
 1

A Formalization of Minimalist Syntax
Chris Collins and Edward Stabler

December 2011

The goal of this paper is to give a precise, formal account of certain fundamental

notions in minimalist syntax, including Merge, Select, Transfer, occurrences, workspace,
labels, and convergence. We would like this formalization to be useful to minimalist
syntacticians in formulating new proposals and evaluating their own proposals, both
conceptually and empirically.

We do not attempt to formalize all minimalist analyses that have been proposed in
the last two decades. Rather, we focus on widely accepted formulations. Where certain
alternatives loom large, we mention them briefly. There are many operations we have not
treated for reasons of space, including: head movement, Pair-Merge (adjunction), QR
Agree and Feature Inheritance. The framework given in this paper could be extended to
incorporate various versions of these operations, which could then be compared
rigorously.

Our basic approach bears a resemblance to the Minimalist Grammars devised by
Stabler (1997) and the work that it has given rise to.1 Those grammars were simplified to
facilitate computational assessment, but here we make an effort to stay close to
mainstream formulations.

We use basic set theory to represent syntactic objects, with standard notation: ∈
(is an element of), ∪ (set union), ⊆ (is a subset of), ⊂ (is a proper subset of). Given any
two sets S and T, the set difference S-T={x| x∈S, x∉T}. And S×T is the Cartesian
product of S and T, that is, the set of ordered pairs {〈a,b〉| a∈S,b∈T}. As usual, free
variables in definitions are understood to be universally quantified. For example, “W is a
workspace iff…” means the same thing as “For all W, W is a workspace iff…”

1. Preliminary Definitions

Definition 1. Universal Grammar
Universal Grammar is a 6-tuple: <PHON, SYN, SEM, Select, Merge, Transfer>

 PHON, SYN and SEM are universal sets of features. Select, Merge and Transfer
are universal operations. Select is an operation that introduces lexical items into the
derivation. Merge is an operation that takes two syntactic objects and combines them into
a syntactic object. Transfer is an operation that maps the syntactic objects built by Merge
to pairs <PHON, SEM> that are interpretable at the interfaces. Select, Merge and
Transfer are defined later in the paper. Definition 1 captures what is invariant in the
human language faculty. There is no need to augment the 6-tuple with a specification of
the format of lexical items, since the required format of lexical items is already given by
the definitions of the operations.

We assume that UG specifies three sets of features: semantic features (SEM),
phonetic features (PHON), and syntactic features (SYN). We assume that these three sets
do not overlap, although in some cases this assumption may be too restrictive (e.g., for

1 See for example, Michaelis (2001), Harkema (2001), Stabler (2010), Salvati (2011).

 2

phi-features). SEM may include the features like eventive or (not stative); it could include
thematic roles like agent, recipient, experiencer; and it could also include semantic
values like λyλx.x breaks y. PHON may contain segments, phonological features like
[+ATR], and ordering restrictions. SYN includes syntactic categories like N, V, P, Adj,
but also subcategorization features, EPP features, and “unvalued” features [uF] valued by
Agree.

For the moment, we do not need to be clearer about what the features are, but will
assume that they are basic elements, different from the sorts of syntactic objects we will
derive in the syntax.

Definition 2. A lexical item is a triple of three sets of features,

LI = <Sem, Syn, Phon>
where Sem ⊂ SEM, Syn ⊂ SYN, and Phon ⊂ PHON.

Note that for some lexical items, Sem, Syn or Phon could be empty.

Definition 3. A lexicon is a set of lexical items.

While infinite lexicons are not excluded in principle, since the lexical items are
basic (not generated) and human minds are finite, only finite lexicons need be considered.
Null lexicons are also not excluded in principle.

Definition 4. An I-language is a pair <LEX, UG> where LEX is a lexicon and UG is
Universal Grammar.

We make the implicit assumption that any normal adult can access any feature of
the universal sets PHON, SEM, SYN. Even if this assumption turns out to be wrong, it is
a natural framework to start from.

In order to allow structures in which a given lexical item occurs twice in a
structure, the lexical items in our structures will be indexed with integers (this is basically
equivalent to Chomsky 1995:2272, contra Kitahara 2000). These structures with indexed
lexical elements have a natural interpretation as graphs where an indexed lexical item
corresponds to a leaf node in a graph. For example, in the sentence “the dog saw the other
dog”, there are two tokens of the single lexical item “dog”. The integer in the lexical
item token plays no other role in the syntactic computation. For example, the integer will
not be used in “counting”. In fact, other distinguishing marks would serve just as well,
e.g., <dog, !>, <dog, !!>, <dog, !!!>,etc. (as long as there could be an unlimited number
of such marks).

As discussed below (see Theorem 6), although lexical items are indexed, there is
no need for additional co-indexing of elements related by movement, since the lexical

2Chomsky (1995: 227): “But the syntactic objects formed by distinct applications of
Select to LI must be distinguished; two occurrences of the pronoun he, for example, may
have entirely different properties at LF. l and l’ are thus marked as distinct for CHL if they
are formed by distinct applications of Select accessing the same lexical item of N.” In our
formalization, the items are always already distinct in the ‘lexical array’; see Definition 6.

 3

indices suffice to unambiguously represent the results of movement relations. We do not
take up the question of how lexical indices relate to the “referential indices” of the
binding theory. The referential indices of binding theory play no role in our
formalization.

Definition 5. A lexical item token is a pair <LI,k> where LI is a lexical item and k is an
integer.3

When context makes our intentions clear, we will use LI to mean either lexical
item or lexical item token. For convenience, when the integer of a lexical item token is
indicated, we will usually write it as a subscript: <John, k> = Johnk where “John” is itself
an abbreviation for a triple of SEM, SYN and PHON features.

Definition 6. A lexical array (LA) is a finite set of lexical item tokens.

A lexical array LA could contain two tokens of “dog”, for example dog7 and
dog43. These two tokens are distinct, both for syntactic operations and at the interfaces.

Given a lexical array with tokens explicitly marked in this way, we do not need an
additional notion of ‘numeration’ in our formalization. Chomsky (1995: 225) defines a
numeration as “…a set of pairs (LI, i), where LI is an item of the lexicon and i is its
index, understood to be the number of times that LI is selected.” For example, if the pair
(dog, 2) is in the numeration, “dog” will be selected twice in the derivation, as in the
sentence “The dog sees the other dog.” Our notion of lexical item token also allows the
lexical item “dog” to be selected twice (once when the token dog7 is selected and once
when the token dog43 is selected). Hence there is no need for a numeration.4

Definition 7. X is a syntactic object iff

i. X is a lexical item token, or
ii. X is a set of syntactic objects.

The domains and ranges of the Merge functions (defined in section 2 below) will

be sets of syntactic objects. The actual “constituents” built by Merge will be much more
restricted (e.g., binary). See Chomsky (1995: 243) for a definition of syntactic object
which incorporates the notion of label.
 We also need some definitions to refer to the relations between syntactic objects.

Definition 8. Let A and B be syntactic objects, then B immediately contains A iff A ∈ B.

3 Since the Sem and Phon features of a lexical item are not accessed until Transfer,
an alternative would be to treat Sem and Phon as functions defined on the token index
Sem(i) (= a set of semantic features) and Phon(i) (= a set of phonetic features). These
functions would only be applied at Transfer, and only the token index would appear in
the syntactic derivation.
4 Nor do we define the notion of subarray (see Chomsky 2000: 106, 2001: 11),
since it seems to play no role in Chomsky (2007, 2008).

 4

Definition 9. Let A and B be syntactic objects, then B contains A iff
i. B immediately contains A, or
ii. For some syntactic object C, B immediately contains C and C contains A.

Notice that with these definitions, “immediately contains” is the “has as a
member” relation, and “contains” is the transitive closure of that relation. That is, if A
contains B, then B is a member of A, or a member of a member of A, and so on.

2. Workspaces, Select and Merge

A derivation of a syntactic object is a series of steps that constructs a single
syntactic object from some lexical item tokens. Each stage in the derivation is defined by
a lexical array and a workspace:

Definition 10. A stage (of a derivation) is a pair S = <LA, W>, where LA is a lexical
array and W is a set of syntactic objects. In any such stage S, we will call W the
workspace of S.

A derivation will be defined below as a sequence of stages meeting certain
requirements. The lexical array includes all the lexical item tokens that may be
introduced into a particular derivation at a particular stage. A workspace includes all the
syntactic objects that have been built up at a particular stage in the derivation. Note that
by Definition 7, a workspace is a syntactic object. However, by convention we will
reserve the term “syntactic object” for those elements built up in the course of the
derivation and contained in the workspace.

In minimalist literature, the term “workspace” is also used in a sense where two
syntactic objects which are being built in parallel occupy two different workspaces.
These two different workspaces are combined at some point in the derivation (see Nunes
2004: 140). We do not use the term “workspace” in this sense in our formalization. At
any stage in the derivation there is only one workspace. Formalizing the alternative in our
framework would not be difficult.

Definition 11. For any syntactic object X and any stage S=<LA,W> with workspace W,
if X ∈ W, X is a root in W. When X is a root, we will sometimes say simply that X is
undominated in W, or when W is understood, simply that X is undominated.

The Merge operation is constrained to apply to a root (see the definition of derive-
by-Merge below), and the operation acts at the root in the sense that it embeds a root into
a more complex syntactic object.

Before discussing the operation Merge, we first formalize an operation of
selection of lexical item tokens that applies to stages.

Definition 12. Let S be a stage in a derivation S = <LA, W>.
If LI ∈ LA, then Select(LI, S) = <LA – {LI}, W ∪{LI}>

 5

Select is an operation that takes a lexical item token from the lexical array and
places it in the workspace, at which point it is a root, available to be merged. Note that
Select is only defined on stages that contain non-empty lexical arrays.5

Merge is defined on syntactic objects. It is a function that maps pairs of syntactic
objects to new syntactic objects in the following simple way (Chomsky 2007: 8 and
Stabler 1997):

Definition 13. Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}.

Merge takes two syntactic objects and combines them into a single syntactic
object. This is the basic structure building operation of syntax. The distinctness clause
means that no syntactic object A can be merged with itself. In other words, Merge(A,A)
is undefined, though different tokens of the same structure can of course be merged.
Ultimately, the distinctness clause accounts for the lack of non-branching projections.

Note that there is no distinction made between External-Merge and Internal-
merge. These notions are distinguished not by the operation itself, but by the positions of
the objects A, B in the stage where Merge is applied. External-Merge corresponds to the
case where A, B ∈W (a workspace). Internal-Merge corresponds to the case where
A∈W, and A contains B. In the latter case, A is called the “target of movement”.

Our definition also allows Sideward-Merge, where A ∈ W, C ∈ W, A and C are
distinct, and C contains B. A plausible hypothesis is that Sideward-Merge is excluded as
a possible operation (contra Nunes 2004) by economy principles: Sideward-Merge
involves three elements: A, B, and C (which contains B), instead of only two for the other
subcases. We formalize this economy condition by defining derive-by-Merge below so as
to block Sideward-Merge.

Consider the following example of Merge. Let seej and Johnk be lexical item
tokens in some workspace W, then:

(1) Merge(seej, Johnk) = {seej, Johnk}

 The result of this operation,{seej, Johnk}, has no syntactic category label (e.g.,
VP). The formalism for labels will be developed below, after the operation of “triggered
merge” is defined.

Now suppose that the workspace W is {{Johni, seek}}, then the following Merge
operation is also possible:

(2) Merge({Johni, seek}, Johni) = {Johni, {Johni, seek}}.

5 Collins (1997: 89-90) and Frampton and Gutman (2002: 93) argue against the
existence of a Numeration/Lexical Array. On such a theory, a stage in a derivation is
simply defined as a workspace. The operation Select would then need to introduce a
lexical item token directly into the workspace: Select(LI, W) = W U {LI}. We do not
pursue this alternative for reasons of space.

 6

What this means is that when the second argument of Merge, the syntactic object
Johni, occurs inside the first argument, and that object appears in two places in the result.
This falls under the Internal-Merge subcase of Merge. Graph theoretically, it is
represented as below:

(3) Graph Representation of Merge({Johni, seek},Johni) = {{Johni, seek},Johni}

 *

 *

 seek Johni

In this kind of “set membership” diagram, the internal nodes labeled * are sets,
syntactic objects, with arcs pointing to their elements.

For comparison, consider the following example of Merge, given a workspace W
= {{Johni, seek},Johnm}:

(4) Merge({Johni, seek},Johnm) = {{Johni, seek},Johnm }.

In this structure, there are two distinct lexical item tokens corresponding to the
lexical item “John”. These lexical item tokens appear in two different positions in the
structure. Graph theoretically, it is represented as below:

(5) Graph Representation of Merge({Johni, seek},Johnm) = {{Johni, seek},Johnm }
 *

* Johnm

seek Johni

A possible alternative approach to the distinction between (3) and (5) is to
introduce Chains as fundamental objects (not present in our formalization). Then one
could say that in (3) a Chain links the two occurrences of John and in (5) there are no
non-trivial Chains. Formal approaches along these lines are developed by Kracht (2001)
and by Stabler (2001), for example, and we suspect that a structural equivalence could be
established between a theory of that sort and the theory developed here. For the rest of
this paper we continue to assume that (a) there are lexical item tokens, and (b) there are
no Chains.

 7

Since we are formalizing derivations in terms of a sequence of stages, we need to
show how the operation Merge leads to a transition from one stage to the next6:

Definition 14. For any two stages S1 = <LA1, W1> and S2 = <LA1, W2>, and any two
distinct syntactic objects A, B where A∈ W1 and B ∈ W1 or B is contained in A, S1

derives S2 by Merge iff W2 = ((W1 - {A, B}) ∪ {Merge(A,B)}). In this case, we will also
say that A and B are merged to form {A, B}.

In the above definition, the lexical array does not change from one stage to the

next, since it is not altered by Merge (only by Select). If A, B ∈ W (the External-Merge
subcase), then the effect of the derive-by-Merge relation is to remove both A and B from
W. If A ∈ W, and B is contained in A (the Internal-Merge subcase), then the effect of the
derive-by-Merge relation is to remove only A from W (since B is not a member of W).
Since B ∈ W1 or B is contained in A, it follows that Sideward Merge is not allowed.

The transition from one workspace to the next can be represented graphically in
terms of a derivational diagram.

(6) Derivational Diagram of Merge(A,B) (A ∈ W, B ∈ W)
 Workspace 1 Workspace 2

 Merge(A,B)

In the derivation in (6), A and B occupy W1, but are not present in W2.
Furthermore, W2 has one less element than W1. Since A does not contain B (so B is
external to A), Merge(A,B) is the External-Merge subcase.

In the derivation in (7), by contrast, W1 and W2 both have one element. Since B is
found internal to A, Merge(A,B) is the Internal-Merge subcase.

6 For previous work, see Chomsky (1995: 226, 243), Collins (1997: 76), and
Frampton and Gutmann (1999). For example, Chomsky (1995: 243) defines the Merge
operation as follows: “Suppose a derivation has reached state ∑ = {α, β, δ1,…,δn}. Then
application of an operation that forms K as in (5b) [K = {γ, {α, β}} – c.c.] converts ∑ to
∑’ = {K, δ1,…,δn}, including K but not α,β.” The notion of a sequence of workspaces is
not used in Stabler (1997), but is present in Stabler (2006) and developed in Hunter
(2011).

 A B

 C

 A B

 8

(7) Derivational Diagram of Merge(A,B) (A ∈ W, B contained in A)
 Workspace 1 Workspace 2

 Merge(A,B)

3. Occurrences

The definition of Merge has the effect that a particular syntactic object can occur
two times (or more) in a structure, at different positions. This happens when Merge(A,B)
applies and B is contained in A, the subcase of Internal-Merge. It is often useful to talk
about the different occurrences (which occupy different positions) of a particular
syntactic object.

Chomsky (2000: 115) proposes two ways to define the position of an occurrence
in a structure. First, he takes “...an occurrence of α in K to be the full context of α in K.”
Alternatively, he suggests a simplification where “…an occurrence of α is a sister of α.”
Chomsky does not develop the first definition based on “full context”. The second
definition based on sisterhood runs into the problem that the sister of α might also have
several occurrences (and hence several sisters). Therefore defining the notion of
occurrence in terms of sisterhood does not specify (in the general case) a unique position
in the structure being built. For example, consider a VP [VP V DP]. Both the V and the
DP can undergo movement. Hence defining the position of V as the sister of DP does not
specify a particular position, since the syntactic object DP has more than one position.
Furthermore, suppose the VP itself undergoes movement (VP….<VP>). Then we have
several occurrences of V (one in each occurrence of VP), but the sisterhood definition
does not reflect this, since for each V occurrence the sister is the same syntactic object
DP.

Consider a syntactic object SO={S1,{S1, S2}}. We say that S1 occurs twice in SO.
The position of an occurrence is given by a “path” from SO to the particular occurrence.
A path is a sequence of syntactic objects <SO1,SO2,...,SOn> where for every adjacent pair
<SOi, SOi+1> of objects in the path, SOi+1∈SOi (that is to say, SOi+1 is immediately
contained in SOi). With this definition, the two occurrences of S1 in SO are identified by
the two different paths that begin with SO and end with S1:

(8) Position of highest occurrence of S1 in SO: <{S1,{S1,S2}}, S1>

(a sequence of two syntactic objects)
Position of lowest occurrence of S1 in SO: <{S1,{S1,S2}}, {S1,S2}, S1>

(a sequence of three syntactic objects)

We formalize the notions of position and occurrence in a structure with the
definitions below.

 A

 B

 C

 B A

 B

 9

Definition 15. The position of SOn in SO1 is a path, a sequence of syntactic objects
<SO1,SO2,...,SOn> where for every adjacent pair <SOi,SOi+1> of objects in the path,
SOi+1∈SOi (SOi+1 is immediately contained in SOi).

Definition 16. B occurs in A at position P iff P = <A,...,B>. We also say B has an
occurrence in A at position P (written BP).

Sometimes we will say “an occurrence of X” when we mean “an occurrence of X
in position P of syntactic object SO”, when the position P and object SO are implicit in
the discussion. When talking about a syntactic object A contained in a workspace W, we
will define A’s position in W with respect to one of the undominated syntactic objects of
W (e.g., A occurs at position P of B ∈ W).

Given these definitions of position and occur, it is important to revisit the
definitions of sister, immediately contain, contain and c-command. These terms are
commonly used in the syntax literature for relations between occurrences of syntactic
objects, in a way we can now formalize. We have already given the definitions of
immediately contain and contain as relations between syntactic objects in Definitions 8
and 9 above. Restating these relations as relations between occurrences can be done in
the following manner:

Definition 17. Let A, B and C be syntactic objects, then, in C, occurrence BP immediately
contains occurrence AP’ (for any paths P,P’ in C) iff P = <X1,…,Xn> and
P’=<X1,…,Xn,Xn+1>.

Note that if B occurs in position P=<X1,…,Xn> in C, and A occurs in position
P’=<X1,…,Xn,Xn+1> in C, by the definition of paths, it follows that X1=C, Xn=B, Xn+1=A,
and A ∈ B. So, obviously, we can relate the immediately contains relation between
occurrences to the corresponding relation between syntactic objects as follows:

Theorem 1. If occurrence BP immediately contains occurrence AP’ in C (for some paths
P,P’ in C) then, in C, B immediately contains A. If B immediately contains A, then every
occurrence of B immediately contains some occurrence of A.

Similarly for sisterhood, one can define it as a relation between syntactic objects7:

Definition 18. Let A, B, C be syntactic objects (where A≠B), then A and B are sisters in
C iff A,B∈ C.

But a definition corresponding to actual usage in the syntax literature makes
reference to occurrences:

7 It is also possible to formalize the derivational definitions of sisterhood and c-
command given in Epstein (1999).

 10

Definition 19. Let A, B, C be syntactic objects (where A≠B), then in C, AP is a sister of
BP’iff P = <X1,…,Xn-1,Xn> (where Xn = A) and P’ = <X1,…,Xn-1,X’n> (where X’n = B).

Theorem 2. If in C, AP is a sister of BP’ (for some paths P,P’ in C) then A and B are
sisters in C.

Similarly, c-command can be defined as a relation between syntactic objects:

Definition 20. Let A and B be syntactic objects, then A c-commands B, iff there is a
syntactic object C, such that:

i. C is a sister of A, and
ii. either B=C or C contains B.

A asymmetrically c-commands B iff A c-commands B and A and B are not sisters.

 In SO={S1,{S1, S2}}, according to this definition, S1 c-commands S1. What we

would usually say is that one occurrence of S1 c-commands the other. That is, the
occurrence of S1 in position P1 c-commands the occurrence of S1in position P2 (where
positions are defined by paths). The occurrence based definition is given below:

Definition 21. In D, AP c-commands BP’iff there is an occurrence CP’’ such that:

i. CP’’ is a sister of AP in D, and
ii. either BP’=CP’’ or CP’’ contains BP’, in D.

AP asymmetrically c-commands BP’ iff AP c-commands BP’ and they are not sisters

Theorem 3. If in C, AP c-commands BP’ (for any paths P,P’ in C) then A c-commands B
in C.

 Given this definition of occurrence, we could define a Chain as a sequence of
occurrences satisfying some set of conditions (e.g., c-command, locality, the Chain
Condition, etc.) of a single syntactic object: <P1, P2,….Pn>. However, we follow Epstein
and Seely (2006, chapter 2) in dispensing with the notion of chain, which will play no
role in our formalization.

4. Derivations

We define a derivation as a sequence of stages, where a stage includes a workspace and a
lexical array.

Definition 22. For any stages, S1=<LA1, W1> and S2=<LA2, W2>, S1 derives S2 iff

i. S1 derives S2 by Merge,or
ii. for some LI ∈ LA1, S2 = Select(LI, S1).

 11

Definition 23. A derivation from lexicon L is a finite sequence of stages S1,…,Sn, for
n≥1, where each Si = <LAi, Wi>, such that
 i. For all LI and k such that <LI,k>∈LA1, LI ∈ L,

ii. W1 = {} (the empty set),
iii. for all i, such that 1 ≤i≤ n-1, Si derives Si+1,
iv. LAn = {} (the empty set), and
v. Wn contains exactly one element.

A sequence of stages that satisfies (i-iii) is a partial derivation. (So every

derivation is a also a partial derivation, but not conversely.) The notion of partial
derivation will be useful in proving theorems about derivations and the syntactic objects
derived in them.

Definition 23 says that a derivation is a sequence of stages such that in the first
stage, no syntactic structure has yet been built, and in the last stage all the lexical items in
the initial lexical array have been used up. An example of a derivation is given in (9):

(9) Derivation of “John should like John.”
S1 = <{John1, should2, like3, John4}, {} > Select John4
S2 = <{John1, should2, like3 }, {John4} > Select like3
S3 = <{John1, should2 }, {like3, John4} > Merge(like3, John4)
S4 = <{John1, should2 }, {{like3, John4}} > Select should2
S5 = <{John1}, {should2, {like3, John4}} > Merge(should2, {like3, John4})
S6 = <{John1}, {{should2, {like3, John4}}} > Select John1
S7 = <{}, {John1, {should2, {like3, John4}}} > Merge(John1, ….)
S8 = <{}, {{John1, {should2, {like3, John4}}}}>

Notice that W1 = {}, LA8 = {}, and W8 contains one element, so this sequence of stages
is a derivation.

We now establish a few basic properties about what can appear in a partial derivation.

Definition 24. A workspace W is derivable iff there is some partial derivation
<<LA1,W1>,…,<LAn,Wn>>, for n≥1, such that W=Wn. A syntactic object is derivable iff
it is an element of some derivable workspace.

Definition 25. Syntactic object A is binary branching iff both A and everything contained
in A is either a lexical item or a syntactic object immediately containing exactly two
syntactic objects.

Theorem 4. (Binary branching) Every derivable syntactic object is binary branching.

The definitions given so far allow the possibility of a workspace W={A, B}
where B occurs as a root of W and B also occurs somewhere in A. In other words, B has
two occurrences, but they are not in the same syntactic object, the same “tree”. However,
in derivable workspaces, this will never happen. An example of an underivable
workspace is shown below:

 12

(10) An Underivable Workspace

 B A

 B

Intuitively, given Merge there is no way to generate the two occurrences of A in
(10). It is easy to state the general claim and prove it:

Theorem 5. (Uniqueness of root occurrences) In every derivable workspace W, if A is an
undominated root in W (A∈ W), then there is no root B ∈ W such that A contains an
occurrence of B.

Proof. We establish this theorem by proving a stronger claim, namely, that in
every partial derivation (<LA1,W1>,…,<LAn,Wn>), for every A∈LAn∪Wn there
is no B ∈LAn∪Wn such that A contains an occurrence of B. We use an induction
on partial derivation lengths. Suppose (n=1). By the definition of “partial
derivation”, in every partial derivation the first workspace W1={} so
LA1∪W1=LA1, and the theorem holds since no lexical item contains any other.
Now let the inductive hypothesis (IH) be that the result holds for partial
derivations up to length k, for any k≥1, and we show that this property is
preserved in partial derivations (<LA1,W1>,…,<LAk,Wk>,<LAk+1,Wk+1>) of
length k+1. We distinguish 3 cases according to how the last step from <LAk,Wk>
to <LAk+1,Wk+1> is derived.

Suppose first that this last step is derived by Select. In this case,
LAk∪Wk= LAk+1∪Wk+1, and so the theorem holds trivially.

As a second case, suppose <LAk,Wk> derives <LAk+1,Wk+1> by the
External-Merge subcase of Merge. In this case,

LAk+1∪Wk+1= LAk∪((Wk - {A,B})∪{Merge(A,B)}).

Since by IH, A and B occur uniquely in LAk∪Wk, and since they also occur
uniquely in {A, B} (a subset of Wk which becomes an element of Wk+1), it follows
that they occur uniquely in LAk+1∪Wk+1.

The third possibility is that <LAk,Wk> derives <LAk+1,Wk+1> by the
Internal-Merge subcase of Merge. In this case also,

LAk+1∪Wk+1= LAk∪((Wk - {A, B})∪{Merge(A,B)}).

Since by IH, no C ∈LAk∪Wk has any occurrence in A, and since by assumption
B occurs in A, it follows that no C ∈LAk∪Wk has any occurrence in {A,B}, and
hence uniqueness is preserved in LAk+1∪Wk+1. QED.

 13

Theorem 6. A derivable workspace contains two distinct occurrences of A iff either A or
some B containing A has undergone the Internal-Merge subcase of Merge.

Proof. Again, this is established by induction on the length of partial derivations
(<LA1,W1>,…,<LAn,Wn>). Suppose (n=1), then since W1 ={} the result holds
vacuously. Now let the inductive hypothesis (IH) be that the result holds up to
length k, for any k≥1 and consider any partial derivation (<LA1,W1>,
…,<LAk,Wk>,<LAk+1,Wk+1>).

Suppose first that Wk derives Wk+1 by Select. This operation simply moves
a lexical item token LI from LAk into Wk to produce Wk+1. LI cannot occur in Wk
already, since any selected element is removed from the lexical array (and all
elements of the initial lexical array are distinct). So in Wk+1 there is just one
occurrence of LI, and all other occurrences of elements are unchanged. So the
result holds for Wk+1 in this case.

Now suppose <LAk,Wk> derives <LAk+1,Wk+1> by the External-Merge
subcase of Merge; again it is clear that the result of this operation will contain
multiple occurrences of a constituent iff its arguments do, and so by the IH we
know that Wk+1 will have distinct occurrences iff it has an element A that has
undergone Internal-Merge previously.

Finally, consider the case where Wk derives Wk+1 by the Internal-Merge
subcase of Merge. By the definition of Merge(C, A), this step produces D =
{A,C} where C contains A. In this case there will be (at least) two different paths
to A in D, therefore there will be two occurrences of A in D. This exhausts the
possibilities, so the result will hold for Wk+1. QED

5. General Theorems about Derivations

In this section we will formulate four very general theorems about derivations: the
No Tampering Condition, the Extension Condition, Inclusiveness and Local Economy.
These conditions do not filter out unacceptable derivations (which would be the normal
interpretation of a constraint or condition in syntactic theory), but rather they make
explicit certain properties of the derivations already defined. Syntactic operations such as
Merge and the derive-by-Merge relation could in principle have been defined in such a
way that one or more of these conditions would fail. We will also show how the No
Tampering Condition and the Extension Condition are independent conditions (and so
should not be conflated).
 Consider first the No Tampering Condition, which Chomsky (2007: 8) defines as
follows: “Suppose X and Y are merged. Evidently, efficient computation will leave X
and Y unchanged (the No-Tampering Condition NTC). We therefore assume that NTC
holds unless empirical evidence requires a departure from SMT in this regard, hence
increasing the complexity of UG. Accordingly, we can take Merge(X, Y) = {X, Y}.” As
made clear in Chomsky (2005: 13), there is a close connection between the No
Tampering Condition and the Copy Theory of Movement: “The no-tampering condition
also entails the so-called copy theory of movement, which leaves unmodified the objects
to which it applies, forming an extended object.”

 14

Theorem 7. (No Tampering Condition)
For any two consecutive stages in a derivation S1 = <LA1, W1> and S2 = <LA2, W2>,
for all A ∈ W1, either A ∈ W2, or there is some C ∈ W2 and A ∈ C.

 What this says in plain English is that every syntactic object in W1 must find a
place in W2. No element of W1 can be destroyed or tampered with. This theorem is easy
to prove with an induction of the sort used for the previous results.

To give a simple example, the trace theory of movement violates the No
Tampering Condition. Suppose A contains B, and A is a root in W1 (a workspace) and
Merge(A, B) = {A’, B}, where A’ is exactly the same as A except that the occurrence of
B contained in A is replaced by a trace t. Then A ∈ W1 but A ∉ W2, nor is there a C ∈
W2, such that A ∈ C. The reason is that A is not contained in W2 at all (only A’ with the
trace is)8.
 Consider next the Extension Condition, which demands that structures be
extended by Merge. As Chomsky (1995: Chapter 3, 190) notes: “A second consequence
of the extension condition is that given a structure of the form [X’ X YP], we cannot insert
ZP into X’ (yielding, e.g., [X’ X YP ZP]), where ZP is drawn from within YP (raising) or
inserted from outside by GT.”

Theorem 8. (Extension Condition)
For any two consecutive stages S1 = <LA1, W1> and S2 = <LA2, W2>, if S1 derives S2 by
Merge, then there is some A ∈ W1 and C ∈ W2 such that

i. C ∉ W1 (C is created by Merge)
ii. A ∉ W2 (A is extended)
iii. A ∈ C. (A is extended to form C)

In plain English this says that A in W1 is extended to C in W2.
In many cases, the No Tampering Condition and the Extension Condition prohibit

the same kinds of illicit derivations. For example, both conditions would prevent defining
Merge so as to allow so-called counter-cyclic movement, as illustrated in the derivational
diagram below. In the derivation illustrated, Merge applies counter-cyclically, forming
Merge(A, B) = C.

8 One immediate consequence of the definition of Merge (and hence the NTC) is
that the tucking-in derivations of Richards (2001: 38-46) are not possible. Similarly,
Lasnik’s (1999:207) claim that A-movement does not leave a trace is inconsistent with
the definition of Merge and the NTC (“…A-movement, unlike A’-movement, does not
leave a trace, where a trace is, following Chomsky, a copy of the item that moves…”). It
remains to be seen how Merge could be redefined to allow these alternatives.

 15

(11) Derivational Diagram of Merge Violating NTC and Extension Condition

 Workspace 1 Workspace 2

 Merge(A,B)

This is not a possible derivation (given the definition of the derive-by-Merge

relation) since it does not “act at the root”, as is made explicit by the Extension
Condition. Furthermore, this operation of Merge tampers with the internal structure of X,
violating the NTC.

There are other derivations that would violate the Extension Condition, but not
the No Tampering Condition, showing that these conditions are conceptually distinct, and
should not be confused. Consider a slight modification to the counter-cyclic derivation
above, where B merges with A, forming C, but C does not replace A.

(12) Derivational Diagram of Merge Violating Extension Condition but not NTC

 Workspace 1 Workspace 2

 Merge(A,B)

Again, this is not a possible derivation given the definition of the derive-by-
Merge relation. Note that it violates the Extension Condition: no constituent in W1 is
extended (in the sense of an undominated X becoming a dominated X). However, the
derivation does not violate the No Tampering Condition.
 Next, we take up the inclusiveness condition, defined by Chomsky in several
places as follows:

 X

 Y A

 B

 X’

Y C

 B A

 B

 X

 Y A

 B

 X C

Y A B

 B

 16

“Another natural condition is that outputs consist of nothing beyond properties of
items of the lexicon (lexical features) – in other words, that the interface levels
consist of nothing more than arrangements of lexical features.”
(Chomsky 1995: 225)

(inclusiveness) “…permits rearrangement of LIs and of elements constructed in
the course of derivation, and deletion of features of LI -- but optimally, nothing
more.” (Chomsky 2000: 113)

(inclusiveness) “…bars introduction of new elements (features) in the course of
computation: indices, traces, syntactic categories or bar levels, and so on.”
(Chomsky 2001:2-3)

 We formalize inclusiveness in the following way:

Theorem 9. (Inclusiveness)
In any derivation (<LA1,W1>,...,<LAn,Wn>) where Wn={A}, the only elements contained
in Wn are the lexical item tokens from LA1 and sets containing them.

 A seeming discrepancy between Chomsky’s version of Inclusiveness and ours is
that our version allows indices on lexical item tokens, whereas Chomsky’s version does
not, a problem already noted by Chomsky: (1995: 227): “l and l' are marked as distinct
for CHL if they are formed by distinct applications of Select accessing the same lexical
item of N. Note that this is a departure from the inclusiveness condition, but one that
seems indispensable: it is rooted in the nature of language, and perhaps reducible to bare
output conditions.”

As we observed in the discussion of graphs (3) and (5) above, the structures

(13) S3 = {Johni, {Johni, seek}} and

S5 = {Johnm, {Johni, seek}}

are importantly different: S4 has two paths to one token of John, while S5 has two paths
to two different tokens of John. This distinction can be indicated with the indices on the
lexical items as in S3 and S5 (as in the representations of the graph structures shown in
(3) and (5) above).9 This distinction is obviously essential at the CI Interface and so
Inclusiveness must be formulated so as to allow it (which is exactly what we have done in
Theorem 9).10 If the indices on lexical item tokens were eliminated, then some other
device would have to distinguish between S3 and S5 in (13). One possibility is to let

9 See Gärtner (2001) and Kracht (2008) for other approaches to “multidominance”
in directed acyclic graphs like those in (3) and (5), above.
10 Kitahara (2000) argues that such distinctness markings are not needed, and hence
Chomsky’s original formulation of the Inclusiveness Condition which refers to lexical
items (and not lexical item tokens) can be maintained. We simply note that Kitahara’s
proposed solution only distinguishes distinct pronoun tokens with Case features, and was
not extended to distinguishing distinct tokens of lexical items in general.

 17

Merge build graphs rather than sets; another possibility mentioned in section 2 is to
introduce Chains.

The last general condition we will consider is Local Economy, first proposed by
Collins (1997: 4) reformulated slightly below to make it consistent with our terminology:

Theorem 10. (Local Economy)
Given stage in a derivation Si = <LAi, Wi>, which is part of a derivation D =
<S1,…Si,…Sn>, whether or not an operation OP applies to elements of Wi (as part of a
derivation) is determined completely by Wi and the syntactic objects it contains.

For example, suppose that A and B are roots of some workspace W1. Then,
according to local economy, whether or not Merge applies, forming {A,B}, could not
depend on information contained in another workspace (from a stage either earlier or
later in the derivation, or from a different derivation altogether). The way we have
defined derive-by-Merge, this result follows trivially. But the point is that we could have
defined Merge and derive-by-Merge otherwise, in such a way that Local Economy would
not hold.

6. Labels

 In this section we define a labeling algorithm. We start by first defining triggered
Merge. Then, we define labels in terms of triggered Merge. We believe we have captured
the standard account of labeling of the Principles and Parameters framework and early
minimalism. Recent discussions of labeling algorithms could take our formalization as
the baseline for comparison.

Some selected quotes from the literature are given below illustrating some basic
ideas about how Merge might be triggered:11

“For an LI to be able to enter into a computation, merging with some SO, it must
have some property permitting this operation. A property of an LI is called a
feature, so an LI has a feature that permits it to be merged. Call this the edge
feature (EF) of the LI.” (Chomsky 2008: 139).

“[T]here is a Last Resort condition that requires all syntactic operations to be
driven by (structure-building or probe) features;” (Müller 2010: 38).

“I propose that the same Agree relation underlies all instances of Merge.”
(Boeckx 2008: 92).

“Summarizing, the (syntactic) head of a constituent built up by Merge is the
lexical item that projects its features to the new constituent. That lexical item will
be the one that triggered application of Merge in the first place by being specified

11 See also Stabler (1997), Hornstein (1999: 78), Collins (2003) and Frampton and
Gutmann (2002).

 18

with c-selectional features that need to be checked. All c-selectional features must
be checked by applications of Merge.” (Adger 2003: 96).

We will call the features involved in triggering Merge, trigger features. We

assume that such features are to be identified with subcategorization features, EPP
features and OP features for movement to Spec CP.

Definition 26. A lexical item token LI = <<Sem, Syn, Phon>, i> contains a trigger
feature TF iff some TF∈Syn is a trigger feature.

The following familiar feature sets could be modeled as trigger features:

(14) a. Infl: Syn = {Infl, [__vP], EPP12}
 (Infl requires a specifier and takes a vP complement)
 b. Comp: Syn = {Comp, [__IP], OP}
 (Comp requires an operator as specifier and takes an IP complement)

We provide simple definitions of Triggers and Triggered Merge as follows. We
assume that there is a function Triggers which for any SO, yields the total set of
unchecked TF tokens contained in that SO. Furthermore, since each syntactic object
determines its derivational history (and the NTC guarantees that nothing in that history is
ever tampered with), we can tell, in every derived structure, which trigger features have
been checked. When a syntactic object SO has no trigger features left, Triggers(SO) will
be empty.

Definition 27. Triggers is a function from each derivable syntactic object A to a subset of
the trigger features of A, meeting the following conditions:

i. If A is a lexical item token with n trigger features, then Triggers(A) returns
all of those n trigger features. (So when n=0, Triggers(A)={}.)

ii. If A={B,C}, Triggers(B) is nonempty, and Triggers(C)={}, then
Triggers(A)=(Triggers(B))-{TF}, for some trigger feature token TF.

When Triggers(B) has more than one element, we assume that Triggers({B,C})

will delete a particular one, determined by B and C, and we leave aside the question of
which one it is.

Definition 28. (Triggered Merge, replacing Definition 13)
Given any two distinct syntactic objects A, B where Triggers(A)≠{}and Triggers(B)={},
Merge(A,B)= {A,B}.

12 On the EPP as a requirement that a clause must have a specifier, see Lasnik 2001:
360. For extensive arguments against postulating an EPP feature, see Epstein and Seely
2006.

 19

Although we state the triggering conditions as part of Merge, it would also be
possible to define them as applying at the interfaces to rule out combinations that are not
well-formed.

An important consequence of this definition is that only one trigger feature can be
checked by each Merge operation. Furthermore, our definition of triggered Merge makes
no distinction between the two subcases of Merge: Internal-Merge and External-Merge.

Suppose a lexical item token see1 has 2 trigger features, and token John2 has 0
trigger features. Then we could have a derivation like this:

(15) Derivation involving LI token with 2 TFs

a. <{John1, see2},{}> → Select John1
b. <{see2},{John1}> → Select see2
c. <{},{John1, see2}> → Merge(see2,John1)
d. <{},{{John1, see2}}> → Merge({John1, see2}, John1,)
e. <{},{{John1,{John1, see2}}}>

This derives the structure shown in (3) above. After the first merge operation,

Triggers({John1, see2}) will have just 1 feature available. After the second Merge
operation, {John1,{John1, see2}} will not have any trigger features available. That is,
Triggers({John1,{John1, see2}})={}. The two trigger features of see2 are both unavailable
because they were checked by the two Merge operations.
 The definition of triggered Merge entails the following asymmetry:

Theorem 11. If triggered Merge(A,B) is defined, Merge(B,A) is undefined.

In our approach, the structural relation important for feature checking is
sisterhood (created by Merge). There is no reference to either m-command or specifiers
in the above definitions. In fact, m-command plays no role in our formalization at all, and
specifiers are defined purely in terms of triggered Merge (see below).
 Given that Merge is triggered, it is trivial to define syntactic category labels. We
will formalize the intuition that the label is always the head that triggers Merge. Some
quotes from the literature give background on this approach:

“Set-Merge of (α,β) has some of the properties of Agree: a feature F of one of the
merged elements (say, α) must be satisfied for the operation to take place…the
label of the selector projects.” (Chomsky 2000: 134)

“Headedness: The item that projects is the item that selects.” (Adger 2003: 92)

Within this general approach, the question remains as to how to represent the

label. We will adopt a functional approach. There is a function that has the set of
derivable syntactic objects as its domain, and the set of lexical items as its range (see
Chomsky 1995: 244, 398 on some earlier approaches to labels in the minimalist
framework, see Collins 1997: 64 who first proposed the functional approach to labels, see
Collins 2002 for an approach dispensing with labels, see Seely 2006 on criticisms of
earlier minimalist approaches to labels).

 20

Definition 29. (Label)
Label is a syntactic function from syntactic objects to lexical items tokens, defined in the
following way:

i. For all lexical item tokens LI, Label(LI) = LI.
ii. Let W be a derivable workspace. If {A,B} is contained in W, and Triggers(A)

is non-empty, then Label{A, B} = Label(A).

Theorem 12. (Endocentricity)
Let A, B, C be syntactic objects. If C = Merge(A, B), then Label(C) = Label(A).

Proof. This is immediate from our definitions. Merge(A,B) is defined only if
Triggers(A) is non-empty and Triggers(B) is empty. So by the definition of Label,
the element that triggers the merge, the one with the non-empty set of available
trigger features, is the one that projects. So Label(Merge(A,B))=Label(A)
(whenever <A,B> is in the domain of Merge). QED

Endocentricity entails that Merge cannot build structures like these:

(16) *with3 *S

 see1 John2 John1 left2

Definition 30. (Maximal Projection)
For all C a syntactic object and LI a lexical item token, both contained in a workspace W,
C is a maximal projection of LI (written MaxW(LI)) iff Label(C) = LI and there is no D
contained in W which immediately contains C such that Label(D) = Label(C).

For example, when Merge(see1, John2) = {see1, John2}, Label({see1, John2}) = see1, and
{see1, John2}=Max(see1), the maximal projection of see1.

Definition 31. (Minimal Projection)
For all C, C is a minimal projection iff C is a lexical item token.

Definition 32. (Intermediate Projection)
For all C, D syntactic objects in workspace W, LI a lexical item token, C is an
intermediate projection of LI iff Label(C) = LI, and C is neither a minimal projection nor
a maximal projection in W.

 The complement is the first element merged with a head, and a specifier is any
subsequent element merged with a projection of the head.

Definition 33. (Complement)
Y is the complement of X in C iff C = Merge(X,Y) and X is a lexical item token.

 21

Definition 34. (Specifier)
Y is the specifier of X in C iff C=Merge(X,Y) where X is not a lexical item token. When
LI = Label(X), we also say Y is the specifier of LI in C.

(17) XP maximal projection

 specifier Z X’ intermediate projection

 X Y complement
 head/label
 (lexical item token)

On the above account, there is a close relation between triggered Merge and
labels: both are ways to indicate that Merge is asymmetric, and furthermore, the Label
function is defined purely in terms of how features are checked. Given this close
connection, it may be that one or the other is redundant. In essence, this was the argument
of Collins (2002). We hope the formalism given in this section will be of use to ongoing
debates about labeling algorithms (see Collins 2002, Seely 2006 and Chomsky 2008).

7. Transfer

 The syntactic objects generated by Merge must be mapped to the interfaces: the
Conceptual-Intentional Interface and the Sensorimotor Interface. The operation that does
this mapping is called Transfer (see Chomsky 2004: 107). We will treat Transfer as
composed of two operations: TransferPF and TransferLF.

Definition 35. (Transfer)
For every syntactic object SO (with Triggers(SO) = {}), Transfer(SO) = <TransferPF(SO),
TransferLF(SO)>.

TransferLF is the first operation of the semantic component, which maps the SO to
a form that can be interpreted by the CI Interface. TransferPF is the first operation of the
phonological component, which maps the SO to a form that can be interpreted by the SM
Interface. An important question, which we will not address, is where (truth conditional)
semantic rules of interpretation and familiar phonological rules fit into this framework.

An important aspect of minimalist syntax is that information interpreted by the
interfaces is computed cyclically.13 Now suppose that at some point in the derivation the
syntactic object SO is formed, and Transfer(SO) applies. After this, nothing further can
be extracted from SO. Once a PF sequence is formed (see below), it can never be broken
up again in the derivation. In order to permit movement after Transfer, it must be the case

13 See Uriagereka 1999 who first introduced the notion of Multiple Spell-Out; see
Epstein and Seely 2006 for a different conception of cyclic spell-out (one incompatible
with Chomsky 2004: 122, in particular the discussion above example (20)). See Müller
2010: 40 for an analysis where every XP is a phase. See Obata (2010) for recent
discussion. There is need of a critical overview of these various approaches.

 22

that Transfer(SO) may leave an escape hatch for movement: “Applied to a phase PH, S-
O must be able to spell out PH in full, or root clauses would never be spelled out. But we
know that S-O cannot be required to spell out PH in full, or displacement would never be
possible.” (Chomsky 2004: 108) We implement this escape hatch with Cyclic-Transfer,
the first version is given in Definition 36. We modify the definition of Cyclic-Transfer in
section 10 below to deal with remnant movement.

Definition 36. (Cyclic-Transfer, first version)
For any derivable workspace W = {SO} where SO is a strong phase and A is the
complement of the head of the phase, let Cyclic-TransferP(SO) = SO’ where SO’ is
obtained from SO by replacing A by <TransferPF(A), TransferLF(A)>.

 Uriagereka (1999, section 10.2) discusses the issue of relating “…a structure that
has already been spelled out to the still ‘active’ phrase marker.” Our formulation where
<TransferPF(Y), TransferLF(Y)> is inserted back into the tree is similar to his
“conservative” approach to this issue. Unfortunately, it has the property that it violates
the NTC. In section 11, we briefly consider a non-NTC violating alternative.

The result of Cyclic-Transfer must feed further syntactic rules. For example, if a
wh-word moves to Spec CP (forming a Phase), the resulting CP can be embedded under
another verb. Since Merge is only defined for syntactic objects, the result of Cyclic-
Transfer must be a syntactic object:

Definition 37. (replacing Definition 7). X is a syntactic object iff
i. X is a lexical item token, or
ii. X=Cyclic-Transfer(SO) for some syntactic object SO, or
iii. X is a set of syntactic objects.

With this definition, for example, if SO = {H,XP} and Cyclic-Transfer applies to
produce SO’ = {H, Transfer(XP)}, then Transfer(XP) is not a syntactic object but SO’ is.

We will assume the extensional definition of strong phase heads given in
Definition 38 below. Something like this should eventually follow from more basic
assumptions. Given our formalization of Transfer below it should be possible to compare
various definitions of strong phases.14

Definition 38. (Strong Phase)
A syntactic object SO is a strong phase iff its head X is Comp or X is v* (active transitive
or active unergative v).

 Lastly, we need to fit the operation Transfer into the derivation, just as we did
with for Merge with the derive-by-Merge relation between stages.

14 See Legate (2003) who argues that “unaccusatives and passive VPs are phases as
well”; see Collins (2005:98) for discussion of the phasal status of passives; see Dobashi
(2003) on the relationship between derivation by phase and phonological phrases.

 23

Definition 39. (Derives by Transfer)
For any two stages S1 = <LA1, W1> and S2 = <LA1, W2>, where SO ∈W1 is a strong
phase containing no other strong phase whose complement has not yet been transferred,
S1 derives S2 by Transfer iff

i. W2 = (W1 – {SO}) ∪ {Transfer(SO)} (ends the derivation), or
ii. W2 = (W1 – {SO}) ∪ {Cyclic-Transfer(SO)}.

The basic idea of the above approach is to use the workspace as the place where the

outputs of Transfer and Cyclic-Transfer are stored, by plugging them directly into the
syntactic tree.

An important consequence of this definition is that it forces Transfer of a strong phase
before it is embedded in another strong phase, since derives-by-Transfer only takes place
if SO does not contain any strong phase with an untransferred complement.

8. TransferLF

 The next two sections deal with TransferLF and TransferPF. These sections are
necessarily more sketchy and speculative than the preceding material, since minimalist
syntacticians have given relatively little attention to the inner workings of Transfer. With
this caveat in mind, we start with TransferLF.

The effect of TransferLF is to strip away the phonetic features and to create a
structure where every feature remaining is interpretable at the CI interface (see Chomsky
2000: 118). If any uninterpretable features remain at the point where the CI interface is
reached, the derivation will crash (see section 12 for a definition of converge and crash).

We make the simplifying assumption that the trigger features are ignored at
Transfer, and stripped off just like the phonetic features and all the other syntactic
features.

Definition 40. (TransferLF) For any derivable workspace W with syntactic object
Phase∈W such that Label(Phase) is a strong phase head, for all occurrences of objects
SO such that either SO=Phase or SO is contained in Phase, TransferLF(SO) is defined as
follows:

a. If SO is a lexical item token <<Sem, Syn, Phon>, k> ,
TransferLF(SO) = <<Sem>, k>,

b. If SO = {X, Y}, TransferLF(SO) = {TransferLF(X), TransferLF(Y)}.15
c. TransferLF(<PHON, SEM>) = SEM

 Clause (a) specifies how lexical item tokens are interpreted. Clause (b) specifies
how a constituent of the form {X, Y} is interpreted. Clause (c) is needed because of

15 We do not formalize the copy deletion approach to reconstruction. See Chomsky
(1995, Chapter 3: 203) “In trace position, the copy of what remains in the operator
position deletes,…”; Barss(2002: 693, fn. 3); Fox (2003: 45-47) on the possibility that
Trace Conversion is implicit in the semantic rule of interpretation. Furthermore, we do
not attempt to incorporate covert QR into our system (see Fox 2003 for an overview of
the properties of QR).

 24

Cyclic-Merge. Since <PHON, SEM> is inserted into the syntactic object being built, later
Transfer operations must be able to apply to it.
 The following simplified example illustrates how TransferLF works, on the
assumption that the indicated SO is the VP complement of vP, a phase:

(18) [VP see Chris]

LI1 = <<SEE, Syn1, /see/>, 1>
LI2 = <<CHRIS, Syn2, /chris/>,2>
SO = Merge(LI1,LI2) = {LI1,LI2}
TransferLF(LI1) = <SEE, 1> (deleting Phon and Syn from LI1)
TransferLF(LI2) = <CHRIS, 2> (deleting Phon and Syn from LI2)
TransferLF(SO) = {TransferLF(LI1), TransferLF(LI2)} = {<SEE, 1>, <CHRIS, 2>}

 Note that TransferLF preserves both the lexical indices and the hierarchical set
structure of the syntactic objects it applies to. The output of TransferLF(SO) will be sent
to the CI interface, and form the basis of semantic interpretation.

9. TransferPF

TransferPF deletes any information from a lexical item that cannot be interpreted
at the SM-Interface, including semantic information and syntactic information. Unlike
TransferLF, the index of the lexical item token is not needed for TransferPF. TransferPF
constructs a PF sequence by concatenating lexical phonetic features in order.16

We formalize the intuition that for economy reasons a syntactic object should, at
least in the normal case, only be spelled out once, no matter how many occurrences it
has. In this, we agree with Chomsky (2005: 13): “If language is optimized for satisfaction
of interface conditions, with minimal computation, then only one will be spelled out,
sharply reducing phonological computation.” Lexical item tokens that are part of a non-
final occurrence will simply not be spelled-out by TransferPF defined below. We put aside
issues such as how to handle the copies formed in predicate cleft (see Kandybowicz
2008, Kobele 2007, Hiraiwa 2005).

Definition 41. (Non-Final Occurrences)
The occurrence YP in SO is non-final in SO iff there is another occurrence YP’ in SO that
c-commands YP.

We are now ready to define Transfer at the PF interface:

Definition 42. (TransferPF) For any derivable workspace W with syntactic object
Phase∈W such that Label(Phase) is a strong phase head, and for all occurrences of
objects SO such that either SO=Phase or SO is contained in Phase, TransferPF(SO) is
defined as follows:

16 See Frampton (2004) for a related approach. See Corcoran et al. (1974) for a formal
theory of the binary associative, non-commutative operation of concatenation that we
indicate with the symbol ^.

 25

a. If SO is a lexical item token <<Sem, Syn, Phon>, k>, which is a final occurrence
in Phase, then TransferPF(SO) = Phon;

b. If SO={X,Y} and occurrences X and Y are final in Phase, TransferPF(SO) =
TransferPF(X)^TransferPF(Y) if either Y is the complement of X, or X is the
specifier of Y;

c. If SO={X,Y} and occurrence X is final in Phase but occurrence Y is not,
TransferPF(SO) = TransferPF(X);

d. If SO is non-final in Phase, or SO={X,Y} where both X and Y are non-final in
Phase, then TransferPF(SO) = the empty sequence.

e. TransferPF(<PHON, SEM>) = PHON

Clause (a) specifies how lexical item tokens are spelled out. Clause (b) entails the
order Specifier-Head-Complement is universal, since no other orderings are provided for
(see Kayne 1994 and Aboh 2004). It should be possible to formalize other linear ordering
algorithms based on headedness, but we have not explored them here. Clauses (c,d)
specify that the lower non-final occurrence of a syntactic object is simply ignored at spell
out17. One important consequence is that there is no operation like the Chain Reduction
of Nunes(2004: 27). Clause (e) is needed because of Cyclic-Merge. Since <PHON,
SEM> is inserted into the syntactic object being built, later Transfer operations must be
able to apply to it.
 An example of TransferPF is given below:

(19) [VPsee Chris]

LI1 = <<SEE, Syn1, /see/>, 1>
LI2 = <<CHRIS, Syn2, /chris/>,2>
SO = Merge(LI1,LI2)
Phase = vP (not shown)
TransferPF(LI1) = /see/
TransferPF(LI2) = /chris/
TransferPF(SO) = TransferPF(LI1)^TransferPF(LI2) = /see/^/chris/

(20) [IP John Infl [VP fell <John>] where SO = [VP fell <John>]

(assume “fall” is unaccusative, so that “John” raises from the complement of
“fall” to Spec IP)
LI1 = <<FALL, Syn1, /fall/>, 1>
LI2 = <<JOHN, Syn2, /john/>, 2> (LI2 is non-final)
SO = Merge(LI1,LI2)
Phase = CP (not shown)
TransferPF(LI1) = /fall/
TransferPF(LI2) = /john/
TransferPF(SO) = TransferPF(LI1) = /fall/

17 See Kandybowicz (2008: 15) for a list of different approaches to the spell-out of
occurrences.

 26

(21) [Who do you think John will see], consider the embedded clause after “who”
raises to the embedded Spec CP, but before it raises to the matrix Spec CP:
[CP who John will see]

Phase = {who1, {Comp2 {John3, {will4, {see5, who1 }}}}}
SO = complement of Comp2 = {John3, {will4, {see5, who1 }}}
Cyclic-Transfer(Phase) =
{who1, {Comp2, <TransferPF(SO), TransferLF(SO)>} =
{who1 {Comp2, </john/^/will/^/see/,

 {<JOHN, 3>, {<WILL, 4>, {<SEE, 5>, <WHO, 1>}}}>}}

 Given the definition of Transfer, it is now possible to prove the phase
impenetrability condition (PIC) as a theorem. The PIC is given by Chomsky (2000: 108)
as follows: “In phase α with head H, the domain of H is not accessible to operations
outside α, only H and its edge are accessible to such operations.” Our UG (Definition 1)
has only 3 operations. Select applies to a lexical item in the array, so it cannot apply to
any complex in the workspace. And Transfer can be regarded as an interface operation.
So PIC is relevant only for Merge, and it is a trivial matter to prove:

Theorem 13.(PIC) In phase α with head H that has sister (i.e. complement) occurrence
XPP, in Cyclic-Transfer(α), Merge cannot apply to the sister of H or anything contained
in the sister of H.

Proof. By Definition 38, the sister of H in Cyclic-Transfer(α) is Transfer(XP),
which is not a syntactic object and does not contain any syntactic objects. Since
Merge is only defined for syntactic objects, it cannot apply to the sister of H or to
anything contained in the sister of H. QED

Note that in Theorem 13, PIC intuitively is telling us about the accessibility of a
particular occurrence XPP of the syntactic object XP. The definitions given so far allow
XP (or something contained in XP) to merge as the specifier of H before Cyclic-Transfer
applies, in which case the specifier occurrence would be accessible in Cyclic-Transfer(α),
even though neither the complement occurrence nor any syntactic object occurrence
inside the complement is present any more.

10. Multiple Transfer at the Phase Level

 Remnant movement poses a challenge to the above formulation of Transfer, and
to the phase-based theory in general. Although the proposals in this section are
preliminary, we take them as a first step in trying to incorporate remnant movement into a
phase-based theory and hope that they will stimulate further research.

Consider the following classic illustration (<…> denotes non-final occurrences):

(22) How likely to win is John?

(23) a. is how likely John to win Merge

 27

 b. John is how likely <John> to win Merge
 c. Comp John is how likely <John> to win Merge
 d. how likely <John> to win is John <how likely <John> to win>

 If this derivation is to converge (as defined in section 12 below), Transfer must
apply at step (23d). If Transfer applied at step (23c), nothing would be able to move out
of the IP which is the complement of the strong phase head Comp. But if Transfer applies
at step (23d), then the simple definition of non-final occurrence in Definition 41 does not
yield the intended result. There are three occurrences of John in (23d), and under the
definition of non-final occurrence the leftmost occurrence counts as final (since there is
no other occurrence c-commanding it), and hence should be spelled out. This issue will
affect any theory trying to incorporate remnant movement into a phase-based theory.
 A natural solution to this problem is to assume that once internal Merge takes
place, the lower (non-final occurrence) is spelled out as phonetically zero immediately.
Then, when the remnant moves in (23d), there will be no issue of blocking the leftmost
occurrence of John from spelling out as a final occurrence since it will have already been
spelled out as zero. This is the approach of Collins and Sabel 2007 and Stabler 1997, and
it is implicit in the “trace” theory of movement rules. However, in the phased-based
approach, Transfer takes place at the strong phase head, and not necessarily following
every instance of internal Merge.

As a first step in resolving the issue in a phase-based model we assume the
following:

(24) At strong phase SO, the operation Cyclic-Transfer can apply more than one time.

We formalize this in the following way:

Definition 36’.(Cyclic-Transfer, second version)
For any derivable workspace W = {SO} where SO is a strong phase and the occurrence
AP (with position P in SO) is the complement of the head of the phase or is contained in
the complement of the head of the phase, let Cyclic-TransferP(SO) = SO’ where SO’ is
obtained from SO by replacing A in position P by <TransferPF(A), TransferLF(A)>.

 The way that this modifies the earlier version of Cyclic-Transfer is that it allows
the complement of the phase head or any constituent contained in the complement of the
phase head to be spelled out, not just the complement of the phase head. The concrete
consequence for remnant movement is that Cyclic-Transfer can apply twice (or more) at
the level of a single strong phrase head, allowing the interleaving of Merge and Cyclic-
Transfer operations at the level of a strong phase. In particular, if there are two
occurrences of a constituent (created by Merge) in a phase, the lower one can be spelled
out as phonetically zero by Cyclic-Transfer. The derivation of remnant movement is
sketched below. In the derivation below, the output of Transfer is abbreviated with
hyphenated a-b-c notation, we omit I-to-C movement:

(25) a. Merge({is, {how, {likely, {John1, {to, win}}}}}, John1) =
 {John1, {is, {how, {likely, {John1, {to, win}}}}}}

 28

 b. Merge(Comp, {John1, {is, {how, {likely, {John1, {to, win}}}}}) =
 {Comp, {John1, {is, {how, {likely, {John1, {to, win}}}}}}}

c. Cyclic-Transfer({Comp, {John1, {is, {how, {likely, {John1, {to,
win}}}}}}) =

 {Comp, {John1, {is, {how, {likely, {<∅, JOHN1>, {to, win}}}}}}}
d. Merge({how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp, {John1, {is,

{how, {likely, {<∅, JOHN1>, {to, win}}}}}}}) =
{{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp, {John1, {is, {how,
{likely, {<∅, JOHN1>, {to win}}}}}}}}

e. Cyclic-Transfer({{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp,
{John1, {is, {how, {likely, {<∅, JOHN1>, {to, win}}}}}}}}) =

 {{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp John-is}}
f. Transfer({{how, {likely, {<∅, JOHN1>, {to, win}}}}, {Comp John-is}})

= how-likely-to-win-John-is

This yields the desired result because the Cyclic-Transfer in (25c) applies not to

the complement of Comp but to the lower occurrence of John, at a point when that
occurrence is still c-commanded by the higher one. The remnant wh-movement then
applies to the how likely phrase that contains the lower occurrence of John, now
appropriately spelled out as phonetically zero.

This strategy will produce the desired results as long as we can require that lower
occurrences of moved elements are transferred before any containing constituent is
moved. In other words, what forces the derivation in (25), as opposed to one where
remnant movement takes place and the leftmost occurrence of John is spelled out in
(23d)?

We can think of a number of solutions to this issue. The simplest approach is to
define TransferPF so that it will not apply if there are two final occurrences of a single
syntactic object. For example, in (23d), there are two final occurrence of John, so
TransferPF will be undefined. To implement this formally, (41d) could be changed to

Definition 42’. (TransferPF)
c. If SO={X,Y} and occurrence X is the unique final occurrence of X in Phase but

occurrence Y is not, TransferPF(SO) = TransferPF(X);

Another approach is based on the intuition that the illegitimate application of
TransferPF in (23d) would spell out the phonological features of John twice.
An economy condition stating that the Phon features of each lexical item can be accessed
for TransferPF exactly once would block the illegitimate derivation. A preliminary
attempt to formalize this intuition would modify the definition of TransferPF in the
following way:

Definition 42’’. (TransferPF)
a. If SO is a lexical item token <<Sem, Syn, Phon>, k>, which is an unmarked final

occurrence in the Phase, then TransferPF(SO) = Phon and the lexical item is
marked as spelled out.

 29

We assume that the lexical item itself (i.e. all occurrences) are marked by
TransferPF, and (ii) that the derivation will crash when Transfer is required but cannot
apply.

11. NTC and Transfer: An Alternative

Since respecting the NTC is one of the fundamental, motivating ideas of the
minimalist approach to grammar, we should consider whether it is possible to define
Cyclic-Transfer in a way that respects the NTC and does not require allowing new sorts
of syntactic objects. One alternative is to regard Cyclic-Transfer as an operation that does
not affect syntactic objects at all, but simply affects what is available in the workspace.
Instead of thinking of a workspace as containing a set of syntactic objects, all of which
are accessible to Merge, we can think of a workspace as providing access to certain
occurrences of syntactic objects. One way to do this is to keep a set of occurrences that
have been transferred, and then block all access to those transferred elements. We call the
set of transferred occurrences CI/SM (named for the conceptual-intentional and
sensorimotor interfaces), so that at each step of the derivation the accessible parts of
workspace W are given by W minus the occurrences in CI/SM. When we add an
occurrence SOp to CI/SM, let’s write CI/SM ∪ {SOp} to represent the addition of
occurrence SOp and all the occurrences contained in SOp. We will not spell out this
perspective in full detail, but Cyclic-Transfer would be defined as follows (mimicking
closely the revised Definition 36):

Definition 36’’. (NTC-respecting version)
Consider any derivable workspace W={SO} with inaccessible occurrences CI/SM, where
SO is a strong phase and the occurrence AP (with position P in SO) is the complement of
the head of the phase or is contained in the complement of the head of the phase.
Then let Cyclic-TransferP(W,CI/SM) = (W,CI/SM’) where CI/SM’ is obtained from
CI/SM by adding
i. Ap and all occurrences contained in Ap, and
ii. for every lexical item token occurring in Ap, the PHON of all occurrences of that

lexical item token.

This NTC-respecting approach to Cyclic-Transfer does not change the syntactic
objects constructed by Merge, and so we don’t need the new Definition 37 of syntactic
object any more, and can return to the original simple Definition 7. And Cyclic-Transfer
now does not change the syntactic structure at all, but affects only which parts of derived
structures are accessible in the workspace. With this second perspective on Transfer, only
Merge constructs syntactic objects, and no other operation changes them in any way.
Transfer and Select are operations that act on the workspace to affect what is under
consideration as the structure is built by Merge.

Interestingly, though the difference between the NTC-violating Definition 36 and
the NTC-respecting version of 36’’ is important for the overall picture of how the syntax
works, it is, remarkably, irrelevant to most of the details of the framework. Either an
occurrence is replaced by a pair <TransferPF(AP), TransferLF(AP)> and some lexical
PHON properties are deleted (NTC-violating Cyclic-Transfer), or the occurrence is put

 30

into CI/SM and so is not accessible (NTC-respecting Cyclic-Transfer). With either
approach, some parts of syntactic objects are rendered inaccessible, and that is what
matters in the details. Theorem 13 (PIC) follows in both cases.

12. Convergence

A derivation converges if in the workspace only the pair <PHON, SEM> remains,
where PHON is interpretable by the SM Interface, and SEM is interpretable by the CI
Interface: “The last line of each derivation D is a pair <PHON, SEM>, where PHON is
accessed by SM and SEM by C-I. D converges if PHON and SEM each satisfy IC;
otherwise it crashes at one or the other interface.” (Chomsky 2004: 106).
 Minimally, this requirement entails that the result of TransferLF(SO) should only
contain features interpretable at the CI Interface, and that TransferPF(SO) should only
contain features interpretable at the SM Interface.

Definition 43. (Converge at CI Interface)
A derivation D = (<LA1, W1>,….,<LAn, Wn>) where Wn = {<PHON, SEM>} converges
at the CI Interface iff for every feature F contained in SEM, F is interpretable at the CI
Interface. Otherwise, it crashes at the CI Interface

Definition 44. (Converge at SM Interface)
A derivation D = (<LA1, W1>,….,<LAn, Wn>) where Wn = {<PHON, SEM>} converges
at the SM Interface iff for every feature F contained in PHON, F is interpretable at the
SM Interface. Otherwise, it crashes at the SM Interface.

Definition 45. (Converge)
A derivation converges iff it converges at the CI Interface and the SM Interface.
Otherwise, it crashes.

13. Conclusion

In this paper we have given a preliminary formalization of minimalist syntax,
including the operations Merge and Transfer. One lesson from this exercise is that it is
not possible to define Merge in isolation, independently from a network of definitions
articulating the notion of a derivation. In order to define Merge and its recursive
application properly, we had to define: lexical item, lexical item token, syntactic object, a
stage in a derivation, the operation Select, the derive-by-Merge relation between stages,
among other notions.

Clearly, our treatment of Transfer is more speculative than the treatment of
Merge, raising a number of problems that have not been resolved here. This corresponds
to the fact that Transfer, as opposed to Merge, is a relatively recent addition to minimalist
syntax and hence not as well understood. The operations of TransferPF and TransferLF
need much attention. On the PF side, we have not given a satisfactory treatment of the
spell-out of occurrences in predicate cleft and related constructions (see Kandybowicz
2008, Boskovic and Nunes 2007, and Nunes 2004). On the LF side, we have not given a
satisfactory treatment of reconstruction effects. We hope that our formalization will

 31

stimulate further efforts in these areas.
One result of our work is to bring up broader theoretical issues that have not

received much attention. Should we use lexical item tokens, or Chains, or more
complicated graphs? Do we obtain a more revealing and more plausible theory when
Transfer is formulated to respect the NTC? We leave these matters for future work.

References:

Aboh, Enoch Oladé. 2004. The Morphosyntax of Complement-Head Sequences. Oxford:
 Oxford University Press.
Adger, David. 2003. Core Syntax. Oxford, Oxford University Press.
Barss, Andrew. 2002. Syntactic Reconstruction Effects. In Mark Baltin and Chris Collins,

The Handbook of Contemporary Syntactic Theory. Oxford: Blackwell.
Boeckx, Cedric. 2008. Bare Syntax. Oxford: Oxford University Press.
Boskovic, Zeljko and Jairo Nunes. 2007. The Copy Theory of Movement: A View from

PF. In Norbert Cover and JairoNunes (eds), The Copy Theory of Movement, pgs.
13-74. Amsterdam: John Benjamins Publishing Company.

Chomsky, Noam. 1990. On Formalization and Formal Linguistics. Natural Language and
 Linguistic Theory 8.1, pgs. 143-147.
Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MIT Press.
Chomsky, Noam. 2000. Minimalist Inquiries. In Roger Martin, David Michaels, Juan
 Uriagereka (eds.), Step by Step: Essays on Minimalist Syntax in Honor of Howard
 Lasnik. Cambridge, MIT Press.
Chomsky, Noam. 2001. Derivation by Phase. In Ken Hale: a Life in Language, ed.

Michael Kenstowicz, 1-52. Cambridge, Mass.: MIT Press.
Chomsky, Noam. 2004. Beyond Explanatory Adequacy. In Adriana Belletti (ed.),

Structures and Beyond, pgs. 104-131 (originally published as: Chomsky, Noam.
2001. Beyond Explanatory Adequacy.MIT Occasional Papers in Linguistics
20.MIT Working Papers in Linguistics.)

Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry 36(1): 1-22.
Chomsky, Noam. 2007. Approaching UG from Below. In Uli Sauerland and Hans-Martin

Gärtner (eds.), Interfaces + Recursion = Language? Pgs., 1-29. Mouton de
Gruyter, Berlin.

Chomsky, Noam. 2008. On Phases. In Robert Freidin, Carlos P. Otero, and Maria Luisa
Zubizarreta (eds.), Foundational Issues in Linguistic Theory. Pgs., 133-166.
Cambridge, MIT press.

Collins, Chris. 1994. Economy of Derivation and the Generalized Proper Binding
Condition. Linguistic Inquiry 25.1, 45-61.

Collins, Chris. 1997. Local Economy. Cambridge, MIT Press.
Collins, Chris. 2002. Eliminating Labels. In Samuel David Epstein and T. Daniel Seely
 (eds.), Derivation and Explanation in the Minimalist Program, pgs. 42-64.
 Oxford, Blackwell.
Collins, Chris and Joachim Sabel. 2007. An LF-Interface Constraint on Remant

Movement. Ms., NYU and Université Catholique de Louvain.
Corcoran, John, William Frank, and Michael Maloney. 1974. String Theory. Journal

of Symbolic Logic 39.4 , pgs. 625-637.

 32

Dobashi, Yoshihito. 2003. Phonological Phrasing and Syntactic Derivation.
Doctoral dissertation, Cornell University.

Epstein, Samuel. 1999. Un-Principled Syntax: The Derivation of Syntactic Relations. In
Samuel David Epstein and Norbert Hornstein (eds.), Working Minimalism, pgs.
317-145. Cambridge, MIT Press.

Epstein, Samuel David and T. Daniel Seely. 2002. Rule Applications as Cycles in a
Level-free Syntax. In Samuel David Epstein and T. Daniel Seely (eds.),
Derivation and Explanation in the Minimalist Program, pgs. 65-89. Oxford,
Blackwell.

Epstein, Samuel David and T. Daniel Seely. 2006. Derivations in Minimalism.
Cambridge, Cambridge University Press.

Fox, Danny. 2003. On Logical Form. In Randall Hendrick (ed.), Minimalist Syntax, pgs.
82-123. Oxford: Blackwell.

Frampton, John. 2004. Copies, Traces, Occurrences and all that: Evidence from
Bulgarian Mutiple-Wh Phenomena. Ms., Northeastern University

Frampton, John and Sam Gutmann. 1999. Cyclic Computation, a Computationally
Efficient Minimalist Syntax. Syntax 2.1, pgs 1-27.

Frampton, John and Sam Gutmann. 2002. Crash-Proof Syntax. In Samuel David Epstein
 and T. Daniel Seely (eds.), Derivation and Explanation in the Minimalist
 Program, pgs. 90-105. Oxford, Blackwell.
Gärtner, Hans-Martin. 2001. Generalized Transformations and Beyond. Akademie-
 Verlag: Berlin.
Harkema, Henk. 2001. Parsing Minimalist Languages. Ph.D. Dissertation, UCLA.
Hiraiwa, Ken. 2005. Dimensions of Symmetry in Syntax. Ph.D. Dissertation, MIT
Hornstein, Norbert. 1999. Movement and Control. Linguistic Inquiry 30.1, 69-96.
Hunter, Tim. 2011. Insertion Minimalist Grammars: Eliminating Redundancies
 between Merge and Move. In M. Kanazawa, A.Kornai, M. Kracht and H. Seki,

(eds.), The Mathematics of Language. New York: Springer.
Kandybowicz, Jason. 2008. The Grammar of Repetition. Amsterdam: John Benjamins

Publishing Company.
Kayne, Richard. 1994. The Antisymmetry of Syntax. Cambridge, Mass.: MIT Press
Kayne, Richard. 2005. Movement and Silence. Oxford: Oxford University Press
Kitahara, Hisatsugu. 2000. Two (or More) Syntactic Categories vs. Multiple Occurrences
 of One. Syntax 3.3, pgs. 151-158.
Kobele, Gregory. 2007. Generating Copies: An Investigation into Structural Identity in
 Language and Grammar. Doctoral Dissertation, UCLA.
Kracht, Marcus. 2001. Syntax in Chains. Linguistics and Philosophy 24: 467-529.
Kracht, Marcus. 2008. On the logic of LGB-type structures, Part I: Multidominance. In

F. Hamm and S. Kepser (eds.) Logics for Linguistic Structures. NY: Mouton de
Gruyter.

Lasnik, Howard. 1999. Chains of arguments. In S. Epstein and N. Hornstein (eds.)
Working Minimalism. MIT Press, pgs. 189-215.

Lasnik, Howard. 2001. A Note on the EPP. Linguistic Inquiry 32.2, pgs. 356-362.
Lasnik, Howard. 2003. Minimalist Investigations in Linguistic Theory. New York:

Routledge.

 33

Legate, Julie Anne. 2003. Some Interface Properties of the Phase. Linguistic Inquiry 34.3,
pgs. 506-516.

Michaelis, Jens. 2001. On Formal Properties of Minimalist Languages. Ph.D.
 Dissertation, University of Potsdam.
Müller, Gereon. 1998. Incomplete Category Fronting. Dordrecht: Kluwer Academic

Publishers.
Müller, Gereon. 2010. On Deriving CED Effects from the PIC. Linguistic Inquiry 41.1:

35-82.
Nunes, Jairo. 2004. Linearization of Chains and Sideward Movement. MIT Press,

Cambridge.
Obata, Miki. 2010. Root, Successive-Cyclic and Feature-Splitting Internal Merge:
 Implications for Feature Inheritance and Transfer. Doctoral Dissertation, University
 of Michigan.
Richards, Norvin. 2001. Movement in Language: Interactions and Architectures. New
 York: Oxford University Press.
Richards, Marc D. 2007. Feature Inheritance: An Argument from the Phase

Impenetrability Condition. Linguistic Inquiry 38.3: 563-572.
Rizzi, Luigi. 1977. The Fine Structure of the Left Periphery. In Haegeman, Liliane (ed.),
 Elements of Grammar, 281-337. Dordrecht: Kluwer Academic Publishers.
Salvati, Sylvain. 2011. Minimalist Grammars in the Light of Logic. In S. Pogodalla, M.

Quatrini and C. Retoré (eds.), Logic and Grammar.New York, Springer.
Seely, T. Daniel. 2006. Merge, Derivational C-Command, and Subcategorization in a

Label-Free Syntax. In Cedric Boeckx (ed.), Minimalist Essays. Amsterdam, John
Benjamins.

Stabler, Edward. 1997. Derivational Minimalism. In Christian Retoré (ed.), Logical
Aspects of Computational Linguistics, 68-95.Springer.

Stabler, Edward. 2001. Minimalist grammars and recognition. In C. Rohrer, A.
Rossdeutscher, and H. Kamp (eds.), Linguistic Form and its Computation,
pgs 327-352.Stanford, CA: CSLI.

Stabler, Edward. 2006. Sidewards without copying. In P. Monachesi, G. Penn, G.Satta
and S.Wintner (eds.), Formal Grammar'06, Proceedings of the Conference, pgs.

133-146. Stanford, CA: CSLI.
Stabler, Edward. 2010. Computational Perspectives on Minimalism. In Cedric Boeckx,

(ed.) Oxford Handbook of Minimalism, pgs. 617-641. Oxford: Oxford University
Press.

Uriagereka, Juan. 1999. Multiple Spell-Out. In Samuel D. Epstein and Norbert Hornstein
(eds.), Working Minimalism, pgs. 251-160. Cambridge, MA: MIT Press.

	This is not a possible derivation (given the definition of the derive-by-Merge relation) since it does not “act at the root”, as is made explicit by the Extension Condition. Furthermore, this operation of Merge tampers with the internal structure of X...
	Again, this is not a possible derivation given the definition of the derive-by-Merge relation. Note that it violates the Extension Condition: no constituent in W1 is extended (in the sense of an undominated X becoming a dominated X). However, the deri...
	Next, we take up the inclusiveness condition, defined by Chomsky in several places as follows:
	“Another natural condition is that outputs consist of nothing beyond properties of items of the lexicon (lexical features) – in other words, that the interface levels consist of nothing more than arrangements of lexical features.”

