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The goal of this paper is to give a precise, formal account of certain fundamental 

notions in minimalist syntax, including Merge, Select, Transfer, occurrences, workspace, 
labels, and convergence. We would like this formalization to be useful to minimalist 
syntacticians in formulating new proposals and evaluating their own proposals, both 
conceptually and empirically.  

We do not attempt to formalize all minimalist analyses that have been proposed in 
the last two decades. Rather, we focus on widely accepted formulations. Where certain 
alternatives loom large, we mention them briefly. There are many operations we have not 
treated for reasons of space, including: head movement, Pair-Merge (adjunction), QR 
Agree and Feature Inheritance. The framework given in this paper could be extended to 
incorporate various versions of these operations, which could then be compared 
rigorously. 

Our basic approach bears a resemblance to the Minimalist Grammars devised by 
Stabler (1997) and the work that it has given rise to.1 Those grammars were simplified to 
facilitate computational assessment, but here we make an effort to stay close to 
mainstream formulations. 

We use basic set theory to represent syntactic objects, with standard notation: ∈ 
(is an element of), ∪ (set union), ⊆ (is a subset of), ⊂ (is a proper subset of). Given any 
two sets S and T, the set difference S-T={x| x∈S, x∉T}. And S×T is the Cartesian 
product of S and T, that is, the set of ordered pairs {〈a,b〉| a∈S,b∈T}. As usual, free 
variables in definitions are understood to be universally quantified. For example, “W is a 
workspace iff…” means the same thing as “For all W, W is a workspace iff…” 
 
1. Preliminary Definitions 
 
Definition 1. Universal Grammar 
Universal Grammar is a 6-tuple: <PHON, SYN, SEM, Select, Merge, Transfer> 
 
 PHON, SYN and SEM are universal sets of features. Select, Merge and Transfer 
are universal operations. Select is an operation that introduces lexical items into the 
derivation. Merge is an operation that takes two syntactic objects and combines them into 
a syntactic object. Transfer is an operation that maps the syntactic objects built by Merge 
to pairs <PHON, SEM> that are interpretable at the interfaces. Select, Merge and 
Transfer are defined later in the paper. Definition 1 captures what is invariant in the 
human language faculty. There is no need to augment the 6-tuple with a specification of 
the format of lexical items, since the required format of lexical items is already given by 
the definitions of the operations. 

We assume that UG specifies three sets of features: semantic features (SEM), 
phonetic features (PHON), and syntactic features (SYN).  We assume that these three sets 
do not overlap, although in some cases this assumption may be too restrictive (e.g., for 

                                                
1 See for example, Michaelis (2001), Harkema (2001), Stabler (2010), Salvati (2011). 
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phi-features). SEM may include the features like eventive or (not stative); it could include 
thematic roles like agent, recipient, experiencer; and it could also include semantic 
values like λyλx.x breaks y. PHON may contain segments, phonological features like 
[+ATR], and ordering restrictions. SYN includes syntactic categories like N, V, P, Adj, 
but also subcategorization features, EPP features, and “unvalued” features [uF] valued by 
Agree. 

For the moment, we do not need to be clearer about what the features are, but will 
assume that they are basic elements, different from the sorts of syntactic objects we will 
derive in the syntax. 
 
Definition 2. A lexical item is a triple of three sets of features,  

LI = <Sem, Syn, Phon> 
where Sem ⊂ SEM, Syn ⊂ SYN, and Phon ⊂ PHON. 

 
Note that for some lexical items, Sem, Syn or Phon could be empty. 
 
Definition 3. A lexicon is a set of lexical items. 
 

While infinite lexicons are not excluded in principle, since the lexical items are 
basic (not generated) and human minds are finite, only finite lexicons need be considered. 
Null lexicons are also not excluded in principle.  
 
Definition 4. An I-language is a pair <LEX, UG> where LEX is a lexicon and UG is 
Universal Grammar. 
 

We make the implicit assumption that any normal adult can access any feature of 
the universal sets PHON, SEM, SYN. Even if this assumption turns out to be wrong, it is 
a natural framework to start from.  

In order to allow structures in which a given lexical item occurs twice in a 
structure, the lexical items in our structures will be indexed with integers (this is basically 
equivalent to Chomsky 1995:2272, contra Kitahara 2000). These structures with indexed 
lexical elements have a natural interpretation as graphs where an indexed lexical item 
corresponds to a leaf node in a graph. For example, in the sentence “the dog saw the other 
dog”, there are two tokens of the single lexical item “dog”.  The integer in the lexical 
item token plays no other role in the syntactic computation. For example, the integer will 
not be used in “counting”. In fact, other distinguishing marks would serve just as well, 
e.g., <dog, !>, <dog, !!>, <dog, !!!>,etc. (as long as there could be an unlimited number 
of such marks).  

As discussed below (see Theorem 6), although lexical items are indexed, there is 
no need for additional co-indexing of elements related by movement, since the lexical 

                                                
2Chomsky (1995: 227): “But the syntactic objects formed by distinct applications of 
Select to LI must be distinguished; two occurrences of the pronoun he, for example, may 
have entirely different properties at LF. l and l’ are thus marked as distinct for CHL if they 
are formed by distinct applications of Select accessing the same lexical item of N.” In our 
formalization, the items are always already distinct in the ‘lexical array’; see Definition 6. 
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indices suffice to unambiguously represent the results of movement relations. We do not 
take up the question of how lexical indices relate to the “referential indices” of the 
binding theory. The referential indices of binding theory play no role in our 
formalization. 
 
Definition 5. A lexical item token is a pair <LI,k> where LI is a lexical item and k is an 
integer.3 
 

When context makes our intentions clear, we will use LI to mean either lexical 
item or lexical item token. For convenience, when the integer of a lexical item token is 
indicated, we will usually write it as a subscript: <John, k> = Johnk where “John” is itself 
an abbreviation for a triple of SEM, SYN and PHON features. 
 
Definition 6. A lexical array (LA) is a finite set of lexical item tokens. 
 

A lexical array LA could contain two tokens of “dog”, for example dog7 and 
dog43. These two tokens are distinct, both for syntactic operations and at the interfaces.  

Given a lexical array with tokens explicitly marked in this way, we do not need an 
additional notion of ‘numeration’ in our formalization. Chomsky (1995: 225) defines a 
numeration as “…a set of pairs (LI, i), where LI is an item of the lexicon and i is its 
index, understood to be the number of times that LI is selected.” For example, if the pair 
(dog, 2) is in the numeration, “dog” will be selected twice in the derivation, as in the 
sentence “The dog sees the other dog.” Our notion of lexical item token also allows the 
lexical item “dog” to be selected twice (once when the token dog7 is selected and once 
when the token dog43 is selected). Hence there is no need for a numeration.4 
 
Definition 7. X is a syntactic object iff 

i. X is a lexical item token, or 
ii. X is a set of syntactic objects. 

 
The domains and ranges of the Merge functions (defined in section 2 below) will 

be sets of syntactic objects. The actual “constituents” built by Merge will be much more 
restricted (e.g., binary). See Chomsky (1995: 243) for a definition of syntactic object 
which incorporates the notion of label. 
 We also need some definitions to refer to the relations between syntactic objects. 
 
Definition 8. Let A and B be syntactic objects, then B immediately contains A iff A ∈ B. 
 

                                                
3  Since the Sem and Phon features of a lexical item are not accessed until Transfer, 
an alternative would be to treat Sem and Phon as functions defined on the token index 
Sem(i) (= a set of semantic features) and Phon(i) (= a set of phonetic features). These 
functions would only be applied at Transfer, and only the token index would appear in 
the syntactic derivation.  
4 Nor do we define the notion of subarray (see Chomsky 2000: 106, 2001: 11), 
since it seems to play no role in Chomsky (2007, 2008). 
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Definition 9. Let A and B be syntactic objects, then B contains A iff 
i. B immediately contains A, or 
ii. For some syntactic object C, B immediately contains C and C contains A. 
 

Notice that with these definitions, “immediately contains” is the “has as a 
member” relation, and “contains” is the transitive closure of that relation. That is, if A 
contains B, then B is a member of A, or a member of a member of A, and so on. 
 
2. Workspaces, Select and Merge 
 

A derivation of a syntactic object is a series of steps that constructs a single 
syntactic object from some lexical item tokens. Each stage in the derivation is defined by 
a lexical array and a workspace: 
 
Definition 10. A stage (of a derivation) is a pair S = <LA, W>, where LA is a lexical 
array and W is a set of syntactic objects. In any such stage S, we will call W the 
workspace of S. 
 

A derivation will be defined below as a sequence of stages meeting certain 
requirements. The lexical array includes all the lexical item tokens that may be 
introduced into a particular derivation at a particular stage. A workspace includes all the 
syntactic objects that have been built up at a particular stage in the derivation. Note that 
by Definition 7, a workspace is a syntactic object. However, by convention we will 
reserve the term “syntactic object” for those elements built up in the course of the 
derivation and contained in the workspace. 

In minimalist literature, the term “workspace” is also used in a sense where two 
syntactic objects which are being built in parallel occupy two different workspaces. 
These two different workspaces are combined at some point in the derivation (see Nunes 
2004: 140). We do not use the term “workspace” in this sense in our formalization. At 
any stage in the derivation there is only one workspace. Formalizing the alternative in our 
framework would not be difficult. 
 
Definition 11.  For any syntactic object X and any stage S=<LA,W> with workspace W, 
if X ∈ W, X is a root in W. When X is a root, we will sometimes say simply that X is 
undominated in W, or when W is understood, simply that X is undominated. 
 

The Merge operation is constrained to apply to a root (see the definition of derive-
by-Merge below), and the operation acts at the root in the sense that it embeds a root into 
a more complex syntactic object.  

Before discussing the operation Merge, we first formalize an operation of 
selection of lexical item tokens that applies to stages. 
 
Definition 12. Let S be a stage in a derivation S = <LA, W>. 
If LI ∈ LA, then Select(LI, S) = <LA – {LI}, W ∪{LI}> 
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Select is an operation that takes a lexical item token from the lexical array and 
places it in the workspace, at which point it is a root, available to be merged. Note that 
Select is only defined on stages that contain non-empty lexical arrays.5 

Merge is defined on syntactic objects. It is a function that maps pairs of syntactic 
objects to new syntactic objects in the following simple way (Chomsky 2007: 8 and 
Stabler 1997): 
 
Definition 13. Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}. 
 

Merge takes two syntactic objects and combines them into a single syntactic 
object. This is the basic structure building operation of syntax. The distinctness clause 
means that no syntactic object A can be merged with itself. In other words, Merge(A,A) 
is undefined, though different tokens of the same structure can of course be merged. 
Ultimately, the distinctness clause accounts for the lack of non-branching projections. 

Note that there is no distinction made between External-Merge and Internal-
merge. These notions are distinguished not by the operation itself, but by the positions of 
the objects A, B in the stage where Merge is applied. External-Merge corresponds to the 
case where A, B ∈W (a workspace). Internal-Merge corresponds to the case where 
A∈W, and A contains B. In the latter case, A is called the “target of movement”.  

Our definition also allows Sideward-Merge, where A ∈ W, C ∈ W, A and C are 
distinct, and C contains B. A plausible hypothesis is that Sideward-Merge is excluded as 
a possible operation (contra Nunes 2004) by economy principles: Sideward-Merge 
involves three elements: A, B, and C (which contains B), instead of only two for the other 
subcases. We formalize this economy condition by defining derive-by-Merge below so as 
to block Sideward-Merge.  

Consider the following example of Merge. Let seej and Johnk be lexical item 
tokens in some workspace W, then: 

 
(1) Merge(seej, Johnk) = {seej, Johnk} 
 
 The result of this operation,{seej, Johnk}, has no syntactic category label (e.g., 
VP). The formalism for labels will be developed below, after the operation of “triggered 
merge” is defined. 

Now suppose that the workspace W is {{Johni, seek}}, then the following Merge 
operation is also possible: 
 
(2)  Merge({Johni, seek}, Johni) = {Johni, {Johni, seek}}.  
 

                                                
5 Collins (1997: 89-90) and Frampton and Gutman (2002: 93) argue against the 
existence of a Numeration/Lexical Array. On such a theory, a stage in a derivation is 
simply defined as a workspace. The operation Select would then need to introduce a 
lexical item token directly into the workspace: Select(LI, W) = W U {LI}. We do not 
pursue this alternative for reasons of space. 
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What this means is that when the second argument of Merge, the syntactic object 
Johni, occurs inside the first argument, and that object appears in two places in the result. 
This falls under the Internal-Merge subcase of Merge. Graph theoretically, it is 
represented as below: 
 
(3) Graph Representation of Merge({Johni, seek},Johni) = {{Johni, seek},Johni} 
 
     * 
 
 
    * 
 
 
   seek  Johni 
 
 

In this kind of “set membership” diagram, the internal nodes labeled * are sets, 
syntactic objects, with arcs pointing to their elements.  

For comparison, consider the following example of Merge, given a workspace W 
= {{Johni, seek},Johnm}: 
 
(4) Merge({Johni, seek},Johnm) = {{Johni, seek},Johnm }.  
 

In this structure, there are two distinct lexical item tokens corresponding to the 
lexical item “John”. These lexical item tokens appear in two different positions in the 
structure. Graph theoretically, it is represented as below: 
 
(5) Graph Representation of Merge({Johni, seek},Johnm) = {{Johni, seek},Johnm } 
     * 
 
 

*  Johnm 
 
 

seek  Johni 
 

A possible alternative approach to the distinction between (3) and (5) is to 
introduce Chains as fundamental objects (not present in our formalization). Then one 
could say that in (3) a Chain links the two occurrences of John and in (5) there are no 
non-trivial Chains. Formal approaches along these lines are developed by Kracht (2001) 
and by Stabler (2001), for example, and we suspect that a structural equivalence could be 
established between a theory of that sort and the theory developed here. For the rest of 
this paper we continue to assume that (a) there are lexical item tokens, and (b) there are 
no Chains. 
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Since we are formalizing derivations in terms of a sequence of stages, we need to 
show how the operation Merge leads to a transition from one stage to the next6: 

 
Definition 14. For any two stages S1 = <LA1, W1> and S2 = <LA1, W2>, and any two 
distinct syntactic objects A, B where A∈ W1 and B ∈ W1 or B is contained in A, S1 

derives S2 by Merge iff W2 = ( (W1 - {A, B}) ∪ {Merge(A,B)}). In this case, we will also 
say that A and B are merged to form {A, B}. 

 
In the above definition, the lexical array does not change from one stage to the 

next, since it is not altered by Merge (only by Select). If A, B ∈ W (the External-Merge 
subcase), then the effect of the derive-by-Merge relation is to remove both A and B from 
W. If A ∈ W, and B is contained in A (the Internal-Merge subcase), then the effect of the 
derive-by-Merge relation is to remove only A from W (since B is not a member of W). 
Since B ∈ W1 or B is contained in A, it follows that Sideward Merge is not allowed. 

The transition from one workspace to the next can be represented graphically in 
terms  of a derivational diagram. 
 
(6) Derivational Diagram of Merge(A,B) (A ∈ W, B ∈ W) 
 Workspace 1         Workspace 2 
 
        
     
    Merge(A,B) 
 
 
 
 

In the derivation in (6), A and B occupy W1, but are not present in W2. 
Furthermore, W2 has one less element than W1. Since A does not contain B (so B is 
external to A), Merge(A,B) is the External-Merge subcase. 

In the derivation in (7), by contrast, W1 and W2 both have one element. Since B is 
found internal to A, Merge(A,B) is the Internal-Merge subcase. 

 
 
 
 
 
 

                                                
6 For previous work, see Chomsky (1995: 226, 243), Collins (1997: 76), and 
Frampton and Gutmann (1999). For example, Chomsky (1995: 243) defines the Merge 
operation as follows: “Suppose a derivation has reached state ∑ = {α, β, δ1,…,δn}. Then 
application of an operation that forms K as in (5b) [K = {γ, {α, β}} – c.c.] converts ∑ to 
∑’ = {K, δ1,…,δn}, including K but not α,β.”  The notion of a sequence of workspaces is 
not used in Stabler (1997), but is present in Stabler (2006) and developed in Hunter 
(2011). 

 
 
      A             B 

 
   C 
 
 
     A             B    
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(7) Derivational Diagram of Merge(A,B) (A ∈ W, B contained in A) 
            Workspace 1     Workspace 2 
 
        
     
    Merge(A,B) 
 
 
 
 
 
3. Occurrences 
 

The definition of Merge has the effect that a particular syntactic object can occur 
two times (or more) in a structure, at different positions. This happens when Merge(A,B) 
applies and B is contained in A, the subcase of Internal-Merge. It is often useful to talk 
about the different occurrences (which occupy different positions) of a particular 
syntactic object.  

Chomsky (2000: 115) proposes two ways to define the position of an occurrence 
in a structure. First, he takes “...an occurrence of α in K to be the full context of α in K.”  
Alternatively, he suggests a simplification where “…an occurrence of α is a sister of α.”  
Chomsky does not develop the first definition based on “full context”. The second 
definition based on sisterhood runs into the problem that the sister of α might also have 
several occurrences (and hence several sisters). Therefore defining the notion of 
occurrence in terms of sisterhood does not specify (in the general case) a unique position 
in the structure being built. For example, consider a VP [VP V DP]. Both the V and the 
DP can undergo movement. Hence defining the position of V as the sister of DP does not 
specify a particular position, since the syntactic object DP has more than one position. 
Furthermore, suppose the VP itself undergoes movement (VP….<VP>). Then we have 
several occurrences of V (one in each occurrence of VP), but the sisterhood definition 
does not reflect this, since for each V occurrence the sister is the same syntactic object 
DP. 

Consider a syntactic object SO={S1,{S1, S2}}. We say that S1 occurs twice in SO. 
The position of an occurrence is given by a “path” from SO to the particular occurrence. 
A path is a sequence of syntactic objects <SO1,SO2,...,SOn> where for every adjacent pair 
<SOi, SOi+1> of objects in the path, SOi+1∈SOi (that is to say, SOi+1 is immediately 
contained in SOi). With this definition, the two occurrences of S1 in SO are identified by 
the two different paths that begin with SO and end with S1: 
 
(8) Position of highest occurrence of S1 in SO: <{S1,{S1,S2}}, S1> 

(a sequence of two syntactic objects) 
Position of lowest occurrence of S1 in SO: <{S1,{S1,S2}}, {S1,S2}, S1> 

(a sequence of three syntactic objects) 
 

We formalize the notions of position and occurrence in a structure with the 
definitions below.  

 
   A 
 
 
   B 

   C 
  
       B       A 
 
       B 
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Definition 15. The position of SOn in SO1 is a path, a sequence of syntactic objects 
<SO1,SO2,...,SOn> where for every adjacent pair <SOi,SOi+1> of objects in the path, 
SOi+1∈SOi (SOi+1 is immediately contained in SOi). 
 
Definition 16. B occurs in A at position P iff P = <A,...,B>. We also say B has an 
occurrence in A at position P (written BP). 
 

Sometimes we will say “an occurrence of X” when we mean “an occurrence of X 
in position P of syntactic object SO”, when the position P and object SO are implicit in 
the discussion. When talking about a syntactic object A contained in a workspace W, we 
will define A’s position in W with respect to one of the undominated syntactic objects of 
W (e.g., A occurs at position P of B ∈ W). 

Given these definitions of position and occur, it is important to revisit the 
definitions of sister, immediately contain, contain and c-command. These terms are 
commonly used in the syntax literature for relations between occurrences of syntactic 
objects, in a way we can now formalize. We have already given the definitions of 
immediately contain and contain as relations between syntactic objects in Definitions 8 
and 9 above. Restating these relations as relations between occurrences can be done in 
the following manner: 
 
Definition 17. Let A, B and C be syntactic objects, then, in C, occurrence BP immediately 
contains occurrence AP’ (for any paths P,P’ in C) iff P = <X1,…,Xn> and 
P’=<X1,…,Xn,Xn+1>. 
 

Note that if B occurs in position P=<X1,…,Xn> in C, and A occurs in position 
P’=<X1,…,Xn,Xn+1> in C, by the definition of paths, it follows that X1=C, Xn=B, Xn+1=A, 
and A ∈ B. So, obviously, we can relate the immediately contains relation between 
occurrences to the corresponding relation between syntactic objects as follows: 
 
Theorem 1. If occurrence BP immediately contains occurrence AP’ in C (for some paths 
P,P’ in C) then, in C, B immediately contains A. If B immediately contains A, then every 
occurrence of B immediately contains some occurrence of A. 
 

Similarly for sisterhood, one can define it as a relation between syntactic objects7: 
 

Definition 18. Let A, B, C be syntactic objects (where A≠B), then A and B are sisters in 
C iff A,B∈ C. 
 

But a definition corresponding to actual usage in the syntax literature makes 
reference to occurrences: 

                                                
7 It is also possible to formalize the derivational definitions of sisterhood and c-
command given in Epstein (1999).  
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Definition 19. Let A, B, C be syntactic objects (where A≠B), then in C, AP is a sister of 
BP’iff P = <X1,…,Xn-1,Xn> (where Xn = A) and P’ = <X1,…,Xn-1,X’n> (where X’n = B). 
 
Theorem 2. If in C, AP is a sister of BP’ (for some paths P,P’ in C) then A and B are 
sisters in C. 
 

Similarly, c-command can be defined as a relation between syntactic objects: 
 

Definition 20. Let A and B be syntactic objects, then A c-commands B, iff there is a 
syntactic object C, such that: 

i. C is a sister of A, and 
ii. either B=C or C contains B. 

A asymmetrically c-commands B iff A c-commands B and A and B are not sisters. 
 
 In SO={S1,{S1, S2}}, according to this definition, S1 c-commands S1. What we 

would usually say is that one occurrence of S1 c-commands the other. That is, the 
occurrence of S1 in position P1 c-commands the occurrence of S1in position P2 (where 
positions are defined by paths). The occurrence based definition is given below: 
 
Definition 21. In D, AP c-commands BP’iff there is an occurrence CP’’ such that: 

i. CP’’ is a sister of AP  in D, and 
ii. either BP’=CP’’ or CP’’ contains BP’, in D. 

AP asymmetrically c-commands BP’ iff AP c-commands BP’ and they are not sisters 
 
Theorem 3. If in C, AP c-commands BP’ (for any paths P,P’ in C) then A c-commands B  
in C. 
 
 Given this definition of occurrence, we could define a Chain as a sequence of 
occurrences satisfying some set of conditions (e.g., c-command, locality, the Chain 
Condition, etc.) of a single syntactic object: <P1, P2,….Pn>. However, we follow Epstein 
and Seely (2006, chapter 2) in dispensing with the notion of chain, which will play no 
role in our formalization. 
 
4. Derivations 
 
We define a derivation as a sequence of stages, where a stage includes a workspace and a 
lexical array. 
 
Definition 22. For any stages, S1=<LA1, W1> and S2=<LA2, W2>, S1 derives S2 iff 

i. S1 derives S2 by Merge,or 
ii. for some LI ∈ LA1,  S2 = Select(LI, S1). 
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Definition 23. A derivation from lexicon L is a finite sequence of stages S1,…,Sn, for 
n≥1, where each Si = <LAi, Wi>, such that  
 i. For all LI and k such that <LI,k>∈LA1, LI ∈ L, 

ii. W1 = {} (the empty set), 
iii. for all i, such that 1 ≤i≤ n-1, Si derives Si+1, 
iv. LAn = {} (the empty set), and 
v. Wn contains exactly one element. 
 
A sequence of stages that satisfies (i-iii) is a partial derivation. (So every 

derivation is a also a partial derivation, but not conversely.) The notion of partial 
derivation will be useful in proving theorems about derivations and the syntactic objects 
derived in them. 

Definition 23 says that a derivation is a sequence of stages such that in the first 
stage, no syntactic structure has yet been built, and in the last stage all the lexical items in 
the initial lexical array have been used up. An example of a derivation is given in (9): 
 
(9) Derivation of “John should like John.” 
S1 =  <{John1, should2, like3, John4}, {} >    Select John4 
S2 =  <{John1, should2, like3 }, {John4} >    Select like3 
S3 = <{John1, should2 }, {like3, John4} >    Merge(like3, John4) 
S4 = <{John1, should2 }, {{like3, John4}} >   Select should2 
S5 = <{John1}, {should2, {like3, John4}} >   Merge(should2, {like3, John4}) 
S6 = <{John1}, {{should2, {like3, John4}}} >   Select John1 
S7 = <{}, {John1, {should2, {like3, John4}}} >   Merge(John1, ….) 
S8 = <{}, {{John1, {should2, {like3, John4}}}}> 
 
Notice that W1 = {}, LA8 = {}, and W8 contains one element, so this sequence of stages 
is a derivation. 
 
We now establish a few basic properties about what can appear in a partial derivation. 
 
Definition 24. A workspace W is derivable iff there is some partial derivation 
<<LA1,W1>,…,<LAn,Wn>>, for n≥1, such that W=Wn.  A syntactic object is derivable iff 
it is an element of some derivable workspace. 
 
Definition 25. Syntactic object A is binary branching iff both A and everything contained 
in A is either a lexical item or a syntactic object immediately containing exactly two 
syntactic objects.  
 
Theorem 4. (Binary branching) Every derivable syntactic object is binary branching. 
 

The definitions given so far allow the possibility of a workspace W={A, B} 
where B occurs as a root of W and B also occurs somewhere in A. In other words, B has 
two occurrences, but they are not in the same syntactic object, the same “tree”. However, 
in derivable workspaces, this will never happen. An example of an underivable 
workspace is shown below: 
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(10)   An Underivable Workspace 
 
   B  A 
 
 
 
   B 
 
  

Intuitively, given Merge there is no way to generate the two occurrences of A in 
(10). It is easy to state the general claim and prove it: 

 
Theorem 5. (Uniqueness of root occurrences) In every derivable workspace W, if A is an 
undominated root in W (A∈ W), then there is no root B ∈ W such that A contains an 
occurrence of B.  
 

Proof. We establish this theorem by proving a stronger claim, namely, that in 
every partial derivation (<LA1,W1>,…,<LAn,Wn>), for every A∈LAn∪Wn there 
is no B ∈LAn∪Wn such that A contains an occurrence of B. We use an induction 
on partial derivation lengths. Suppose (n=1). By the definition of “partial 
derivation”, in every partial derivation the first workspace W1={} so 
LA1∪W1=LA1, and the theorem holds since no lexical item contains any other. 
Now let the inductive hypothesis (IH) be that the result holds for partial 
derivations up to length k, for any k≥1, and we show that this property is 
preserved in partial derivations (<LA1,W1>,…,<LAk,Wk>,<LAk+1,Wk+1>) of 
length k+1. We distinguish 3 cases according to how the last step from <LAk,Wk> 
to <LAk+1,Wk+1> is derived. 

Suppose first that this last step is derived by Select. In this case, 
LAk∪Wk= LAk+1∪Wk+1, and so the theorem holds trivially.  

As a second case, suppose <LAk,Wk> derives <LAk+1,Wk+1> by the 
External-Merge subcase of Merge. In this case,  
 
LAk+1∪Wk+1= LAk∪((Wk - {A,B})∪{Merge(A,B)}). 
 
Since by IH, A and B occur uniquely in LAk∪Wk, and since they also occur 
uniquely in {A, B} (a subset of Wk which becomes an element of Wk+1), it follows 
that they occur uniquely in LAk+1∪Wk+1.  

The third possibility is that <LAk,Wk> derives <LAk+1,Wk+1> by the 
Internal-Merge subcase of Merge. In this case also,  
 
LAk+1∪Wk+1= LAk∪((Wk - {A, B})∪{Merge(A,B)}). 
 
Since by IH, no C ∈LAk∪Wk has any occurrence in A, and since by assumption 
B occurs in A, it follows that no C ∈LAk∪Wk has any occurrence in {A,B}, and 
hence uniqueness is preserved in LAk+1∪Wk+1. QED. 
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Theorem 6. A derivable workspace contains two distinct occurrences of A iff either A or 
some B containing A has undergone the Internal-Merge subcase of Merge. 
 

Proof. Again, this is established by induction on the length of partial derivations 
(<LA1,W1>,…,<LAn,Wn>). Suppose (n=1), then since W1 ={} the result holds 
vacuously. Now let the inductive hypothesis (IH) be that the result holds up to 
length k, for any k≥1 and consider any partial derivation (<LA1,W1>, 
…,<LAk,Wk>,<LAk+1,Wk+1>).  

Suppose first that Wk derives Wk+1 by Select. This operation simply moves 
a lexical item token LI from LAk into Wk to produce Wk+1. LI cannot occur in Wk 
already, since any selected element is removed from the lexical array (and all 
elements of the initial lexical array are distinct). So in Wk+1 there is just one 
occurrence of LI, and all other occurrences of elements are unchanged. So the 
result holds for Wk+1 in this case.  

Now suppose <LAk,Wk> derives <LAk+1,Wk+1> by the External-Merge 
subcase of Merge; again it is clear that the result of this operation will contain 
multiple occurrences of a constituent iff its arguments do, and so by the IH we 
know that Wk+1 will have distinct occurrences iff it has an element A that has 
undergone Internal-Merge previously.  

Finally, consider the case where Wk derives Wk+1 by the Internal-Merge 
subcase of Merge. By the definition of Merge(C, A), this step produces D = 
{A,C} where C contains A. In this case there will be (at least) two different paths 
to A in D, therefore there will be two occurrences of A in D. This exhausts the 
possibilities, so the result will hold for Wk+1. QED 

 
5.  General Theorems about Derivations 
 

In this section we will formulate four very general theorems about derivations: the 
No Tampering Condition, the Extension Condition, Inclusiveness and Local Economy. 
These conditions do not filter out unacceptable derivations (which would be the normal 
interpretation of a constraint or condition in syntactic theory), but rather they make 
explicit certain properties of the derivations already defined. Syntactic operations such as 
Merge and the derive-by-Merge relation could in principle have been defined in such a 
way that one or more of these conditions would fail. We will also show how the No 
Tampering Condition and the Extension Condition are independent conditions (and so 
should not be conflated). 
 Consider first the No Tampering Condition, which Chomsky (2007: 8) defines as 
follows: “Suppose X and Y are merged.  Evidently, efficient computation will leave X 
and Y unchanged (the No-Tampering Condition NTC).  We therefore assume that NTC 
holds unless empirical evidence requires a departure from SMT in this regard, hence 
increasing the complexity of UG.  Accordingly, we can take Merge(X, Y) = {X, Y}.”  As 
made clear in Chomsky (2005: 13), there is a close connection between the No 
Tampering Condition and the Copy Theory of Movement: “The no-tampering condition 
also entails the so-called copy theory of movement, which leaves unmodified the objects 
to which it applies, forming an extended object.” 
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Theorem 7. (No Tampering Condition) 
For any two consecutive stages in a derivation S1 = <LA1, W1> and S2 = <LA2, W2>, 
for all A ∈ W1, either A ∈ W2, or there is some C ∈ W2 and A ∈ C. 
 
 What this says in plain English is that every syntactic object in W1 must find a 
place in W2. No element of W1 can be destroyed or tampered with. This theorem is easy 
to prove with an induction of the sort used for the previous results. 

To give a simple example, the trace theory of movement violates the No 
Tampering Condition. Suppose A contains B, and A is a root in W1 (a workspace) and 
Merge(A, B) = {A’, B}, where A’ is exactly the same as A except that the occurrence of 
B contained in A is replaced by a trace t.  Then A ∈ W1 but A ∉ W2, nor is there a C ∈ 
W2, such that A ∈ C. The reason is that A is not contained in W2 at all (only A’ with the 
trace is)8. 
 Consider next the Extension Condition, which demands that structures be 
extended by Merge. As Chomsky (1995: Chapter 3, 190) notes: “A second consequence 
of the extension condition is that given a structure of the form [X’ X YP], we cannot insert 
ZP into X’ (yielding, e.g., [X’ X YP ZP]), where ZP is drawn from within YP (raising) or 
inserted from outside by GT.” 
 
Theorem 8. (Extension Condition) 
For any two consecutive stages S1 = <LA1, W1> and S2 = <LA2, W2>, if S1 derives S2 by 
Merge, then there is some A ∈ W1 and C ∈ W2 such that  

i. C ∉ W1     (C is created by Merge) 
ii. A ∉ W2  (A is extended) 
iii. A ∈ C.  (A is extended to form C) 

 
In plain English this says that A in W1 is extended to C in W2. 
In many cases, the No Tampering Condition and the Extension Condition prohibit 

the same kinds of illicit derivations. For example, both conditions would prevent defining 
Merge so as to allow so-called counter-cyclic movement, as illustrated in the derivational 
diagram below. In the derivation illustrated, Merge applies counter-cyclically, forming 
Merge(A, B) = C. 
 
 
 
 
 

                                                
8 One immediate consequence of the definition of Merge (and hence the NTC) is 
that the tucking-in derivations of Richards (2001: 38-46) are not possible. Similarly, 
Lasnik’s (1999:207) claim that A-movement does not leave a trace is inconsistent with 
the definition of Merge and the NTC (“…A-movement, unlike A’-movement, does not 
leave a trace, where a trace is, following Chomsky, a copy of the item that moves…”). It 
remains to be seen how Merge could be redefined to allow these alternatives.  
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(11) Derivational Diagram of Merge Violating NTC and Extension Condition 
 
             Workspace 1                      Workspace 2 
       
 
      
 
     Merge(A,B) 
 
 
 
 

 
 
This is not a possible derivation (given the definition of the derive-by-Merge 

relation) since it does not “act at the root”, as is made explicit by the Extension 
Condition. Furthermore, this operation of Merge tampers with the internal structure of X, 
violating the NTC. 

There are other derivations that would violate the Extension Condition, but not 
the No Tampering Condition, showing that these conditions are conceptually distinct, and 
should not be confused. Consider a slight modification to the counter-cyclic derivation 
above, where B merges with A, forming C, but C does not replace A. 
 
(12) Derivational Diagram of Merge Violating Extension Condition but not NTC 
 
  Workspace 1                      Workspace 2 
       
 
      
 
     Merge(A,B) 
 
 
 
 
 
 

Again, this is not a possible derivation given the definition of the derive-by-
Merge relation. Note that it violates the Extension Condition: no constituent in W1 is 
extended (in the sense of an undominated X becoming a dominated X). However, the 
derivation does not violate the No Tampering Condition. 
 Next, we take up the inclusiveness condition, defined by Chomsky in several 
places as follows: 
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“Another natural condition is that outputs consist of nothing beyond properties of 
items of the lexicon (lexical features) – in other words, that the interface levels 
consist of nothing more than arrangements of lexical features.” 
(Chomsky 1995: 225) 

 
(inclusiveness) “…permits rearrangement of LIs and of elements constructed in 
the course of derivation, and deletion of features of LI -- but optimally, nothing 
more.” (Chomsky 2000: 113)  

 
(inclusiveness) “…bars introduction of new elements (features) in the course of 
computation: indices, traces, syntactic categories or bar levels, and so on.” 
(Chomsky 2001:2-3) 

 
 We formalize inclusiveness in the following way: 
 
Theorem 9. (Inclusiveness) 
In any derivation (<LA1,W1>,...,<LAn,Wn>) where Wn={A}, the only elements contained 
in Wn are the lexical item tokens from LA1 and sets containing them. 
 
 A seeming discrepancy between Chomsky’s version of Inclusiveness and ours is 
that our version allows indices on lexical item tokens, whereas Chomsky’s version does 
not, a problem already noted by Chomsky: (1995: 227): “l and l' are marked as distinct 
for CHL if they are formed by distinct applications of Select accessing the same lexical 
item of N. Note that this is a departure from the inclusiveness condition, but one that 
seems indispensable: it is rooted in the nature of language, and perhaps reducible to bare 
output conditions.” 

As we observed in the discussion of graphs (3) and (5) above, the structures 
 
(13) S3 = {Johni, {Johni, seek}} and 

S5 = {Johnm, {Johni, seek}} 
 

are importantly different: S4 has two paths to one token of John, while S5 has two paths 
to two different tokens of  John. This distinction can be indicated with the indices on the 
lexical items as in S3 and S5 (as in the representations of the graph structures shown in 
(3) and (5) above).9 This distinction is obviously essential at the CI Interface and so 
Inclusiveness must be formulated so as to allow it (which is exactly what we have done in 
Theorem 9).10 If the indices on lexical item tokens were eliminated, then some other 
device would have to distinguish between S3 and S5 in (13). One possibility is to let 

                                                
9 See Gärtner (2001) and Kracht (2008) for other approaches to “multidominance” 
in directed acyclic graphs like those in (3) and (5), above. 
10 Kitahara (2000) argues that such distinctness markings are not needed, and hence 
Chomsky’s original formulation of the Inclusiveness Condition which refers to lexical 
items (and not lexical item tokens) can be maintained. We simply note that Kitahara’s 
proposed solution only distinguishes distinct pronoun tokens with Case features, and was 
not extended to distinguishing distinct tokens of lexical items in general. 
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Merge build graphs rather than sets; another possibility mentioned in section 2 is to 
introduce Chains. 

The last general condition we will consider is Local Economy, first proposed by 
Collins (1997: 4) reformulated slightly below to make it consistent with our terminology: 
 
Theorem 10. (Local Economy) 
Given stage in a derivation Si = <LAi, Wi>, which is part of a derivation D = 
<S1,…Si,…Sn>, whether or not an operation OP applies to elements of Wi (as part of a 
derivation) is determined completely by Wi and the syntactic objects it contains. 
 

For example, suppose that A and B are roots of some workspace W1. Then, 
according to local economy, whether or not Merge applies, forming {A,B}, could not 
depend on information contained in another workspace (from a stage either earlier or 
later in the derivation, or from a different derivation altogether). The way we have 
defined derive-by-Merge, this result follows trivially. But the point is that we could have 
defined Merge and derive-by-Merge otherwise, in such a way that Local Economy would 
not hold. 
 
6. Labels 
 
 In this section we define a labeling algorithm. We start by first defining triggered 
Merge. Then, we define labels in terms of triggered Merge. We believe we have captured 
the standard account of labeling of the Principles and Parameters framework and early 
minimalism. Recent discussions of labeling algorithms could take our formalization as 
the baseline for comparison. 

Some selected quotes from the literature are given below illustrating some basic 
ideas about how Merge might be triggered:11 
 

“For an LI to be able to enter into a computation, merging with some SO, it must 
have some property permitting this operation. A property of an LI is called a 
feature, so an LI has a feature that permits it to be merged. Call this the edge 
feature (EF) of the LI.” (Chomsky 2008: 139).  
 
“[T]here is a Last Resort condition that requires all syntactic operations to be 
driven by (structure-building or probe) features;” (Müller 2010: 38). 
 
“I propose that the same Agree relation underlies all instances of Merge.” 
(Boeckx 2008: 92).  

 
“Summarizing, the (syntactic) head of a constituent built up by Merge is the 
lexical item that projects its features to the new constituent. That lexical item will 
be the one that triggered application of Merge in the first place by being specified 

                                                
11 See also Stabler (1997), Hornstein (1999: 78), Collins (2003) and Frampton and 
Gutmann (2002).  
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with c-selectional features that need to be checked. All c-selectional features must 
be checked by applications of Merge.” (Adger 2003: 96). 

 
We will call the features involved in triggering Merge, trigger features. We 

assume that such features are to be identified with subcategorization features, EPP 
features and OP features for movement to Spec CP.  
 
Definition 26. A lexical item token LI = <<Sem, Syn, Phon>, i> contains a trigger 
feature TF iff some TF∈Syn is a trigger feature. 
 

The following familiar feature sets could be modeled as trigger features: 
 
(14) a. Infl:  Syn = {Infl, [__vP], EPP12}  
  (Infl requires a specifier and takes a vP complement) 
 b. Comp:  Syn = {Comp, [__IP], OP} 
  (Comp requires an operator as specifier and takes an IP complement) 
 

We provide simple definitions of Triggers and Triggered Merge as follows. We 
assume that there is a function Triggers which for any SO, yields the total set of 
unchecked TF tokens contained in that SO. Furthermore, since each syntactic object 
determines its derivational history (and the NTC guarantees that nothing in that history is 
ever tampered with), we can tell, in every derived structure, which trigger features have 
been checked. When a syntactic object SO has no trigger features left, Triggers(SO) will 
be empty.   
 
Definition 27. Triggers is a function from each derivable syntactic object A to a subset of  
the trigger features of A, meeting the following conditions: 
 

i. If A is a lexical item token with n trigger features, then Triggers(A)  returns 
all of those n trigger features. (So when n=0, Triggers(A)={}.) 

ii. If A={B,C}, Triggers(B) is nonempty, and Triggers(C)={}, then 
Triggers(A)=(Triggers(B))-{TF}, for some trigger feature token TF. 

 
When Triggers(B) has more than one element, we assume that Triggers({B,C}) 

will delete a particular one, determined by B and C,  and we leave aside the question of 
which one it is. 
 
Definition 28. (Triggered Merge, replacing Definition 13) 
Given any two distinct syntactic objects A, B where Triggers(A)≠{}and Triggers(B)={}, 
Merge(A,B)= {A,B}. 
 

                                                
12 On the EPP as a requirement that a clause must have a specifier, see Lasnik 2001: 
360. For extensive arguments against postulating an EPP feature, see Epstein and Seely 
2006. 
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Although we state the triggering conditions as part of Merge, it would also be 
possible to define them as applying at the interfaces to rule out combinations that are not 
well-formed.  

An important consequence of this definition is that only one trigger feature can be 
checked by each Merge operation. Furthermore, our definition of triggered Merge makes 
no distinction between the two subcases of Merge: Internal-Merge and External-Merge. 

Suppose a lexical item token see1 has 2 trigger features, and token John2 has 0 
trigger features. Then we could have a derivation like this: 
 
(15) Derivation involving LI token with 2 TFs 

a. <{John1, see2},{}> → Select John1 
b. <{see2},{John1}> → Select see2 
c. <{},{John1, see2}> → Merge(see2,John1) 
d. <{},{{John1, see2}}> → Merge({John1, see2}, John1,) 
e. <{},{{John1,{John1, see2}}}> 

 
This derives the structure shown in (3) above. After the first merge operation, 

Triggers({John1, see2}) will have just 1 feature available. After the second Merge 
operation, {John1,{John1, see2}} will not have any trigger features available. That is, 
Triggers({John1,{John1, see2}})={}. The two trigger features of see2 are both unavailable 
because they were checked by the two Merge operations. 
 The definition of triggered Merge entails the following asymmetry: 
 
Theorem 11. If triggered Merge(A,B) is defined, Merge(B,A) is undefined.  
 

In our approach, the structural relation important for feature checking is 
sisterhood (created by Merge). There is no reference to either m-command or specifiers 
in the above definitions. In fact, m-command plays no role in our formalization at all, and 
specifiers are defined purely in terms of triggered Merge (see below). 
 Given that Merge is triggered, it is trivial to define syntactic category labels. We 
will formalize the intuition that the label is always the head that triggers Merge. Some 
quotes from the literature give background on this approach: 
 

“Set-Merge of (α,β) has some of the properties of Agree: a feature F of one of the 
merged elements (say, α) must be satisfied for the operation to take place…the 
label of the selector projects.” (Chomsky 2000: 134) 

 
“Headedness: The item that projects is the item that selects.” (Adger 2003: 92) 

 
Within this general approach, the question remains as to how to represent the 

label. We will adopt a functional approach. There is a function that has the set of 
derivable syntactic objects as its domain, and the set of lexical items as its range (see 
Chomsky 1995: 244, 398 on some earlier approaches to labels in the minimalist 
framework, see Collins 1997: 64 who first proposed the functional approach to labels, see 
Collins 2002 for an approach dispensing with labels, see Seely 2006 on criticisms of 
earlier minimalist approaches to labels). 
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Definition 29. (Label) 
Label is a syntactic function from syntactic objects to lexical items tokens, defined in the 
following way: 
 

i. For all lexical item tokens LI, Label(LI) = LI. 
ii. Let W be a derivable workspace. If {A,B} is contained in W, and Triggers(A) 

is non-empty, then Label{A, B} = Label(A). 
 
Theorem 12.  (Endocentricity) 
Let A, B, C be syntactic objects. If C = Merge(A, B),  then Label(C) = Label(A). 
 

Proof. This is immediate from our definitions. Merge(A,B) is defined only if 
Triggers(A) is non-empty and Triggers(B) is empty. So by the definition of Label, 
the element that triggers the merge, the one with the non-empty set of available 
trigger features, is the one that projects. So Label(Merge(A,B))=Label(A) 
(whenever <A,B> is in the domain of Merge). QED 

 
Endocentricity entails that Merge cannot build structures like these: 
   
(16)   *with3    *S    
 
  see1     John2  John1  left2 
 
Definition 30. (Maximal Projection) 
For all C a syntactic object and LI a lexical item token, both contained in a workspace W, 
C is a maximal projection of LI (written MaxW(LI)) iff Label(C) = LI and  there is no D 
contained in W which immediately contains C such that Label(D) = Label(C). 
 
For example, when Merge(see1, John2) = {see1, John2}, Label({see1, John2}) = see1, and 
{see1, John2}=Max(see1),  the maximal projection of see1. 
 
Definition 31. (Minimal Projection) 
For all C, C is a minimal projection iff C is a lexical item token. 
 
Definition 32. (Intermediate Projection) 
For all C, D syntactic objects in workspace W, LI a lexical item token, C is an 
intermediate projection of  LI iff Label(C) = LI, and C is neither a minimal projection nor 
a maximal projection in W. 
 
 The complement is the first element merged with a head, and a specifier is any 
subsequent element merged with a projection of the head.  
 
Definition 33.  (Complement) 
Y is the complement of X in C iff C = Merge(X,Y) and X is a lexical item token. 
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Definition 34. (Specifier) 
Y is the specifier of X in C iff C=Merge(X,Y) where X is not a lexical item token. When 
LI = Label(X), we also say Y is the specifier of LI in C. 
 
(17)     XP   maximal projection 
 
 specifier  Z  X’  intermediate projection 
 
     X  Y  complement 
    head/label  
    (lexical item token) 
 

On the above account, there is a close relation between triggered Merge and 
labels: both are ways to indicate that Merge is asymmetric, and furthermore, the Label 
function is defined purely in terms of how features are checked. Given this close 
connection, it may be that one or the other is redundant. In essence, this was the argument 
of Collins (2002). We hope the formalism given in this section will be of use to ongoing 
debates about labeling algorithms (see Collins 2002, Seely 2006 and Chomsky 2008). 
 
7. Transfer 
 
 The syntactic objects generated by Merge must be mapped to the interfaces: the 
Conceptual-Intentional Interface and the Sensorimotor Interface. The operation that does 
this mapping is called Transfer (see Chomsky 2004: 107). We will treat Transfer as 
composed of two operations: TransferPF and TransferLF. 
 
Definition 35. (Transfer) 
For every syntactic object SO (with Triggers(SO) = {}), Transfer(SO) = <TransferPF(SO), 
TransferLF(SO)>. 
 

TransferLF is the first operation of the semantic component, which maps the SO to 
a form that can be interpreted by the CI Interface. TransferPF is the first operation of the 
phonological component, which maps the SO to a form that can be interpreted by the SM 
Interface. An important question, which we will not address, is where (truth conditional) 
semantic rules of interpretation and familiar phonological rules fit into this framework.  

An important aspect of minimalist syntax is that information interpreted by the 
interfaces is computed cyclically.13 Now suppose that at some point in the derivation the 
syntactic object SO is formed, and Transfer(SO) applies. After this, nothing further can 
be extracted from SO. Once a PF sequence is formed (see below), it can never be broken 
up again in the derivation. In order to permit movement after Transfer, it must be the case 

                                                
13 See Uriagereka 1999 who first introduced the notion of Multiple Spell-Out; see 
Epstein and Seely 2006 for a different conception of cyclic spell-out (one incompatible 
with Chomsky 2004: 122, in particular the discussion above example (20)). See Müller 
2010: 40 for an analysis where every XP is a phase. See Obata (2010) for recent 
discussion. There is need of a critical overview of these various approaches. 
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that Transfer(SO) may leave an escape hatch for movement:  “Applied to a phase PH, S-
O must be able to spell out PH in full, or root clauses would never be spelled out. But we 
know that S-O cannot be required to spell out PH in full, or displacement would never be 
possible.” (Chomsky 2004: 108) We implement this escape hatch with Cyclic-Transfer, 
the first version is given in Definition 36. We modify the definition of Cyclic-Transfer in 
section 10 below to deal with remnant movement. 
 
Definition 36. (Cyclic-Transfer, first version) 
For any derivable workspace W = {SO} where SO is a strong phase and A is the 
complement of the head of the phase, let Cyclic-TransferP(SO) = SO’ where SO’ is 
obtained from SO by replacing A by <TransferPF(A), TransferLF(A)>. 
  
 Uriagereka (1999, section 10.2) discusses the issue of relating “…a structure that 
has already been spelled out to the still ‘active’ phrase marker.” Our formulation where 
<TransferPF(Y), TransferLF(Y)> is inserted back into the tree is similar to his 
“conservative” approach to this issue. Unfortunately, it has the property that it violates 
the NTC. In section 11, we briefly consider a non-NTC violating alternative. 

The result of Cyclic-Transfer must feed further syntactic rules. For example, if a 
wh-word moves to Spec CP (forming a Phase), the resulting CP can be embedded under 
another verb. Since Merge is only defined for syntactic objects, the result of Cyclic-
Transfer must be a syntactic object: 
 
Definition 37. (replacing Definition 7). X is a syntactic object iff 
i. X is a lexical item token, or 
ii. X=Cyclic-Transfer(SO) for some syntactic object SO, or 
iii. X is a set of syntactic objects. 
 

With this definition, for example, if  SO = {H,XP} and Cyclic-Transfer applies to 
produce SO’ = {H, Transfer(XP)}, then Transfer(XP) is not a syntactic object but SO’ is. 

We will assume the extensional definition of strong phase heads given in 
Definition 38 below. Something like this should eventually follow from more basic 
assumptions. Given our formalization of Transfer below it should be possible to compare 
various definitions of strong phases.14 
 
Definition 38.  (Strong Phase) 
A syntactic object SO is a strong phase iff its head X is Comp or X is v* (active transitive 
or active unergative v). 
 
 Lastly, we need to fit the operation Transfer into the derivation, just as we did 
with for Merge with the derive-by-Merge relation between stages. 
 
 

                                                
14 See Legate (2003) who argues that “unaccusatives and passive VPs are phases as 
well”; see Collins (2005:98) for discussion of the phasal status of passives; see Dobashi 
(2003) on the relationship between derivation by phase and phonological phrases. 
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Definition 39. (Derives by Transfer) 
For any two stages S1 = <LA1, W1> and S2 = <LA1, W2>, where SO ∈W1 is a strong 
phase containing no other strong phase whose complement has not yet been transferred, 
S1 derives S2 by Transfer iff 

i. W2 = (W1 – {SO}) ∪ {Transfer(SO)} (ends the derivation), or 
ii. W2 = (W1 – {SO}) ∪  {Cyclic-Transfer(SO)}. 

 
The basic idea of the above approach is to use the workspace as the place where the 

outputs of Transfer and Cyclic-Transfer are stored, by plugging them directly into the 
syntactic tree. 

An important consequence of this definition is that it forces Transfer of a strong phase 
before it is embedded in another strong phase, since derives-by-Transfer only takes place 
if SO does not contain any strong phase with an untransferred complement. 
 
8.  TransferLF 
 
 The next two sections deal with TransferLF and TransferPF. These sections are 
necessarily more sketchy and speculative than the preceding material, since minimalist 
syntacticians have given relatively little attention to the inner workings of Transfer. With 
this caveat in mind, we start with TransferLF.  

The effect of TransferLF is to strip away the phonetic features and to create a 
structure where every feature remaining is interpretable at the CI interface (see Chomsky 
2000: 118). If any uninterpretable features remain at the point where the CI interface is 
reached, the derivation will crash (see section 12 for a definition of converge and crash).  

We make the simplifying assumption that the trigger features are ignored at 
Transfer, and stripped off just like the phonetic features and all the other syntactic 
features. 
 
Definition 40. (TransferLF) For any derivable workspace W with syntactic object 
Phase∈W such that Label(Phase) is a strong phase head, for all occurrences of objects 
SO such that either SO=Phase or SO is contained in Phase, TransferLF(SO) is defined as 
follows: 

a. If SO is a lexical item token <<Sem, Syn, Phon>, k> , 
TransferLF(SO) = <<Sem>, k>,  

b. If SO = {X, Y}, TransferLF(SO) = {TransferLF(X), TransferLF(Y)}.15 
c. TransferLF(<PHON, SEM>) = SEM 

 
 Clause (a) specifies how lexical item tokens are interpreted. Clause (b) specifies 
how a constituent of the form {X, Y} is interpreted. Clause (c) is needed because of 

                                                
15 We do not formalize the copy deletion approach to reconstruction. See Chomsky 
(1995, Chapter 3: 203) “In trace position, the copy of what remains in the operator 
position deletes,…”; Barss(2002: 693, fn. 3); Fox  (2003: 45-47) on the possibility that 
Trace Conversion is implicit in the semantic rule of interpretation. Furthermore, we do 
not attempt to incorporate covert QR into our system (see Fox 2003 for an overview of 
the properties of QR).  
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Cyclic-Merge. Since <PHON, SEM> is inserted into the syntactic object being built, later 
Transfer operations must be able to apply to it. 
 The following simplified example illustrates how TransferLF works, on the 
assumption that the indicated SO is the VP complement of vP, a phase: 
 
(18) [VP see Chris] 

LI1 = <<SEE, Syn1, /see/>, 1> 
LI2 = <<CHRIS, Syn2, /chris/>,2> 
SO = Merge(LI1,LI2) = {LI1,LI2} 
TransferLF(LI1) = <SEE, 1> (deleting Phon and Syn from LI1) 
TransferLF(LI2) = <CHRIS, 2> (deleting Phon and Syn from LI2) 
TransferLF(SO) = {TransferLF(LI1), TransferLF(LI2)} = {<SEE, 1>, <CHRIS, 2>} 

 
 Note that TransferLF preserves both the lexical indices and the hierarchical set 
structure of the syntactic objects it applies to. The output of TransferLF(SO) will be sent 
to the CI interface, and form the basis of semantic interpretation. 
 
9. TransferPF 
 

TransferPF deletes any information from a lexical item that cannot be interpreted 
at the SM-Interface, including semantic information and syntactic information. Unlike 
TransferLF, the index of the lexical item token is not needed for TransferPF. TransferPF 
constructs a PF sequence by concatenating lexical phonetic features in order.16 

We formalize the intuition that for economy reasons a syntactic object should, at 
least in the normal case, only be spelled out once, no matter how many occurrences it 
has. In this, we agree with Chomsky (2005: 13): “If language is optimized for satisfaction 
of interface conditions, with minimal computation, then only one will be spelled out, 
sharply reducing phonological computation.” Lexical item tokens that are part of a non-
final occurrence will simply not be spelled-out by TransferPF defined below. We put aside 
issues such as how to handle the copies formed in predicate cleft (see Kandybowicz 
2008, Kobele 2007, Hiraiwa 2005). 
 
Definition 41. (Non-Final Occurrences) 
The occurrence YP in SO is non-final in SO iff there is another occurrence YP’ in SO that 
c-commands YP. 
 

We are now ready to define Transfer at the PF interface: 
 
Definition 42. (TransferPF) For any derivable workspace W with syntactic object 
Phase∈W such that Label(Phase) is a strong phase head, and for all occurrences of 
objects SO such that either SO=Phase or SO is contained in Phase, TransferPF(SO) is 
defined as follows: 

                                                
16 See Frampton (2004) for a related approach. See Corcoran et al. (1974) for a formal 
theory of the binary associative, non-commutative operation of concatenation that we 
indicate with the symbol ^. 
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a. If SO is a lexical item token <<Sem, Syn, Phon>, k>, which is a final occurrence 
in Phase, then TransferPF(SO) = Phon; 

b. If SO={X,Y} and occurrences X and Y are final in Phase, TransferPF(SO) = 
TransferPF(X)^TransferPF(Y) if either Y is the complement of X, or X is the 
specifier of Y; 

c. If SO={X,Y} and occurrence X is final in Phase but occurrence Y is not, 
TransferPF(SO) = TransferPF(X); 

d. If SO is non-final in Phase, or SO={X,Y} where both X and Y are non-final in 
Phase, then TransferPF(SO) = the empty sequence. 

e. TransferPF(<PHON, SEM>) = PHON 
 

Clause (a) specifies how lexical item tokens are spelled out. Clause (b) entails the 
order Specifier-Head-Complement is universal, since no other orderings are provided for 
(see Kayne 1994 and Aboh 2004). It should be possible to formalize other linear ordering 
algorithms based on headedness, but we have not explored them here. Clauses (c,d) 
specify that the lower non-final occurrence of a syntactic object is simply ignored at spell 
out17. One important consequence is that there is no operation like the Chain Reduction 
of Nunes(2004: 27). Clause (e) is needed because of Cyclic-Merge. Since <PHON, 
SEM> is inserted into the syntactic object being built, later Transfer operations must be 
able to apply to it. 
 An example of TransferPF is given below: 
 
(19) [VPsee Chris] 

LI1 = <<SEE, Syn1, /see/>, 1> 
LI2 = <<CHRIS, Syn2, /chris/>,2> 
SO = Merge(LI1,LI2) 
Phase = vP (not shown) 
TransferPF(LI1) = /see/ 
TransferPF(LI2) = /chris/ 
TransferPF(SO) = TransferPF(LI1)^TransferPF(LI2) = /see/^/chris/ 

 
(20) [IP John Infl [VP fell <John>] where SO = [VP fell <John>] 

(assume “fall” is unaccusative, so that “John” raises from the complement of 
“fall” to Spec IP) 
LI1 = <<FALL, Syn1, /fall/>, 1> 
LI2 =  <<JOHN, Syn2, /john/>, 2>  (LI2 is non-final) 
SO = Merge(LI1,LI2) 
Phase = CP (not shown) 
TransferPF(LI1) = /fall/ 
TransferPF(LI2) = /john/ 
TransferPF(SO) = TransferPF(LI1) = /fall/ 

 

                                                
17 See Kandybowicz (2008: 15) for a list of different approaches to the spell-out of 
occurrences.  
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(21)  [Who do you think John will see], consider the embedded clause after “who” 
raises to the embedded Spec CP, but before it raises to the matrix Spec CP: 
[CP who John will see] 

 
Phase  = {who1, {Comp2 {John3, {will4, {see5, who1 }}}}} 
SO = complement of Comp2 = {John3, {will4, {see5, who1 }}} 
Cyclic-Transfer(Phase) = 
{who1, {Comp2, <TransferPF(SO), TransferLF(SO)>} = 
{who1 {Comp2, </john/^/will/^/see/,  

  {<JOHN, 3>, {<WILL, 4>, {<SEE, 5>, <WHO, 1>}}}>}} 
 
 Given the definition of Transfer, it is now possible to prove the phase 
impenetrability condition (PIC) as a theorem. The PIC is given by Chomsky (2000: 108) 
as follows: “In phase α with head H, the domain of H is not accessible to operations 
outside α, only H and its edge are accessible to such operations.” Our UG (Definition 1) 
has only 3 operations. Select applies to a lexical item in the array, so it cannot apply to 
any complex in the workspace. And Transfer can be regarded as an interface operation. 
So PIC is relevant only for Merge, and it is a trivial matter to prove: 
 
Theorem 13.(PIC) In phase α with head H that has sister (i.e. complement) occurrence 
XPP, in Cyclic-Transfer(α), Merge cannot apply to the sister of H or anything contained 
in the sister of H. 
 

Proof. By Definition 38, the sister of H in Cyclic-Transfer(α) is Transfer(XP), 
which is not a syntactic object and does not contain any syntactic objects. Since 
Merge is only defined for syntactic objects, it cannot apply to the sister of H or to 
anything contained in the sister of H. QED 

 
Note that in Theorem 13, PIC intuitively is telling us about the accessibility of a 
particular occurrence XPP of the syntactic object XP. The definitions given so far allow 
XP (or something contained in XP) to merge as the specifier of H before Cyclic-Transfer 
applies, in which case the specifier occurrence would be accessible in Cyclic-Transfer(α), 
even though neither the complement occurrence nor any syntactic object occurrence 
inside the complement is present any more. 
 
10. Multiple Transfer at the Phase Level 
 
 Remnant movement poses a challenge to the above formulation of Transfer, and 
to the phase-based theory in general. Although the proposals in this section are 
preliminary, we take them as a first step in trying to incorporate remnant movement into a 
phase-based theory and hope that they will stimulate further research. 

Consider the following classic illustration (<…> denotes non-final occurrences): 
 
(22) How likely to win is John? 
 
(23) a. is how likely John to win    Merge 
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 b. John is how likely <John> to win   Merge 
 c. Comp John is how likely <John> to win  Merge 
 d. how likely <John> to win is John <how likely <John> to win> 
 
 If this derivation is to converge (as defined in section 12 below), Transfer must 
apply at step (23d). If Transfer applied at step (23c), nothing would be able to move out 
of the IP which is the complement of the strong phase head Comp. But if Transfer applies 
at step (23d), then the simple definition of non-final occurrence in Definition 41 does not 
yield the intended result. There are three occurrences of John in (23d), and under the 
definition of non-final occurrence the leftmost occurrence counts as final (since there is 
no other occurrence c-commanding it), and hence should be spelled out. This issue will 
affect any theory trying to incorporate remnant movement into a phase-based theory. 
 A natural solution to this problem is to assume that once internal Merge takes 
place, the lower (non-final occurrence) is spelled out as phonetically zero immediately. 
Then, when the remnant moves in (23d), there will be no issue of blocking the leftmost 
occurrence of John from spelling out as a final occurrence since it will have already been 
spelled out as zero. This is the approach of Collins and Sabel 2007 and Stabler 1997, and 
it is implicit in the “trace” theory of movement rules. However, in the phased-based 
approach, Transfer takes place at the strong phase head, and not necessarily following 
every instance of internal Merge. 

As a first step in resolving the issue in a phase-based model we assume the 
following: 
 
(24) At strong phase SO, the operation Cyclic-Transfer can apply more than one time. 
 
We formalize this in the following way: 
 
Definition 36’.(Cyclic-Transfer, second version) 
For any derivable workspace W = {SO} where SO is a strong phase and the occurrence 
AP (with position P in SO) is the complement of the head of the phase or is contained in 
the complement of the head of the phase, let Cyclic-TransferP(SO) = SO’ where SO’ is 
obtained from SO by replacing A in position P by <TransferPF(A), TransferLF(A)>. 
 
 The way that this modifies the earlier version of Cyclic-Transfer is that it allows 
the complement of the phase head or any constituent contained in the complement of the 
phase head to be spelled out, not just the complement of the phase head. The concrete 
consequence for remnant movement is that Cyclic-Transfer can apply twice (or more) at 
the level of a single strong phrase head, allowing the interleaving of Merge and Cyclic-
Transfer operations at the level of a strong phase. In particular, if there are two 
occurrences of a constituent (created by Merge) in a phase, the lower one can be spelled 
out as phonetically zero by Cyclic-Transfer. The derivation of remnant movement is 
sketched below. In the derivation below, the output of Transfer is abbreviated with 
hyphenated a-b-c notation, we omit I-to-C movement: 
 
(25) a. Merge({is, {how, {likely, {John1, {to, win}}}}}, John1) =   
  {John1, {is, {how, {likely, {John1, {to, win}}}}}} 



 28 

 b. Merge(Comp, {John1, {is, {how, {likely, {John1, {to, win}}}}}) = 
  {Comp, {John1, {is, {how, {likely, {John1, {to, win}}}}}}} 

c. Cyclic-Transfer({Comp, {John1, {is, {how, {likely, {John1, {to, 
win}}}}}}) = 

 {Comp, {John1, {is, {how, {likely, {<∅, JOHN1>, {to, win}}}}}}} 
d. Merge({how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp, {John1, {is, 

{how, {likely,  {<∅, JOHN1>, {to, win}}}}}}})  =  
{{how, {likely,  {<∅, JOHN1>, {to, win}}}}, {Comp, {John1, {is, {how, 
{likely,  {<∅, JOHN1>, {to win}}}}}}}} 

e. Cyclic-Transfer({{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp, 
{John1, {is, {how, {likely,  {<∅, JOHN1>, {to, win}}}}}}}}) = 

 {{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp John-is}} 
f. Transfer({{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp John-is}}) 

= how-likely-to-win-John-is 
 
This yields the desired result because the Cyclic-Transfer in (25c) applies not to 

the complement of Comp but to the lower occurrence of John, at a point when that 
occurrence is still c-commanded by the higher one. The remnant wh-movement then 
applies to the how likely phrase that contains the lower occurrence of John, now 
appropriately spelled out as phonetically zero.  

This strategy will produce the desired results as long as we can require that lower 
occurrences of moved elements are transferred before any containing constituent is 
moved. In other words, what forces the derivation in (25), as opposed to one where 
remnant movement takes place and the leftmost occurrence of John is spelled out in 
(23d)? 

We can think of a number of solutions to this issue. The simplest approach is to 
define TransferPF so that it will not apply if there are two final occurrences of a single 
syntactic object. For example, in (23d), there are two final occurrence of John, so 
TransferPF will be undefined. To implement this formally, (41d) could be changed to  
 
Definition 42’. (TransferPF) 
c. If SO={X,Y} and occurrence X is the unique final occurrence of X in Phase but  

occurrence Y is not, TransferPF(SO) = TransferPF(X); 
 

Another approach is based on the intuition that the illegitimate application of 
TransferPF in (23d) would spell out the phonological features of John twice.  
An economy condition stating that the Phon features of each lexical item can be accessed 
for TransferPF exactly once would block the illegitimate derivation. A preliminary 
attempt to formalize this intuition would modify the definition of TransferPF in the 
following way: 
 
Definition 42’’. (TransferPF) 
a. If SO is a lexical item token <<Sem, Syn, Phon>, k>, which is an unmarked final  

occurrence in the Phase, then TransferPF(SO) = Phon and the lexical item is 
marked as spelled out. 
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We assume that the lexical item itself (i.e. all occurrences) are marked by 
TransferPF, and (ii) that the derivation will crash when Transfer is required but cannot 
apply. 
 
11. NTC and Transfer: An Alternative 
 

Since respecting the NTC is one of the fundamental, motivating ideas of the 
minimalist approach to grammar, we should consider whether it is possible to define 
Cyclic-Transfer in a way that respects the NTC and does not require allowing new sorts 
of syntactic objects. One alternative is to regard Cyclic-Transfer as an operation that does 
not affect syntactic objects at all, but simply affects what is available in the workspace. 
Instead of thinking of a workspace as containing a set of syntactic objects, all of which 
are accessible to Merge, we can think of a workspace as providing access to certain 
occurrences of syntactic objects. One way to do this is to keep a set of occurrences that 
have been transferred, and then block all access to those transferred elements. We call the 
set of transferred occurrences CI/SM (named for the conceptual-intentional and 
sensorimotor interfaces), so that at each step of the derivation the accessible parts of 
workspace W are given by W minus the occurrences in CI/SM. When we add an 
occurrence SOp to CI/SM, let’s write CI/SM ∪ {SOp} to represent the addition of 
occurrence SOp and all the occurrences contained in SOp. We will not spell out this 
perspective in full detail, but Cyclic-Transfer would be defined as follows (mimicking 
closely the revised Definition 36): 
 
Definition 36’’. (NTC-respecting version) 
Consider any derivable workspace W={SO} with inaccessible occurrences CI/SM, where 
SO is a strong phase and the occurrence AP (with position P in SO) is the complement of 
the head of the phase or is contained in the complement of the head of the phase. 
Then let Cyclic-TransferP(W,CI/SM) = (W,CI/SM’) where CI/SM’ is obtained from 
CI/SM by adding 
i. Ap and all occurrences contained in Ap, and 
ii. for every lexical item token occurring in Ap, the PHON of  all occurrences of that 

lexical item token. 
 

This NTC-respecting approach to Cyclic-Transfer does not change the syntactic 
objects constructed by Merge, and so we don’t need the new Definition 37 of syntactic 
object any more, and can return to the original simple Definition 7. And Cyclic-Transfer 
now does not change the syntactic structure at all, but affects only which parts of derived 
structures are accessible in the workspace. With this second perspective on Transfer, only 
Merge constructs syntactic objects, and no other operation changes them in any way. 
Transfer and Select are operations that act on the workspace to affect what is under 
consideration as the structure is built by Merge. 

Interestingly, though the difference between the NTC-violating Definition 36 and 
the NTC-respecting version of 36’’ is important for the overall picture of how the syntax 
works, it is, remarkably, irrelevant to most of the details of the framework. Either an 
occurrence is replaced by a pair <TransferPF(AP), TransferLF(AP)> and some lexical 
PHON properties are deleted (NTC-violating Cyclic-Transfer), or the occurrence is put 
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into CI/SM and so is not accessible  (NTC-respecting Cyclic-Transfer). With either 
approach, some parts of syntactic objects are rendered inaccessible, and that is what 
matters in the details. Theorem 13 (PIC) follows in both cases.  
 
12. Convergence 
 

A derivation converges if in the workspace only the pair <PHON, SEM> remains, 
where PHON is interpretable by the SM Interface, and SEM is interpretable by the CI 
Interface: “The last line of each derivation D is a pair <PHON, SEM>, where PHON is 
accessed by SM and SEM by C-I. D converges if PHON and SEM each satisfy IC; 
otherwise it crashes at one or the other interface.” (Chomsky 2004: 106). 
 Minimally, this requirement entails that the result of TransferLF(SO) should only 
contain features interpretable at the CI Interface, and that TransferPF(SO) should only 
contain features interpretable at the SM Interface. 
 
Definition 43. (Converge at CI Interface) 
A derivation D = (<LA1, W1>,….,<LAn, Wn>) where Wn = {<PHON, SEM>} converges 
at the CI Interface iff for every feature F contained in SEM, F is interpretable at the CI 
Interface. Otherwise, it crashes at the CI Interface 
 
Definition 44. (Converge at SM Interface) 
A derivation D = (<LA1, W1>,….,<LAn, Wn>) where Wn = {<PHON, SEM>} converges 
at the SM Interface iff for every feature F contained in PHON, F is interpretable at the 
SM Interface. Otherwise, it crashes at the SM Interface. 
 
Definition 45. (Converge) 
A derivation converges iff it converges at the CI Interface and the SM Interface. 
Otherwise, it crashes. 
  
13. Conclusion 
 

In this paper we have given a preliminary formalization of minimalist syntax, 
including the operations Merge and Transfer. One lesson from this exercise is that it is 
not possible to define Merge in isolation, independently from a network of definitions 
articulating the notion of a derivation. In order to define Merge and its recursive 
application properly, we had to define: lexical item, lexical item token, syntactic object, a 
stage in a derivation, the operation Select, the derive-by-Merge relation between stages, 
among other notions.  

Clearly, our treatment of Transfer is more speculative than the treatment of 
Merge, raising a number of problems that have not been resolved here. This corresponds 
to the fact that Transfer, as opposed to Merge, is a relatively recent addition to minimalist 
syntax and hence not as well understood. The operations of TransferPF and TransferLF 
need much attention. On the PF side, we have not given a satisfactory treatment of the 
spell-out of occurrences in predicate cleft and related constructions (see  Kandybowicz 
2008, Boskovic and Nunes 2007, and Nunes 2004). On the LF side, we have not given a 
satisfactory treatment of reconstruction effects. We hope that our formalization will 
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stimulate further efforts in these areas. 
One result of our work is to bring up broader theoretical issues that have not 

received much attention. Should we use lexical item tokens, or Chains, or more 
complicated graphs? Do we obtain a more revealing and more plausible theory when 
Transfer is formulated to respect the NTC? We leave these matters for future work. 
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