
Real-Time Systems, 5, 285-303 (1993)
© 1993 Ktuwer Academic Publishers. Manufactured in The Netherlands.

A Formalization of Priority Inversion

OZALP BABAO(3LU*
Department of Mathematics, University of Bologna, Piazza Porta S. Donato 5, 1-40127 Bologna, Italy

KEITH MARZULLO** AND FRED B. SCHNEIDER***
Department of Computer Science, Cornell UniversiO; Ithaca, New York 14853

Abstract. A priority inversion occurs when a low-priority task causes the execution of a higher-priority task
to be delayed. The possibility of priority inversions complicates the analysis of systems that use priority-based
schedulers because priority inversions invalidate the assumption that a task can be delayed by only hi,gher-priority
tasks. This paper formalizes priority inversion and gives sufficient conditions as well as some new protocols
for preventing priority inversions.

1. Introduct ion

Task specifications in real-time systems usually involve bounds on completion times. Use

of a priority scheduler can simplify implementing such specifications (Liu and Layland

1973), (Zhao, Ramamritham and Stankovic 1987). Each task is assigned a priority; whenever

there is contention for a resource, access is granted to the task with the highest priori ty

among those competing. Thus, the system designer controls the order in which resources

are granted to tasks by assigning priorities. This, in turn, allows control over how resource

contention affects task completion times.

A priority inversion occurs when a lower-priority task delays execution of a higher-priority

task (Lampson and Redell 1980), (Sha, Rajkumar and Lehoczky 1990). For example, a

task holding a lock for some data will cause any task attempting to acquire a conflicting

lock to be delayed. I f the task holding the lock has a lower priori ty than the task attempting

to acquire the conflictng lock, then a lower-priority task is delaying a higher-priori ty one

and a priori ty inversion has occurred.

The possibil i ty of priori ty inversions complicates the analysis of a system that uses a

priority scheduler. Not only must a task compete for resources with higher-priori ty tasks,

*Supported by the Commission of the European Cormnunities under the ESPRIT Programme Basic Research
Action Number 3092 (Predictably Dependable Computing Systems) and the Italian Ministry of Research and
University, and in part by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant number
NAG-2-593.

**Supported in part by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant number
NAG 2-593, and by grants from IBM T.J. ~htson Research Laboratory, the IBM Endicott Programming Laboratory,
Siemens RTL, and Xerox Webster Research Center.
***Supported in part by the Office of Naval Research under contract N00014-91-J-1219, the National Science
Foundation under Grant No. CCR-8701103, DARPA/NSF Grant No. CCR-9014363, and by the IBM Endicott
Programming Laboratory.

286 6. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

but during a priority inversion, it competes with lower-priority tasks as well. If a high-

priority task Tn can be delayed by a lower-priority task rL, then rH effectively competes

with all tasks assigned priorities at least that of rL, rather than with only those tasks

assigned priorities at least that of rn. Since rL can be an arbitrary task, establishing that

~'H will meet a response-time goal involves reasoning about all tasks in the system rather

than just the subset having priority at least that of ~-n.

The simpler analysis made possible by completely avoiding priority inversions is not

without cost, however. It is not difficult to construct task sets in which priority inversions

are avoided and CPU utilization never exceeds 50%, but were priority inversions permitted,

then 100% CPU utilization would be possible. Thus, the system designer is faced with

a common tradeoff: choosing between reduced system complexity and increased efficiency.

This is not to say that protocols avoiding priority inversion lead to inefficiency. But there

is strong empirical evidence that this will be the case since avoiding priority inversions

necessarily rules out possible executions.

If the duration of priority inversions can be bounded, then delays by lower-priority tasks

can be considered part of the time required to allocate a resource. In priority inheritance

protocols (Lampson, and Redell 1980), (Sha, Rajkumar and Lehoczky 1990), the duration

of priority inversions is bounded and task deadlines are met by dynamically modifying

task priorities. A task's priority is elevated to a level that is the maximum of its original

priority and the priority of any task that is being delayed by it. Priority inversions are per-

mitted, but only in a carefully controlled way. The analysis of these protocols, however,

is quite subtle, which supports our conjecture that allowing priority inversions complicates

the analysis of a system. Of course, users of these protocols need not themselves perform

such an analysis, and the use of priority inheritance protocols in actual systems is increasing.

In this article, we give a formal framework for investigating resource allocation strategies

that avoid priority inversions completely. We then use this framework to help understand

techniques to avoid--rather than control--priority inversions. In Sections 2 and 3, we formal-

ize priority inversion and give sufficient conditions for its prevention; we then illustrate

these ideas using some simple reservation-based protocols. To further illustrate the use

of our framework, in Section 5 we develop a new concurrency control scheduler for avoiding

priority inversions in database systems. Of note is how we model transactions which, unlike

ordinary tasks, can be aborted. In Section 6, we consider conditions for avoiding priority

inversions in systems where there are multiple independent schedulers, each making alloca-

tion decisions for some subset of the resources. Section 7 puts our work in context and

discusses some unsolved problems.

2. System Model

Formalizing priority inversion requires that we formalize the notions of priority assign-

ment and delay. To do this, we model a system as a set of tasks T = {71, 72 , rn}

where a task is any computation that can be scheduled. Thus, our use of the term task

is synonymous with alternatives such as process, job, and transaction.

A FORMALIZATION OF PRIORITY INVERSION 287

2.L Task Priorities

A priority assignment is an irreflexive, partial order ~ on T where 7- -I r ' means that task

r has lower priority than 7- '. Observe that this definition allows tasks to have incomparable

priorities. Therefore, it is possible that neither r -I 7-' nor 7-' -I r holds for some pair of

tasks r and 7- '. By assigning incomparable priorities to tasks, the number of constraints

imposed by a priority assignment is reduced, avoiding the introduction of extraneous priority

inversions in our model of a system.

Define the peer group of a task 7- to be the set of tasks r' such that either r -~ r ' or

r' is incomparable to r. In the absence of priority inversions, we need only consider r

and tasks that are in its peer group when analyzing whether r will satisfy given response-

time constraints. This is because only tasks in the peer group of r can cause it to be delayed.

2.2. Resources

Tasks can cause each other to be delayed in a variety of ways. Some of these causes are

explicit, such as when one task awaits a message sent by another or when a lock held by

one task prevents another from acquiring that lock. Other causes of delay are implicit.

For example, the presence of finite-capacity, time-multiplexed resources, such as memory,

processors, and I/O devices, can lead to the implicit delay of a task requiring use of a resource

by the task using that resource. Notice that we do not distinguish between consumable

and serially-reusable resources (Bic and Shaw 1988) as has been traditional when con-

sidering deadlock. In formalizing priority inversion, our concern is with the existence of

a delay and not the details of the system activity to terminate that delay.

We postulate that a system comprises a set of resources and a scheduler, z A task obtains

access to a single unit of a resource r by invoking the r e q u e s t (r) operation. If the

resource is not available then the task invoking the request is delayed. A delayed task may

later be granted the resource by the scheduler when another task invokes the r e I e a se (r)

operation. Observe that a task may have only one outstanding request at a time. Thus, in

our model, if multiple units of a resource or several different resources are needed for

execution, a task must request and acquire them sequentially. We return to the possibility

of a task requesting multiple resources through a single operation in Section 7.3.

Request arid release operations are not always explicitly invoked by tasks. Sometimes,

these operations are invoked implicitly as part of some other system operation. For exam-

ple, an operation to receive a message will implicitly invoke a request operation that is

granted when the message becomes available for receipt. In other cases, request or release

might not be invoked by tasks at all, instead being invoked due to other activity in the

system. Consider a multiprogrammed processor that uses an interval timer to force task

switches. An execution of the interval-timer interrupt handier can be regarded as (i) per-

forming a release and a subsequent request on behalf of the task that was executing when

the timer interrupt occurred and then (ii) granting the pending request of the task that is

next selected for execution on the processor.

Our request/release model turns out to be quite general. It can even be used to describe

situations in which tasks are delayed because of some application-dependent aspect of the

288 O. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

system state. For example, it is not unusual for a concurrent program to contain some form

of conditional wait statement that delays a task until the program variables satisfy some

Boolean expression. (Most synchronization primitives are instances of such conditional

wait statements.) We can model a conditional wait by regarding it as a request on a resource.

The request is granted if the Boolean expression is true; otherwise, the request is delayed.

Execution of any assignment statement in another task that makes the Boolean expression

true is considered a release on the resource.

2.3. Delay

We model task delays using a binary relation. A task 7"i waits-for task 7"j at time t, denoted

b y 7-i -~. Tj, if and only if ~i is delayed at time t in its request for some resource and 7"
t . J

can release that resource. Note that more than one task nught be able to release the resource

being requested. We can model this using a conjunction of waits-for relations. For exam-

ple, if there are multiple units of the resource available, then the delay is attributed to the

set of all tasks J that have been granted but not yet released the resource:

A (7"i-7 r).
"re .~

3. Characterizing Priority Inversion

In order to characterize priority inversion, we must reason about the transitive closure

~ + of the waits-for relation. 3 Priority inversion has occurred at time t when progress of

a task is blocked by the actions of a lower priority task. Thus, a system contains a priority

inversion at time t if and only if there exist tasks ~r i and Tj such that (Ti ~ + rj) A (rj -~ Ti).

It will be convenient to represent the priority assignment and waits-for relations in ef-

fect at a given time t with a directed graph. The directed graph corresponding to a priority

assignment -~ on a set of tasks T is P = (T, Ep) where Ep = {(u, v) I u -~ v}. Thus,

the nodes of P represent tasks and an edge is drawn from a task to all higher priority

tasks. Similarly, the waits-for relation at time t can be represented as the directed graph

W = (T, Ew) where Ew -- {(u, v) I u + v}. Here, edges are drawn from a task to all
t

other tasks that it waits for.

Given these graphs, the system state at a time t can be represented by a composite system

graph, G = (T, Ep U Ew). Figure 1 depicts such a graph for a system of four tasks.

Single-arrow edges represent waits-for relations and double-arrow edges represent priority

relations. Thus, the graph depicts the situation where there are four tasks such that

7"3 -~ 7"1 -~ 7"2 and (7"1 -~ 7"2), (r2 ~ r4), (7"4 -~ ~'3). Note that there can be multiple edges
t t

between a pair of nodes.

Composite system graphs can be used to characterize priority inversions. In a composite

system graph, a cycle containing exactly one priority edge is equivalent to the existence of

a priority inversion. 4 We call such cycles 1r-cycles to distinguish them from cycles containing

A FORMALIZATION OF PRIORITY INVERSION 289

)

@

Figure 1. Four-task composite system graph.

no priority edges. Thus, the system depicted in Figure 1 contains two priority inversions,

corresponding to the two r-cycles (7 3 -~ 7" 1 -/~ 7"2 "~ 7"4 "~ 7"3 and r3 -~ r2 -7 7"4 '~ T3)"

Any condition that prevents a composite system graph from having a r-cycle is a suffi-

cient condition for avoiding priority inversions. Examples of such conditions are the

following:

1. No Priority Assignment. If all tasks were incomparabl,e, then the priority graph P would

be empty and a r-cycle could never form.

2. No Delay. Without delay, the waits-for graph Wwould be empty, guaranteeing the absence

of the r-cycles.

3. Preemption. A waits-for relation persists until a task relinquishes a resource. Preemp-

tion causes a task to relinquish a resource, so preemption can change the waits-for rela-

tion in a way that prevents a r-cycle from forming.

4. No r-Cycle. The waits-for and the priority relations must form in a particular fashion

for priority inversion to exist. The relevant property is a 7r-cycle.

Note that preemption both removes and adds elements to the waits-for relation. By preemp-

ting a resource r that had been granted to a task ri and granting r to rj, all waits-for rela-

tions from rj to other tasks are removed and waits-for relations from ri to all tasks that

have access to the resource are added.

Inverses of conditions 2, 3, and 4 correspond to the three necessary and sufficient condi-

tions for deadlock of (Coffman and Denning 1973). When negated, our conditions 2 and

3 correspond exactly to the Mutual Exclusion and Nonpreemption conditions of (Coffman

and Denning 1973); negation of our condition 4 is a refinement of the Resource Waiting

condition 5 of (Coffman and Denning 1973).

Any strategy for preventing priority inversions ultimately must be based on avoiding 7r-

cycles. In the strategies that follow, we do just this by ensuring that at least one of the

sufficient conditions above holds. First, in Section 4, we show how by eliminating the

290 6. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

possibility of certain waits-for relations, a r-cycle is avoided. Thus, this priority inversion

strategy is based on condition 4, No w-Cycle. Then, in Section 5, we show an application

of preemption by giving a timestamp-based concurrency controller. This strategy is based

on condition 3, Preemption.

4. Understanding Reservation Protocols

In nonpreemptive schedulers, Tricycles can be prevented by having each task reserve in

advance the interval during which it will hold a resource and using that information to

prevent certain waits-for relations from forming. If reservations from a low-priority task

never overlap with reservations from a higher-priority task, then priority inversons do not

occur. In this section, we describe two protocols that exploit this insight for avoiding priority

inversions. The protocols themselves are not complicated, although getting all of their details

right was helped by our formal characterization for priority inversions.

Let H/ = {r] rl -I r} be the set of tasks that have higher priority than ri, and let

I i = {r I ~ (ri ~I r) A -n (r -I ri)} be the set of tasks incomparable to ri. Thus, the peer

group for a task ri is PGi = Hi U I i. For each resource r, assume that each task ri is able

to compute hold~i(t), the upper bound on the amount of time that r i will hold r the next

time (with respect to t) it is granted r, and next(t) , the lower bound on the next time (with

respect to t) r i will request 1". During the interval between when task ri requests resource

r and when it releases r, define nex((O to equal t. And, if ri holds r at time t then define

ho ld (t) to be an upper bound on the remaining amount of time ri will hold r.

The reservation protocols we derive base their scheduling decisions on the values of

hold(t) and nexgii(t). For this to be feasible, their computation must be independent of any

particular schedule. This independence is achieved by defining hold~i(t) and nexgii(t) as up-

per and lower bounds, respectively, over all schedules. In other words, the computation

of hold(t) must be based on a worst-case scenario where task ri is delayed by all other

tasks in its peer group whereas that of next(t) must be based on a best-case scenario where

task ri executes with no interleavings.

Our assumptions about knowledge of hol~(t) and nextri(t) are satisfied in systems where

tasks are periodic and can be analyzed before execution commences--systems in which

priority inversions could also have been avoided by using a priori static scheduling of tasks.

However, it is not hard to imagine systems for which static scheduling is not possible, but

next (t) and hol~:(t) are still computable.

Two simple allocation policies based on knowledge of next (t) and hol~(t) are:

Policy 1. A request by task r i for resource r at time t is granted if

holdS(t) <_ rain (next,(t) - t).

Otherwise, the request is delayed.

Policy 2. Let R be the set of all shared resources. A request by task r / fo r resource r

is granted if

A FORMALIZATION OF PRIORITY INVERSION 291

holdS(t) < min (m i n (n e x t / (t) - 0) .
rjEII i r'ER

Otherwise, the request is delayed.

While it is probably clear that these policies prevent priority inversions, it may not be

clear whether they are overly restrictive. For example, must incomparable tasks be in-

cluded in the test of Policy 1? By giving a formal derivation of Policy 1--as we now do--

the need for this part of the test can be understood.

In general, an allocation policy can be derived from an invariant 6 that precludes forma-

tion of r-cycles. For a nonpreemptive scheduler, the invariant must imply that there is

no ~r-cycle present in the current state and that the current state is not one from which

formation of a r-cycle is inevitable. Therefore, it suffices that the invariant imply the

stronger condition that there is no r-cycle present in the current state and that the current

state is not one from which formation of a r-cycle is poss ib l e . Although such a stronger

invariant could rule out safe states, it is usually easier to construct and maintain.

Using this approach, we now derive Policy 1. In a system where resources are shared

infrequently, the most common 7r-cycle would involve just two tasks r i and rj (say) such

that rj --7 ri A 7" i -{ 7). A n obvious invariant to choose is the negation of this predicate: 7

(Vri, rj: rj 7 ri D -7 (r i .~ Tj)) (1)

However, (1) does not imply that there can be no 7r-cycle in a composite system graph since

a r-cycle might involve a chain of --+ edges. The following predicate does:
t

(Vri, ra: r~ -++ ri D "~ (ri 4 rj)) (2)

So, we strengthen (I). First, note that because 4 is asymmetric, we have:

(Vr~, ri: rj ~ r~ ~ -~ (r~ ~ rj)) (3)

Thus,

(Vri, rj: rj 7 ri D -1 (9 "~ h)) (4)

implies (1), and so if (4) also implied (2) then (4) would imply there can be no rr-cycle

in the composite system graph.

We now show that (4) implies (2). Assume (4) holds. Since -~ is a transitive relation,

we have from (4) and the definition of 4 + that:

(Vri, rj: r/ -++ r i D 7"j -~ rl)

This last equation together with (3) implies (2). Thus, (4) implies that there can be no

r-cycle in the composite system graph and can be used as the basis for the invariant.

292 6. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

Unfortunately, (4) does not imply that the current state is one from which later forma-

tion of r-cycles is impossible--only that no r-cycle currently exists. For example, suppose

a task ri can allocate a resource r that a task rj will later request and ri -~ rj holds. If ri

allocates r, then (4) is not invalidated. However, if rj subsequently attempts to allocate r,

then (4) is invalidated because the request cannot be granted (without preempting r from

ri). So, (4) is not strong enough to prevent subsequent formation of a r-cycle.

We can strengthen (4) by weakening its antecedent. The antecedent asserts that rj is

waiting for ri; a weaker requirement is that rj may wait for ri at some future point. This

weaker antecedent can be formalized in terms of hold and next as

(3t': t _< t ': (3r: r E Ri(t): (hold(t) + t > t ') A (next(t) <_ t ')))

where Ri(t) is the set of resources that ri has allocated at time t. After some manipulation

using predicate logic, the strengthened (4) is:

if'. (Vri, rj: -~ (7) -~ ri) D (Vr: r E Ri(t): ho l~(t) + t < nexFjj(t)))

To ensure that gho lds throughout execution, we must show that it is true initially and

guarantee that execution does not invalidate it. Assuming that tasks are initially started

with no resources allocated to them, Ri(O) will be empty for all tasks ri, and so 57is ini-

tially true. To guarantee that g i s not invalidated by execution, assume that it is true and

some task ri requests a resource r'. Let ok(r', i f) denote those systems states in which r '

could be added to Ri(t) without invalidating g. Then, any policy that ensures a condition

C(r', ri) holds before r ' is granted to % such that

C(r ' , ri) A 57 D ok(r ' , i f)

is valid, will ensure that 57 holds throughout execution (hence the formation of r-cycles

is precluded).

The allocation of a resource r ' to a task ri can be modeled by an assignment statement

Ri(t) : = g i (t) LJ {r' }. The set of states that must hold before execution of an assignment

x : = E in order to ensure that some predicate Q holds afterwards is given by wp(x : = E, Q),

Dijkstra's weakest precondition predicate transformer (Dijkstra 1976).8 Thus, we compute

ok(r ' , 57) = wp(Ri(t) := Ri(O U {r'}, 57)

R.(t
-~- 57 ~ i? t)U{r ' }

= (Vri , rj: ~ (r j ~I "ri) 3

(Vr: r E Ri(t) U {r'}: holdr(t) + t <- next,(O))

Thus, for

C(r' , ri)d= -ef (¥rj: -1 (rj -~ ri) 3 holdr'(t) + t <- nextjr'(t))

A FORMALIZATION OF PRIORITY INVERSION 293

we have

C(r; ri) A f f D ok(r: i f) .

Therefore, provided C(r', ri) holds before r ' is granted to ri we can conclude that gwi l l

not be invalidated by program execution. This can be done by ensuring that the scheduler

never grants r ' to ri unless C(r', ri) holds, which is exactly Policy 1.

Policy 1 is conservative. It does not allow waits-for edges to develop between incom-

parable tasks in fear of a cycle developoing indirectly between two comparable tasks. Policy

2 is conservative in a different way: it avoids instances of Figure 2. And, it can be derived

in a manner similar to Policy 1. In a system with a total order priority assignment, Policy

1 is superior, while in a system where there are many incomparable tasks and few shared

resources, Policy 2 is appropriate. Depending on the application, there may be other prop-

erties of the possible composite systems graphs that can be exploited in order to derive

a better resource allocation policy.

5. A New Concurrency Control Protocol

We now consider how r-cycles can be prevented in a database system by a timestamp-based

concurrency controller. Althoug h the utility of employing transactions in a real-time system

is debatable, deriving a transaction concurrency controller for avoiding priority inversions

does provide another illustration of our theory. Moreover, our concurrency controller ap-

pears to be the first to use timestamps for avoiding priority, inversions. All other database

concurrency controllers we know of that avoid priority inversions use locking (Abbott and

Garcia-Molina 1989), (Sha, Rajkumar and Lehoczky 1990).

Figure 2. Composite system graph configuration avoided by Policy 2.

)

294 6. BABAOGLU, K, MARZULLO AND EB. SCHNEIDER

5.1. Serializability and Priori ty Inversion

A task accesses a database by encapsulating its read and write operations on the database

within a transaction. We can model a transaction as a sequence of read and write opera-

tions on items of the database followed by either a commit operation or an abort operation.

Given a set of transactions, a history is a total order of the operations of the transactions.

Two operations conflict if their execution order cannot be interchanged without altering

the effects of one or the other. Two histories h 1 and h2 are equivalent if they are over the

same set of transactions and, for all pairs of conflicting operations a and/3 in the histories,

if c~ precedes/3 in h 1 then o~ precedes 13 in h27 If ot and/3 are conflicting and are from

different transactions, we will say that the two transactions conflict.

A concurrency controller is a scheduler that takes as input operations from transactions

and produces a history that is serializable--that is, each transaction either commits or aborts,

and execution of the committed transactions is equivalent to executing them in some serial

order. A transaction r i precedes a transaction 7) in a history h, written ri ,~ rj, if neither

transaction aborts in h and in all serial executions equivalent to h, ri executes before 1).

Serializability of a set of transactions T can be characterized in terms of a serialization

graph, G = (T, Ec) where E c = {(u, v) lu "~ v}. By definition, ~ is an irreflexive par-

tial order, so G is acyclic.

By allowing only serializable executions, a concurrency controller ensures that the

serialization graph G never contains cycles (Bernstein, Hadzilacos and Goodman 1987).

For example, suppose some operation oti of ri was executed before a conflicting operation

/3j of rj. In this case, a concurrency controller effectively adds an edge from r i to rj in

G. If two more conflicting operations, 7i of ri and bj of rj, are to be executed, then ~i must

execute before 6j, since to do otherwise would add an edge in G from rj to ri, creating

a cycleJ °

A concurrency controller can take one of three actions for each operation that a transac-

tion submits. It can execute the operation; it can reject the operation and abort the transac-

tion because if the operation were to be executed then a cycle could be formed; or else,

it can postpone performing the operation until it can guarantee that no cycle will be formed

were that operation executed.

Using the formalism of Section 2.2, we model transactions as tasks and a concurrency

controller as a scheduler. Executing an operation from a transaction is equivalent to grant-

ing a reosurce to the corresponding task. Rejecting or postponing an operation from a trans-

action is equivalent to delaying the correspoinding task. We next discuss these two methods

of delaying a task.

5.1.1. Pos tponing operations. A concurrency controller postpones an operation o~ i of a

transaction r / i f executing cq would introduce a cycle in the serialization graph. If some

transaction r~ would be part of that cycle then ri waits for r~ and we have that r i -~ rj holds.

Henceforth, ewe assume the following property about concurrency controllers!

POST: If ri --* rj because an operation of ri is postponed, then ri and rj are both active
• t

at time t and rj ,~ ri.

A FORMALIZATION OF PRIORITY INVERSION 295

This is a reasonable assumption because were it not true, then there would exist an equivalent

serial execution in which r/precedes rj yet the concurrency controller postpones opera-

tion o/i of 7" i until some operation ~3j of rj completes. Such a delay would be capricious,

since all the operations of ri could execute before any operation of rj and yield the same

results as when (xi is delayed. It is, therefore, not surprising that all the concurrency con-

trol algorithms that we know of satisfy this assumption.

By postponing operations, a concurrency controller can cause priority inversions. Define

a prior i ty-ordered concurrency controller to be one that ensures

POCCI: For all transactions ri and 7), if rj starts before ri completes and ri -~ rj, then

rj~r~.

POCC 1 ensures that higher-priority transactions are ordered before concurrently executed

lower-priority ones.

We now show that a priority-ordered concurrency controller cannot introduce priority

inversions. Assume that the composite systems graph contains the 7r-cycle ri -~ r. -? . . .
• • J

ri. Thus, r i and rj are both active at time t and so 7) started before r i completed.

tfy POST, a delay edge in a composite system graph that can be attributed to the postpone-

ment of an operation has a corresponding conflict edge in the serialization graph, and so

there is a path of conflict edges from ri to rj. By POCC1, there is a conflict edge from

rj to ri. Thus, if there is a 7r-cycle in the composite system graph then there is a cycle

in the serialization graph. Since a concurrency controller ensures the absence of cycles

in the serialization graph, there can be no r-cycle in the composite system graph.

5.L2. Re jec t ing Operat ions. In terms of our model, rejecting an operation submitted by

a task r a (and thereby aborting ra) can be regarded as having ra wait for some (virtual)

resource held by other tasks. This is because a transaction that is aborted does no useful

work prior to its restart, and in our model, a task whose transaction can do no useful work

is considered blocked•

If a transaction ra is aborted in order to avoid a cycle in the waits-for graph, then a

priority inversion can occur depending on the priorities of transactions holding the virtual

resource being requested by (and blocking) "ca. Define the set Ba of transactions holding

this virtual resource to be the smallest set such that had none of these executed at all, then

ra would not have been aborted. Thus, if each transaction in B~ is in the peer group of

r~, then aborting r~ to avoid a cycle in the serialization graph does not create a priority

inversion. Let C be the set of transactions involved in cycles in the serialization graph,

and let A be the subset of C that are aborted in order to remove those cycles. Then, Ba

C C - A holds, and we have:

POCC2: A concurrency controller that aborts a transaction r a will avoid priority inver-

sions provided B a is a subset of the peer group of ra.

5.2. T imes tamp-based Concurrency Controllers'

Timestamp-based concurrency controllers work by assigning a unique t imestamp ts(ri) to

each transaction ri. These timestamps are used to totally order transactions. The ordering

is such that if ts(ri) < ts(rj), then there is an edge in the serialization graph from ri to rj.

296 6. BABAOGLU, K. MARZULLO AND F.B. SCHNEIDER

Timestamp-based concurrency controllers both postpone operations and reject opera-

tions. In order to ensure that such a concurrency controller does not introduce priority

inversions, two conditions suffice. The first condition is that the concurrency controller

be priority-ordered, since being priority-ordered (i.e., satisfies POCC1) implies that

postponing operations will not introduce priority inversions. The second is that rejecting

operations does not introduce priority inversions (i.e., satisfies POCC2). We now consider

each of these conditions in detail.

A timestamp-based concurrency controller can be made priority-ordered by suitable

assignment of timestamps. This is because POCC1 requires that certain edges exist in a

serialization graph. Since the concurrency controller adds such edges by assigning

timestamps, it suffices to ensure that

POTS: I f rj starts while % is active and zi -~ rj, then ts(rj) < ts(%).

It is not hard to assign such timestamps. For simplicity, assume integer priorities; ex-

tension to general priorities is straightforward. Also assume there exist P priority levels

1, 2, . . . , P, where level e i -~ ej if and only if ei < e j, and assume that timestamps are

real numbers. Let

max c be the largest timestamp of all committed transactions,

min a be the smallest timestamp of all active transactions of priority i, and

max a be the largest timestamp of all active transactions of priority i.

I f no transactions of priority i are active, then the value of rain a and max a is defined

to be ± , where min(x, _1_) = max(x, Z) = x. Initially, max c = 0.0 and for all priority

levels e, min~ = maxf = _1_. A timestamp s for a new transaction with priority p can be

computed by finding upper and lower bounds for its value and selecting a unique value

in that interval, n To be able to commit, the value o f s must be larger than max c, to satisfy

POTS, it must be larger than the timestamps assigned to all transactions with higher-priority

and smaller than the timestamps assigned to all transactions with lower priority. This is

implemented by the code in Figure 3.

In order to illustrate this allocator, assume that P = 2, no transactions are active, and

max C = 10. I f a priority 2 transaction starts, then it will be assigned a timestamp of 11
a

and minp = maXp 11. I f a priority 1 transaction then starts before the first terminates,

then low will be set to 10 and high will be set to 11 and so the transaction wilt be assigned

a timestamp of 10.5.

low := max[max c, maxf: 1 <_ e _ p];

high :=min[min~: p < e _< P];

if (high = ±) then s := low + 1

else s := (low + high)~2;

rnin~, := min[minf, s];

a max[max,, s];

Figure 3. Timestamp Allocator.

A FORMALIZATION OF PRIORITY INVERSION 297

Having ensured that the concurrency controller is priority-ordered, it only remains to

ensure that POCC2 holds and so aborts do not introduce priority inversions. Suppose

operation oL i from transaction rg is submitted before a conflicting operation flj from rj. If

ts(ri) > ts(rj), then executing these operations in the order they are submitted would create

a cycle in the serialization graph. ~z Thus, the concurrency controller must abort either ri

or rj to avoid this cycle. From POTS, if r i -~ rj then ts(rj) < ts(ri) holds, so, according

to POCC2, no priority inversion can result by aborting ts(ri). The following rule, therefore,

describes a rule for aborting transactions without introducing priority inversions.

Priority Abort Rule: If o~ i from transaction r i is submitted before conflicting operation

Bj from r j and ts(ri) > ts(rfl , then ri is aborted to avoid a cycle in the serialization graph.

This rule is the opposite of what is traditionally used in timestmnp-based concurrency con-

trollers (Bernstein, Hadzilacos and Goodman 1987). Traditionally, the transaction that sub-

mitted the last operation (e.g., rj above) would be aborted because this eliminates all cycles

introduced by that operation. For example, suppose that ts(ri) = i and the following se-

quence of operations are submitted, where ri[x] denotes an operation by transaction ri to

read x and wi[x] denotes an operation by transaction ri to write x:

r 2 [x] r 3 [x] W I [X J .

Performing w 1 IX] would introduce two cycles in the serialization graph--one involving rl

and r2, the other involving rl and r3. The traditional abort rule would abort rl, but would

create a priority inversion if r2 -~ rl or r 3 -~ r 1. The Priority Abort Rule would abort both

r2 and r3 and cannot cause a priority inversion because of the way timestamps are assigned•

Implementing the Priority Abort Rule is not completely straightforward. See (Marzullo

1989) for a detailed explanation of such an implementation.

6. Systems with Multiple Schedulers

It is not uncommon for system resources to be partitioned into disjoint subsets, where each

subset is controlled by an independent scheduler. For example, the processors of a system

are scheduled by a CPU scheduler, disk drives by some device driver module, and database

accesses by the concurrency control module of a database manager. A database transaction

would interact with all three separate schedulers during its execution.

Although using multiple, independent schedulers simplifies construction of a system,

it complicates the avoidance of priority inversions. This is because a scheduler's decision

to delay granting some resource to a task must be made using only partial information

about the system state, and a delay caused by one scheduler might cause a priority inversion

with tasks being delayed by other schedulers. To see this, consider a system with schedulers

S 1 and S 2 and tasks ri, rj, and rk, where rk -~ ri. Further, suppose that an allocation deci-

sion by $1 leads to r/ 7 ~ Tj and an allocation decision by $2 leads to r. ~ rk. This is a
• . J t

priority inversion since (r i "-++ 7k) A (r k -{ 7i). Nonce that neither $1 nor Sz maintains

sufficient local information to detect or prevent this priority inversion.

298 6. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

We can enjoy the benefits of having separate schedulers if freedom from priority inver-

sions can be ensured by analyzing each scheduler in isolation. An obvious local criterion

for correctness of a scheduler S is that S prevent priority inversions among tasks that have

requested but not released resources from S. The two-scheduler example of the previous

paragraph illustrates that this criterion by itself is not sufficient to ensure freedom from

priority inversion--both S 1 and $2 avoided such local priority inversions• We, therefore,

now investigate useful conditions to ensure that avoiding local priority inversions is suffi-

cient for avoiding all priority inversion.

Consider a system in which there is a set of independent schedulers and a single priority

assignment that is known to all. 13 Define r i s -+. r, to hold if and only if r i -?, r. and sched-
• . , ~ J t J

uler S is delaying ri s request for some resource. The local state of a scheduler S can be

characterized by a directed graph Gs = (T, Es) where Es = {(u, v)] u 4 v v u s ~ v}.

Thus, Gs includes all of the priority edges of the composite system graph but only a subset

of the waits-for edges. A local pr ior i ty inversion exists for scheduler S if and only if G s

contains a 7r-cycle.

Since the composite system graph for a system with multiple schedulers is given by G

= (T, U s Es), a system contains a priority inversion at time t if and only if U s Gs con-

tains a 7r-cycle. However, as illustrated in the two-scheduler example above, existence of

a 7r-cycle in U s Gs does not imply a 7r-cycle in Gs for some scheduler S. The following

theorem, reminiscent of one for deadlock avoidance presented in (Havender 1968), shows

that this discrepancy is actually linked to our decision to specify priority assignments us-

ing partial orders.

THEOREM 1. A system with multiple schedulers is free from priority inversion if the pri-

ority assignment is a total order and each scheduler avoids local priority inversions.

Proof. By contradiction. Assume that the system has a priority inversion characterized by

the 7r-cycle

7 ' 7 7 7 " 7 T*

in the composite system graph. For each zk ~ re in the 7r-cycle, we conclude rk 4 re
• • ~ • .

because every pair of tasks is related by the priority assignment and no scheduler allows

a local priority inversion. By the transitivity of -~, we have zj 4 ri. Thus, from r i -I zj

we obtain a contradiction. []

In many systems, the priority assignment is encoded by associating an integer priority

II(r) with each task r. If each task is assigned a unique priority, then the result is a total

order and Theorem 1 implies that avoiding local priority inversions is sufficient for avoiding

all priority inversions. However, constructing a total order from a partial order can require

introduction of fictitious priority relations--avoiding priority inversions that involve these

fictitious relations is unnecessary. Thus, we now consider the case where a unique priority

is not assigned to each task, but II does satisfy the following less restrictive conditions,

which define a partial order (as opposed to an irreflexive partial order).

A FORMALIZATION OF PRIORITY INVERSION 299

P1. II(r) < II(r ') if and only if r ~ r '

P2. II(r) = II(r) implies -~ (r -~ r ') A -~ (r ' g r).

Observe that for a given priority assignment, a mapping that satisfies P1 and P2 might

require adding some fictitious priority relations, but would require adding fewer priority

relations than if II defined a total order. The following theorem asserts that even though

II defines a partial order, avoiding local priority-inversions suffices to avoid all priority'

inversions.

THEOREM 2. If a task r is only allowed to wait for a task r ' for which II(r) < II(r ') then

the system is guaranteed to be free from all priority inversions.

Proof. By contradiction. Assume a priority inversion characterized by the r-cycle

r i -{ rj -7 . . . -7 rk -~, re -+t " ' " ~t ri

in the composite system graph. From the allocation policy, rk -7 re implies II(re) > II(rk)

for any two tasks zk and re in the r-cycle. By transitivity, we have II(ri) > II(rj). By the

hypothesis, ri ~ rj and thus by P1 we have II(ri) < II(rj), a contradiction. []

7. Discussion

A characterization of priority inversion is useful only to the extent that the formal model

on which it is based correctly captures the relevant aspects of reality. We, therefore, now

discuss the suitability of our model and the relaxation of certain of its restrictions.

7.1. Priori ty Ass ignments as Partial Orders

We have elected to formalize priority assugnments using irreflexive partial orders rather

than mappings from tasks to integers (as is implemented in many operating systems). This

selection was made because irreflexive partial orders are more expressive. As an example,

consider a system with three tasks rl, r2 and r 3 that implement query, debi t and credit

operations, respectively, against a given account in a banking database. To prevent false

overdrafts, the bank has decided that credit operations should have priority over concur-

rent debit operations. Requests to query the account, on the other hand, should be per-

formed without any preference relative to concurrent debits or credits. While it is trivial

to express this priority relationship as a partial order, it is not possible to express it using

an integer mapping xI, since it would have to satisfy xI'(rl) = xI'(r2), 9(71) = xI'(r3) and

9(73) > 9(72). Also, using an irreflexive partial order avoids fictitious priority relations,

which, in turn, avoid fictitious priority inversions.

When irreflexive partial orders are used to specify priority assignments, there are two

possible interpretations for the case where two tasks have incomparable priorities. One

300 o. BABAOGLU, K. MARZULLO AND EB. SCHNEIDER

is that these tasks do not compete for resources; the other is that these tasks compete for

resources but on an equal footing. In either case, if two tasks are incomparable then, by

definition (see Section 2.1) each will be in the peer group of the other. At first, including

in the peer group for r tasks that do not compete for resources with r might seem troub-

ling. However, if two tasks do not compete for resources, then it doesn't matter whether

one is in the peer group of the other--any analysis based on that peer group will be no

more complicated by the presence of the noncompeting task.

Using irreflexive partial orders to specify priority assignments does have drawbacks. As

shown in Section 6, using individual schedulers that ensure freedom from local priority

inversion does not by itself guarantee that a system will be flee of priority inversions.

However, Theorem 2 shows that if the priority assignment is restricted to one that could

be represented by a mapping from tasks to integers, guaranteeing freedom from local priority

inversions does guarantee freedom from all priority inversions. Thus, in systems with multi-

ple, independent schedulers, there are advantages to employing the less expressive form-

ulation of priority assignment.

7.2. Static and Global Prioriy Assignment

One limitation of our model is the assumption of a single, static priority assignment. This

rules out systems where a task's priority is a function of the system state. It also rules out

systems with multiple independent schedulers that each assign different priorities to tasks.

A time-varying or dynamic priority structure can be modeled as a sequence of priority

assignments,

-~1, 42 , " ' ' , " ~ t , ' ' "

where At is the priority assignment in effect at time t. The formal characterization of

priority inversion in Section 3 remains valid with this extension, but the protocols of Sec-

tions 4 and 5 require modifications. This is because if the priority assignment is not static,

priority inversions can be caused simply by the passage of time changing the priority assign-

ment; with a static priority assignment, a priority inversion can only occur from an

(ungranted) request operation. Avoiding priority inversions for a dynamic priority struc-

ture, therefore, requires that changes to the priority assignment be coupled with the waits-

for relation.

Our definition of priority inversion does not work for the case where different schedulers

can assign different priorities to tasks. To understand the problem, consider a system with

two resources--a processor and a communications channel--and two tasks r I and r2. Sup-

pose the priority assignment -~ e used by the processor has rl -~ e r2 and the priority assign-

ment -~ c used by the channel has r2 -~ c rl. It is possible for r 1 -'7 r2 due to an allocation

decision by the processor and for r2 -~ rl due to an allocation decision by the communi-

cations channel. We believe that this scenario should not be considered a priority inversion

because no task is being prevented from using a resource by a task that has a lower priority

for the use of that resource. However, (r2 -~ rl) A (rl ~ r2) holds, which means there

would be a priority inversion according to the definmon of Secnon 3.

A FORMALIZATION OF PRIORITY INVERSION 301

7.3. Multiple-Unit Resource Requests

Another limitation of our model is the requirement that tasks request resources sequen-

tially. As a result of this limitation, we have not had to define what constitutes a priority

inversion when a task can request multiple resources simultaneously. It is not clear what

the correct definition should be. Consider a system consisting of two processors P~ and

P2 and three tasks rl , r2 and 7" 3. Further, suppose r2 ~I rl, rl requires two processors,

and r2 and r3 each require a single processor. It seems reasonable to claim that r2 executing

on P1 while/'2 is idle constitutes a priority inversion, since r2 holds a resource required

by higher-priority task r~. What is not clear is whether r3 executing on P~ while P: is

idle should also be considered a priority inversion. On the one hand, no task holds resources

required by a higher-priority task, suggesting that this should not be considered a priority

inversion. On the other hand, if this is not considered a priority inversion then the seem-

ingly harmless act of putting idle processor P2 to work executing r2 should not be con-

sidered a priority inversion, either. Yet, r: now holds a resource required by ri, implying

that a priority inversion exists. Note that this ambiguity disappears if integer mappings

rather than partial orders are used as priorities.

7.4. Bounded Priority Inversions

This article has been concerned with avoiding priority inversions completely. However,

it is sometimes acceptable for priority inversions to occur, provided they are bounded in

duration. Suppose a task is being delayed by some lower priority task. If the duration of

this delay has a known bound, then we could view the situation as if the delay were included

in the fixed overhead associated with allocating the resource. So, by adding to the cost

of a request operation any delay due to a priority inversion, an analysis using peer groups

would remain valid (despite the priority inversion). The priority inheritance protocols in

(Sha, Rajknmar and Lehoczky 1990), for example, provide a way to bound priority inver-

sions under certain circumstances; the protocols of (Munch-Anderson and Zahle 1977) pre-

vent priority inversions of unbounded duration.

Define a D-boundedpriority inversion to be a priority inversion whose duration is not

longer than D and an unbounded priority inversion to be one whose duration cannot be

so bounded. Avoiding all but D-bounded priority inversions can be easier and less costly

than avoiding all priority inversions: 14 For example, detection can be used to eliminate all

but D-bounded priority inversions--tasEs run their course and periodically a protocol is

executed to detect and eliminate priority inversions that may have formed. 15 The frequency

with which the detector runs determines the upper bound D on the duration of priority

inversions.

In theory, it is easy to build a detector for priority inversions. The detector must con-

struct the composite system graph from the information available to schedulers. In a

distributed system with multiple independent schedulers, a distributed snapshot algorithm

(Chandy and Lamport 1985) would have to be employed for this purpose. Priority inver-

sion detection is then simply a matter of checking for r-cycles in the composite system

graph of a snapshot. Note that a priority inversion might have vanished by the time it is

3 0 2 6. BABAOGLU, K. MARZULLO AND F.B. SCHNEIDER

detected because occurrence of a 7r-cycle is not a stable property (Chandy and Lamport

1985). Such "ghost" priority inversions do not cause problems, however, because they are

not unbounded priority inversions. While theoretically feasible, the practicality of this detec-

tor is questionable since large amounts of processor time would be consumed if it were

to run at any reasonable frequency.

8. Conclusions

This article gives a formal characterization of priority inversion and gives a set of suffi-

cient conditions for its avoidance. Based on these conditions, we have been able to derive

new protocols to avoid priority inversion. We have also been able to give conditions to

avoid priority inversion in systems with multiple schedulers that do not communicate.

The existence of a theory characterizing priority inversions makes it possible to design

both general and application-specific protocols to avoid priority inversions. The theory also

permits the consequences of system design decisions to be better understood. For exam-

ple, we were surprised to find that choosing between an irreflexive partial order and an

integer-mapping representation of priority assignment can be significant. We were also

surprised that the definition of priority inversion is elusive for systems in which multiple

resource requests are possible or in which independent schedulers use different priority

assignments.

Acknowledgments

We are grateful to Hideyuki Tokuda, John Lehoczky, and Lui Sha for their encouragement

and reactions to an early draft of this article. Nancy Lynch, Rob Cook and two referees

have also provided helpful comments on this material.

Notes

1. An irreflexive partial order ~ on a set is an asymmetric, irreflexive, transitive relation on pairs of elements

from that set.

2. Most real systems have multiple schedulers, but postulating a single scheduler is not a limitation. It is always

possible to model the effect of a collection of schedulers by using a single scheduler that makes allocation

decisions using only information that would be available to the relevant scheduler. We return in Section 6

to the subject of multiple schedulers.

3. The transitive closure of a binary relation R is the smallest relation R + such that (a, b) E R + if and only

if (a, b) E R or there exist (a, c) E R and (c, b) E R +.

4. Cycles containing more than one priority edge do not seem to correspond to any interesting propertb: Cycles

consisting of only ~ i t s - fo r edges, on the other hand, model deadlock. Thus, it is possible to have a deadlock

without a priority inversion and vice versa.

5. Some authors call this the Circular Waiting condition.

6. A invariant is an assertion about the program state that is not invalidated by program execution.

7. We write A D B to denote the logical implication, A implies B.

8. For an assignment statement x : = E, (Dijkstra 1976) defines wp(x : = E, Q) to be Q~, the result of replacing

in Q every free occurrence of x by E.

A FORMALIZATION OF PRIORITY INVERSION 303

9. This definition is commonly called conflict equivalence. There are other definitions of equivalence, but deter-

mining whether a history is serializable under other definitions is computationally expensive (Bernstein, Had-

zilacos and Goodman 1987).

10. A concurrency controller can be built that explicitly maintains G, in which case rules for removing edges

must be given as well (Bernstein, Hadzilacos and Goodman 1987). Such rules, however, are not important

for the discussion in this article.

11. Such a value will exist because we have assumed that timestamps are real numbers. If timestamps are im-

plemented using finite-precision numbers, then such a value may not exist. To avoid this problem, we can

modify the code in Figure 3 to expand the range when necessary by aborting the transaction whose timestamp

is the lower bound of the interval.

12. Actually, if both operations are writes, the second write can be ignored and no conflict occurs (Thomas 1979).

13. The case where schedulers do not share a common priority assignment is discussed in Section 7.2.

14. Analyzing a scheduling protocol to determine a bound D can be a hard problem, however (Sha, Rajkumar

and Lehoczky 1990).

15. Elimination of the priority inversion requires either that resource allocations to tasks be preemptable or that

task executions be ahortable.

References

Abbott, R. and Gareia-Molina, H. 1989. Scheduling real-time transactions with disk resident data. Proc. 15th

VLDB Conference. Amsterdam, The Netherlands, pp. 385-396.

Berustein, P., Hadzilacos, V. and Goodman, N. 1987. Concurrency Control and Recovery in Database Systems.

Reading, MA: Addison-Wesley.

Bic, L. and Shaw, A.C. 1988. The Logical Design of Operating Systems. Englewood Cliffs, NJ: Prentice-Hall.

Chandy, K.M. and Lamport, L. 1985. Distributed snapshots: Determining global states of distributed systems.

ACM Transactions of Computer Systems, 3(1):63-75.

Coffman, E.G. Jr. and Denning, P.J. 1973. Operating Systems Theory. Englewood Cliffs, NJ: Prentice-Hall.

Dijkstra, E.W. 1976. A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall.

Havender, J.W. 1968. Avoiding deadlock for multitasking systems. IBM Systems Journal, 7(2):74-84.

Lampson, B.W. and Redell, D.D. 1980. Experience with processes and monitors in Mesa. Communications of

the ACM, 23(2):105-117.

Liu, C.L. and Layland, J.W. 1973. Scheduling algorithms for multiprogramming in hard real-time environment.

Journal of the ACM, 20:46-61.

Marzullo, K. 1989. Concurrency control for transactions with priority. Technical Report 89-996, Department

of Computer Science, Cornell University.

Munch-Anderson, B. and Zahle, T.U. 1977. Scheduling according to job priority with prevention of deadlock

and permanent blocking. Acta Informatica. 8:153-175.

Sha, L., Rajkumar, R. and Lehoczky, J.E 1990. Priority inheritance protocols: An approach to real-time syn-

chronization. IEEE Transactions on Computers. C-39:1175-1185.

Thomas, R.H. 1979. A majority consensus approach to concurrency control for multiple copy databases. ACM

Trans. on Database Systems. 4(2):180-209.

Zhao, W., Ramarnfitham, K. and Stankovic, J.A. 1987. Preemptive scheduling under time and resource constraints.

IEEE Transactions on Computers. C-36:949-960.

