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Abstract. Recently, several standards have emerged for ontology markup 
languages that can be used to formaHze all kinds of knowledge. However, 
there are no widely accepted standards yet that define APIs to manage 
ontological data. Processing ontological information still suffers from the 
heterogeneity imposed by the plethora of available ontology management 
systems. Moreover, ubiquitous computing environments usually comprise 
software components written in a variety of different programming languages, 
which makes it even more difficult to establish a common ontology 
management API with programming language agnostic semantics. We 
implemented an ontological Knowledge Base Server, which can expose the 
functionality of arbitrary off-the-shelf ontology management systems via a 
formally specified and well defined API. A case study was carried out in order 
to demonstrate the feasibility of our approach to use an ontological Knowledge 
Base Server as a registry for ubiquitous computing systems. 

1 Introduction 

With the recent emergence of Semantic Web technologies like RDF(S) [1], 
DAML+OIL [2], and their common Description Logics (DL) [3] based successor 
OWL [4] numerous ontologies have been developed to conceptualize a plethora of 
domains of discourse [5]. This paper introduces an approach to model a ubiquitous 
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computing domain of discourse with the Web Ontology Language OWL. This effort 
was carried out in course of the CHIL research project [6], which builds non-
intrusive services aiming to introduce computers into the loop of humans. In order to 
implement such services, a semantic middleware is being developed that fuses 
information provided by numerous perceptual components. Each perceptual 
component (e.g. image and speech recognizers, body trackers, etc.) contributes to the 
common domain of discourse. The Web Ontology Language OWL was used to 
replace previous domain models based on particular programming languages. 

The CHIL software environment comprises perceptual components written in a 
variety of different programming languages. In contrast, existing ontology 
management systems typically provide only very limited connectivity with respect to 
natively supported programming languages and remoting protocols. The CHIL 
Knowledge Base Server [7] was developed to adapt off-the-shelf ontology 
management systems to a formally specified and well defined API. The Knowledge 
Base Server remedies three major shortcomings of existing ontology management 
systems. First, a number of programming languages are natively supported providing 
programming language specific client libraries. Second, almost arbitrary remoting 
protocols can be hosted in order to greatly improve connectivity compared to the 
majority of existing APIs that can only be used locally. Third, in contrast to existing 
ontology management APIs, the Knowledge Base Server interface specification 
relies on formally specified semantics. The latter feature is a main difference to 
related work on interface specifications of ontology management APIs such as the 
DIG protocol, the FaCT system or off-the-shelf ontology management systems such 
as Jena or Protege. 

The DIG protocol [8], which is a simple API for a general Description Logics 
system, is one representative of a class of interface definitions that consist of simple 
mechanisms to tell and ask DL knowledge bases. These mechanisms follow 
foundational aspects that have been well-studied over time [9]. Many previous 
frame-oriented knowledge representation systems such as the Generic Frame 
Protocol [10] and OKBC (Open Knowledge Base Connectivity) [11] also embody 
such distinctions. The DIG specification merely defines an XML schema that has to 
be used along with HTTP as the underlying communication protocol. There is no 
specific support for a particular programming language. Also, the KRSS 
specification [12], which is an earHer approach to define a number of tell- and ask 
operations that a DL system should implement, was tightly bound to the LISP [13] 
syntax, which may not be adequate for programmers who prefer other languages. 
Note also that other DIG 1.0 implementations (such as the FaCT reasoner [14, 15]), 
require fiirther application server software. In [16] a CORBA interface to the FaCT 
system is proposed. Beyond the fact that CORBA may not be an appropriate 
remoting technology in today's service oriented- and XML based computing 
environments, the authors in [16] acknowledge that ''the CORBA IDL does not 
support the definition of the kinds of recursive data types that may be required for 
the representation of DL concepts and roles'\ This is why an XML based 
workaround was devised to pass ontological concepts and roles as single data items. 
Previous approaches to augment DL knowledge base interfaces with remoting 
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capabilities include the wines- [17] and stereo [18] configuration demonstration 
systems. 

Stanford University's Protege [19], HP Labs' Jena [20], and Karlsruhe 
University's KAON [21] are all representatives for off-the-shelf ontology 
management systems, which do not rely on rigid formal semantics for their APIs 
specification. Moreover, none of these systems supports several programming 
languages and remoting protocols in order to cope with highly heterogeneous 
distributed computing environments (such as ubiquitous/pervasive computing 
environments). 

Building on the advantages and merits of the Knowledge Base Server, this paper 
introduces a formal specification of an ontology management API for the Web 
Ontology Language OWL using a combination of the Z notation and Description 
Logics terminology. Moreover, it presents a case study that demonstrates the 
usefulness of a programming language agnostic remotable ontology management 
API in the domain of ubiquitous computing. The rest of the paper is structured as 
follows. Section 2 illustrates - for the most part by example - how the CHIL 
Knowledge Base Server API was formally specified using a combination of the Z 
notation and Description Logics terminology. A case study on the use of the CHIL 
Knowledge Base Server as a registry for a ubiquitous computing system is presented 
in Section 3. An overview of ongoing- and future work is given in Section 4, which 
includes also concluding remarks. 

2 The CHIL Knowledge Base Server API 

Based on the terminology for Description Logics as proposed in [3], formal 
specifications were devised for methods of the CHIL Knowledge Base Server 
interfaces lAskingTBox, lAskingABox, I T e l l i n g T B o x , and 
I T e l l i n g A B o x for asking and telling the ABox and TBox of an OWL DL based 
knowledge base, respectively. ̂  This formal specification was developed in order to 
make it possible to consistently adapt off-the-shelf ontology management systems. In 
particular, ambiguities had to be resolved that may be caused by informal 
specifications like ''This method returns all super classes of the given class''. In such 
cases it mostly remains unclear if the result set will contain the OWL top level 
concept h t t p : / / w w w . w 3 . o r g / 2 0 0 2 / 0 7 / o w l # T h i n g or not. 

With a more rigid specification, it would be clear if in an adapter class the top 
level concept from the result set of an adapted method had to be removed in case the 
underlying ontology management system 3delds it. In addition, a more formal 
specification is machine readable, such that result sets could be validated according 
to the specification. 

For the formal specification of the Knowledge Base Server API, we use the Z 
notation [22, 23]. Since the API is specific to Description Logics, we added to the Z 

^ Java interface definitions and documentation can be found under www.semantic-software, org 
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notation the syntax and semantics of Description Logics as proposed in [3]. 
Additionally, the semantics of the ' E'-sign, which in Z denotes a sub-bag relation, 
was over-written, such that it stands for the subsumption relation as defined by 
Description Logics. 

In subsequent paragraphs we provide four examples on how methods from the 
Knowledge Base Server interfaces ( lAskingTBox, lAskingABox, 
I T e l l i n g T B o x , and I T e l l i n g A B o x ) were formally specified. 

The method l i s t D i r e c t S u b C l a s s e s ( S t r i n g o w l C l a s s ) from the 
lAsk ingTBox interface, which returns all classes that are directly subsumed by the 
given class o w l C l a s s , was defined as follows. 

,— listDirectSubClasses 

E KnowledgeBase 
owlClass? : String 
subclasses!: PString 

subclasses! = (X.toStringO j X EowlClass? AVX,Y.Y EX =>X =Y} 

Fig. 1. Z notation of method HstDirectSubClasses 

j — listPropertyValuesOflndividual 

H KnowledgeBase 
role? : String 
individual? : String 
values!: PString 

values! = {val.toStringO | 3role?.D A3val.{individual?, val) erole?^ Aval GD' } 

Fig. 2. Z notation of method hstPropertyValuesOflndividual 

I— addClass 

A KnowledgeBase 
class? : String 
superclass? : String 

class? G KnowledgeBase 
superclass? e KnowledgeBase 
KnowledgeBase'= KnowledgeBase u{ class? EsuperClass?} 

Fig. 3. Z notation of method addClass 
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The method l i s t P r o p e r t y V a l u e s O f I n d i v i d u a l ( S t r i n g r o l e . 
S t r i n g i n d i v i d u a l ) , which is defined in the lAskingABox interface, yields 
all values of role R of individual IND. The result set returned by this method was 
defined as depicted above. 
The interface I T e l l i n g T B o x comprises methods that can be used to modify the 
set of terminological axioms, which are defined in a knowledge base. The method 
a d d C l a s s ( S t r i n g c l a s s . S t r i n g s u p e r c l a s s ) adds a class c l a s s , 
which is subsumed by class s u p e r c l a s s , to the ontology. Accordingly, the axiom 
c l a s s ^ s u p e r c l a s s where c l a s s ^ C s u p e r C l a s s ^ is added to the 
knowledge base as shown in Fig. 3. 
The method a d d P r o p e r t y V a l u e O f I n d i v i d u a l ( S t r i n g r o l e . S t r i n g 
i n d i v i d u a l . S t r i n g v a l u e ) , which is defined in the I T e l l i n g A B o x 
interface, can be used to add a role assertion as depicted in Fig. 4. 

I— addPropertyValueOflndividual 

A KnowiedgeBase 
role?: String 
individual? : String 
value? : String 

role? e KnowiedgeBase 
individual? e KnowiedgeBase 
KnowledgeBase'= KnowiedgeBase u{ role?(individual?, value?)} 

^r^ere(individual?^ value? )̂ erole?^ 

Fig. 4. Z notation of method addPropertyValueOflndividual 

3 Case Study: The Knowledge Base Server as a Registry for 
Ubiquitous Computing Systems 

The CHIL Knowledge Base Server provides directory services for ubiquitous 
context-aware computing services. Context-aware services acquire and process 
information about their surrounding environment, which allows them to execute 
service logic based not only on input explicitly provided by end users, but also based 
on information that is derived implicitly. Implicit information is usually derived 
based on a rich collection of casually accessible, often invisible sensors. Sensor 
information is processed by middleware components in order to derive elementary 
context information. Perceptive interfaces and recognition algorithms process 
audiovisual streams and extract context relating to the identity and location of people 
and objects. Accordingly, information fusion algorithms can be used to recognize 
more complex contextual states, which are often characterized as situations. 
Identification of contextual states provides a basis for triggering service logic [24]. 
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Service logic is likely to comprise a rich set of invocations to soft-computing 
services, including commands to sensors and actuating devices. Thus, non-trivial 
ubiquitous applications consist of a rich set of sensors, middleware for controlling 
sensors and actuating devices, perceptual interfaces deriving context cues from 
sensor streams, as well as information fusion components identifying complex 
contextual states. 

These hardware and middleware components are characterized by extreme 
diversity in terms of functionality, underlying technologies and vendors. Moreover, 
ubiquitous computing environments are very dynamic in the sense that sensors, 
devices, computing resources, and services are likely to dynamically join or leave 
[24]. Managing heterogeneity and dynamism is crucial to facilitate application 
development and deployment. Key to dealing with diversity and d3mamic 
environments is a directory service maintaining and providing information about all 
sorts of components. 

While several approaches to directory services middleware exist, the Knowledge 
Base Server supported by an ontology management system has clear advantages over 
conventional technologies. Technologies such as UPnP (Universal Plug n' Play), 
SLP (Service Location Protocol) and UDDI (Universal Description, Discovery and 
Integration) provide mechanisms for registering and discovering resource and 
services. However, these mechanisms are not particularly tailored to the range of 
information and components that are essential to ubiquitous computing services. For 
example, UDDI and SLP are merely service oriented, while UPnP is very much 
device oriented. Furthermore, the context-aware, human-centric, pervasive nature of 
ubiquitous computing services, asks for intelligence in answering queries. 
Intelligence lies in the ability to infer information from existing sets of meta-data 
according to current context and user intention. As an example, given the number of 
different sensors in a smart space, a particular situation model or service may need to 
acquire a reference to the best-view camera for a particular situation e.g., the camera 
facing the door for recognizing a person entering a room. Thus, the main benefit of 
such a knowledge base is its semantic power in knowledge conceptualization. 

The Knowledge Base Server has been adopted as a core component of the CHIL 
architecture [24]. This architecture provides the structuring principles for the CHIL 
services and mandates that semantic middleware components, sensors, devices, 
services and resources are registered to the Knowledge Base Server. Sensors, 
actuators, and devices register their status and capabilities to the Knowledge Base 
Server upon their bootstrapping. Perceptual components can then discover the sensor 
streams required for their operation and accordingly register themselves with the 
Knowledge Base Server. CHIL perceptual technologies comprise a rich collection of 
2D-visual components, 3D-visual perceptual components, acoustic components, 
audio-visual components, as well as output perceptual components like multimodal 
speech synthesis and targeted audio. 

Situation models, which are higher level components of the context-aware 
semantic middleware, are registered with the Knowledge Base Server as well. 
Situation models define combinations of perceptual component values towards 
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identifying complex contextual states. Prior to registering themselves they acquire 
information on perceptual components. 

Following the registration of semantic middleware components, the knowledge 
base provides 'yellow pages' services to middleware elements that need to interact 
with these components. Also, service logic implementation can leverage the 
knowledge base 'registry' to acquire binding on sensors, actuating devices and other 
resources entailed in service logic development. Thus, the Knowledge Base Server 
acts as an intelligent registry that provides information about components. 
Information includes a component's physical location in the network, its vendor, its 
functionality (i.e. the kind of ontological information it can provide), and its 
operational status. 

As already outlined the expressive power of the underlying ontology 
management system is clearly manifested in cases where there is a need to access 
information that must/can be inferred rather than being readily available. As a 
characteristic example consider the query: 'provide a list of cameras facing the door', 
which the ontology management system can answer even in cases when the camera 
properties do not explicitly contain information about its relative orientation to the 
door. 

Apart from the semantic capabilities of the CHIL Knowledge Base Server, other 
benefits of the particular implementation come into foreground in view of the 
architecture depicted in Fig. 5, in particular. 

Platform independence: Given the large number of smart rooms, technology 
providers and services in CHIL, it is vital to have several ways to access the CHIL 
Knowledge Base Server, Indeed, in the scope of CHIL services, several components 
implemented in different languages and running on different operating systems need 
to access the Knowledge Base Server. 

Independency from particular ontology management systems: Similarly to 
platform independence, the ability to use different ontology management systems 
proved to be essential since different smart room providers are likely to opt for 
different ontology management platforms. 

The architecture depicted in Fig. 5 has been implemented in one of the CHIL 
smart rooms, namely the Athens Information Technology (AIT). Early instantiations 
of this architecture relied on hard-coded communication between hardware and 
middleware components. The introduction of the Knowledge Base- Server has greatly 
facilitated integration. This is evident in the scope of the 'memory jog' 
implementation, which is a non-obtrusive service providing pertinent information 
and assistance in the scope of meetings, lectures, seminars and presentations [25]. 
The 'Memory Jog' uses the registration services of the knowledge base to 
dynamically discover and invoke audio- and vision based person tracking 
components. 
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Fig. 5. The CHIL Knowledge Base Server as part of the CHIL semantic middleware 

4 Conclusions and Future Work 

We developed and implemented a pluggable architectural model for an ontological 
knowledge base server, which can be used to adapt off-the-shelf ontology 
management systems. Based on XML Schema Definition and on a combination of 
the Z notation and formal Description Logics terminology, a programming language 
independent API was defined. The API supports forwarding of exception 
information to clients in order to provide programmers with as much information as 
possible without being restricted to one particular programming language. The well 
defined ontology management API proved to be suitable both for developing 
auxiliary Eclipse plug-ins (e.g. for ontology visualization) and for accessing the 
Knowledge Base Server from a variety of perceptual components. Our case study, 
conducted in course of the CHIL project, showed that in order to benefit from 
common type systems defined by OWL ontologies, it is absolutely crucial to 
improve the connectivity of ontology management systems with a view to: (a) 
increasing their application scope and (b) to support a variety of different 
programming languages. The Knowledge Base Server proved to be a reliable 
backend for a semantic middleware that incorporates more than fifty (50) image- and 
speech recognition based perceptual components. 

Current work on evolving the Knowledge Base Server is focused on fiirther 
developing auxiliary Eclipse plug-ins that foster the integration of ontology 
engineering tasks in the software development process. In terms of using the 
Knowledge Base Server we envision additional applications, beyond the use of the 
Knowledge Base Server as a directory service. These include using the Kjiowledge 
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Base Server for inter-agent communication through establishing appropriate 
communication ontologies, as well as exploiting the Knowledge Base Server for 
reasoning on the whole range of concepts of the CHIL ontology. This could obviate 
the need for developing higher level context abstractions (e.g., Situation Models 
outlined in Section 3). 
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