A FORMULA FOR THE BETTI NUMBERS OF COMPACT LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS

YOZÔ MATSUSHIMA

1. Let X be a simply connected symmetric Riemannian manifold and let G be a connected Lie group acting transitively and almost effectively on X as a group of isometries. We denote by K the isotropy group of G at a point o of X. If G is compact, it is a well-known theorem of Cartan-Hodge that a differential p-form is harmonic if and only if it is G-invariant. It follows from this theorem that the p-th Betti number of X is equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the vector space of p-covectors at the point o.

Let us suppose now that G is a connected semi-simple Lie group with finite center all of whose simple components are non-compact. Let Γ be a discrete subgroup of G such that the quotient $\Gamma \backslash G$ is compact. We denote by $h^p(X, \Gamma)$ the vector space of all harmonic p-forms on X which are invariant by Γ . We know that the dimension of the space $h^p(X, \Gamma)$ is finite. The results obtained in the previous papers [4] shows that in several cases the dimension of $h^p(X, \Gamma)$ is also equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the space of p-covectors at the point o, if the number $p/\dim X$ is small.

The purpose of the present paper is to prove a formula which relates the dimension of the space $h^p(X, \Gamma)$ with the decomposition of the unitary representation of G in the Hilbert space $L^2(\Gamma \backslash G)$ (see §2). This formula corresponds in a sense to the theorem of Cartan-Hodge and, in fact, if G is compact and Γ reduces to the identity, our formula is equivalent to Cartan-Hodge Theorem.

We shall also see as an example that, if X is the 3-dimensional hyperbolic space and if G is $SL(2, \mathbb{C})$ or the proper Lorentz group, the dimension of $h^1(X, \Gamma)$ is equal to the multiplicity in $L^2(\Gamma \setminus G)$ of the irreducible unitary representation $U_{2,0}$ of the principal series (see §5).

2. We retain the notations introduced in §1 so that G will denote a connected semi-simple Lie group with finite center all of whose simple components are non-compact. The group K is then a maximal compact subgroup of G. Let $\mathfrak g$ be the Lie algebra of left-invariant vector fields on G, and $\mathfrak t$ the subalgebra of $\mathfrak g$ corresponding to K. We denote by $\varphi(X, Y)$ $(X, Y \in \mathfrak g)$ the Killing form of the semi-simple Lie algebra $\mathfrak g$ and by $\mathfrak m$ the orthogonal complement of $\mathfrak t$ in $\mathfrak g$ with respect to φ . We

know that

$$\mathfrak{g} = \mathfrak{m} + \mathfrak{k}, \qquad \mathfrak{m} \cap \mathfrak{k} = (0),$$
 $[\mathfrak{m}, \mathfrak{m}] = \mathfrak{k}, \qquad [\mathfrak{k}, \mathfrak{m}] = \mathfrak{m}.$

Moreover, $\varphi(X, X)$ is positive if $X \in \mathfrak{m}$, $X \neq 0$, and negative if $X \in \mathfrak{t}$, $X \neq 0$. Let $\{X_i\}_{i=1,\dots,r}$ and $\{X_a\}_{a=r+1,\dots,n}$ be bases of \mathfrak{m} and \mathfrak{t} respectively such that

$$\varphi(X_i, X_j) = \delta_{ij} \qquad (1 \le i, j \le r),$$

$$\varphi(X_a, X_b) = -\delta_{ab} \qquad (r+1 \le a, b \le n).$$

In the following we shall make the convention that the indices i, j, \ldots will range from 1 to r, while the indices a, b, \ldots from r+1 to n.

A vector field $X \in \mathfrak{g}$ is left invariant by G and hence by Γ so that X is projectable onto $\Gamma \backslash G$. In the following we consider the elements X of \mathfrak{g} as vector fields on $\Gamma \backslash G$. We denote by C the differential operator on $\Gamma \backslash G$ defined by

$$C = \sum_{i=1}^{r} X_i^2 - \sum_{a=r+1}^{n} X_a^2.$$

The operator C is called the Casimir operator of G. We may consider C as an element of the universal enveloping algebra $E(\mathfrak{g})$ of \mathfrak{g} . It is known that C is in the center of $E(\mathfrak{g})$.

Now let T be a unitary representation of G in a Hilbert space H. A vector $\varphi \in H$ is called a regular vector if the function $s \to T(s)\varphi$ is of class C^{∞} . We denote by W the subspace of all regular vectors of H. It is known that W is dense in H. Let $X \in \mathfrak{g}$ and let $\exp tX$ be the 1-parameter subgroup of G corresponding to G. For G is a self-adjoint operator with domain G. We define the self-adjoint operator G of G with domain G by putting

$$C_T = \sum_{i=1}^r T(X_i)^2 - \sum_{a=r+1}^n T(X_a)^2,$$

and call it the Casimir operator of the unitary representation T of G. If T is an irreducible unitary representation, there exists a real number λ_T such that $C_{T\varphi} = \lambda_{T\varphi}$ for all $\varphi \in W$.

In the following we shall denote by D_0 the set of irreducible unitary representations T of G such that $\lambda_T = 0$.

We denote by U the unitary representation of G in the Hilbert space $L^2(\Gamma \backslash G)$. The vector space $C^{\infty}(\Gamma \backslash G)$ of all complex valued C^{∞} -functions on $\Gamma \backslash G$ is a subspace of the space of regular vectors of $L_2(\Gamma \backslash G)$, and we have $Cf = -C_U f$ for all $f \in C^{\infty}(\Gamma \backslash G)$. The representation U decomposes into sum of a countable number of irreducible unitary representations in which each irreducible representation enters with a finite multiplicity [1]. We denote by N(T) the multiplicity in U of an irreducible unitary representation T of G.

Now let T be an irreducible unitary representation of G, and T_K the restriction of T onto K. It is well-known (see [2]) that the representation T_K of K decomposes into sum of a countable number of irreducible representations in which each irreducible representation enters with a finite multiplicity. We shall denote by $M(T_K; \tau)$ the multiplicity in T_K of an irreducible representation τ of K.

Let now \mathfrak{m}^C be the complexification of \mathfrak{m} . We denote by ad^p the representation of K in the vector space $\overset{p}{\wedge}$ \mathfrak{m}^C induced by the adjoint action of K in \mathfrak{m} . Let

$$(2.1) ad^p = \tau_1^p + \dots + \tau_{s_p}^p$$

be the decomposition of ad^p into a sum of irreducible representations.

Theorem. Let G be a connected semi-simple Lie group with finite center, K a maximal compact subgroup of G, and Γ a discrete subgroup of G with compact quotient space $\Gamma \backslash G$. Assume that Γ acts freely on the symmetric space X = G/K, and let $h^p(X, \Gamma)$ be the vector space of all harmonic p-forms on X invariant by Γ . Let T be an irreducible unitary representation of G, and T_K the restriction of T on T_K . Let T_K denote the multiplicity of T_K in the unitary representation T_K of T_K in the Hilbert space T_K and T_K in T_K in T_K . Then

$$\dim h^p(X,\Gamma) = \sum_{T \in D_0} N(T) (\sum_{i=1}^{s_p} M(T_K; \tau_i^p)),$$

where D_0 denotes the set of all irreducible unitary representations of G with vanishing Casimir operator.

The following sections are devoted to proving this theorem.

3. Let η be a complex valued differential p-form in X invariant by Γ , and $\pi_0: G \to G/K = X$ the canonical projection of G onto X. Put $\tilde{\eta} = \eta \circ \pi_0$. Then $\tilde{\eta}$ is a p-form on G having the following properties:

$$\begin{split} \tilde{\eta} \circ L_{\gamma} &= \tilde{\eta} \quad (\gamma \in \varGamma), \qquad \tilde{\eta} \circ R_K = \tilde{\eta} \quad (k \in K), \\ i(Y)\tilde{\eta} &= 0 \quad (Y \in \mathfrak{k}), \end{split}$$

where L_g (resp. R_g) denotes the left (resp. right) translation of G by $g \in G$, and i(X) the operator of interior multiplication.

Now let $\omega^i(1 \leq i \leq r)$ be the left invariant 1-form on G such that $\omega^i(X_j) = \delta^i_j$. We denote by I an ordered set of p indices i_s such that $1 \leq i_1 < i_2 < \cdots < i_p \leq r$. Further put

$$\omega^I = \omega^{i_1} \wedge \cdots \wedge \omega^{i_p}$$
.

Then the p-form $\tilde{\eta}$ is written uniquely in the form

$$ilde{\eta} = \sum_I \eta_I \omega^I,$$

where the coefficients η_I are functions on G. Now $\{\omega^I\}$ form a basis of $\overset{p}{\wedge}$ $\mathfrak{m}^*{}^C$, and we denote by ad^{*p} the representation of K in $\overset{p}{\wedge}$ $\mathfrak{m}^{*}{}^C$ which is contragredient to ad^p . Since the p-form ω^I is left-invariant, we have $\omega^I \circ R_k = ad^{*p}(k) \cdot \omega^I$ for all $k \in K$. Put

$$ad^{*p}(k) \cdot \omega^I = \sum_I \tau^I_J(k)\omega^J.$$

We then have $\tilde{\eta} \circ R_k = \sum_J \sum_I \tau_J^I(k) (\eta_I \circ R_k) \omega^J$ and, since $\tilde{\eta} \circ R_k = \tilde{\eta}$, we get

$$\eta_I(g \cdot k) = \sum_J \tau_I^J(k^{-1}) \eta_J(g) \qquad (g \in G, k \in K).$$

It follows also from $\tilde{\eta} \circ L_{\gamma} = \tilde{\eta}$ and $\omega^I \circ L_{\gamma} = \omega^I$ that

$$\eta_I(\gamma \cdot g) = \eta_I(g) \qquad (\gamma \in \Gamma).$$

Hence we may consider η_I as a function on $\Gamma \backslash G$ such that

$$\eta_I(x \cdot k) = \sum_J \tau_I^J(k^{-1}) \eta_J(x)$$

for $x \in \Gamma \backslash G$ and $k \in K$. We may also consider $\tilde{\eta}$ as a $\overset{p}{\wedge}$ \mathfrak{m}^{*C} -valued function on $\Gamma \backslash G$ defined by

$$\tilde{\eta}(x) = \sum_{I} \eta_{I}(x)\omega^{I} \qquad (x \in \Gamma \backslash G).$$

We have then

(1)
$$\tilde{\eta}(x \cdot k) = ad^{*p}(k^{-1})\tilde{\eta}(x).$$

Thus there corresponds to a differential p-form η on G/K invariant by Γ a $\stackrel{p}{\wedge}$ \mathfrak{m}^*C -valued function on $\Gamma \backslash G$ satisfying the condition (1), and conversely, to each of the functions satisfying (1) corresponds a Γ -invariant p-form and this corresponds is bijective. If the form η is of class C^{∞} so is the corresponding function $\tilde{\eta}$; if η is measurable (with respect to the invariant measure on G/K), so is $\tilde{\eta}$ (with respect to the invariant measure on $\Gamma \backslash G$).

Now let Ω_p be the Hilbert space of all Γ -invariant measurable pforms on G/K such that

$$||\eta||^2 = \int\limits_F <\eta, \ \eta > dv < + \infty,$$

where F denotes a compact fundamental domain for Γ , and <, > the length of η with respect to the Riemannian metric of G/K. We can show that if η and θ are in Ω_p , and $\tilde{\eta}$ and $\tilde{\theta}$ are the corresponding $\stackrel{p}{\wedge} \mathfrak{m}^{*C}$ -valued functions, then

$$(heta,\eta) = M \sum_I \int\limits_{\Gamma \setminus G} heta_I \cdot ar{\eta}_I \; dx,$$

where M is a suitable constant independent of η , θ [5].

Suppose now that η is of class C^{∞} , and let Δ denote the laplacian operator for the p-forms. Then we have

$$(\Delta \theta)_I = C \cdot \theta_I,$$

where C denotes the Casimir operator [5]. Therefore we get

$$(\Delta heta, \; \eta) = M \sum_{I} \int\limits_{\Gamma \setminus G} C heta_I \cdot ar{\eta}_I \; dx.$$

and θ is harmonic if and only if $C\theta_I = 0$ for all $I = (i_1, \ldots, i_p)$.

The Killing form φ of $\mathfrak g$ defines a positive definite hermitian inner product φ^* in $\overset{p}{\wedge}$ $\mathfrak m^{*C}$ invariant by the representation ad^{*p} of K for which $\{\omega^I\}$ is an orthonormal basis. We have then

$$(\theta, \eta) = M \int_{\Gamma \setminus G} \varphi^*(\tilde{\theta}(x), \tilde{\eta}(\tilde{x})) dx.$$

Let

$$\overset{p}{\wedge} \mathfrak{m}^{*C} = F_1^* \oplus \cdots \oplus F_{s_n}^*$$

$$\tilde{\eta}_i(x) = P_i \tilde{\eta}(x) \qquad (x \in \Gamma \backslash G).$$

Then $\tilde{\eta}_i$ is an F_i^* -valued function on $\Gamma \backslash G$ such that

$$\tilde{\eta}_i(xk) = \tau_i^{*p}(k^{-1})\tilde{\eta}_i(x) \qquad (x \in \Gamma \backslash G, \ k \in K).$$

Let η_i be the Γ -invariant p-form corresponding to $\tilde{\eta}_i$. We then have $\eta = \sum_i \eta_i$, and η is harmonic if and only if each η_i is harmonic (cf. [5]).

We denote by $A_{p,i}$ the vector space of all F_i^* -valued \mathbb{C}^{∞} -functions f on $\Gamma \backslash G$ satisfying the conditions:

$$f(x \cdot k) = \tau_i^{*p}(k^{-1})f(x) \qquad (x \in \Gamma \backslash G, \ k \in K),$$

$$Cf = 0.$$

Then

(3.2)
$$\dim h^{p}(X, \Gamma) = \sum_{i=1}^{s_{p}} \dim A_{p,i}.$$

4. In this section we shall show that

(4.1)
$$\dim A_{p,i} = \sum_{T \in D_0} N(T) \cdot M(T_K; \ \tau_i^p).$$

Then the theorem follows from (3.2) and (4.1).

Let $\{\zeta^1, \dots, \zeta^m\}$ be an orthonormal basis of F_i^* , and $\{Z_1, \dots, Z_m\}$ the dual basis of the dual vector space F_i of F_i^* . We may consider F_i as an irreducible K-invariant subspace of $\overset{p}{\wedge}$ \mathfrak{m}^C such that

$$\stackrel{p}{\wedge} \mathfrak{m}^C = F_1 \oplus \cdots \oplus F_{s_n},$$

and we may assume that the representation of K in F_i is τ_i^p . To simplify the notation we write τ instead of τ_i^p . Let

$$\tau^*(k)\zeta^{\lambda} = \sum_{\mu} a_{\mu}^{\lambda}(k)\zeta^{\mu}.$$

Then we have

$$\tau(k)z_{\lambda} = \sum_{\mu} a_{\lambda}^{\mu}(k^{-1})z_{\mu}.$$

Let now

$$L^2(\Gamma \backslash G) = \sum_{a=1}^{\infty} \oplus H_a$$

be the decomposition of the Hilbert space $L^2(\Gamma \backslash G)$ into the direct sum of irreducible G-invariant closed subspaces, and U_a the irreducible unitary representation of G in H_a induced by U. Further, let

$$H_a = \sum_{b=1}^{\infty} \oplus H_{a,b}$$

be the decomposition of H_a into the direct sum of irreducible K-invariant closed subspaces. We take an index a such that $U_a \in D_0$, and suppose that the representations of K in $H_{a,1}, \dots, H_{a,b_i}(b_i = M((U_a)_K; \tau_i^p))$ are equivalent to $\tau(=\tau_i^p)$. We fix an index b such that $1 \leq b \leq b_i$, and take a basis $\{f_\lambda\}_{\lambda=1,\dots,m}$ of $H_{a,b}$ such that

(4.2)
$$U_a(k)f_{\lambda} = \sum_{\mu} a_{\lambda}^{\mu}(k^{-1})f_{\mu}.$$

If $\{g_{\lambda}\}_{\lambda=1,\dots,m}$ is another basis of $H_{a,b}$ which satisfies (4.2), then there exists a complex number α such that $g_{\lambda}=\alpha f_{\lambda}(\lambda=1,\dots,m)$ by Schur's lemma.

We define an F_i^* -valued function f on $\Gamma \backslash G$ by putting

$$f(x) = \sum_{\lambda} f_{\lambda}(x) \zeta^{\lambda}.$$

Then we have

$$f(x \cdot k) = \tau^*(k^{-1})f(x).$$

Let η be the Γ -invariant p-form on G/K corresponding to the function f. We are going to show that η is harmonic. For this purpose we remark first that we have

$$(C \cdot h, \varphi) = 0$$

for all $h \in C^{\infty}(\Gamma \backslash G)$ and $\varphi \in H_a$. In fact, let W_a be the space of regular vectors of H_a , and let $\varphi \in W_a$. Since C is equal to the opposite of the Casimir operator C_U of the representation U, C_U is self-adjoint, and φ is in the domain of C_U , we get $(Ch, \varphi) = -(h, C_U \varphi)$. Now $C_U \varphi = C_{U_a} \varphi = 0$, and hence $(Ch, \varphi) = 0$. Since W_a is dense in H_a , we get $(Ch, \varphi) = 0$ for all $\varphi \in H_a$.

Now let θ be a Γ -invariant p-form of class \mathbb{C}^{∞} , and $\tilde{\theta}$ the corresponding $\overset{p}{\wedge} \mathfrak{m}^{*C}$ -valued function on $\Gamma \backslash G$. Take an orthonormal basis (ξ^1, \dots, ξ^N) of $\overset{p}{\wedge} \mathfrak{m}^{*C}$ such that $\xi^{\lambda} = \zeta^{\lambda}(\lambda = 1, \dots, m)$, and let $\tilde{\theta}(x) = \sum_{\lambda=1}^{N} \theta_{\lambda}(x)\xi^{\lambda}$. We have $\tilde{\eta}(x) = f(x) = \sum_{\lambda=1}^{m} f_{\lambda}(x)\xi^{\lambda}$, and

$$(\Delta \theta, \eta) = M \sum_{\lambda=1}^{m} (C \theta_{\lambda}, f_{\lambda}).$$

Since $f_{\lambda} \in H_a$, we get $(\Delta\theta, \eta) = 0$ by (4.3). Thus η is orthogonal to the p-forms $\Delta\theta$ and, as is well known, it follows from this that η is of class \mathbb{C}^{∞} and harmonic. Therefore the functions f_{λ} are of class \mathbb{C}^{∞} and satisfy the equation $Cf_{\lambda} = 0$. It follows then that the function f belongs to $A_{p,i}$. Thus we have shown that to each $H_{a,b}$ with $U_a \in D_0, 1 \leq b \leq M((U_a)_k; \tau_i^p)$, and to each basis $\{f_{\lambda}\}_{{\lambda}=1,\cdots,m}$ of $H_{a,b}$ satisfying (4.2) there corresponds a function $f_{a,b} \in A_{p,i}$. Moreover, $f_{a,b}$ is independent

of the choice of such a basis $\{f_{\lambda}\}$ up to a scalar multiple, and these functions $f_{a,b}$ are linearly independent. Therefore we get

$$\dim A_{p,i} \ge \sum_{T \in D_0} N(T) M(T_K; \tau_i^p).$$

Let conversely $f \in A_{p,i}$. We show that f is a linear combination of the functions $f_{a,b}$. Put

$$f(x) = \sum_{\lambda} f_{\lambda}(x) \zeta^{\lambda}.$$

We have then

(4.4)
$$U(k)f_{\lambda} = \sum_{\mu} a_{\lambda}^{\mu}(k^{-1})f_{\mu}, \qquad Cf_{\lambda} = 0.$$

Let P_a be the projection operator of $L^2(\Gamma \backslash G)$ such that $P_a \varphi = \varphi$ for $\varphi \in H_a$, and $P_a \varphi = 0$ for $\varphi \in H_b$, $b \neq a$. Then $f_\lambda = \sum_a P_a f_\lambda$. Let W (resp. W_a) be the space of regular vectors of $L^2(\Gamma \backslash G)$ (resp. H_a). Since f_λ is of class C^∞ , f_λ belongs to W, and moreover $P_a f_\lambda \in W_a$ for all a. We have $P_a C_U \varphi = C_{Ua} P_a \varphi$ for $\varphi \in W$, and hence we get $C_{Ua} P_a f_\lambda = 0$, because $C_U f_\lambda = -C f_\lambda = 0$. It follows that $P_a f_\lambda = 0$ for the index $P_a f_\lambda = 0$ for an index $P_a f_\lambda = 0$. Now suppose that $P_a f_\lambda = 0$ for an index $P_a f_\lambda = 0$ for an index $P_a f_\lambda = 0$ for an index $P_a f_\lambda = 0$.

$$U_a(k)P_af_\lambda=\sum_\mu a_\lambda^\mu(k^{-1})P_af_\mu \qquad (k\in K).$$

Let F be the linear subspace of H_a spanned by the elements $P_a f_\lambda(\lambda=1,\cdots,m)$. Then F is a K-invariant subspace of H_a , and there exists a K-module homomorphism of F_i onto F which maps Z_λ onto $P_a f_\lambda$. Since $F \neq (0)$ and F_i is an irreducible K-module, this homomorphism is an isomorphism. It follows then that $P_a f_\lambda$ are linearly independent, and F is contained in the direct sum $\sum\limits_{b=1}^{b_i} H_{a,b}(b_i=M((U_a)_K;\tau_i^p))$. Let $\{f_{a,b;\lambda}\}_{\lambda=1,\cdots,m}$ be a basis of $H_{a,b}$ satisfying (4.2), and put

$$P_a f_\lambda = \sum_b \sum_\mu lpha^\mu_{b,\,\lambda} f_{a,b;\,\mu}.$$

We see easily that the matrix $(\alpha_{b,\lambda}^{\mu})_{\lambda,\mu=1,\cdots,m}$ commutes with the matrix $(a_{\lambda}^{\mu}(k))_{\lambda,\mu=1,\cdots,m}$ for all $k\in K$, and hence $(\alpha_{b,\lambda}^{\mu})$ is a scalar matrix. Therefore $P_af_{\lambda}=\sum_b\alpha_b\cdot f_{a,b;\lambda}$ with $\alpha_b\in C$, and hence $f=\sum_{\alpha}\sum_{\lambda}P_af_{\lambda}\zeta^{\lambda}=\sum_{a,b}\alpha_bf_{a,b}$. Thus f is a linear combination of the functions $f_{a,b}$. We have thus completed the proof of (4.1) and the theorem is proved.

5. We consider now the special cases where G is the complex unimodular group $SL(2, \mathbb{C})$ or the proper Lorentz group.

Let $G = SL(2, \mathbb{C})$. A maximal compact subgroup is the special unitary group SU(2), and put K = SU(2). Then G/K is the 3-dimensional hyperbolic space.

The irreducible unitary representations of the compact group K are given as follows:

There is a 1-1 correspondence between the set of equivalence classes of irreducible unitary representations of K and the set of non-negative integers and non-negative half-integers. The irreducible representation ρ_k corresponding to $\frac{k}{2}$ (k: non-negative integer) is realized in the vector space of covariant symmetric tensors of order k constructed over the 2-dimensional complex vector space on which K operators (see [6]).

Now let m be the vector space of 2×2 hermitian matrices of trace 0. We then have $\mathfrak{g} = \mathfrak{m} + \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{m}] = \mathfrak{m}$, $[\mathfrak{m}, \mathfrak{m}] = \mathfrak{k}$, and the representation $ad_{\mathfrak{m}}$ of \mathfrak{k} in \mathfrak{m} is absolutely irreducible and equivalent to the representation ρ_2 .

The irreducible unitary representation of $SL(2, \mathbb{C})$ are the following [6]:

1. Principal series $U_{m,\rho}$. These representations depend on two parameters m and ρ with $m \in \mathbb{Z}$ and $\rho \in \mathbb{R}$. $U_{m,\rho}$ is the representation in the Hilbert space $H = L^2(\mathbb{C})$, and the unitary operator $U_{m,\rho}(g)$ is defined by

$$(U_{m,\rho}(g)f)(z) = (bz+d)^m |bz+d|^{-m+i\rho-2} f\left(\frac{az+c}{bz+d}\right),$$

where

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{C}).$$

The representations $U_{m,\rho}$ and $U_{n,\sigma}$ are equivalent if and only if n = -m and $\sigma = -\rho$.

The Casimir operator $C_{m,\rho}$ of $U_{m,\rho}$ is:

$$C_{m,\rho} = \frac{1}{16} \left\{ \left(\frac{m}{2}\right)^2 - \left(\frac{\rho}{2}\right)^2 - 1 \right\} \cdot 1.$$

The irreducible representation ρ_k is contained in $U_{m,\rho}|K$ at most once, and ρ_k is actually contained in $U_{m,\rho}|K$ if and only if $\frac{m}{2}$ equals one of the numbers $\frac{k}{2}, \frac{k}{2} - 1, \frac{k}{2} - 2, \cdots$.

2. Supplementary series $U_{\sigma}(0 < \sigma < 2)$. The representation U_{σ} is realized in the Hilbert space H of complex-valued function on C, the inner product (f_1, f_2) in H and the unitary operator $U_{\sigma}(g)$ are defined as follows:

$$(f_1, f_2) = \int_c \int_c |z_1 - z_2|^{-2+\sigma} f_1(z_1) \overline{f_2(z_2)} dz_1 dz_2,$$
$$(U_{\sigma}(g)f)(z) = |bz + d|^{-2-\sigma} f\left(\frac{az + c}{bz + d}\right),$$

where

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{C}).$$

The Casimir operator C_{σ} of U_{σ} is :

$$C_{\sigma} = \frac{1}{16} \left\{ \left(\frac{\sigma}{2} \right)^2 - 1 \right\} \cdot 1 \qquad (0 < \sigma < 2).$$

The representation $U_{\sigma}|K$ decomposes as follows:

$$U_{\sigma}|K = \sum_{k=0}^{\infty} \rho_{2k}.$$

Now the Casimir Operator C_{σ} does not vanish, and the Casimir Operator $C_{m,\rho}(m \geq 0)$ vanishes if and only if $\rho = \pm \sqrt{m^2 - 4}$. As ρ is real, we have $m \geq 2$. On the other hand, $U_{m,\rho}|K(m \geq 0)$ contains ρ_2 if and only if m = 2. Therefore there is one and only one irreducible unitary representation T of $SL(2, \mathbb{C})$ with vanishing Casimir operator such that T|K contains ρ_2 , that is, $T = U_{2,0}$. Moreover, the multiplicity of ρ_2 in $U_{2,0}|K$ is 1.

Let now G be the proper Lorentz group. Then $G \cong SL(2, \mathbb{C})/\{\pm 1\}$ and $K \cong SU(2)/\{\pm 1\}$. The irreducible unitary representations of K are $\rho_{2k}(k=0,1,2\cdots)$, and the irreducible unitary representations T of G are those of $SL(2,\mathbb{C})$ satisfying the condition T(-1)=1, and therefore these representations are $U_{m,\rho}$ with even m and U_{σ} . Just as in the of $SL(2,\mathbb{C})$, the only irreducible unitary representation T of G with vanishing Casimir operator such that T|K contains ρ_2 is the representation $U_{2,0}$. The multiplicity of ρ_2 in $U_{2,0}|K$ is 1.

From our theorem we then have the following result:

Let G be the complex unimodular group $SL(2, \mathbb{C})$ or the proper Lorentz group. Let Γ be a discrete subgroup of G such that $\Gamma \setminus G$ is compact. Assume that Γ acts freely on the 3-dimensional hyperbolic space G/K. Then the multiplicity of the irreducible unitary representation $U_{2,0}$ of G in the unitary representation T of G in $L^2(\Gamma \setminus G)$ equals the rank of the finitely generated abelian group Γ/Γ' , Γ' being the commutator subgroup of Γ .

Bibliography

- I. M. Gelfand & I. Pyateckii-Sapiro, Theory of representations and theory of automorphic functions, Amer. Math. Soc. Transl. (2) 26 (1963) 173–200.
- [2] R. Godement, A theory of spherical functions, Trans. Amer. Math. Soc. 73 (1950) 496–556.
- [3] R. P. Langlands, *Dimension of spaces of automorphic forms*, Proc. Sympos. Pure Math., Amer. Math. Soc. **9** (1966) 253–257.
- [4] Y. Matsushima, a) On the first Betti number of compact quotient spaces of higher dimensional symmetric spaces, Ann. of Math. 75 (1962) 312–330; b) On Betti numbers of compact, locally symmetric Riemann manifolds, Osaka Math. J. 14 (1962) 1–20.
- [5] Y. Matsushima & S. Murakami, a) On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963) 365–416; b) On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965) 1–35.
- [6] M. A. Naimark, Les représentations linéaires du groupe de Lorentz, Dunod, Paris, 1962.

University of Notre Dame