
A Formally Specified Ontology
Management API as a Registry for

Ubiquitous Computing Systems

Alexander Paar^ Jiirgen Reuter̂
John Soldatos ,̂ Kostas Stamatis ,̂ Lazaros Polymenakos^

^Institute for Program Structures and Data Organization (IPD),
Universitat Karlsruhe (TH), Am Fasanengarten 5, 76128 Karlsruhe,

Germany
alexpaar@acm.org, reuter@ipd.uka.de

http ://www. ipd.uka.de/Tichv
^Athens Information Technology

19,5 km Markopoulou Peania, Ave.
jsol@ait.edu.gr, ksta@ait.edu.gr, lcp@ait.edu.gr

http://www.ait.edu.gr

Abstract. Recently, several standards have emerged for ontology markup
languages that can be used to formaHze all kinds of knowledge. However,
there are no widely accepted standards yet that define APIs to manage
ontological data. Processing ontological information still suffers from the
heterogeneity imposed by the plethora of available ontology management
systems. Moreover, ubiquitous computing environments usually comprise
software components written in a variety of different programming languages,
which makes it even more difficult to establish a common ontology
management API with programming language agnostic semantics. We
implemented an ontological Knowledge Base Server, which can expose the
functionality of arbitrary off-the-shelf ontology management systems via a
formally specified and well defined API. A case study was carried out in order
to demonstrate the feasibility of our approach to use an ontological Knowledge
Base Server as a registry for ubiquitous computing systems.

1 Introduction

With the recent emergence of Semantic Web technologies like RDF(S) [1],
DAML+OIL [2], and their common Description Logics (DL) [3] based successor
OWL [4] numerous ontologies have been developed to conceptualize a plethora of
domains of discourse [5]. This paper introduces an approach to model a ubiquitous

Please use the following format when citing this chapter:
Paar, Alexander, Reuter, Jiirgen, Soldatos, John, Stamatis, Kostas, Polymenakos, Lazaros, 2006, in
IFIP Intemational Federation for Information Processing, Volume 204, Artificial Intelligence
Applications and Innovations, eds. Maglogiannis, I., Karpouzis, K., Bramer, M., (Boston: Springer),
pp. 137-146

138 Artificial Intelligence Applications and Innovations

computing domain of discourse with the Web Ontology Language OWL. This effort
was carried out in course of the CHIL research project [6], which builds non-
intrusive services aiming to introduce computers into the loop of humans. In order to
implement such services, a semantic middleware is being developed that fuses
information provided by numerous perceptual components. Each perceptual
component (e.g. image and speech recognizers, body trackers, etc.) contributes to the
common domain of discourse. The Web Ontology Language OWL was used to
replace previous domain models based on particular programming languages.

The CHIL software environment comprises perceptual components written in a
variety of different programming languages. In contrast, existing ontology
management systems typically provide only very limited connectivity with respect to
natively supported programming languages and remoting protocols. The CHIL
Knowledge Base Server [7] was developed to adapt off-the-shelf ontology
management systems to a formally specified and well defined API. The Knowledge
Base Server remedies three major shortcomings of existing ontology management
systems. First, a number of programming languages are natively supported providing
programming language specific client libraries. Second, almost arbitrary remoting
protocols can be hosted in order to greatly improve connectivity compared to the
majority of existing APIs that can only be used locally. Third, in contrast to existing
ontology management APIs, the Knowledge Base Server interface specification
relies on formally specified semantics. The latter feature is a main difference to
related work on interface specifications of ontology management APIs such as the
DIG protocol, the FaCT system or off-the-shelf ontology management systems such
as Jena or Protege.

The DIG protocol [8], which is a simple API for a general Description Logics
system, is one representative of a class of interface definitions that consist of simple
mechanisms to tell and ask DL knowledge bases. These mechanisms follow
foundational aspects that have been well-studied over time [9]. Many previous
frame-oriented knowledge representation systems such as the Generic Frame
Protocol [10] and OKBC (Open Knowledge Base Connectivity) [11] also embody
such distinctions. The DIG specification merely defines an XML schema that has to
be used along with HTTP as the underlying communication protocol. There is no
specific support for a particular programming language. Also, the KRSS
specification [12], which is an earHer approach to define a number of tell- and ask
operations that a DL system should implement, was tightly bound to the LISP [13]
syntax, which may not be adequate for programmers who prefer other languages.
Note also that other DIG 1.0 implementations (such as the FaCT reasoner [14, 15]),
require fiirther application server software. In [16] a CORBA interface to the FaCT
system is proposed. Beyond the fact that CORBA may not be an appropriate
remoting technology in today's service oriented- and XML based computing
environments, the authors in [16] acknowledge that ''the CORBA IDL does not
support the definition of the kinds of recursive data types that may be required for
the representation of DL concepts and roles'\ This is why an XML based
workaround was devised to pass ontological concepts and roles as single data items.
Previous approaches to augment DL knowledge base interfaces with remoting

Artificial Intelligence Applications and Innovations 139

capabilities include the wines- [17] and stereo [18] configuration demonstration
systems.

Stanford University's Protege [19], HP Labs' Jena [20], and Karlsruhe
University's KAON [21] are all representatives for off-the-shelf ontology
management systems, which do not rely on rigid formal semantics for their APIs
specification. Moreover, none of these systems supports several programming
languages and remoting protocols in order to cope with highly heterogeneous
distributed computing environments (such as ubiquitous/pervasive computing
environments).

Building on the advantages and merits of the Knowledge Base Server, this paper
introduces a formal specification of an ontology management API for the Web
Ontology Language OWL using a combination of the Z notation and Description
Logics terminology. Moreover, it presents a case study that demonstrates the
usefulness of a programming language agnostic remotable ontology management
API in the domain of ubiquitous computing. The rest of the paper is structured as
follows. Section 2 illustrates - for the most part by example - how the CHIL
Knowledge Base Server API was formally specified using a combination of the Z
notation and Description Logics terminology. A case study on the use of the CHIL
Knowledge Base Server as a registry for a ubiquitous computing system is presented
in Section 3. An overview of ongoing- and future work is given in Section 4, which
includes also concluding remarks.

2 The CHIL Knowledge Base Server API

Based on the terminology for Description Logics as proposed in [3], formal
specifications were devised for methods of the CHIL Knowledge Base Server
interfaces lAskingTBox, lAskingABox, I T e l l i n g T B o x , and
I T e l l i n g A B o x for asking and telling the ABox and TBox of an OWL DL based
knowledge base, respectively. ̂ This formal specification was developed in order to
make it possible to consistently adapt off-the-shelf ontology management systems. In
particular, ambiguities had to be resolved that may be caused by informal
specifications like ''This method returns all super classes of the given class''. In such
cases it mostly remains unclear if the result set will contain the OWL top level
concept h t t p : / / w w w . w 3 . o r g / 2 0 0 2 / 0 7 / o w l # T h i n g or not.

With a more rigid specification, it would be clear if in an adapter class the top
level concept from the result set of an adapted method had to be removed in case the
underlying ontology management system 3delds it. In addition, a more formal
specification is machine readable, such that result sets could be validated according
to the specification.

For the formal specification of the Knowledge Base Server API, we use the Z
notation [22, 23]. Since the API is specific to Description Logics, we added to the Z

^ Java interface definitions and documentation can be found under www.semantic-software, org

140 Artificial Intelligence Applications and Innovations

notation the syntax and semantics of Description Logics as proposed in [3].
Additionally, the semantics of the ' E'-sign, which in Z denotes a sub-bag relation,
was over-written, such that it stands for the subsumption relation as defined by
Description Logics.

In subsequent paragraphs we provide four examples on how methods from the
Knowledge Base Server interfaces (lAskingTBox, lAskingABox,
I T e l l i n g T B o x , and I T e l l i n g A B o x) were formally specified.

The method l i s t D i r e c t S u b C l a s s e s (S t r i n g o w l C l a s s) from the
lAsk ingTBox interface, which returns all classes that are directly subsumed by the
given class o w l C l a s s , was defined as follows.

,— listDirectSubClasses

E KnowledgeBase
owlClass? : String
subclasses!: PString

subclasses! = (X.toStringO j X EowlClass? AVX,Y.Y EX =>X =Y}

Fig. 1. Z notation of method HstDirectSubClasses

j — listPropertyValuesOflndividual

H KnowledgeBase
role? : String
individual? : String
values!: PString

values! = {val.toStringO | 3role?.D A3val.{individual?, val) erole?^ Aval GD' }

Fig. 2. Z notation of method hstPropertyValuesOflndividual

I— addClass

A KnowledgeBase
class? : String
superclass? : String

class? G KnowledgeBase
superclass? e KnowledgeBase
KnowledgeBase'= KnowledgeBase u{ class? EsuperClass?}

Fig. 3. Z notation of method addClass

Artificial Intelligence Applications and Innovations 141

The method l i s t P r o p e r t y V a l u e s O f I n d i v i d u a l (S t r i n g r o l e .
S t r i n g i n d i v i d u a l) , which is defined in the lAskingABox interface, yields
all values of role R of individual IND. The result set returned by this method was
defined as depicted above.
The interface I T e l l i n g T B o x comprises methods that can be used to modify the
set of terminological axioms, which are defined in a knowledge base. The method
a d d C l a s s (S t r i n g c l a s s . S t r i n g s u p e r c l a s s) adds a class c l a s s ,
which is subsumed by class s u p e r c l a s s , to the ontology. Accordingly, the axiom
c l a s s ^ s u p e r c l a s s where c l a s s ^ C s u p e r C l a s s ^ is added to the
knowledge base as shown in Fig. 3.
The method a d d P r o p e r t y V a l u e O f I n d i v i d u a l (S t r i n g r o l e . S t r i n g
i n d i v i d u a l . S t r i n g v a l u e) , which is defined in the I T e l l i n g A B o x
interface, can be used to add a role assertion as depicted in Fig. 4.

I— addPropertyValueOflndividual

A KnowiedgeBase
role?: String
individual? : String
value? : String

role? e KnowiedgeBase
individual? e KnowiedgeBase
KnowledgeBase'= KnowiedgeBase u{ role?(individual?, value?)}

^r^ere(individual?^ value?)̂ erole?^

Fig. 4. Z notation of method addPropertyValueOflndividual

3 Case Study: The Knowledge Base Server as a Registry for
Ubiquitous Computing Systems

The CHIL Knowledge Base Server provides directory services for ubiquitous
context-aware computing services. Context-aware services acquire and process
information about their surrounding environment, which allows them to execute
service logic based not only on input explicitly provided by end users, but also based
on information that is derived implicitly. Implicit information is usually derived
based on a rich collection of casually accessible, often invisible sensors. Sensor
information is processed by middleware components in order to derive elementary
context information. Perceptive interfaces and recognition algorithms process
audiovisual streams and extract context relating to the identity and location of people
and objects. Accordingly, information fusion algorithms can be used to recognize
more complex contextual states, which are often characterized as situations.
Identification of contextual states provides a basis for triggering service logic [24].

142 Artificial Intelligence Applications and Innovations

Service logic is likely to comprise a rich set of invocations to soft-computing
services, including commands to sensors and actuating devices. Thus, non-trivial
ubiquitous applications consist of a rich set of sensors, middleware for controlling
sensors and actuating devices, perceptual interfaces deriving context cues from
sensor streams, as well as information fusion components identifying complex
contextual states.

These hardware and middleware components are characterized by extreme
diversity in terms of functionality, underlying technologies and vendors. Moreover,
ubiquitous computing environments are very dynamic in the sense that sensors,
devices, computing resources, and services are likely to dynamically join or leave
[24]. Managing heterogeneity and dynamism is crucial to facilitate application
development and deployment. Key to dealing with diversity and d3mamic
environments is a directory service maintaining and providing information about all
sorts of components.

While several approaches to directory services middleware exist, the Knowledge
Base Server supported by an ontology management system has clear advantages over
conventional technologies. Technologies such as UPnP (Universal Plug n' Play),
SLP (Service Location Protocol) and UDDI (Universal Description, Discovery and
Integration) provide mechanisms for registering and discovering resource and
services. However, these mechanisms are not particularly tailored to the range of
information and components that are essential to ubiquitous computing services. For
example, UDDI and SLP are merely service oriented, while UPnP is very much
device oriented. Furthermore, the context-aware, human-centric, pervasive nature of
ubiquitous computing services, asks for intelligence in answering queries.
Intelligence lies in the ability to infer information from existing sets of meta-data
according to current context and user intention. As an example, given the number of
different sensors in a smart space, a particular situation model or service may need to
acquire a reference to the best-view camera for a particular situation e.g., the camera
facing the door for recognizing a person entering a room. Thus, the main benefit of
such a knowledge base is its semantic power in knowledge conceptualization.

The Knowledge Base Server has been adopted as a core component of the CHIL
architecture [24]. This architecture provides the structuring principles for the CHIL
services and mandates that semantic middleware components, sensors, devices,
services and resources are registered to the Knowledge Base Server. Sensors,
actuators, and devices register their status and capabilities to the Knowledge Base
Server upon their bootstrapping. Perceptual components can then discover the sensor
streams required for their operation and accordingly register themselves with the
Knowledge Base Server. CHIL perceptual technologies comprise a rich collection of
2D-visual components, 3D-visual perceptual components, acoustic components,
audio-visual components, as well as output perceptual components like multimodal
speech synthesis and targeted audio.

Situation models, which are higher level components of the context-aware
semantic middleware, are registered with the Knowledge Base Server as well.
Situation models define combinations of perceptual component values towards

Artificial Intelligence Applications and Innovations 143

identifying complex contextual states. Prior to registering themselves they acquire
information on perceptual components.

Following the registration of semantic middleware components, the knowledge
base provides 'yellow pages' services to middleware elements that need to interact
with these components. Also, service logic implementation can leverage the
knowledge base 'registry' to acquire binding on sensors, actuating devices and other
resources entailed in service logic development. Thus, the Knowledge Base Server
acts as an intelligent registry that provides information about components.
Information includes a component's physical location in the network, its vendor, its
functionality (i.e. the kind of ontological information it can provide), and its
operational status.

As already outlined the expressive power of the underlying ontology
management system is clearly manifested in cases where there is a need to access
information that must/can be inferred rather than being readily available. As a
characteristic example consider the query: 'provide a list of cameras facing the door',
which the ontology management system can answer even in cases when the camera
properties do not explicitly contain information about its relative orientation to the
door.

Apart from the semantic capabilities of the CHIL Knowledge Base Server, other
benefits of the particular implementation come into foreground in view of the
architecture depicted in Fig. 5, in particular.

Platform independence: Given the large number of smart rooms, technology
providers and services in CHIL, it is vital to have several ways to access the CHIL
Knowledge Base Server, Indeed, in the scope of CHIL services, several components
implemented in different languages and running on different operating systems need
to access the Knowledge Base Server.

Independency from particular ontology management systems: Similarly to
platform independence, the ability to use different ontology management systems
proved to be essential since different smart room providers are likely to opt for
different ontology management platforms.

The architecture depicted in Fig. 5 has been implemented in one of the CHIL
smart rooms, namely the Athens Information Technology (AIT). Early instantiations
of this architecture relied on hard-coded communication between hardware and
middleware components. The introduction of the Knowledge Base- Server has greatly
facilitated integration. This is evident in the scope of the 'memory jog'
implementation, which is a non-obtrusive service providing pertinent information
and assistance in the scope of meetings, lectures, seminars and presentations [25].
The 'Memory Jog' uses the registration services of the knowledge base to
dynamically discover and invoke audio- and vision based person tracking
components.

144 Artificial Intelligence Applications and Innovations

r
CHIL Services Logic

1 Si S2 Sn

"N

CH!L Agent Framework, Sen/Ice Access
Control, Personalization, Ul

CHIL
Knowledge

r

V

T
p o PC2 PCn

J
^

Sensors and
Actuators (e.g.
microphones,
cameras, targeted

Fig. 5. The CHIL Knowledge Base Server as part of the CHIL semantic middleware

4 Conclusions and Future Work

We developed and implemented a pluggable architectural model for an ontological
knowledge base server, which can be used to adapt off-the-shelf ontology
management systems. Based on XML Schema Definition and on a combination of
the Z notation and formal Description Logics terminology, a programming language
independent API was defined. The API supports forwarding of exception
information to clients in order to provide programmers with as much information as
possible without being restricted to one particular programming language. The well
defined ontology management API proved to be suitable both for developing
auxiliary Eclipse plug-ins (e.g. for ontology visualization) and for accessing the
Knowledge Base Server from a variety of perceptual components. Our case study,
conducted in course of the CHIL project, showed that in order to benefit from
common type systems defined by OWL ontologies, it is absolutely crucial to
improve the connectivity of ontology management systems with a view to: (a)
increasing their application scope and (b) to support a variety of different
programming languages. The Knowledge Base Server proved to be a reliable
backend for a semantic middleware that incorporates more than fifty (50) image- and
speech recognition based perceptual components.

Current work on evolving the Knowledge Base Server is focused on fiirther
developing auxiliary Eclipse plug-ins that foster the integration of ontology
engineering tasks in the software development process. In terms of using the
Knowledge Base Server we envision additional applications, beyond the use of the
Knowledge Base Server as a directory service. These include using the Kjiowledge

Artificial Intelligence Applications and Innovations 145

Base Server for inter-agent communication through establishing appropriate
communication ontologies, as well as exploiting the Knowledge Base Server for
reasoning on the whole range of concepts of the CHIL ontology. This could obviate
the need for developing higher level context abstractions (e.g., Situation Models
outlined in Section 3).

Acknowledgements

This work is part of the FP6 CHIL project (FP6-506909), partially funded by the
European Commission under the Information Society Technology (1ST) program.
The authors acknowledge valuable help and contributions from all partners of the
project.

References

1. W3C Recommendation: RDF Primer, http://www.w3.org/TR/rdf-primer/ (2004)
2. DARPA's Information Exploitation Office: DAML+OIL,

http://www.daml.org/2001/03/daml+oil-index.html (2001)
3. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.: The Description

Logic Handbook, Cambridge University Press (2003)
4. W3C Recommendation: OWL Web Ontology Language Overview,

http://wv^^.w3.org/TR/owl-features/ (2004)
5. DARPA's Information Exploitation Office: DAML Ontology Library,

http://www.daml.org/ontologies/ (2004)
6. Information Society Technology (1ST) program FP6-506909, Computers in the Human

Interaction Loop CHIL, http://chil.server.de/ (2004)
7. Paar, A., Reuter, J., Schaeffer, J.: A Pluggable Architectural Model and a Formally

Specified Programming Language Independent API for an Ontological Knowledge Base
Server, Australasian Ontology Workshop, Sydney, Australia (2005)

8. Bechhofer, S.:The DIG Description Logic Interface: DIG/1.0, University of Manchester,
Oxford Road, Manchester Ml3 9PLA (2002)

9. Levesque, H.J.: Foundations of a functional approach to knowledge representation.
Artificial Intelligence, 23 (1984) 155-212

10. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., and Rice, J.: The Generic Frame
Protocol 2.0, Technical Report, Artificial Intelligence Center, SRI International, Menlo
Park, CA (USA) (1997)

11. Chaudhri, V.K., Farquhar, A., Fikes, R., and Karp, P.D.: Open Knowledge Base
Connectivity 2.0, Technical Report KSL-09-06, Stanford University KSL (1998)

12. Patel-Schneider, P.F., and Swartout, B.: Description-logic knowledge representation
system specification from the KRSS group of the ARPA knowledge sharing effort,
Technical report, AI Principles Research Department, AT&T Bell Laboratories (1993)

13. Graham, P.: ANSI Common LISP, Prentice Hall (1995)
14. Horrocks, I.: The FaCT system, Proc. of the 2"̂ Int. Conf on Analytic Tableaux and

Related Methods (TABLEAUX), volume 1397 of Lecture Notes in Artificial Intelligence
(1998)307-312

146 Artificial Intelligence Applications and Innovations

15. Horrocks, L: FaCT and iFaCT, Proc. of the 1999 Description Logic Workshop (DL'99),
CEUR Electronic Workshop Proceedings (1999) 133-135

16. Bechhofer, S., Horrocks, I., Patel-Schneider, P.P., and Tessaris, S.: A proposal for a
Description Logic interface, Proc. of the 1999 Description Logic Workshop (DL'99), 33-
36, CEUR Electronic Workshop Proceedings (1999)

17. Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.P., Resnick, L.A., and Borgida, A.:
Living with CLASSIC: When and how to use KL-ONE-like language, Principles of
Semantic Networks, Morgan Kaufmann, Los Altos (1991) 401-456

18. McGuiness D.L., Resnick, L.A., and Isbell, C : Description Logic in practice: A CLASSIC
application, Proc. of the 14̂ ^ Int. Joint Conf. on Artificial IntelHgence (UCAI) (1995) 2045-
2046

19. Stanford University School of Medicine: Protege knowledge acquisition system,
http://protege.stanford.edu/ (2003)

20. HP Labs: Jena 2 - A Semantic Web Framework, http://www.hpl.hp.com/semweb/jena.htm
(2004)

21. KAON 2, Universitat Karlsruhe (TH), Germany, http://kaon2.semanticweb.org/ (2005)
22. Spivey, J.M.: The Z Notation: A Reference Manual, Prentice-Hall International Series in

Computer Science Prentice Hall; 2nd edition (1992)
23. ISO/IEC, Information Technology - Z Formal Specification Notation - Syntax, Type

System and Semantics, ISO/IEC 13568:2002 (2002)
24. Soldatos J., Pandis I., Stamatis K., Polymenakos L., Crowley J., 'A Middleware

Infrastructure for Autonomous Context-Aware Computing Services', accepted for
publication to the Computer Communications Magazine, special Issue on Emerging
Middleware for Next Generation Networks (2005).

25. Soldatos, J., Polymenakos, L., Pnevmatikakis, A., Talantzis, F., Stamatis, K., Carras, M.:
Perceptual Interfaces and Distributed Agents supporting Ubiquitous Computing Services.
In: The Proc. of the Eurescom Summit 2005 (2005) 43-50.

26. Pandis I., Soldatos J., Paar A., Reuter J., Carras M., Polymenakos L., 'An Ontology-based
Framework for Dynamic Resource Management in Ubiquitous Computing Environments',
in the Proc. of the 2nd International Conference on Embedded Software and Systems,
Northwestern Polytechnical University of Xian, P. R. China, December 16-18. (2005).

