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A FORMULA FOR ANALYTIC SEPARATION CAPACITY

By TAKAFUMI MURAI

1. Introduction.

For a compact set E in the complex plane C, H*(E®) denotes the Banach
space of bounded analytic functions in E¢=C\U{o0} —FE with supremum norm
I-|z=. The analytic capacity of E is defined by

r(E)=sup{|f'(e>)|; fEHE®), |fn==1},

where f/(c0)=lim,..z{f(o0)— f(z)} [5, p. 6]. The analytic capacity of E at
asC—E is defined by

cgla)=sup{|f'(a)l ; fEH(E®), |fllg»=1} [10, Chap III].

These set-functions play various important roles in the study of bounded
analytic functions. As a general set-function, we define the analytic separation
capacity of E at a, b= E°®, a#b by

A(E, a, by=sup{|f(b)—f(a)|; feHE"), |f|n==1} [6, 71.

We easily see that

. . O(E, a, b

IgglolbI(S(E, oo, b)=7(E), IZ}.{I;W»—#L‘E(a)
and that 0(E, a, b)>0 if and only if 7(£)>0. Hence d(E, a, b) is applicable to
study 0(E) and cg(a), and this set-function is important to investigate bounded
analytic functions which separate a and b. The purpose of this note is to show
a formula for d(E, a, b). Let i denote the totality of finite unions of mutually
disjoint analytic arcs. Here an arc is analytic, if it is a portion of an analytic
Jordan curve. For E<d, L*FE) denotes the L? space of functions on £ with
respect to the length element |dz|. For a bounded function g on E, M,
denotes the multiplier feL¥E)—gf<L*E), and Idy denotes the identity
operator. The operator Hg from L*E) to itself is defined by

HEh(z):%p. U.S e

E(—z

1. S h
=-—lim
T el Jil-21>e,lcE C——Z

1dl] (heLXE)),
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and the operator Hy is defined by Hgh=Hzh. For the computation of &E, a, b),
we may assume that Ec 4. (See Proposition 9.) Since 6(E, a, b) is conformally
invariant, we may assume that g, b#co. In this note, we shall establish

THEOREM. For E< A and a, b C—E, a#b,

[b—a]
det A,

where A, is a (3,3)-matrix dejined by

oE, a, b)y= (G23031—A21G3s),

an=1+1] LU e Magidz,
au=—| U (gl dal,

“‘SZ%SE z—la U"((-—a)l(-—b) gi')ldal,
an=| {1+ Hol (55 Bl galdz)

tru=—| HoU(—g5")- a1 dzl -1,
aza—%SEHEU o(ﬁ—ﬁga‘)~gol dzl,
an= omarmg Uoen el dz

o= %SE(Z a)l(z b)J< 1ag31)[d2[’
a“‘%SE(z a)l(z Uz a)l(-—b)g‘l)'d'z"

_ 1
=T

As application of our theorem, we shall deduce

Uo'—_([dE_A41/g0H—EMg0HE)_1 .

COROLLARY 1. For ECR and a=C—E, Ima=+0,

8E, o, D=2tan{p|im{ L]},

EXxX—a

where Im{ is the imaginary part of § and R is the real line.

COROLLARY 2. For ECR and a, b=R—E contained in a component of
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RU{eo}—E,

5E, a, b):ztanh{%‘gE%[}.

COROLLARARY 3. If E is a compact set on the unit circle T, then
O(E, 0, co)=2tan(| E|/8), where |-| is the 1-dimensional Lebesgue measure.

Pommerenke [11] shows that
1) nE=IE|/4 (ECR).

The method given in [9] shows that
@) rE)=sin(|E|/4) (ECT).

(See [2], also.) Our corollaries correspond to (1) and (2). In the section 2, we
shall give the proof of our theorem. In the section 3, we shall show a propo-
sition concerning the Hilbert transform, which plays an important role in the
computation of capacities induced from the Hilbert transform. In the section
4, we shall deduce Corollary 1 from our theorem. Our method is not short,
however, this shows a method to construct the extremum pair (f,, ¢,) (cf.
Lemmas 4 and 6) and this is applicable to compute various capacities. We shall
give another proof of Corollary 1 also; once the extremum pair (f,, ¢,) is
found, a short proof is possible. The proof of Corollaries 2 and 3 will be given
in this section. In the last section, we shall show some applications of our
method. The author expresses his thanks to Professors Suita, Shiba, Yamada
and Masumoto for their variable comments about d(E, a, b).

2. Proof of Theorem.

In this section, we give the proof of our theorem. Evidently, o(F, a, b) is
conformally invariant: a(E, a, b)=4(F, fla), f(b))if f conformally maps E° onto
Fe. If a and b belong to different components of E°, then d(E, a, b)=2. Hence
it is essential to study the case where ¢ and b are contained in a component
of E¢ We may assume that this component containg oo, Since &(E, a, b)=
O0(0FE, a, b), we assume, throughout this note, that E° is connected. Let &
denote the totality of finite unions of mutually disjoint analytic arcs and
mutually disjoint compact sets bounded by analytic Jordan curves. For E=g
and p=1, H?(E®) denotes the totality of analytic functions f in E¢ such that
|f|? is integrable on the boundary dE of E with respect to the length element
|dz|. If a component [ of E is an arc, then its boundary has two sides. Here
are some lemmas necessary for the proof; Lemmas 4 and 5 are applications of
the Ahlfors-Garabedian method [17, [4] to &(F, a, b).

LEMMA 4 (Garabedian [4], Lax [7]). Let E€9 and a, bcC—E, a#b.
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Then there exists a pair (f,, o) of functions such that f,&H>(E°), ¢, is analytic
in E—1a, b}, | 1gulldz| <o,

d(2)=—1/(z—a)+ - in a neighborhood of a,
(3) ¢2)=1/(z—b)+ ---in a neighborhood of b,
lim 2,(2)="0,

(4) |fol=1 almost everywhere (a.e.) on 0E,
®) %fogbodzgo a.e. on 0F,

where the orientation of dz 1 chosen so that E° lies to the left. Moreover, this

paiv (fy, ¢,) satisfies

©) AE, 0, D=1~ ()= Igolld2l.

Garabeidan [4] shows an analogous lemma by using the Green’s functions
and harmonic measures, and Lax [7] shows this lemma by using the Hahn-
Banach theorem. In this note, we give a sketch of a simplified proof which
shows a relation between f, and ¢, Without loss of generality, we may
assume that E is bounded by analytic Jordan curves. Let

lb—a]| . oy P

A Iplgildzl; peHAES), pl@y=p®)=1},
where go(z)=1/|(z—a)z—b)|. There exists p,=HYE®), pa)=p(b)=1 which
attains 0+(E, a, b). A variational method shows that

oE, a, b):inf{

O _
@ | yoroseldzl=0

for all pe H'(E®) satisfying p(a)=p(b)=0. Choosing a point z, in the interior
of E, we put

_ 1 (z=D)E—0) _ (2—b)E—a))_Po
1= g = A gl e,

{—=z Lz IPo|
( )_____b_:a_* (2)
PO= s ae—by )
Then (7) shows that
. (z—a)Xz—b) P ldz|
Folz)=1 b—a) o0] g, e on ok,

which yields (3)-(5). Equality (6) is immediately deduced from (3)-(5).
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LEMMA 5. Let E, a, b, g, and 0+(E, a, b) be the same as above and let

{b—a|

ox«(E, a, b):inf{ -

|, 1810 dz1; g HHES), g@)=gy=1}.

Then
HE, a, b)=0+(E, a, b)=0+x(E, a, b).

This lemma is deduced from Garabedian’s method [4]. In fact, we have
easily O(F, a, b)=0+(E, a, b)<o*+(E, a, b). To prove ox(E, a, b)=d0+(E, a, b),
we may assume that F is bounded by analytic Jordan curves. Let p, be the
function attaining &«(E, @, b). Then (3)-(5) yield that +/p, is single-valued,
where a branch is chosen so that +/p,(a)=1. Putting ¢,=+/p,, we obtain

lb—a]
2n

Consequently, 0x(E, a, b)=0xx(E, a, b).

OE, a, =" | 190161l dz| 20w4(E, a, b).

LEMMA 6. For ES Y, the pawr (fo, ¢o) satrsfying (3)-(b) s unique.

Proof. Let (fox, o) also satisfy (3)-(5). Since
1 1
o(E, a, b):f"*(b)“f"*(a):?Ez_SaEf"*gb“dz_Z?:SaEl¢°I ldz],

we have %fo*gbodz———lgbo[ ldz[:71fo¢v0dz a.e. on 0F, and hence fpx=/f, a.e. on

0E, which shows that fex=f, Let

lb—a]
2

®) do4(E, o, by=int{ [,,1¢%8ldzl; g HHED),

Ha)=eg(b)=1} (s==).

Then, by Fatou’s lemma and the Pappos median line theorem, there uniquely
exists ¢, =H*E°) which attains 0.%+(LE, a, b) (s==%). Since

B(E) a: b)-':a**(E: a) b):mln{5+**(E7 (1, b); 5-—**(E: a! b)} b
the following four cases are possible for the pair (¢, ¢o*):

(Prgox, PLgor), (P2gv%, G2g0%), (Phgor, PL00%), (P2 g%, @Lgo¥),

b—a
where go*(z)—(z—_m. In the first two cases, we have ¢o=¢*. Suppose
that (¢, ¢o+) equals either the third pair or the last pair. Since
. 1 ¢0+¢0*
oE, a, b)= 2m1 Sazzfo{ 2 }dz,
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a pair (fo, (Po+¢ex)/2) also satisfies (3)-(5). Thus V(g +do*)/(2ge+) (=¢x, say)
is single-valued and “either ¢g+=¢. or ¢+=¢_”. Hence either (¢o-+¢y*)/2=¢,
or (¢o+¢o*)/2=¢yx. Consequently, ¢y=¢,+. This completes the proof.

LEMMA 7. Let E,a, b be the same as in Lemma 4. Then O(E, a, b)=
0.x%(E, a, b), where 0.x+(E, a, b) is the quantity defined by (8).

Proof. Fixing a=sC—E, we put W.={beC —E\U{a} ; 8(E, a, b)=0.xx(E, a, b)}
(e=4). Then Lemma 6 shows that W, UW_=C—E\U{a} and W.N\W_=@.
We show that W, (s==) are closed in C—E\U{a}. Let (b,)3_, be a convergent
sequence in W, such that lim,_.b, (=b., say) belongs to C—FE\U{a}. Note that
O(E, a, b)=lim,_ .0(E, a, b,). There exists a sequence (¢,)5_, in H*E®) such
that ¢.(b,)=1 and ¢, attains d(FE, a, b,) (n=1). By an argument of a normal
family and Fatou’s lemma, there exists ¢.=H*E®), ¢o{b.)=1 such that

limin&(E, a, by)z=2=—2l

2
oo 27 S3E|¢°°l goldzl .

This shows that ¢.. attains d(E, a, b.). Thus b.=W,. In the same manner,
we see that W. is closed. This shows that either W,=C—E\U{a} or W,.=@.
If gocH*E") attains d(E, a, b), we have, by Schwarz’s inequality and &(E, a, b)
<2

o 1b—a]

|$ub) =g =75 Igilgoldz|

<&(E, a, b)w{ﬂz—nal SaEg" | dz|}1/2

—( lb—al 1/2
v {2 gz}
This shows that ¢.(a)=¢.(b) if b is sufficiently near to g, which implies W,# @.
Thus W,=C—EuUl{a}, i.e., 6(E, a, b)=0,%+(E, a, b) for all beC—E\U{a}. This
completes the proof.
For heL¥E), we write
h

Csh@y==| 1| (zC—E).
n)e {—z

For a pair (¢, h), c=C, he LM E) and a, beC—E, a+b, we write
|b—a]
T

1/2
I, Ala.o=( [, (c+Hehi™+ k1 goldz1) "
Using Lemma 7, we show

LEMMA 8. For E€ U and a, beC—E, a#b,
a(E; a, b):lnf ”(C, h)HZa,b’
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where the infimum is takenm over all pairs (¢, h), ceC, he L E) such that
¢+ Ceh(a)=c+Cgh(b)=1. Moreover, the pair (co, ho) which attains 6(E, a, b) is
unique.

Proof. For any pair (c, h), ceC, hel*E), we have c+CgheH*E®).
Conversely, for any ¢<= H?*(E*), there uniquely exists a pair (¢, #), c€C, he L¥E)
such that ¢=c+Cgh. We see that

c+CEh(Z):c+HEh(z)+z’h(z)%— a.e. on 0E

and dz=—dz’ if z z'€0FE, z#z' and the projections of z and 2z’ to E are
identical. Hence a simple calculation shows that

ﬂ%gwwgoldﬂ =ll(¢, WIIZ,».

Thus Lemma 7 yields the required equality. The unicity of the pair (c,, h,)
is also an immediate consequence of Lemma 7. This completes the proof.

We now give the proof of our theorem. Let (co, 4,) be the pair in Lemma
8. A variational method shows that

1 . -
@ | (ot Heho e Hohthofihgo] dz] =0
for all pairs (¢, h), ceC, he L* E) satisfying

(10) c+Crhla)=c+Cgh(0)=0.

Condition (10) is rewritten as

T 1 h
= ﬂSEz—aMZl’ ﬂ:gEG:mMZ]_O'

Let
1
(11) p(,:—g (ot Hpho)gol dz] .
TJE
Then (9) shows that
1 — _
0=pot-+= | _{(—Fsl(eut Hehogo)+higob i 1de|

1 o 0
= {hogo— s (cot Hohogo)— L

}h_ldzl

1

Z;SE{ho—galﬁE«co+HEho>go>

— Do

— ga’}ﬁi@go%ldz| .
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Since he L*E) is arbitrary as long as SE(T———a?(_z———b)!dZI:O’ we obtain
_ 1 o
(12) {h—gi* Ho(ert- Heholgo)— po——gi*}(z—aXe—b)gs=qs

for some constant g,. Since
—SE(Mx/goﬁEMgoHEh)ﬁgolelZSEIHEhlZgoleIZO (heL¥E)),

(IdE—Ml,goﬁEMgoHE) is invertible, i.e., U, exists. Hence (12) shows that

1 1
'.:gal)’f‘l]o Uo<?—~_;W_T)-go“) .

S
z(z—a)z—b)

(13) hOZCOUo(gElﬁEgo)+poUo<
. 1
Substituing the conditions ¢o+Crho@)=1, (11) and —ﬂ—g heldz] =0 by
(13), we obtain
Co Q11 Q12 Qs | Co 1
14y Ay po|=]| Gors Gsy @os | Pol=| 0 |,
0

qo A3y, Qazy Q33 N G0

where A, is the matrix in the assertion of our theorem. The matrix A4, is
invertible. In fact, if “(co*, po*, go*) satisfies (14), we define hy* by (13) with
respect to {(cok, Dok, gox). Then (co*, ho) satisfies (9) for all pairs (¢, h), ceC,
he LA E) satisfying (10), which yields that
Weortc, hox+RG. s=11(cox, Re®)II%, o+ li(c, WL, »
for all pairs (¢, h) satisfying (10). This shows that (c.*, he*) attains 8(E, a, b).
Thus the unicity gives that (co*, hox)=(co, hy). We have
0=(Idg— M. ¢ JHe M Hg)(ho—ho*)

1
z—a

:(Co_00*)g0_1HEg0+(Po—po*)

—1 _ 1 —1
g +(qo QO*)mgo

1 - 1 —1
=(po—Po*) P go‘+(qo—qo*)mgo ,

and hence (po—pox)(z—b)+(go—go*¥)=0 on E, which shows that p,=p* and
go=go*. Thus *(co*, po*, go¥)="(cqs, Po, o). Since the solution of (14) is unique.
A, is invertible.

Since a pair (¢,—1, h,) satisfies (10), we have

(15) 3(E, & =Nco, hls=— 21| (et Hohogol dz1 = 1b—al pu.
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Hence Cramer’s formula yields that

ai, 1, ap
b—a b—a
o(E, a, b)zlb_a!po:‘ﬁ @z, 0, @z :Ldégf(azsam_azlaw);
a1, 0, Gy

Thus the required equality holds. This completes the proof.
Last, we note

PROPOSITION 9. For a compact set E in C and a, b&eC—FE, a+b, there exists
a sequence (E,)5_, in A such that

o(E, a, b)y=limd(E,, a, b).
n-0

Proof. There exists a decreasing sequence (F,,)a-, of compact sets bounded
by mutually disjoint analytic Jordan curves such that E=N\%.1Fn. Then an
argument on a normal family shows that d(E, a, b)=lim,,_..0(Fn, @, b). Hence,
from the beginning, we may assume that F is bounded by mutually disjoint
analytic Jordan curves. We express 0E as a union of Jordan curves: 0E=
\Jm,l,. Choosing a point z, on each [, (1<k<m), we define

Ea= U {z€l; 12—z, 21/n} (n2D).

Since (K,)3-: is increasing and E,CFE, we see that lim,..0(F,, a, b) (=0d,, say)
exists and 6,<0(E, a, b). There exists ¢, HYES), ¢(a)=¢.(b)=1 such that

[b—a]

&En a, == "1 gl dzl.

Let 2,=0EN0E, (n=1). Since

D

=¢n(a)— 7y (92Q)—u(a)}dl+

2mi

271 SaE {— SaEnC—iij"dC
1 1

=l 2mi SaEn {—a Pndlt— o1 SBE (—z 5 Pndl (2E ),

we have

b—
A2l (gattgiaz <G,

for some constant C, independent of n, and hence

[b—al

| 8l dzl S0HC (n2D),
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i.e., (¢n)n-1 is bounded in the L® space of functions on 0F with respect to
goldzl. Let ¢, be a weak star cluster point of (¢,)5-,. Then ¢.=H*E®) and
dla)=¢(b)=1. For any compact set K in 0E—\{z,;1<k<m}, we have

b—- b . .
| z,ral SK1¢n|2g0|dz|§50 as long as KCAE,. Letting n tend to infinity, we

obtain Lb;—alSKlsli)e[z,gfo[dzlgéo. Since K is arbitrary, this inequality holds
with K replaced by 0E. Thus &FE, a, b)<d,. This completes the proof.

3. A proposition for Hy (ECR).

Throughout this section, we assume that Ee 4, ECR. In this case, Hy is
called the Hilbert transform on L*FE). Let X=L*E) denote the constant
function taking only 1. We inductively define a sequence (H%)3-, of operators
from L¥E) to itself by Hi=Idz, Hi=HzH%* (n=1). Note that the norm of
H? is less than or equal to 1 (n=0). For t<R, |t|<]1 and heL¥E), we define

a function h,& L E) by

We write
X-_feXp( HEX> (j==1).

The following proposition plays an important role in the computation of
capacities induced from the Hilbert transform.

PROPOSITION 10. Let Ty be the inverse operator of Idg—H%. Then, for any
he L(E),

(16) Tsh=-gh+3 (LHsR )X Hs(AL)
(A7) HyTh=g (0 Ho W) 1R}

Here are two lemmas necessary for the proof.

LEmva 11 ([9]). xtzwlr?exp{<g T e} (<),

LEMMA 12. h;= l—il— ThH He(hX_) (he LX(E), [t <D).

Proof. Note a formula

(18) Hzp(uHzv+Hgu-v)=Hgu-Hgv—uv (u, v L¥E)).
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In fact, Hy(uHgv+ Hgu-v)+i(uHgv+ Hgu-v) and (Hgu-tiu) Hgv+iv) have analytic
extensions to the upper half plane, and hence g= Hy(uHzv+ Hzu-v)— (Hgu- Hgv—uv)
has an analytic extension to the upper half plane. Analogously, g has an
analytic extension to the lower half plane. Thus g=0.

Let h,x denote the function in the right-hand side of the required equality.
We have (Idg—tHg)h,=h and

(19)  (dg—tHp)h=———(h—tHgh)

1+ :

+ X Heg(hX ) —t* Hg (X He(hX 1)} .

Lemma 11 shows that X, X_.=1/(1+41?). By (18) and X,—tHgX,=X, we have
(20) =t Hg{X,Hg(hX_ )} =t*Hg(Hyl: WX _o)—t*Hge He(hX_ )+t hX

2

=tHp{(U:— XK} =t X —OH(hX - )+ =5 1+t2

tz
1+ 2 l—l—z‘2
Substituting —i*Hz{X,Hg(hX_;)} by the last quantity in (20), we have, from (19),

(Idg—tHg)hx=h. Thus (Idg—tHg)Xh—h*)=0. Since the norm of tHy is less
than 1, Idg—tHpg is invertible, and hence h,=h,*. This completes the proof.

— Hgh— L Hg(RX )+ ——f

We now give the proof of Proposition 10. Since the adjoint operator of
Hy equals —Hy, Ty exists. Let Ty, be the inverse operator of Idpz—i*H%
(0<t<1). Then

1
TE,:h—_—'Z—(/’lz—l-/l—z)-

Lemma 12 shows that

1
1412 h
Letting ¢ tend to 1, we obtain (16). Lemma 12 shows that

1
Tg, h= —}-?{tX;HE(hX_t)—tX_,HE(hXt)} O<i<1).
1 1
HETE_5}7.:"2_(/’1:_h_t)z-2_{tX:HE(hx_p)'f'tx_gHE(hX;)} .
Letting ¢ tend to 1, we obtain (17). This completes the proof.
In this position, we show two lemmas used in the proof of our corollaries.

LEMMA 13.
21 Hegly=;X,~X) (==x1),
(22) Cel(2)=j{Px(zy—1} (==1, z&C—E),
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where @E(z)zexp{%SE xdjz }

Proof. Since X,—tHgli=Y (|t|<1), we have (21). Since cos%:sin%z
1/4/2, we have
lig)l{@E(xiis%—l}:Xl(x)—liz'xl(x)

:HEXI(x)iz'Xl(X)zli{IolCExl(xiz'e) a.e. on E.
Since both @g(2)—1 and €gX,(z) vanish at infinity, we have @ x2)—1=CxX:\(2).
In the same manner, we see that (22) holds for j=—1. This completes the

proof.

LEMMA 14. We write
1 1
X“z__(xl_x—l): X+:—(xl+x—1).
2 2
For deR, d+0, we put

=S O+ Dsldi) ™), Bam{Du(di)— Do),
__l_g dx
Ud—-ﬂ E__—‘—xz—l—dz .
Then
(23) CpX (di)=A.—1,
(24) CaX.(di)=Bs,

(25) 1S L xax=t(4,—Ay,

£ o+ d 2d;
1
(26) SE x%4d? g Xrda= 2d7 247 Be d)
@7 lg HoX.dx=—riBs—Bo)—0
T )E z+d2 EA-~ 2di d d ds
1 1 _
8 = — g HeXedx=g (A=),

Proof. By (22), we have (23) and (24). Since

1 11 1 N
Frd —m{x—di_x—}—di}’ Pu(—di)=0x(d?),

(23) and (24) yield (25) and (26), respectively. By (21), we have HzX.=X,—
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and HzX,=X_. Thus (25) and (26) yield (28) and (27), respectively. This
completes the proof.

4. Proof of corollaries.

We now give the proof of Corollary 1. Qur method shows a method of
the construction of (fy, ¢). Let E be a compact set on R and let ac C—E,
Ima+#0. Translating and rotating the coordinate axes if necessary, we may
assume that a is purely imaginary and Ima>0. Put a=di. Then the required
equality is rewritten as

99) 8(E, di, —di)=2tanf,, Oy=—

d
4SE Trar &

There exists a decreasing sequence (E,)y.; of compact sets on R such that
E.e 4 (n=z1), E=N5-1F,. Then we have d(E, di, —di)=lim,_.0(E,, di, —d7).
Hence it is sufficient to prove (29) for E,. From the beginning, we assume

that Ee=. 4. For the proof of (29), it is better to start from (12) than to use
the formula in Theorem directly. Since Hy=Hg, (12) is rewritten as

(30 ho— etk Hs(~2 I e i) g,.
Since
Hs( c+fjf =)= 21dz (-2 _]ifzho )“‘)_HE(M“:I@M )t
:mp. U.SE{—Z‘;IT—%%}(CO—}—HE}LO)M
=it iy Haleot Hohn)x)—Coeu HehoXdi)
g UHstert Hsho)o)—Calort Hshe) ~di)
= Hert Hoho(3)— o= Calet Hhi)di)
gy Gt HahX—di),
we have

ho— Hihy=coH gl Caleot Hehodi)e+ i)

1 . .
+H{ otz Calert HehoX—did|(x—di)-+4u,
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and hence

(31) ho—:CoTEHEx_T'oTE( . ‘i‘dl)“‘i‘(po‘*‘So)TE(' ‘“dl)+QoTEx N

where

1 . 1 .
70:’—2‘ECE<00+HEho)(dZ)y SOZWCE(CO+HEhO)(_dz)~

Since HF™ is an anti-symmetric operator, we have SEH 2% dx=0 (n=0). Hence

1 1
(32) ;SExldx:;SEx_ldx (=t,, say).

By (16), (21) and (32), we have

Todiy= 5 L H( i)~ (- di)

_ x-+di 1 t—x+x+di
-2 +27c {le.v.SE t—x Xt
t—x+x+di., .

—X_lp. U.SETXIdZ}

0L ok G DL )~ e+ e Hg )

_x+di

L S Otk o i)+ D)~ ol (- i) D))

—X- X
=1, * 2% L (x+di) X‘; L=t X+ (x+di) X, .
Analogously,
Te(-—dd)=t, X_+(x—di)X,.
Note that

1 1 1 1
porot oo g et oM ——g | ot Hahds

1 1 B
+ngm(Co+HEho)dx-—0 .

Thus (31) yields that
(33)  ho=coX-—rolto X +(x+di) Xi} +(Potso){te XoA-(x—di) X} +go X
={cotto(Po—ro+50)} Xo 4 {go—dipot7o+s0)t Xy +(Po——ro+S0)x/ X
=co X_+{qo—di(pot+ret+s)} Xo (=coX_Fct X, say).



ANALYTIC SEPAPATION CAPACITY 279

We determine ¢, and ¢;. By (23) and (24), the condition ¢, +Cghy(di)=1 yields
that

(34) cot(Ae—1)co+Bacy=1.

Condition ¢o+Czho{—di)=1 implies SEho/(xZ—[—dz)dx:O, and hence, by (25) and (26),
(35) L(A —A4,) +—1—(B ~By)ej=0
2di T AT g BeT Ba) =0
Solving (34) and (35), we obtain

Bd_Bd , f_lzz-‘;ld

@0 == T A.Bs  © AiBe—AdBs

Recall (11) and (15). By (27), (28) and (36), we obtain

. 2 d
8E, di, —dz):deozTSE(coJrHEho)—xz:xd—z
B,—B A, —A
=2d<coad+{ dZdz d—ad}cﬁ— dZdz' dcg)

_ 1 ~(Be= B+ (A=A
g AaBa—A4Bg )

Since
(Ag—Aa)—(Ba—Ba)=(A%— B2)+(A%— B%)—2(| Aa|"— | Bal®)
=2{1—Re Q(di)@ x(—di)"} =2(1 —cos 28 ;)=4sin%§
AyBy—A¢Ba=—ilm @p(di)Pp(—di) '=—isin20,=—2isin f4cos b4,
we have (29). This completes the proof.

From now we determine (fo, ¢). A simple calculation yields that

B o= e =t Cahi2)

_di {rd'@e@)+raP(z) '}
T 2co0s%, 224+ d? ’

where r,=|®gdi)] and 0d=i—5Ed/(x2+d2)dx. Condition (5) shows that

—l_—f0¢0d2=q§o!dzl a.e. on 0F. Hence we have
i

P D)= filoo )= 5 fupoe
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1 1 .
:_Q;“SGE {—=z doldel,

which shows that

[ 1 1
fol2)= ¢0(2)12ﬂ;§ t—z doldC| uo}

1 .
for some constant u,. We can compute _Z—S Using (4), we
T Jo

. o8 {—
determine u,. Then

ra' Pe(z)—raPp(z)!

13 @u(2)+raPp(z) -~

Once (fo, ¢o) is found, the proof of Corollary 1 is simplified. In fact, we
have

(38) fola)=

[ fo(D)—fola)| <O(E, b, a)= suplf(b) fa)|

= e 2111' Saz{ zib N z—{a }fdz‘—s}\us)l 2 S fgbodz] (by (3)
S Jop 011821 =g | Vil 2 (by (4)
= a7 bl 45 = oz = D10 (by (5))

which gives (6). Computing fo(di)—f«(—dz), we obtain the required equality.
Next we prove Corollary 2. Without loss of generality, we may assume that
EceJ and b>a. We put

72 @u(2)— 1 Pu(2)”}
73 @p(2)+ryPp(z)™

(2)= b—a {ra' @u(2)-+rPp(z)'}?
P& = osht0, (a—bYa—a)

(so=sign{ryrg'—1}),

folz)=¢0

where

1 d
oxe=exp{| b, r=10K0)] (=0, b),
E

0 _ig (b—a)dx
ST 4 e (x—b)x—a)
Note that ry#7,. We easily see that (f,, ¢,) satisfies (3)~(5). Thus (6) shows
that
{r;‘rb-—l _ 1~—rbr;‘}
raire 1l 1+4rpgt

HE, a, b)=[fub)—fa)=¢,
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_ ' 7,117/2?,;1/2__7,;1/27,}1/2
P P R TV

=2 tanh{—l— 'S

: (b—a)dx H’

_ 0a,b
—2‘tanh 2 5 (—bx—a)

This completes the proof of Corollary 2.

Remark 15. In the case where Ima# —Imb, the computation of d(FE, a, b)
is complicated. An estimate from below is given by

: 27 (B 5(5)Ps(a) — D(b) Ds(a))
E) ’ = ) > a— - .
AL, & D =max | B 0sby T D@ F Bsayy | ECR @ EC—E)

To see this, we take

r@p(z)—Pg(2)™
7@ p(2) + D (2)™

Then f,eH*(E®) and |f,||g==<1. Hence
o(E, a, b)‘érr;gag(\fr(b%fr(a)l,

fa)= (rz0).

which yields the required inequality.

We now deduce Corollary 3 from Corollary 1. Let ECT. We neglect
the case where E=T. (Evidently, &(T, 0, o)=2=2tan (| T|/4).) Hence, rotat-
ing the coordinate axes if necessary, we may assume that E2—1. Let g(z)=
(z—1)

211)’ then g(0)=—1/2 and g(w)=:/2. We have, with F={g(2); z=E},

o ~i/2, F)=a¥0, B)=|EL,

where @(—i/2, F) is the harmonic measure at —i/2 of F with respect to the
lower half plane and w*(0, E) is the harmonic measure at 0 of £ with respect
to the unit disk. Thus Corollary 1 and the conformal invariance show that

8(E, 0, o0)=8(F, —i/2, i/2)=2 tan &g”_i_/(f@ 41}

=2tan{£w(—i/2, F)}:Z tan (1 E|/8).
4
This completes the proof of Corollary 3.

5. Application.

In this section, we show some applications of our method. The Ahlfors-
Garabedian method yields that, for ECR and z&C—E,
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r(E)-mf{ [ 11+ Hahl o 1019dx; he LB},

{2 (12

For a=C, a compact set £ on R and a measure v supported in C—E, we de-
fine a capacity by

2+|h|2)dx; heLz(E)}.

HE, a, v)—mf{ S(la+€y+HEh] +1AI%dx; htLZ(E)}

where Cy(x)= (-2 du(z). Notice that (E)=1(E, 1, 0) and cs(a)=1(E, 0, xd.),
where 0, is the Dirac measure supported at z. We show

PROPOSITION 16.

%SE dez

i

- 2 .
1(E, a,v)="lal 1E|—|—Re~”—gsmh{ }dv(z)

where the integrand in the last term means —All—SE(x—z)"de if z=C.

Proof. There exists k,=L%FE) which attains 7(E, a, v). A variational
method shows that, for any he L¥E),

1 - _
—S {(a+Cy-+ Hyko)Heh +kofi} dx=0
TJE
and hence ([dg— Hg)ko=Hg(a+Cv), i.e., ko=TgHgla+Cv). Thus

r(E, a, V):%SE(Q—I*CU‘{—HEko)m)dx
+%SE{ (a-+Cv+Hgko) Hpko+koko} dx
= %S (Idg+HyTeHyYa+Cy)-(@a+Co)dx
&
- %SETE(a—FCu)- (@Fevydx

:‘ﬂl S Toldx +Re{ g To(Co)da}+ ISETEwy)-de

=Li+L+/:, say.
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(Here Rel is the real part of {.) Since %SETEde:|EI/4: we have Ji=
|la|2E{/4 (cf. [9]). Equality (16) and Lemma 13 show that, for z&C—E,

@9 To(— )(x>—2<x Z)+ = it@He( 2 Yo
1 LX)
T 2Ax—2z) 7 oy HeX-i(x0)—=Cpl (=)}
_ 1 1 X() B .
i) T2 ,E -0~ D sl2)}
_Px(z)" Xu(x) gg@ Aoi(x)
2 x—z 2 x—z '

Using (22) and (39), we have, with K=(the support of v),

(40) ]z—Re{zaS (S TE( o))z}

:Re{FZ_:,l%SK(Z)E(Z)“]CEXj(z)du(Z)}

=Re{-2{ (Ds(0)~ 042 au(a)}
T K

2a . 1 dx
—Re{7SKSlnh<ZSE x——z>dv(2)} ’
Equalities (16), (22) and (39) show that, for z, L=C—E, z=(,

o dirkLpocte

2x)
271' —+1 Pxle)” SE(X——Z)(X——C_) dx

1 -
20— C)JTIQ)E(Z) HCEX(2)—Crl (O}

1 J I j
22(2 C) ]2+1¢E'(2) 7{D p(2) @E(C)}

( C) {@E(Z)Q)E(C) =0 x(2) DO}

_L 1 (z—O)dx
z—fsmh{ SE(JC 2N x— C)}
Since the first quantity in (41) is continuous in C—F as a function of z, we
have
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%SETE< iz>(x) xiz dx:%SE (xd—xz)2 ’
Thus
@) J= il AL () dfaeme

:ig SKZ—IZS h{lg(—zéli}d< D).

T E(x—z)x—{)

Consequently, by Ji=1a|?| E|/4, (40) and (42), we obtain the required equality.
This completes the proof.

For EcgF, Kz, £) denotes the Szegd kernmel function with respect to
HYE®), i.e.,

@ ={ Kz Orldt] (e HAEY).

The Szego6 kernel function is closely related to 7(E) and c¢z(z). We here note
the following proposition (cf. [2]).

PRroOPOSITION 17. Let ECR. Then
Ki(z, H)=——+ lEI cosh {15 xd—xz} cosh {%SE xd—xi}

St nh{ l S (x(z zf&dxg}

1
+‘2n<z &)

Proof. We begin by showing that

(43)  Kilz, 2)= | fe(2)]+— cE(Z) (zeC—E),

2z T(E)
where ¢z is the Garabedian function with respect to 7(E), i.e., the function in
HY(E¢) satisfying ¢g(o0)=1 and T(E)zél?gaE|¢E[ ldz] [5, p. 191.

It is known the +/¢r (=¢z, say) is single-valued and

1
271(E)

For any z& C—E, there exists a pair (f,, ¢,) of functions such that
feHE", (-—2)¢p,cHNE"),
(45) { .
$(0)=0, 1&1 —~2)¢.0)=1,

(44) ¢E(2):27TT(E)K(Z: g): KE(OOJ _0—6): [5: p. 22] .

46) If.1=1, %fz@dC:@zldCl a.e. on 0F ([3, Chap. VII]).
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Then we have

47 cxa)=f(2).
For any feH* E®), we have, by (45) and (46),

SaEXE(Z, Of1dCi=f()=f(= ) Smidon C z

=f<oo>+2imgw¢z{f<c>—f<oo>}dc
{1 gty o T
=, {eRstoo, O+ - Tgi}r10C1,

where ¢,=1— 215 6.dC. Hence

48)  Kalz, D=c,Kg(0 — f (ol X(4

Letting { tend to infinity in (48), we have, by (44),

Cs

KE(‘Z7 §>:CZKE(OO; 65):

2zy(E)’
Letting { tend to z in (48), we have, by (47),
Rilz, D=c.Rs(o0, 2145 T12)
T
_ — 1
=2x7(E)| Kg(z, )| + CE( )= oy T(E) |du(z )|+
Thus (43) holds. It is known that
W) pr=cosnl3| 1 (o
Let
F(z, O)=Kg(z, {)— o T(E)¢E(Z)¢E(C)
~i§ T, (—)(x) ! & (G rec-p)
rle E\.—z x—~C ’ )

Since

e=(2)= %SETE<T~_1——Z>(’C) x—l—z« dx

cE(z) .

285
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(43) shows that F(z, 2)=0 (z&C—E), which yields F(z, {)=0 (z, {(cC—E), by
the theorem of identity. Thus (41), (49) and y(E)=|E|/4 yield the required
equality. This completes the proof.

The following extremum problem is the special case of the Pick-Nevanlinna
interpolation problem:

7(E, 2)=sup{|f(2)]; fEHE"), [flua==1, f0)=0} (2&C—E).

Evidently, |fz(2)| <5(E, z) and the equality does not hold in general, where fz
is the Ahlfors function with respect to 7(E), i.e., fe€H(E®), | fzlg==<1, 7(E)=
fi(eo) [5, p. 18]. If ECR, then the Ahlfors-Garabedian method shows that

WE, D=inf {2 (14 Hehir - 1h17) 2

T |x—2z|

; heLZ(E)}.

Thus our method enable us to compute 3(F, 2) in the case of ECR. ZA calcula-
tion shows that

1
G0 (B, )= ks
with the solution ky=L*(E) of

G Udg—MHs M Hebv=r, ()=, Mo=Ms,).

[x—

In fact, by a variational method, we obtain
WE, 9=~ (1+Hykowrods
TJE

with the solution kgx of (M,—HeM,Hp)kyt=Hgr,. Let kby=(1-+Hgko)r,. Then
k, satisfies (51), which gives (50). If z= R satisfies z<min{x; x=E}, then (50)
and (51) yield that

. @ p(z2)—Dglz)!
T Oy2)+Dx(z)!

The extremum pair with respect to n(E, z) is given by

(Pe—P)/(Pe+P5Y), (De+ D5/ {4C—~2)}).

E, z) =fx(2).

Our method works for more general extremum problems. As an example,
we study

JE, A, W)=sup{| Swiflan)|; f HAE), lfla==1},

where ECC, A={a,}}-1CE° (ar+#a,, k#j) and W={w,}.,CC. In the special
case, we can compute 0(E, 4, W). We show
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PROPOSITION 18. For ECR and d>0, let (fo, ¢o) be the pair defined by (37)
and (38). Suppose that A={a;}i*,CC—F and W={w,}i*, (n=2) satisfy a,=a
=di, @y,-1=8,, 2<7<n), ZZwr=0 and w, equals the residue of ¢. at a,
1<k<2n, where

. 2n a,—as
$a(z)= IT =—a, do(2) .
Then
AE, 4, W)=| S wafoan)|.
Proof. Let

flR=e a2, Oi=arg Tl(@—ay).
Then the pair (f4, ¢4) satisfies

!fAIzly _:l[—fASbAdZ:lgbAHdZ[ a.e. on aE

Since
Swi=0, limzg,(=0, lim(z—a)pu=ws (1=k=2n),
= z=>00 z—ay
we have
2n 2n
Swifien)|=| Swifaa)
k=1 k=1
<&(E, A, W)= su LS $ W rq,
= ’ ’ —|f11:3127f OEk=12—y

1
<5, 19l 12]

|S3E¢Afd2

— sup
‘1f|£ 2z

1 1
= 1eafalidel =5\ gafad

2n 7 JoE

::é wefalan)= 1 :é wefolar)

2

which gives the required equality. This completes the proof.
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