
International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

A Formalization of Digital Forensics1

Ryan Leigland
University of Idaho

Axel W. Krings2

ID-IMAG, France

Abstract

Forensic investigative procedures are used in the case of an intrusion into a
networked computer system to detect the scope or nature of the attack. In many
cases, the forensic procedures employed are constructed in an informal manner
that can impede the effectiveness or integrity of the investigation. We propose a
formal model for analyzing and constructing forensic procedures, showing the
advantages of formalization. A mathematical description of the model will be
presented demonstrating the construction of the elements and their relationships.
The model highlights definitions and updating of forensic procedures,
identification of attack coverage, and portability across different platforms. The
forensic model is applied in a real-world scenario with focus on Linux and OS X.

Introduction

collected, and may diminish

e value of the evidence in legal proceedings [2].

gally

. Thus, it is
portant to ensure that procedures are strictly defined and correct.

Incidents of computer related crime continue to rise each year. The CERT
Coordination Center reported over 135,000 incidents in 2003, a 67% increase
from 2002 [1]. Consequently, the need for forensics techniques and tools to
discover attacks is also rising. Many forensic investigators have developed ad-
hoc procedures for performing digital investigations. The informal nature of these
procedures can prevent verification of the evidence
th

The science of digital forensics has been defined as “the process of identifying,
preserving, analyzing, and presenting digital evidence in a manner that is le
accepted” [3]. It is sometimes referred to as forensic computing, computer
forensics, or network forensics. Differences in nomenclature notwithstanding, the
goal is to preserve evidence in a way that satisfies legal requirements
im

This paper presents a framework to formalize certain aspects of the forensic
discovery process to address those concerns. Abstraction layers are applied to
attacks and operating systems to allow for the construction of models. These

1 This research was funded by the Scholarship for Service program from the National Science
Foundation, the CNRS and Region Rhone-Alpes (Ragtime project).
2 The author is on sabbatical leave from the University of Idaho.

www.ijde.org

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

re

amework can result in more robust and less work-intensive forensic procedures.

earch

 framework
rmalizes the techniques used to extract or harvest evidence.

ho
r

h

ctiveness and

ake the job of the investigator easier and more thorough.

ackground

sic techniques. At the DFRWS,
pafford listed four major deficiencies [5].

models can then verify that the forensic procedures used in an investigation we
thorough and complete. The framework also makes the task of maintaining a
forensic procedure easier and less error-prone. Thus, the application of the
fr

This framework exists as part of a larger effort to apply formalization to the
science of digital forensics, e.g. [2] and [4]. The 2001 Digital Forensics Res
Workshop (DFRWS) developed a six-stage process to describe the entire
lifecycle of a computer forensic investigation, from identification through
presentation [5]. The framework discussed here falls into the third stage,
collection. The collection stage is described as “extracting or harvesting
individual items or groupings [of evidence]” [4]. In this case, the
fo

The clearest beneficiaries of this work are practicing investigators in the field w
are tasked with maintaining procedures for investigating a variety of compute
systems for an increasingly wide array of attacks. That task becomes muc
more manageable and robust by applying the principles outlined here. Of
course, neither this nor any other technique can perform the job of a forensic
investigator. But the framework can significantly improve effe
m

B

There are limitations to current digital foren
S

Procedural: In order to comply with traditional forensic requirements, all data
must be gathered and examined for evidence. However, a modern comp
system may yield many gigabytes of data to be analyzed. This presents
challenges at all stages, from gathering the data to storing and finally analyzing
the data. To date, no standard solution has emerged for handling this problem.
One common approach is to extract only relevant information while the sy
still running, which limits the amount of data gathered. This is called live
forensics, and while it can help with these procedural problems by l

uter

stem is

imiting the
mount of data collected, there is a certain risk of data corruption. a

Technical: Computer technology is a rapidly changing field, which means that
computer crimes are also rapidly changing. In addition, the computer systems
under investigation evolve more rapidly than the tools to examine them. The
ubiquity of computers in today’s society means that computer crimes can occur i
all jurisdictions, from large urban centers to small towns that lack the resources
to train investigators. These factors combine so that inexperienced investiga

n

tors
re forced to examine computer crimes with inadequate and outdated tools. a

www.ijde.org

2

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Social: A lack of standardization of procedures has led to uncertainties about
effectiveness of current investigation techniques. This in turn has led to sub-
optimal use of resources, as data is gathered that may not be useful and store
for longer periods than are necessary. Additionally, privacy concerns about
investigation suspects can hinder the forensic process. In short, it is s

 the

d

till unclear
ow to think about digital evidence and its role in prosecuting crimes. h

Legal: The use and bounds of digital evidence in legal proceedings is s
unclear. Cu

till
rrent techniques may not be rigorous enough to use in the

ourtroom.

rs

le and can be viewed as “one-shot” answers that
annot solve the general case.

orensic Model

ss

g
ne

 and their
e described to draw certain

onclusions about forensic procedures.

he Process

m

ill be

at correspondence can be
roken down by considering the following questions:

Question 1: Given a known attack, what is the forensic procedure to discover it?

c

In general, the methods of gathering evidence have been developed ad-hoc by
forensic investigators in various locations, based on personal experience and
expertise. In some cases, specific guides have been crafted to aid investigators
(e.g. [12]). These represent an attempt to standardize practices for investigato
who lack the necessary expertise to develop their own procedures. However,
these solutions are not extensib
c

F

The goal of the model is to allow for a formalization of the forensic proce
applied to a compromised computer system. In brief, it entails a logical
breakdown of a computer system into smaller system components that can be
manipulated to create or modify forensic procedures. An attack on the computer
system is characterized by the various components that it affects. By examinin
the appropriate components on a computer system, it is possible to determi
whether a given attack occurred or not. This examination, referred to as a
forensic procedure, is linked to the system components and thus to an attack.
From this basis, ways to manipulate the computer system components
corresponding forensic counterparts can b
c

T

As indicated before, the aim is to transform the notion of forensic procedure fro
a mere collection of steps to a mathematical relationship between a computer
system and the attacks that can affect it. This mathematical relationship w
most useful if it can give a specific correspondence between the forensic
procedure and the attacks it can discover. Further, th
b

www.ijde.org

3

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

New attacks on computer systems are being created and unleashed constantly.
It is not obvious whether existing forensic procedures have the ability to detect
these new attacks. Strictly defining the relationship between attacks and
discovery procedures makes this clear.

Question 2: For a given forensic procedure, what known attacks can be
identified? This is useful information for a variety of reasons. If an attack is
discovered on a target computer, knowing the abilities of the forensics procedure
that discovered it can give confidence in the results. The converse also holds
true; if an attack is not discovered, a formal analysis of the forensics procedure
can show whether the attack was not present or if the procedure was merely
incapable of discovering it. In general, the current state of forensics does not
provide a means for listing the abilities of a forensic procedure. A mathematical
model can provide this.

Question 3: Given new information about a known attack, how can the forensic
procedure be updated to discover it? A strictly defined relationship between the
attack and the forensic procedure makes clear how to keep procedures current at
all times.

Question 4: Given a new computer system (or operating system), how can a
forensic procedure be created or ported it? As before, knowing the relationship
between attack and forensics procedure can clarify this process. By enumerating
the characteristics of the new system, it becomes possible to adapt existing
procedures or create new procedures that can discover attacks on the new
system.

The forensic framework presented here will provide the ability to answer all of the
preceding questions. Keeping those questions in mind as the impetus for the
framework can make the ensuing discussion easier for the reader to follow.

Assumptions

To alleviate potential confusion in the discussion, it is worth noting the difference
between a forensics procedure and an intrusion detection system (IDS). An IDS
is designed to detect attacks at the time they occur, including known and
unknown attacks. This requires not only an understanding of known attacks, but
also a way to recognize new attacks. In contrast, the forensics model assumes
that an attack has been committed and has left some trace to be discovered.
Then the forensic procedure attempts to discover which known attack has taken
place. Thus, we must assume that the characteristics of the attack are already
well understood at the time of the forensic investigation. This corresponds to the
reality of computer forensics, in which organizations like CERT create exhaustive
reports that are later used by forensic investigators. Further, it is left to these
experts to discover and profile new attacks as they arise.

www.ijde.org

4

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

This also gives rise to the notion of expert versus forensic investigator. An expert
discovers and describes attacks and can be thought of as the expert in an
organization like CERT/CC, investigating and describing the attack. This person
will likely not be involved with the creation or use of forensic procedures. A
forensic investigator, on the other hand, will be actively involved in utilizing the
forensic model. The term computer and network forensic technician is also used
to describe the role of the investigator [6]. Understanding these roles can aid in
comprehending the use and scope of the framework.

The term attack is used in a relatively broad sense. Since forensic investigations
rely on interpreting evidence to discover a crime, computer forensics requires
evidence to detect an attack [3, 7]. In a somewhat circular fashion, an attack is
loosely defined here as an unwanted intrusion on a computer system that leaves
evidence. While intrusions that leave no trace are indeed a problem, they are
outside the bounds of forensics and thus have no bearing on the current
discussion. Examples of attacks are viruses, Trojans, or denial-of-service
bombardments.

Finally, it should be noted that the framework is generally designed for working in
the context of a "live" discovery process (in which the target computer is still
running). A discussion of the relative merits of live forensics is beyond the scope
of this document. However, it is clear that the increasing complexity and size of
computer systems ensures that live forensics will be an important task for the
foreseeable future [3].

General Description

Though a rigorous description of the model will be presented later, it will be
useful to describe the general characteristics first.

To answer the previously stated questions, the model defines abstract
representations of attacks, computer systems, and forensic procedures, and
formalizes their relationship. The representations are composed of abstract
primitive elements that will be grouped and manipulated to achieve specified
objectives. Further, mappings are defined to translate abstract elements into
concrete, real-world actions, which are the specific steps taken by the
investigator.

The abstract representations can be organized into the hierarchy shown in Figure
1. The relationship among attacks, forensic procedures, and actions will later be
described within the context of OS independence and different operating
systems. Forensic procedures are derived from attacks, in order to ensure the
ability of the procedure to detect a given attack on an operating system. The
forensics procedures are defined to be independent of the operating system, to

www.ijde.org

5

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

allow for translation of procedures across different operating systems. Forensic
actions are specific to an OS and are derived from the forensic procedures.
Thus, given the information about a specific attack, the model allows for the
specification of a set of forensic actions sufficient to identify the attack.
Alternatively, given a set of actions, the model allows for the identification of the
attacks this set can detect.

Figure 1: Model Hierarchy

Example: Trinoo
The model will be illustrated using the distributed denial of service (DDoS) client
Trinoo [8]. Trinoo is an early DDoS tool that was active in the late 1990's, before
being superseded by more sophisticated clients. Unable to spread by itself,
Trinoo relied on scripts that exploited various known weaknesses. Trinoo has
been chosen trinoo for a variety of reasons: it is very well understood, affects a
small set of components, and works across various computer platforms.

Much of the following discussion will use the operating systems Linux and Mac
OS X (BSD/Darwin) as examples. The particular variant of Linux is not important
for our purposes. These systems were chosen because they are somewhat
similar and thus are easy to contrast. Further, forensic processes on Linux are
fairly well-defined, whereas on Mac OS X (referred to as OS X henceforth) they
are less established. Finally, the attack Trinoo can affect both operating
systems. Taken together, these factors provide an ideal setting for explaining
and applying the framework.

It is not necessary for the reader to be familiar with the intricacies of either
operating system. A basic understanding of UNIX-like operating systems will be
helpful, but the only required knowledge is a general familiarity with the basic
functions of operating systems. It is also not necessary for the reader to fully
understand all the details of the Trinoo DDoS client. It suffices to know that
Trinoo can be detected by looking for the “fingerprints” shown in Table 1.

www.ijde.org

6

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Characteristic
The presence of a configuration file named “…”
An opening on port 31335
The presence of a process named “httpd”

Table 1: Trinoo Attack Characteristics

By themselves, none of the three indicators prove that Trinoo is installed on the
system (especially since the process “httpd” is more likely to be a web server
than a Trinoo daemon). When taken together, though, they can give evidence
that Trinoo is in fact present. Since none of the indicators are definitive by
themselves, all possible indicators must be investigated before drawing a
conclusion.

Terms and Definitions
At the basis for the forensics model are two primitive types, i.e. components and
forensic primitives. Informally, components are abstract elements that comprise
a computer system, e.g. “password file”, whereas forensic primitives are
abstractions that examine the component for evidence, e.g. “examine password
file.” These basic types will be grouped into sets to represent attacks, operating
systems, and forensics procedures, as will be described later.

In the notation used in this paper, singular primitives will be represented with
lower case letters. Sets of primitives will be denoted with capital letters. Sets
may be sub- or super-scripted to denote particular subsets. A set with no sub- or
super-script represents the entire collection of primitives. For sets, a subscript
always refers to the set associated with an attack. A superscript always
represents a set associated with an operating system.

System Components
A system component is considered to be the basic building block of a computer
system with respect to forensic discovery. Let ci denote a system component.
Components are abstract objects, e.g. “password file,” that are not specific to a
particular computer system or operating system. A particular computer or
operating system will be composed of a particular set of components. For
example, the operating system Linux has a password file along with many other
components. Let C denote the set of all components on all operating systems,
thus

},,...,{ 1 nccC =
where n indicates the total number of components identified.

The choice of components is determined by the goals of system independence,
as well as forensic relevance. For example, defining a system by its hardware is
generally not useful for investigating network intrusions, but it is useful to

www.ijde.org

7

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

consider abstract software constructs as components. Recall that the attack
Trinoo is partially characterized by which processes it runs. Thus another
example component is “process table.” This satisfies the goal of system
independence since it is not necessary to know the implementation details of a
process table on any particular operating system, such as Linux or OS X. It also
satisfies the goal of forensic relevance, because it can contain evidence of an
attack.

Given that component ci is platform independent, it is obvious that not all
operating systems contain all components. Let om denote an operating system,
where m represents the specific operating system acronym. For example, oLinux
represents the Linux operating system. Henceforth, oLinux will be shortened to oL
for reasons of brevity. Each om will correspond to a particular subset of C. Let
Cm denote the set of components associated with om. Since C is the global set
of all components, it must be the case that

Cm ⊆ C.
Set C can also be expressed as the union of Cm over all operating systems, i.e.

C = Cm

OS
U .

Attacks
Let ai denote an attack, where i indicates the specific attack name. For example,
aTrinoo represents the attack Trinoo. Henceforth, aTrinoo will be shortened to aT for
reasons of brevity. The important aspect of an attack is the way that it can be
detected. Components must have forensic relevance, or the ability to contain
evidence of an attack. Thus, an attack is characterized by the components that
contain evidence of that attack. Then each ai is associated with a set Ci that
contains these components, and

Ci ⊆ C.
An attack ai on a specific operating system om defines a component set Ci

m,
where i represents the attack ai and m specifies the operating system. Thus, Ci

m
is the set of cj on om that are affected by ai. The set Ci

m is the intersection of Ci
and Cm, i.e.

.mi
m
i CCC ∩=

In order to identify whether ai occurred on om we will have to examine the
components in Ci

m with a forensic procedure.

www.ijde.org

8

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Forensic Primitives and Procedures
The final element of the model is the forensic primitive, denoted by fj. Forensic
primitives are the basic building blocks of a forensic procedure. Primitive fj is an
abstraction of the actual steps taken by a forensic investigator during the course
of an investigation. Forensic primitive fj is closely associated with its component
cj. Like components, forensic primitives are platform independent. For each cj,
there exists exactly one forensic primitive fj that represents the investigation of
that component. Thus, the mapping from components to forensic primitives is a
bijection, i.e. one-to-one and onto. In English, a forensic primitive fj might be said
to “examine component cj”.

Let F be the set of all fj. The number of elements in F is exactly the same as the
number of elements in C, i.e. the cardinality of C. As a result,

F= { f1,.., fn},
where n indicates the total number of forensic primitives. Now a forensic
procedure can be formally defined as a set of fj. Let Fi be the set of fj that
correspond to cj in set Ci. Set Fi is called the forensic procedure necessary to
detect attack ai. Finally, let Fi

m denote the forensic procedure necessary to
detect attack ai on OS om.

Forensic Actions
Forensic actions are defined as specific activities that an investigator can take.
These may be operating system-specific command line instructions, or they may
be some other physical step an investigator needs to perform. Each forensic
primitive corresponds to one or more equivalent lists of actions for a given
operating system. In order to fully carry out the investigation defined by a
forensic primitive, all of the actions in one of the lists must be used.
Allowing multiple actions within an action list allows for the possibility that more
than one action may be necessary to fully investigate a component. For
example, fully examining the component "password file" not only requires an
examination of the contents of the file, but also of the file metadata. Table 2
shows the forensic primitive and corresponding actions for the Linux component
“password file,” cp

L.

Component Primitive Action list
cp

L fpL cat /etc/passwd
ls -l /etc/passwd

Table 2: Actions to Investigate Password File

In addition, there may be multiple alternative action lists for a given forensic
primitive. This allows for the possibility of using different operating system tools
to perform the same investigation. Which list is used can depend on institutional
requirements or tool availability at a given time. Table 3 shows some alternative
action lists for cp

L.

www.ijde.org

9

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Component Primitive Action list 1 Action list 2
cp

L fpL cat /etc/passwd
ls -l /etc/passwd

less /etc/passwd
ls -l /etc/passwd

Table 3: Alternative Actions to Investigate Password File

In these examples, the actions in the alternative lists are all command-line
instructions. This need not be the case. Some components may be physical
objects that the investigator has to locate and examine. For example, if the
computer is being investigated for possible use in an identity theft operation, then
an attached scanner may provide supporting evidence. To examine the
“scanner” component is to actually look for it.

Limitations

Before illustrating the framework in action, the reader should be reminded of the
role of the framework in the larger world of computer and network security. This
will reveal the limitations of this technique. As discussed earlier, the framework
is not attempting to assume the role of either an IDS or a forensic investigator.
Rather, it serves as a tool for managing forensic procedures in an effective and
deterministic way.

In a real-world scenario, the many players will work together. Intrusion detection
systems are created and deployed in order to detect attacks in real time,
including known and unknown variants. In the case of a suspected successful
attack, either these systems or some other technique will be used to discover
that something actually has happened, although the specifics will likely not be
known. At this time, the forensic investigator is called to perform diagnostics and
discover the specifics. The investigator will use the forensics procedures.
Finally, the investigator draws a conclusion about the nature of the attack based
on the results obtained by following the forensics actions specified by the
procedure.

It is important to see that the framework itself is incapable of drawing conclusions
about a specific incident. However, the framework will ensure that the
investigator has enough information about the incident to draw a correct and
trustworthy conclusion. This is done by ensuring that the forensic process used
was correct and thorough for the target computer system and potential attacks.
Finally, it should again be emphasized that the framework will not aid in the
detection of attacks that have not been previously described by an expert. For
this reason, the investigator will still be required to use existing techniques for
discovering new attacks or novel variations of existing attacks. Thus the
framework is not a general “solution” to forensics, but rather a tool for field
investigators.

www.ijde.org

10

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Model Summary

The final relationship between the attack and a forensic process is summarized
in Figure 2.

Figure 2: Hierarchy of Elements

This shows that the framework can be traversed to move from an attack to a
detecting procedure, or move from a procedure to the attacks it can detect. The
following scenarios are considered with reference to the four motivating
questions in Section 3.

Scenario 1: A forensic procedure and actions to detect attack ai can be derived
as follows: The component set Ci defines Ci

m for a specific operating system om.
This specifies the OS independent and dependent forensic procedure Fi and Fi

m
respectively and finally the forensic actions for each fj in Fi

m. It should be noted
that for a new ai some or all of the associated fj in Fi

m may already exist due to
previously defined attacks.

This process can be viewed as a traversal of the graph in Figure 3, which uses
the example operating system oL. It shows that the sets Ci

L and Fi
L are derived

from Ci, and then the actions are derived from Fi
L.

www.ijde.org

11

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Figure 3: Creating a Procedure for Linux

Scenario 2: Given forensic actions, the attacks that can be identified are
determined as follows: Each action identifies a forensic primitive fj. Let X be the
set of all these fj. Each ai can be detected for which Fi

m ⊆ X. Expressed with
respect to forensic components, set X specifies its corresponding component set
Y and all ai can be detected for which Ci

m ⊆ Y. This process is referred to as
auditing.

The graph in Figure 4 shows a representation of determining the attacks that can
be detected for a forensic procedure for Linux. The actions are translated into
forensic primitives, which then correspond to attacks.

Figure 4: Auditing a Procedure for Linux

www.ijde.org

12

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Scenario 3: Updating in general may affect C, Ci, Cm and/or Ci

m. A typical
example might be that new information about ai results in the introduction of a
new component cj in Ci. If cj ∈ Cm, this will require an update of Ci

m. Conversely,
if cj ∉ Cm then Ci

m and thus Fi
m remain unchanged.

The process of updating a procedure is conceptually similar to creating a
procedure, as shown in Figure 5. Like Scenario 1, the lower elements in the
diagram are derived from the elements above it.

Figure 5: Updating a Procedure for Linux

Scenario 4: Porting forensics procedures from one operating system oA to
another OS oB can be achieved using the following process. Procedure Fi

A is
defined with respect to ai. Therefore Ci is the OS independent component set
that is the basis for specifying Ci

B and thus Fi
B. It should be noted that this

scenario is very similar to Scenario 2 followed by Scenario 1.

A representation of this process is shown in Figure 6 and can be thought of as
traversing the diagram in the direction of the arrows indicated. To translate from
oL to oX, we translate from Fi

L to Ci
L, which allows us to determine Ci. This is

then used to create Ci
X and thus Fi

X.

www.ijde.org

13

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Figure 6: Porting a Procedure from Linux to OS X

Abstraction Levels

The level of abstraction used when choosing components can be matched to the
goals of the forensic procedure. Depending on what type of evidence is desired,
the component set C can be composed of broader or more fine-grained
components. In all cases, the resulting forensic procedure will be able to detect
the specified attacks. However, the attacks themselves will be at an equivalent
level of detail as the components. This allows for the forensic procedure to be
tailored for institutional requirements. As an illustration, we consider three
different scenarios.

Low-level components
This first case is the example that has been used throughout this paper:
discovering traditional intrusions into a computer system. This task may be
performed by network system administrators or law enforcement organizations.
As has been shown, detecting an attack of this nature involves low-level
activities, such as examining temporary file space, checking for certain
processes, or looking for network connections. Minor differences in these
components can lead to completely different conclusions about the nature of the
attack. For example, we have seen that a listening process on port 31335 can
be linked to an instance of Trinoo on the target computer. But a listening process
on port 31336 may mean nothing at all. Thus, the acquired digital evidence must
be examined for extremely fine distinctions in order to draw the proper
conclusions. And thus the corresponding components must be able to gather
enough details to differentiate the data properly. Table 4 presents some example
components for this type of low-level examination.

www.ijde.org

14

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Component
Temporary file space
Ports
Password file

Table 4: Example Low-Level Components

Mid-level components
A more high-level approach can be used for the situation described by Goldman
and Mackenzie [9]. They discuss the nature of computer abuse in the setting of
a college campus. In this case, the investigation would consist of scanning a
particular computer to see if it violates university policy or law in the areas
detailed in [9]. These abuses include such things as harassment, hacking, and
copyright violation (e.g. sharing copyrighted music, or “file-sharing”).

Note that while the term attack was used earlier, here it is more appropriate to
consider the term computer abuse. The change in semantics does not alter the
use of the model, but it does help to understand the use of the model in this
context.

It is clear that examining which specific ports are active will not help when looking
for copyright violations. Here we must broaden the scope of the components to
account for broader nature of the desired evidence. Table 5 presents some
examples components for this level of investigation.

Component
MP3 music files
Email messages
Network activity

Table 5: Example Mid-Level Components

Recall that the components themselves are not incriminating; they merely have
the ability to contain evidence. Thus the possession of music files, as listed in
Table 5, is not evidence of wrong-doing. However, a thorough investigation into
possible computer abuses must examine music files to determine if a copyright
violation has occurred.

High-level components
Finally, an example of a high-level approach is given by the National Institute of
Justice’s Electronic Crime Scene Investigation (ECSI) handbook [10]. This is a
guide used by federal law enforcement organizations for examining computers
for evidence of a variety of crimes. A thorough demonstration of the model used
in conjunction with the ECSI handbook will be presented in the MAC OS X case
study . However, a brief description is provided here.

www.ijde.org

15

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

The handbook is designed to be used for all types of crimes that may involve a
computer, even if the computer itself is only incidental to the crime. These crime
categories include issues such as extortion, identity theft, and child abuse. The
ECSI guide also describes where evidence of these crimes might be found on a
computer involved in the crime investigation. These locations can then be used
as a basis for creating components. Table 6 presents some examples of
components for this level of investigation.

Component
Address book
Scanner
Email messages

Table 6: Example High-Level Components

Again, note that the term attack can be replaced with term crime in this context.
To properly investigate the crime of identity theft, the ECSI handbook
recommends looking for an attached scanner (for making fake documents).
Thus, a complete forensic procedure should include some investigation of the
component “scanner,” which would be performed by physically looking for a
scanner. Compared with the previous examples, this represents a very high
level of abstraction. Yet these components are compatible with the model, and
are useful when considering the ECSI definition of computer-related crimes.

Model Contributions

Now that a definition for the model has been presented, we can show how this
addresses the limitations of current forensics processes.

Procedural: The procedural problem referred to the unmanageable amounts of
data on modern computer systems. By applying the model, the forensic
procedure can target the specific relevant components, thereby gathering only
the appropriate information. This limits the amount of data and reduces the data
management problem.

Technical: Rapid changes in technology lead to the technological problem. The
model allows forensic procedures to be modified quickly in response to changes
in technology, thus allowing investigators to keep up. It also gives non-technical
investigators (e.g. local police departments) a way to create and maintain
forensic procedures without requiring high levels of technical skill. In addition,
the model is well suited to implementation in software. Modifying procedures to
adapt to technological changes can then become a matter of “plug and play.”

Social: The social problem referred to uncertainties about the capabilities of
current processes. The tight coupling of attack components and forensic

www.ijde.org

16

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

procedures means the capabilities of forensic procedures is completely defined
(or can be derived as needed). Since the model guarantees that the correct
evidence has been gathered, the need to preserve extraneous data is eliminated.

Legal: While the legal requirements for digital evidence are still uncertain, it is
clear that the formal approach of the model increases confidence in the results.
For any conclusion reached during a forensic investigation, it can be proven that
all of the necessary evidence was collected. In a legal context, this helps to
eliminate doubt that might otherwise hamper prosecution.

Applications

The following sections will use the techniques described in low, mid, and high-
level components scenarios described above to create and modify forensic
procedures for Linux and OS X with respect to the DDos client Trinoo.

Creating a Forensic Procedure
Consider the case of creating a forensic procedure to detect Trinoo on Linux. In
the notation of the model, we wish to create the forensic procedure FT

L to detect
attack aT on operating system oL. This procedure will provide the evidence
necessary to prove or disprove the presence of aT on oL, requiring that the
procedure examine every “fingerprint” that Trinoo leaves. The enumeration of
these characteristics has been fully performed by an expert, e.g. CERT. For
Trinoo, the list is shown in Table 7, which has been restated from Table 1 for
convenience.

Characteristic
The presence of a configuration file named “…”
A listening process on port 31335
The presence of a process named “httpd”

Table 7: Trinoo Attack Characteristics

The first step in the process is to determine which components aT affects. Each
of the characteristics in Table 7 is mapped to a component, as can be seen in
Table 8.

ci Component Characteristic
c1 File system The presence of a configuration file named “…”
c2 Ports A listening process on port 31335
c3 Process table The presence of a process named “httpd”

Table 8: Trinoo Components and Characteristics

This leads to the specification of CT, the platform independent component set for
Trinoo, i.e.

www.ijde.org

17

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

CT = {c1,c2,c3}.
Next, we must determine which of these components are relevant to the target
operating system oL. We will use the Linux-specific component set CL to make
that determination. Since the set CL is too long to enumerate here, it should be
observed by the experienced reader that all three components in CT are indeed
present on all Linux systems. By performing a set intersection, we are led to the
set CT as it applies to oL, i.e.

CT
L = CT ∩C

L = {c1,c2,c3}.
The next step is to translate the components into corresponding forensic
primitives. Since forensic primitives are abstract and correspond directly to
components, this process is simple. We merely substitute the forensic primitives
for their component counterparts. Thus the forensic set for attack aT with respect
to oL is

FT
L = { f1, f2, f3}.

Finally, we can translate the primitives in the new forensic procedure into actual
forensic actions. These are the steps that an investigator will perform when
attempting to detect aT on oL. For Linux, we arrive at the list of actions shown in
Table 9.

fi Action
f1 find / -name '...'
f2 lsof -i
f3 ps -ef

Table 9: Forensic Actions

By performing the actions in Table 9, an investigator can detect Trinoo on a Linux
machine. Note that this does not mean that the model will be able to detect a
Trinoo client in a particular investigation. Rather, it means that the performed
investigation will have gathered enough information to draw a correct conclusion
about the presence or absence of a Trinoo client. It is up to the investigator to
interpret the data and make the final determination.

Auditing a Forensic Procedure
Another application of the model is auditing an existing procedure to determine if
it can detect a given attack. In this example, we want to see if a certain
procedure for Linux can detect Trinoo. Auditing is useful for proving the
effectiveness of a procedure or for applying structure to a previously unstructured
forensic procedure. This application will be conceptually similar to reversing the
steps described above. Assume that Table 10 shows FL, which is currently
assumed to be the complete set of actions used for detecting attacks on Linux.

www.ijde.org

18

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

ame '...'
Action
find / -n
ps -ef
who -al

Table 10: Linux Forensic Actions

ired to

 a different attack. Using the
odel, we can identify the missing command.

 two primitives f1 and
. Table 11 shows primitives and their associated actions.

ame '...'

Comparing Table 10 to Table 9, it is obvious that not all of the steps requ
detect Trinoo are present; i.e. the command “lsof” is missing, and a new
command has been added. This new step has been inserted for purposes of
illustration, and could be involved with detecting
m

The first step is to convert the actions into forensic primitives. This is
accomplished by merely matching the actions to their corresponding primitives
from the existing primitive set, e.g. Table 9 identifies the first
f3

fi Action
f1 find / -n
f3 ps -ef
f4 who -al

Table 11: Primitives and Actions

en

revious enumeration. Table 12 shows
e matching components and primitives.

From this set of primitives, the list of corresponding components is generated.
This will show which components on the target system will be examined wh
the forensic process is applied. Again, this is a mere matching of forensic
primitives to components, drawing from a p
th

fi ci
f1 c1
f3 c3
f4 c4

Table 12: Forensic Primitives and Components

is

 correct entries to our forensic
rocess to make it fully able to detect Trinoo.

Now the component set in Table 12 can be compared to a known attack, which is
Trinoo in this case. As seen earlier, an expert has determined that Trinoo affects
the components c1, c2, and c3. Comparing CT

L to the list in Table 9, it is clear that
the procedure does not detect all aspects of Trinoo, e.g. c2 is missing. From th
we conclude that when the procedure is performed on an actual compromised
system, it may not be able to conclusively prove or disprove the existence of
Trinoo. It is a straightforward matter to add the
p

www.ijde.org

19

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Updating a Forensic Procedure
There are a number of reasons for updating a forensic procedure. A common
case is when new information is discovered about an existing attack. This may
require that new primitives be added to the existing procedure. For this example,
we assume the scenario from Section 5.2, where

We will treat FL aT, so that
}.,{ 31 ffF L =

 as if it were previously assumed complete for
}.,{ 31 ccCT =

Assume that the attack expert has discovered a new component that aT affects,
namely c2. If c2 ∈ CL, then this new information is relevant to oL and the existing
procedure must be corrected. The updated procedure F'L is created by inserting
a primiti

ve to detect the new component, in this case f2. The model expresses

this as

ew
ficient

rocedure, as determined by the process described in Section 5.2.

}.{' 2fFF LL Υ=
The process performed in this section updates a procedure to account for n
information about an attack. It works equally well for correcting a de
p

Porting a Forensic Procedure
A final application of the model is to take an existing forensic procedure f
OS and create a forensic procedure for another OS in such a way as to
guarantee that both procedures can detect the same attacks. He

or one

re, we will take
ur example forensic procedure on Linux and apply it to OS X.

mes

n it
ew procedure for OS X, following the steps

utlined in previous examples.

ting FL can detect. Assuming
FL from “Creating a Forensic Procedure,” we have

t

 be
apped into forensic

primitives, which can then be translated into actions.

o

As with attacks, there has been an expert determination of the components of
this new operating system. Thus the set CX is known. This example assu
that a forensic procedure exists for Linux, but that the attacks that the FL
procedure can detect are unknown. To generate a procedure for OS X that can
detect the same attacks first requires that this attack set be determined. The
is straightforward to create the n
o

The first task is to determine which attacks the exis

FL = { f1, f2, f3}.
For each known ai, we check if it can be detected by testing if Fi

L ⊆ FL. The nex
step is to generate the forensic procedure FX for OS X. This is identical to the
process performed in creating a forensic procedure, for all attacks that can
detected by FL. In short, the attack components are m

www.ijde.org

20

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Case Study: Mac OS X

This section presents a comprehensive example of an application of the model.
The techniques used here are the same as those described in the above
examples. In this case, rather than focusing on a particular attack, many types of
intrusions will be considered on a Mac OS X system. The end result will be a
specific forensic procedure that can be used by field investigators for performing
live forensics on OS X. The generated procedure will only use standard tools
available on the operating system.

A significant difference between this case study and the previous examples is
that now high-level components (rather than low-level components) with respect
to the ECSI [10] are considered. As indicated before, the ECSI is a reference for
crime scene investigators that provides many categories of computer crimes and
how to investigate each type of crime, and is used by the FBI and other federal
agencies. We will use this guide as a basis for developing the forensic
procedures in this case study. In previous examples, the expert that enumerated
the attack characteristics was CERT or some equivalent. Here it will be the
National Institute of Justice. The ECSI handbook is designed for dealing with
computer systems as part of a larger investigation. Thus the forensics procedure
developed in this section will also serve as a complement to traditional forensic
techniques.

There are several reasons why the ECSI has been chosen as the source for the
case study. First, it illustrates that the particular choice of the components is not
central to the model. The case study will show that the model is a tool for dealing
with abstractions, and is not itself specific to any given set of primitives. In
addition, the use of the ECSI data shows how the model can be incorporated into
a real-world forensics scenario. Finally, this case study will generate a working
forensic procedure that can be used in a wide variety of situations dealing with
computer crime, which increases its value as a practical tool.

Attack Coverage
The first step in creating the forensics procedure is to determine the desired
attack coverage. As in the previous examples, this is a list of intrusions that we
wish to detect. This case concerns with a broader range of computer crimes, so
it will be more general than the traditional notion of hacks. Given the scope of
this case study, the term crime will be used interchangeably with attack
henceforth. Table 13 lists the crime categories that are identified in the ECSI
handbook.

www.ijde.org

21

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Attack Description
a1 Auction Fraud
a2 Child Exploitation/Abuse
a3 Computer Intrusion
a4 Death Investigation
a5 Domestic Violence
a6 Economic Fraud
a7 E-Mail Threats/Harassment
a8 Extortion
a9 Gambling
a10 Identity Theft
a11 Narcotics
a12 Prostitution
a13 Software Piracy
a14 Telecommunications Fraud

 Table 13: Computer Crimes

These crimes will comprise the attack coverage of the case study. In most of the
attacks in Table 13, a computer is not the focus of the investigation. Rather, the
evidence gathered on the computer will be used to support a broader
investigation.

OS X Components
In order to correlate these attacks with the operating system, we must create the
list of components. For OS X, i.e. oX, the component list will be CX. Table 14
contains a listing of components, which were drawn from ECSI data.

www.ijde.org

22

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Component Description
c1 Account data
c2 Accounting/bookkeeping software
c3 Address books
c4 Calendar
c5 Chat logs
c6 Cloning software
c7 Configuration files
c8 Credit card reader/writer
c9 Date and time stamps
c10 Diaries
c11 Digital cameras
c12 Erased internet documents
c13 Executable programs
c14 E-mail
c15 Graphic editing and viewing software
c16 History log
c17 Images
c18 Image players
c19 Internet activity logs
c20 Internet browser history/cache files
c21 IP address and user name
c22 Movie files
c23 Scanners
c24 System files
c25 Temporary files
c26 User-created files and directories

Table 14: Components

As discussed earlier, these components are abstract and can contain evidence of
a crime. Further, the level of abstraction of the components has been chosen to
correspond with the abstraction level of the attacks under consideration. Since
our attack list in Table 13 is at a rather high level, the component list will also be
at a high level. Finally note that for this case study, all components in the global
set C are also in CX, i.e. C },...,{ 261 ccX =

Correlating Crimes and Components
For each of the crimes ai in Table 13, we need to generate the associated
component list Ci. Table 15 shows the component lists for each ai, using
definitions from the ECSI handbook.

www.ijde.org

23

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Attack Components
a1 c1, c2, c3, c4, c5, c11, c14, c17, c19, c20
a2 c5, c9, c11, c14, c15, c16, c17, c19, c22, c26
a3 c3, c7, c13, c14, c19, c21, c25
a4 c3, c10, c14, c17, c19
a5 c3, c10, c14
a6 c3, c4, c14, c19
a7 c3, c10, c14, c17, c19
a8 c9, c14, c19, c25
a9 c3, c4, c14, c16, c18, c19
a10 c8, c11, c12, c14, c23, c24
a11 c3, c4, c14, c19
a12 c3, c4, c14, c19
a13 c5, c14, c19, c26
a14 c6, c14, c19

 Table 15: Component Lists

This table shows the components that can provide evidence of the various types
of crimes. If our generated procedure investigates the appropriate components,
then it will be able to thoroughly investigate the crime in question.

For each attack, the component list needs to be adjusted to account for the
characteristics of oX, to create Ci

X. This is performed by deriving
Ci
X = Ci∩C

X .

In this case, the components in the attack sets are all present on oX, so the
results will be identical to Table 15.

Forensics Procedure
The next step is to create the forensics processes to detect each type of crime.
Recall that a forensic primitive fi corresponds exactly to a component ci, and
represents the investigation of that component. Table 16 lists F, the set of all
forensic primitives.

www.ijde.org

24

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Primitive Description
f1 Search account data
f2 Find accounting/bookkeeping software
f3 Examine address books
f4 Examine calendar
f5 Examine chat logs
f6 Find cloning software
f7 Examine configuration files
f8 Look for credit card reader/writer
f9 Get date and time stamps
f10 Examine diaries
f11 Look for digital cameras
f12 Find erased internet documents
f13 Find executable programs
f14 Examine e-mail
f15 Find graphic editing and viewing software
f16 Examine history log
f17 Find images
f18 Find image players
f19 Examine internet activity logs
f20 Examine internet browser history/cache files
f21 Find IP address and user name
f22 Find movie files
f23 Look for scanners
f24 Examine system files
f25 Examine temporary files
f26 Find user-created files and directories

Table 16: Forensic Primitives

Using the primitives in Table 16, we can generate the forensic procedure
necessary to detect each attack. Thus for each ai, we will create Fi

X.

Substituting the forensic primitives in Table 16 for the components in Table 15,
we arrive at the list of all Fi

X shown in Table 17.

www.ijde.org

25

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

Procedure Primitives
F1

X f1, f2, f3, f4, f5, f11, f14, f17, f19, f20
F2

X f5, f9, f11, f14, f15, f16, f17, f19, f22, f26
F3

X f3, f7, f13, f14, f19, f21, f25
F4

X f3, f10, f14, f17, f19
F5

X f3, f10, f14
F6

X f3, f4, f14, f19
F7

X f3, f10, f14, f17, f19
F8

X f9, f14, f19, f25
F9

X f3, f4, f14, f16, f18, f19
F10

X f8, f11, f12, f14, f23, f24
F10

X f3, f4, f14, f19
F12

X f3, f4, f14, f19
F13

X f5, f14, f19, f26
F14

X f6, f14, f19

Table 17: Forensic Procedures

Since the goal of this process is to create FX, the forensic procedure that can
detect all of these attacks, we combine the individual forensics procedures, so
that

FX = Fi

X

i=1

14

U .

Forensic Actions
Finally, we can translate the forensic primitives into actual system dependent
forensic actions. Recall that the model allows alternate action lists, each of which
gathers the same data in a different way. This allows the investigator to choose
a set of actions that fulfills institutional requirements. For simplicity, however, we
have only listed one such alternative here, using only standard tools. Table 18
presents the forensic primitives and their corresponding actions. The material in
this table was drawn from Apple’s technical documentation [11], existing Linux
forensic actions [12], and online resources [13].

www.ijde.org

26

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

27

Primitive Actions
f1 cat ~/Library/Keychains/*
f2 ls –lR /usr/bin

ls –lR /Applications
f3 cat ~/Library/Addresses/*.addressbook
f4 cat ~/Library/Calendars/*.ics

f5 find / -name *.chat
f6 ls –lR /usr/bin

ls –lR /Applications
f7 tar –cf - -C /etc

tar –cf - -C ~/Library/Preferences
f8 system_profiler

Look for credit card reader/writer
f9 ls –lR /
f10 ls –lR ~/Documents
f11 system_profiler

Look for digital cameras
f12 tar –cf - -C ~/.Trash
f13 ls –lR /usr/bin

ls –lR /sw/bin
ls –lR /Applications

f14 cat ~/Library/Mail/*/*/mbox
f15 ls –lR /usr/bin

ls –lR /Applications
f16 cat ~/.bash_history

cat ~/Library/Safari/*.plist
f17 find / -type f -exec file {} \; | grep image
f18 ls –lR /usr/bin

ls –lR /Applications
f19 cat ~/Library/Safari/*.plist
f20 tar –cf - -C ~/Library/Caches/MS\ Internet\ Cache .

tar –cf - -C ~/Library/Caches Safari .
f21 ifconfig –a

uname –a
f22 find / -type f -exec file {} \; | grep "ASF|movie"
f23 system_profiler

Look for scanners
f24 cat ~/Library/Logs

pstat -fstv
f25 tar -cf - -C /tmp/ .
f26 ls –lr ~/Documents

ls –lr ~/Images
ls –lr ~/Movies
ls –lr ~/Pictures

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

28

Table 18: OS X forensic actions

In the case of alternative action lists, the choice of which to use depends on the
context of the investigation. Commonly when investigations are performed on
live systems, it is desirable to modify as little as possible on the target system.
Thus, any data collected is not stored locally, but rather sent over a network
connection to the investigator’s computer. In that context, interactive commands
are less desirable, because they do not work well over a network. When
specifying the actions, commands are chosen that do not require interaction or
expectations about the terminal environment. For example, “cat” instead of “vi”
has been used for examining files, even though “vi” may in fact provide an
investigator with more utility.

Some of the actions in Table 18 are actual command line commands, but some
are physical actions that must be taken. For example, c23 specifies the
component “scanners,” where scanners may provide evidence of an identity theft
operation. The investigator must therefore look for one.

Again, the actions in Table 18 represent merely one possibility. Adding extra
items to an action list as needed is completely supported by the model. The
minimum requirement of an action list is that it can provide evidence to prove or
disprove the presence of a crime. However, an investigator may find value in
augmenting an action list to gather further data useful for pursuing their
investigation.

Finally, Table 18 shows only commands that are native to OS X. It should not be
inferred, though, that the actual binaries are resident on the computer under
investigation. A proper investigation would use binaries that are known to be
uncompromised, typically on a write-only media such as a CDROM.

Final Results
Combining all the actions in Table 18, we arrive at the actual process that an
investigator can follow to detect the crimes in Table 13. The results are shown in
Table 19. Each line represents an action that must be performed.

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

29

Final List of Actions
cat ~/Library/Keychains/*
ls –lR /usr/bin
ls –lR /Applications
cat ~/Library/Addresses/*.addressbook
cat ~/Library/Calendars/*.ics
find / -name *.chat
tar –cf - -C /etc
tar –cf - -C ~/Library/Preferences
system_profiler
Look for credit card reader/writer
ls –lR /
ls –lR ~/Documents
Look for digital cameras
tar –cf - -C ~/.Trash
ls –lR /sw/bin
cat ~/Library/Mail/*/*/mbox
cat ~/.bash_history
cat ~/Library/Safari/*.plist
find / -type f -exec file {} \; | grep image
cat ~/Library/Safari/*.plist
tar –cf - -C ~/Library/Caches/MS\ Internet\ Cache .
tar –cf - -C ~/Library/Caches Safari .
ifconfig –a
uname –a
find / -type f -exec file {} \; | grep "ASF|movie"
Look for scanners
cat ~/Library/Logs
pstat –fstv
tar -cf - -C /tmp/ .
ls –lr ~/Documents
ls –lr ~/Images
ls –lr ~/Movies
ls –lr ~/Pictures

Table 19: Final Action List

This is a process that is suitable for performing a real investigation on a live OS X
system. The process in Table 19 is adequate for investigating the crimes in
Table 13. However, it could be improved in several ways. Many of the actions
are the simplest possible, and they could be augmented with further steps or
replaced with a custom tool. In addition, simplifying assumptions were made
about the user environment. Extra steps would be required to account for more
complicated scenarios. Finally, the component list presented in the ECSI
handbook takes a simplistic view of computer systems. Lowering the abstraction

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

30

level of the components might better describe modern operating systems, and
create a more robust forensic procedure. All of these suggested improvements
are easily performed using the model, by adding the appropriate information to
any of the tables.

Conclusion

The problem of computer crime is rapidly growing, requiring increasing expertise
in the areas of attack detection and prosecution. Many law enforcement
organizations use ad-hoc or informal procedures for performing investigations,
which can limit confidence in the investigation results.

This paper has presented a comprehensive technique for generating and
modifying computer forensic procedures using the attributes of attacks and the
targeted computer system. This is done with a model that specifies
mathematically the relationship between attacks and abstract system
components.

To demonstrate the use of the model, several examples are given that show the
model in various scenarios. Specifically, methods are shown for creating,
updating, auditing, and porting a forensic procedure. Using the model and
following the examples, it is possible to create and maintain forensic procedures
that are precise and accurate.

© 2004 International Journal of Digital Evidence

About the Authors

Ryan Leigland received his M.S. in computer science from the University of
Idaho in 2004. His main research interest is in computer security and computer
forensics and he has been funded under the National Science Foundation's
Scholarship for Service program. His practical experience includes an internship
at the NASA Office of Inspector General, Computer Crimes Division, where he
was involved in forensic investigations. He can be reached at
ryanl@cs.uidaho.edu.

Axel W. Krings is an Associate Professor of Computer Science and is currently
on sabbatical from the University of Idaho at the ID-IMAG in Grenoble, France.
He received his M.S. in Electrical Engineering from the FH-Aachen, Germany, in
1982, and his M.S. and Ph.D. degrees in Computer Science from UNL, in 1991
and 1993, respectively. Dr. Krings has published over 60 journal and conference
papers in the area of Survivability and Fault-Tolerant Systems, as well as
Computer and Network Security. His current research in System Survivability is

mailto:ryanl@cs.uidaho.edu

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

31

funded by CNRS and INRIA. Dr. Krings is a senior member of the IEEE, the
IEEE Computer Society and the IEEE Reliability Society. He can be reached at
axel.krings@imag.fr

References

[1] Computer Emergency Response Team, CERT/CC Statistics 1988-2003,

Carnegie Mellon University Software Engineering Institute, CERT
Coordination Center, 22 January 2004. Available:
http://www.cert.org/stats

[2] B. Carrier, Defining Digital Forensic Examination and Analysis Tools Using

Abstraction Layers, International Journal of Digital Evidence, Vol. 1 Issue
4, Winter 2003.

[3] R. McKemmish, What is Forensic Computing?, Australian Institute of

Criminology Trends and Issues, Number 118, June 1999. Available:
http://www.aic.gov.au/publications/tandi/tandi118.html

[4] P. Stephenson, Modeling of Post-Incident Root Cause Analysis, International

Journal of Digital Evidence, Vol. 2 Issue 2, Fall 2003.

[5] Digital Forensic Research Workshop, A Road Map for Digital Forensics

Research 2001, Digital Forensics Research Workshop, 6 November
2001. Available: http://www.dfrws.org/dfrws-rm-final.pdf

[6] R. Erbacher et al, Computer Forensics Education, IEEE Security and Privacy,

July/August 2003.

[7] H. Axlerod and D. Jay, Crime and Punishment in Cyberspace: Dealing with

Law Enforcement and the Courts, Proceedings of the 27th Annual ACM
SIGUCCS Conference on User Services,1999.

[8] D. Dittrich, The DoS Project's “ trinoo " distributed denial of service attack tool,

Available: http://staff.washington.edu/dittrich/misc/trinoo.analysis.txt

[9] K. Goldman and E. Mackenzie, Computer Abuse, Information Technologies

and Judicial Affairs, Proceedings of the 28th annual ACM SIGUCCS
Conference on User Services, 2000, pp. 170-176.

[10] National Institute of Justice, Computer Forensic Testing Tool Program, 2004.

Available: http://www.ojp.usdoj.gov/nij/sciencetech/cftt.htm

[11] Apple Computer, Technical Notes, Apple Computer. Available:

http://developer.apple.com/technicalnotes/

mailto:axel.krings@imag.fr

International Journal of Digital Evidence Fall 2004, Volume 3, Issue 2

www.ijde.org

32

[12] B. Grundy, The Law Enforcement and Forensic Examiner Introduction to

Linux: A Beginner's Guide, January 2004. Available: http://www.linux-
forensics.com/linuxintro-LEFE-2.0.5.pdf

[13] Mac OS X Hints, Mac OS X Hints, 2004. Available:

http://www.macosxhints.com/

	© 2004 International Journal of Digital Evidence

