagator P− of the form

P− =
1

k+ + ∆
p−

. (B.2)

These emission build up a Wilson line in the + sector, with an apparent violation of factor-

ization, since the collinear + sector now depends upon the wrong cut-off (i.e. the ± sector is

sensitive to ∆/p−). This cut-off must be pulled-up to the correct sector by the soft-bins and

this is exactly what the soft-bin accomplishes [32] 39.

When using an η regulator the soft-bin is scaleless and is thus vanishing. Its formal

subtraction from the collinear integrals has the same physical effect as in the case of the delta

regulator. To see this more clearly we may work with both the η and δ regulators where the

limit δ → 0 is take first. In this case the soft-bin subtraction acts to eliminate the “wrong”

delta cut-off and replace it with the RRG scale ν.

Finally, it is important to emphasize that the collinear matrix elements and Lagrangian

are well-defined only with the implicit soft or zero-bin subtractions [5, 32]. In particular, the

subtractions are necessary to make the matrix element gauge independent [32] in each sector.

This role of the soft-bin is unrelated to the issue of rapidity divergences, as we have proven

the rapidity divergences to be gauge independent. These soft-bin subtractions can often be

related to a matrix element of soft Wilson lines, and often these matrix elements of Wilson

lines are the inverse of the soft-function found in factorization. In this guise they appear in the

modern CSS formalism [70], where the inverse soft factors play a similar role to ensure gauge

independence. However, as is the case in section 6, the inverse of the soft-function cannot

be always identified with the soft-bin subtraction (even if the subtraction is representable as

some matrix element of Wilson lines), due to the differing kinematics and phase spaces of the

soft function and jet functions.

39Note that there is no collinear subtraction from the soft because the soft diagrams are insensitive to the

large scales and there can be no overlap. This is not true if there are external particles with soft momenta as

in the B meson decays discussed in [5] and in section (7).
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C Higgs b calculation

C.0.1 b-space TMDPDF

For completeness we note the impact parameter space results, where the transform is strictly

two-dimensional. At tree level, we have:

f̃
(0)αβ
⊥g/g (z,

~b) = δ(1− z)(2π)2
gαβ⊥
2

(C.1)

At one loop, we get:

f̃
(1)αβ
⊥g/g (z,

~b) = (2π)2
g2CAe

−ǫγE

8π2
Γ(1− ǫ)

1

ǫ

(
µbeγE

2

)2ǫ [

−2
δ(1− z)

η

( ν

ω

)η
gαβ⊥ +

pgg∗(z)

z
gαβ

−2ǫ2
(1− z)

z2
gαβt − 4ǫ(1− ǫ)

(1− z)

z2

(bαbβ

b2
+

1

2
gαβt

))]

(C.2)

Ignoring the traceless term and expanding in η and ǫ give:

f̃
(1div)αβ
⊥g/g (z,~b) = −(2π)2

g2CAe
−ǫγE

4π2
Γ(1− ǫ)

1

ǫ

(
µbeγE

2

)2ǫ δ(1− z)

η
gαβ

+
g2CA
8π2

1

ǫ
gαβ⊥

(

pgg∗(z)

z
− δ(1− z) ln

( ν2

ω2

)
)

(C.3)

f̃
(1fin)αβ
⊥g/g (z,~b) = 2παsCAg

αβ
⊥ ln

(µ2b2e2γE

4

)
(

pgg∗(z)

z
− δ(1− z) ln

( ν2

ω2

)
)

(C.4)

We can find the appropriate renormalization factor through the matching procedure to the

PDF (see (5.49)):

Z
(1)
f⊥

(ν,~b, µ) = 1 +
αCAe

−ǫγE

π
Γ(1− ǫ)

1

ǫ

(
µbeγE

2

)2ǫ 1

η
− αsCA

2πǫ

(1

2
ln
ν2

ω2
+

1

4CA
β0

)

(C.5)

The evolution equations satisfied are

µ
d

dµ
f̃αβ⊥g/P (z,

~b, µ, ν) = γf⊥µ (ν)f̃αβ⊥g/P (z,
~b, µ, ν) (C.6)

ν
d

dν
f̃αβ⊥g/P (z,

~b, µ, ν) = γ̃f⊥ν (bµ)f̃αβ⊥g/P (z,
~b, µ, ν) (C.7)

At one loop we have

γ̃f⊥µ (ν) = −αsCA
π

ln
( ν2

ω2

)

(C.8)

γ̃f⊥ν (bµ) = −αsCA
π

ln
(µ2b2e2γE

4

)

(C.9)
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C.0.2 b-space Soft Function

In impact parameter space we have for the tree-level result and one-loop correction:

S̃(0)(~b) = (2π)2 (C.10)

S̃(1)(~b) = (2π)2
2−2ǫ−ηCAg

2

4π2
eǫγEνηµ2ǫb2ǫ+η

Γ(−ǫ− η
2 )

Γ
(
1 + η

2

)
2Γ(η2 )Γ(−η)

Γ
(
−η

2

) (C.11)

Separating out the divergent and finite parts gives:

S̃(1)div(~b) = (2π)2
g2CA
2π2

1

η
Γ(−ǫ)e−ǫγE

(bµeγE

2

)2ǫ
− g2CA

4π2ǫ2
− g2CA

4π2ǫ
ln
(µ2

ν2

)

(C.12)

Z
(1)
S (~b) = 1− αsCA

π

[
2

η
Γ(−ǫ)e−ǫγE

(bµeγE

2

)2ǫ
− 1

ǫ2
− 1

ǫ
ln
(µ2

ν2

)]

(C.13)

S̃R(1)(~b) = 2παsCA

(

2 ln
(b2µ2e2γE

4

)

ln
(b2ν2e2γE

4

)

− ln2
(b2µ2e2γE

4

)

+
π2

6

)

(C.14)

The evolution equations satisfied are

µ
d

dµ
S̃(~b, µ, ν) = γS(µ, ν)S̃(~b, µ, ν) (C.15)

ν
d

dν
S̃(~b, µ, ν) = γ̃Srap(bµ)S̃(~b, µ, ν) (C.16)

At one loop we have

γ̃Sµ (µ, ν) = −2αsCA
π

ln
(µ2

ν2

)

(C.17)

γ̃Sν (bµ) =
2αsCA
π

ln
(µ2b2e2γE

4

)

(C.18)

D Jet Broadening Resummation in Fourier-Laplace Space

For completeness, we will also perform RRG in Fourier-Laplace space, as in comparison to

some older literatures. The factorization theorem in b-τ space can be written as

1

σ0

d2σ

dτRdτL
= H(Q2, µ)

∫

db1 db2Jn(Q, τR, b1) Jn̄(Q, τL, b2)S(τR, τL, b1, b2), (D.1)

where

Jn(Q, τR, b1) ≡ Ω2−2ǫb
1−2ǫ
1

∫ ∞

0
dene

−enτR

∫
d2−2ǫp1
(2π)2−2ǫ

e−ip1⊥·b1Jn(en, Q, ~p1⊥). (D.2)
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The soft function in b− τ space is given by

S(τR, τL, b1, b2) =g
2w2CFµ

2ǫνη
∫

deRs e
−eRs τR

∫

deLs e
−eLs τL

∫
ddk

(2π)d
δ(+)(k2)

|n.k − n.k|−η
n.k n.k

×
[

θ(k3)δ

(

eRs − |kt|
Q

)

δ(eLs )e
i~b1·~kt + θ(−k3)δ

(
eRs
)
δ

(

eLs − |kt|
Q

)

ei
~b2·~kt

]

S(τR, τL, b1, b2) =
g2w2CFΩ2−2ǫ

4(2π)3−2ǫ
Γ(−η − 2ǫ)

21−ηΓ(12 − η
2 )Γ

(η
2

)

√
π

(D.3)

×
[(

ντR
Q

)η (µ2τ2R
Q2

)ǫ

2F1

(−η − 2ǫ

2
,
1− η − 2ǫ

2
; 1− ǫ;−b

2
1Q

2

τ2R

)

+

(
ντL
Q

)η (µ2τ2L
Q2

)ǫ

2F1

(−η − 2ǫ

2
,
1− η − 2ǫ

2
; 1− ǫ;−b

2
2Q

2

τ2L

)]

.

The renormalized soft function to NLO can be obtained by taking the finite part of Eq.D.3

SR(τR, τL, b1, b2) =
g2CF
4π2



− ln2




eγEµ(τR +

√

b21Q
2 + τ2R)

2Q



+ ln
µ2

ν2
ln

(

eγEµ(τR +
√

b21Q
2 + τ2)

2Q

)

+Li2

(τR −
√

b21Q
2 + τ2R

τR +
√

b21Q
2 + τ2R

)

− 5π2

12



+ (b1 ↔ b2, τR ↔ τL) (D.4)

D.1 Renormalization Group Equations

From the divergent part of theEq.D.3, we can get the renormalization factor

ZS(τR, τL, b1, b2) = 1 +
g2w2CF
8π2ǫ2

+
g2w2CF
8π2ǫ

ln
(µ2

ν2

)

(D.5)

− g2w2CF
4π2

e−ǫγE
Γ(−2ǫ)

Γ(1− ǫ)

1

η

[(µτRe
γE

Q

)2ǫ

2F1

(

−2ǫ,
1− 2ǫ

2
; 1− ǫ;−b

2
1Q

2

τ2R

)]

− g2w2CF
4π2

e−ǫγE
Γ(−2ǫ)

Γ(1− ǫ)

1

η

[(µτLe
γE

Q

)2ǫ

2F1

(

−2ǫ,
1− 2ǫ

2
; 1− ǫ;−b

2
2Q

2

τ2L

)]

,

The µ-anomalous dimensions follow in standard fashion, and the ν-anomalous dimensions can

be obtained by using Eqs.4.19 and 4.26

γµS(µ, ν) =
αsCF
π

ln
µ2

ν2
(D.6)

γνS(τR, τL, , b1, b2, µ) = −2αsCF
π



ln




µ eγE (τR +

√

b21Q
2 + τ2R)

2Q



+ ln




µ eγE (τL +

√

b22Q
2 + τ2L)

2Q









(D.7)

To eliminate the large logarithms we may run in both µ and ν to some fixed scale. That is

we may write

S(µ, ν) = US(µ, µS ; νS)VS(ν, νS ;µ)S(µS , νS) (D.8)
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where

VS(ν, νs;µ) =Exp
[

− 2αsCF

π
ln
( ν

νS

)

ln
(µ eγE

2Q
(τR +

√

b21Q
2 + τ2R)

)]

× Exp
[

− 2αsCF

π
ln
( ν

νS

)

ln
(µ eγE

2Q
(τL +

√

b22Q
2 + τ2L)

)]

=




µ eγE (τR +

√

b21Q
2 + τ2R)

2Q





−ωs


µ eγE (τL +

√

b22Q
2 + τ2L)

2Q





−ωs

(D.9)

US(µ, µS , ν) =Exp

{

−2

[

Γ0

2β0

(

4π

αs(ν)

(

ln
[ αs(µ)

αs(µS)

]

− αs(µS)

αs(µ)
− 1
)

(D.10)

+
(Γ1

Γ0
− β1
β0

)( αs(µ)

αs(µS)
− ln

[ αs(µ)

αs(µS)

]

− 1
)

− β1
2β0

ln2
[ αs(µ)

αs(µS)

]
)]}

(D.11)

and

ωs(ν, νS) =
2αsCF
π

ln
( ν

νS

)

. (D.12)

The hard function, with no running in nu, has the standard evolution,

H(Q,µ) = U(µ, µH)H(Q,µH), (D.13)

UH(µ, µH) = Exp

{

2

[

Γ0

2β0

(

4π

αs(Q)

(

ln
[ αs(µ)

αs(µH)

]

− αs(µH)

αs(µ)
− 1
)

(D.14)

+
(Γ1

Γ0
− β1
β0

)( αs(µ)

αs(µH)
− ln

[ αs(µ)

αs(µH)

]

− 1
)

− β1
2β0

ln2
[ αs(µ)

αs(µH)

]
)]}

.

D.2 Resummation at NLL

Resummed broadening distribution to NLL in the Laplace space including both tradition RG

and RRG depends on tree-level hard, jet, and soft function, plus two-loop cusp and one-loop

non-cusp hard anomalous dimension, together with one-loop soft ν-anomalous dimension.

The hard function, with no rapidity divergence and therefore no ν running, are as standard

hard function.

The resummed left and right broadening spectrum to NLL can be written accordingly as

1

σ0

d2σNLL

dτRdτL
=UH(µ, µH)H

(0)(Q,µH) (D.15)

×
∫ ∞

0
db1

∫ ∞

0
db2J

(0)
n (τR, b1)J

(0)
n̄ (τL, b2)VS(ν, νS , µ)S

(0)(τR, τL, b1, b2)

(D.16)

in which the jet function in b− τ space as defined in Eq.D.2 calculated at tree level as

J (0)
n (τR, b1) =

Q2τR b1

(τ2R + b21Q
2)3/2

. (D.17)
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We can then write Eq.D.15 as

1

σ0

d2σ

dτRdτL
=UH(µ, µH)H

(0)(Q,µH)

∫ ∞

0
db1

∫ ∞

0
db2

Q2τRb1

(τ2R + b21Q
2)3/2

Q2τLb2

(τ2L + b22Q
2)3/2

×




µ eγE (τR +

√

b21Q
2 + τ2R)

2Q





−ωs


µ eγE (τL +

√

b22Q
2 + τ2L)

2Q





−ωs

(D.18)

=H(Q,µ)

(

2
2F1(1, 2, 2 + ωs,−1)

1 + ωs

)2(µτR
Q

)−ωS
(
µτL
Q

)−ωS

(D.19)

The left and right broadening distribution can then be calculated by performing inverse

Laplace transformation

1

σ0

d2σ

deRdeL
=

∫ i∞+γ

−i∞+γ

dτR
2πi

eeRτR
∫ i∞+γ

−i∞+γ

dτL
2πi

eeLτL
1

σ0

d2σ

dτRdτL
(D.20)

=H(Q,µ)
4e−2γEωs

Γ2(ωs)

Q2

µ2

[( µ

eRQ

)1−ωs
]

+

[( µ

eLQ

)1−ωs
]

+

(

2F1(1, 2, 2 + ωs,−1)

1 + ωs

)2

.

For total jet broadening, we have

1

σ0

dσ

de
=

∫ i∞+γ

−i∞+γ

dτR
2πi

eeRτR
∫ i∞+γ

−i∞+γ

dτL
2πi

eeLτLδ(e− eL − eR)
1

σ0

d2σ

dτRdτL

=

∫ i∞+γ

−i∞+γ

dτ

2πi
eeτH(Q,µ)

(

2
2F1(1, 2, 2 + ωs,−1)

1 + ωs

)2(µτ

Q

)−2ωS

=H(Q,µ)
4e−2γEωs

Γ(2ωs)

(

2F1(1, 2, 2 + ωs,−1)

1 + ωs

)2 1

e

( µ

eQ

)−2ωs

. (D.21)

To compare with standard the Total Jet Broadening (BT ) definition[3], where BT = 1
2e, we

write the broadening distribution as

1

σ0

dσ

dBT
= H(Q,µ)

e−2γEωs

Γ(2ωs)

1

BT

( µ

BTQ

)−2ωs 4

2−2ωs

(

2F1(1, 2, 2 + ω,−1)

1 + ωs

)2

(D.22)

equivalent to that is derived in the physical pT-e space using the relationship between Hy-

pergeometric and incomplete Beta function.

E Transforms

We collect here some transforms needed for resummations or deriving plus distribution prop-

erties for both jet broadening and higgs.

E.0.1 Fourier Transforms For Higgs spectrum

∫

dΩde
ib.k = Γ

(
d

2

)

2
d
2Ωd(bk)

− d−2
2 J d−2

2
(bk) (E.1)

∫
d2~p⊥
(2π)2

ei
~bt.~p⊥

1

µ2

(µ2

p2⊥

)1+α
= −e

−2αγE

4πα

Γ(1− α)

Γ(1 + α)

(b2µ2e2γE

4

)α
(E.2)
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Expanding both sides in α and identifying powers of α gives the transforms of the plus

distributions Ln(µ, p⊥).

E.0.2 Transforms For Jet Broadening

Transforms:
∫ ∞

0
dx xαJβ(xb)e

−xτ = 2−βbβτ−α−β−1Γ(1 + α+ β)

Γ(1 + β)
2F1

(
1

2
(1 + α+ β),

1

2
(2 + α+ β); 1 + β;− b2

τ2

)

(E.3)

Inverse Laplace Transforms:

∫ γ+i∞

γ−i∞

dτ

2πi
eeτ (τ +

√

b2 + τ2)ω = θ(e)ωbω
J−ω(be)

e
(E.4)

Inverse Bessel Transform:
∫ ∞

0
db b1−ωJ0(bp)Jω(be) =

θ(e− p)

Γ(ω)

21−ωe−ω

(e2 − p2)1−ω
(E.5)

F Plus-Distributions over Vector Domains

Both the jet broadening and Higgs transverse momentum cross-sections involve convolutions

in vector quantities. Expressing the renormalized functions directly in momentum space

requires plus distributions that automatically perform the subtractions necessary to render

convolutions finite. We give definitions for these plus distributions, to make transparent the

renormalization scale dependence of the functions, and give useful identities for their manip-

ulation. For the purposes of this paper, we consider mostly one class of these distributions:

Lαn
(

µ, ~p;λ
)

=
1

2πµ2

[
(µ2

~p 2

)1+α
lnn
(µ2

~p 2

)
]λ

+

(F.1)

Intuitively, these are distributions that render integrals over a vector domain convergent when

weighted with a well-behaved function. This is accomplished by subtracting away an integral

over a disc of radius λµ (formally, Dλµ = {~p : |~p| < λµ}) about the origin in the ~p-space.

Thus:
∫

Dλµ

d2~q

(2π)2
Lαn
(

µ, ~q;λ
)

= 0. (F.2)

From this class, there are important limits that appear frequently, and are related by deriva-

tives. First we define the notation

Lα
(

µ, ~p;λ
)

= Lα0
(

µ, ~p;λ
)

, (F.3)

Ln
(

µ, ~p;λ
)

= L0
n

(

µ, ~p;λ
)

.
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Then we have the relation

Ln
(

µ, ~p;λ
)

= lim
β→0

dn

dβn
Lβ
(

µ, ~p;λ
)

. (F.4)

Henceforth, we will also assume the notation that when the argument λ is absent it implies

it is set equal to 1.

In what follows, we will give a definition based on dimensional regularization since it is

extremely useful to perform multidimensional integrals. Any other intermediate regularization

is also fine, since all divergent behavior cancels in integrals with well-behaved test functions,

and so any such regulator will cancel after performing the integral. We have checked, for

instance, that the use of a limit based definition with a mass regulator leads to the same

expressions.

F.1 Definition in Dimensional Regularization

One simple way to define a plus-distribution with vector arguments is dimensional regular-

ization. This is especially appealing given the well-developed nature of the technology and

its familiarity. Assume g(~k) is a reasonable test function, that is, has no singularities at

the origin, and falls off at infinity fast enough. For physical applications, these criteria are

easily met. The plus-distribution,
[

f(µ, ~p)
]λ

+
, for a function f that has at most a power-like

singularity at the origin and the boundary condition on the disc Dλµ, is defined as:

∫
d2~p

(2π)2
g(~p)

[

f
(

µ, ~p
)]λ

+
= lim

ǫ→0+
µ−2ǫ

∫
d2+2ǫ~p

(2π)2+2ǫ
g(~p)

{

f
(

µ, ~p
)

−µ2ǫI~pBǫ[f ;µ, λ]
}

. (F.5)

We use the notation:

Bǫ[f ;µ, λ] = µ−2ǫ

∫

Dλµ

d2+2ǫ~q

(2π)2+2ǫ
f
(

µ, ~q
)

, (F.6)

Bǫ[f ;µ] = Bǫ[f ;µ, 1] . (F.7)

Formally, all integrations are in two dimensions as long as the [·]+ symbols are used, though

implicitly the integrations are in 2 + 2ǫ dimensions where analytical continuation on ǫ is

assumed as always. µ−2ǫ that appears on right hand side of eqn. (F.5) is present only

to formally control the dimensions40. The use of I~p makes the transition between these

measures less cumbersome. Put simply, I~p = (2π)2δ(2)(~p) or (2π)2+2ǫδ(2+2ǫ)(~p) depending

on the context. Further, restriction to discs about the origin is not necessary, but merely

convenient. Any simply connected region containing the origin can serve to define the plus-

distribution. Finally, the boundary term, Bǫ, by definition gives the following identity:

∫

Dλµ

d2~q

(2π)2

[

f
(

µ, ~q
)]λ

+
= 0 . (F.8)

40Any other momentum scale will equivalently serve the purpose.
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when we replace the test function g(~q) = Dλµ(~q). Two different boundary conditions for the

plus-distributions are related by:
[

f
(

µ, ~p
)]λ1

+
−
[

f
(

µ, ~p
)]λ2

+
= −I~p

(

Bǫ[f ;µ, λ1]−Bǫ[f ;µ, λ2])
)

, (F.9)

For the distributions in (F.3), we can give explicit expressions for the boundary terms in

dimensional regularization41:

Lα
(

µ, ~p;λ
)

=
1

2πµ2

(µ2

~p 2

)1+α
− µ2ǫI~p

2π
Bǫ[Lα;µ, λ] , (F.10)

Bǫ[Lα;µ, λ] =
λ−2α+2ǫ

(4π)1+ǫΓ(1 + ǫ)(ǫ− α)
, (F.11)

Ln
(

µ, ~p;λ
)

=
1

2π~p 2
lnn
(µ2

~p 2

)

− µ2ǫI~p
2π

Bǫ[Ln;µ, λ] , (F.12)

Bǫ[Ln;µ, λ] =
Γ(1 + n)

(4π)1+ǫΓ(1 + ǫ)ǫ
λ2ǫ

(
n∑

m=0

(−1)n−m

Γ(1 + n−m)ǫm
lnn−m(λ2)

)

, (F.13)

where on the right-hand side, ǫ appears explicitly and ~p is understood to be a vector in

2 + 2ǫ dimensions. It is important to emphasize that the limit ǫ → 0 can only be taken in

expressions where the limit is manifestly finite. In most applications this occurs only after

evaluating integrals like (F.5), or for instance in the difference between two different boundary

terms as in (F.9).

The power-law distribution Lα(µ, ~p;λ) becomes especially simple with the λ = ∞ bound-

ary condition. In this case, the boundary term vanishes, and we have the identification

1

µ2

[(µ2

~p 2

)1+α]∞

+
=

1

µ2

(µ2

~p 2

)1+α
. (F.14)

It is useful to give the expansion of this distribution as a power series in α

1

2πµ2

[(µ2

~p 2

)1+α]∞

+
= − I~p

8π2α
+

∞∑

n=0

αn

n!
Ln
(

µ, ~p
)

. (F.15)

F.2 Rescaling

We exhibit the scaling identities analogous to those defined for scalar domain distributions,

for example see [99]. For the distributions Lα
(

µ, ~p
)

and Ln
(

µ, ~p
)

, these are essentially the

same as in the scalar case and take the following form in our notation:

Lα
(

ρµ, ~p
)

= ρ2αLα
(

µ, ~p
)

− I~p

2π

ρ2α − 1

4πα
, (F.16)

Ln
(

ρµ, ~p
)

=
n∑

m=0

nCm lnm(ρ2)Ln−m
(

µ, ~p
)

− I~p

2π

lnn+1(ρ2)

4π(n+ 1)
, (F.17)

where nCm = Γ(1+n)
Γ(1+m)Γ(1+n−m) .

41Here we have pulled an explicit 1/2π compared to definition (F.6) for convenience.

– 75 –



F.3 Derivatives and Integrals

A few important derivative identities are:

µ2
d

dµ2
L0

(

µ, ~p
)

= − I~p

(2π)2
(F.18)

µ2
d

dµ2
Ln
(

µ, ~p
)

= nLn−1

(

µ, ~p
)

. (F.19)

We can easily integrate the distribution Lα(µ, ~p) over a disc of radius λµ by using the

relations (F.8) and (F.9):

∫

Dλµ

d2~p

(2π)2
Lα
(

µ, ~p
)

=

∫

Dλµ

d2~p

(2π)2

{

Lα
(

µ, ~p;λ
)

− I~p

2π

(

Bǫ(Lα;µ)−Bǫ(Lα;µ;λ)
)
}

(F.20)

= − 1

8π2α

(

λ−2α − 1

)

(F.21)

Similarly:
∫

Dλµ

d2~p

(2π)2
Ln
(

µ, ~p
)

=
(−1)n

8π2(n+ 1)
lnn+1(λ2) . (F.22)

F.4 Convolutions

We have for the convolution of Lα
(

µ, ~p
)

and Lβ
(

µ, ~p
)

:

∫
d2~p

(2π)2
Lα
(

µ,~k − ~p
)

Lβ
(

µ, ~p
)

=
U(α, β)

2π
Lα+β

(

µ,~k
)

− B[Lα;µ]
2π

Lβ
(

µ,~k
)

− B[Lβ ;µ]
2π

Lα
(

µ,~k
)

+
I~k

(2π)2

{

U(α, β)B[Lα+β ;µ]−B[Lα;µ]B[Lβ ;µ]
}

(F.23)

U(α, β) =
Γ(1 + α+ β)

4πΓ(1 + α)Γ(1 + β)

Γ(−α)Γ(−β)
Γ(−α− β)

. (F.24)

Using the fact that logarithmic distributions are related to power-law ones via derivatives, one

can use this convolution formula (F.23) to derive identities for the convolution of logarithmic

distributions. However, care must be taken in the limit of vanishing power parameters.

G Structure of divergence for an integral in sec. 7.3

We wish to find the divergence of the following integral from sec. 7.3,

Ileft =
eǫγEµ2ǫ

(4π)ǫ
νη
∫

ddk

(2π)d
|2k3|−η

[k2 − ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]
. (G.1)

Consider the auxiliary integral

I
(aux)
left =

eǫγEµ2ǫ

(4π)ǫ
νη
∫

ddk

(2π)d
|2k3|−η

[−ℓ+k− + i0] [k2 −m2 + i0] [−p−k+ + i0]
. (G.2)
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For the difference, Ileft − I
(aux)
left , with some effort it can be shown that

Ileft − I
(aux)
left =

−im2

16π2p− (ℓ+)2
eǫγEµ2ǫνη

2η

[
∫ ∞

0
dk3 dk

2
t (G.3)

(
k2t
)−ǫ

k−η3
(
k2t +m2

)√

k23 + k2t +m2
[√

k23 + k2t +m2 − k3 − m2

ℓ+
− i0

] + η-finite

]

,

where the integral shown is the only integral that has a rapidity divergence. The divergence

appears when k3 → ∞. So, as far as the rapidity divergences are concerned, it has the same

asymptotic properties as the integral

Iasymp =
i

16π2p−ℓ+
eǫγEµ2ǫνη

2η

∫ ∞

0
dk3 dk

2
t

(
k2t
)−ǫ

k−η3
(
k2t +m2

)√

k23 + k2t +m2

=
i

16π2p−ℓ+
eǫγE

2η
Γ
(
1
2 − η

2

)

√
π

Γ
(
ǫ+ η

2

)

η

(
µ2

m2

)ǫ ( ν

m

)η
. (G.4)

In other words, Ileft − I
(aux)
left − Iasymp does not have any rapidity divergence. Since, I

(aux)
left is

the same as Icenter of eqn. (7.4) we conclude

Ileft =
−i

16π2p−ℓ+

[
eǫγEΓ(ǫ)

η

(
µ2

m2

)ǫ

+ η-finite

]

. (G.5)
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