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A FORMULA OF SIMONS' TYPE AND HYPERSURFACES

WITH CONSTANT MEAN CURVATURE

KATSUMI NOMIZU & BRIAN SMYTH

In a recent work [8] J. Simons has established a formula for the Laplacian
of the second fundamental form of a submanifold in a Riemannian manifold
and has obtained an important application in the case of a minimal hypersur-
face in the sphere, for which the formula takes a rather simple form. The
application is made by means of the Laplacian of the function / on the hyper-
surface, which is defined to be the square of the length of the second funda-
mental form.

In the present paper, by a more direct route than Simons' we first obtain
the same type of formula (see (16)) in the case of a hypersurface M immersed
with constant mean curvature in a space M of constant sectional curvature,
and then derive a new formula (see (18)) for the function / which involves the
sectional curvature of M. Based on this new formula our main results are the
determination of hypersurfaces M of non-negative sectional curvature immersed
in the Euclidean space Rn+ι or the sphere 5/ι+1 with constant mean curvature
under the additional assumption that the function / is constant. This additional
assumption is automatically satisfied if M is compact. We state the general
results in a global form assuming completeness of M, but they are essentially
of local nature.

1. Formula of Simons' type

Let M be an (n + l)-dimensional space form, i.e., a Riemannian manifold
of constant sectional curvature, say, c. Let φ: M —> M be an isometric immer-
sion of an Λ-dimensional Riemannian manifold M into M. For simplicity, we
say that M is a hypersurface immersed in M and, for all local formulas and
computations, we may consider φ as an imbedding and thus identify x € M
with φ(x) € M. The tangent space TX(M) is identified with a subspace of the
tangent space Tx(lif), and the normal space Γ£ is the subspace of TX(M) con-
sisting of all X € TX(M) which are orthogonal to TX(M) with respect to the
Riemannian metric g. For the basic notations and formulas concerning differ-
ential geometry of submanifolds, we follow Chapter VII of Kobayashi-Nomizu
[4].
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For an arbitrary point x0 e M, we may choose a field of unit normal vectors
ξ defined in a neighborhood U. The second fundamental form h and the cor-
responding symmetric operator A are defined and related to covariant differ-
entiations F and F in M and M, respectively, by the following formulas:

( 1 ) PXY = VXY + h(X, Y),

( 2 ) Pxξ= -AX,

where X and Y are vector fields tangent to M. The Gauss equation is:

( 3 ) R(X, Y) = cX A Y + AX A AY , Λ\ Y e TX(M) ,

where X AY denotes the skew-symmetric endomorphism of 7c(Λf) defined
by (X A Y)Z = g(Y, Z)X - g(X, Z)Y.

The Codazzi equation is expressed by

( 4 ) φxA)(y) = (vYA){X).

Since ξ is defined locally up to a sign, so is A, and A'2 is thus defined globally
on M. We consider the function / = trace A2 which is globally defined on M
and wish to compute its Laplacian Jf. This is given as the trace of the sym-
metric bilinear form

( 5 ) H,(X,Y) = X(Yf) - PxY)f i

in fact, Hf coincides with the usual Hessian of / at a critical point of /. If
{eπ . . , en) is an arbitrary orthonormal basis in TΛ.(M), then

(6) (J/)W= tnf(e,,ef).
i - 1

In order to compute Jf, we need to compute the "restricted" Laplacian of
the tensor field A, which we now explain. Let T be an arbitrary tensor field
of type (r, s) on M. Then the second covariant differential F T is a tensor field
of type (r, s + 2) which is given by

( 7 ) (F>T)( y X) = F V(F>T) - FΓχYT ,

where X and Y are vector fields on M. At each point x e M, we take an
orthonormal basis [ex, , en} in Tr(M) and set

( 8 ) W / Γ)W= Σ(F 2 Γ)( ;*,;*<)•

This is independent of the choice of an orthonormal basis and the tensor field
Δ'T of type (r, s) so defined is called the restricted Laplacian of T. When 7 is
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a function /, F2T coincides with Hf in (5) and Δ'T is nothing but Δf. The
expression for Δ'T in conventional tensor notation is

If Γ is a differential form ω of degree r, Δ'Ί does not coincide with the
Laplacian Δω as defined in the theory of harmonic integrals indeed, Δ'ω is
part of Δω. This accounts for the name of "restricted Laplacian" which we
are proposing. (In Simons [8], Δ'Ί is called simply the Laplacian; for results
on the restricted Laplacian, see, for example, Lichnerowicz [5; pp. 1-4].)

Going back to the function / = trace A2 on the hypersurface M9 we have

Yf = Y(trace A2) = trace (FyA
2),

since taking the trace is a contraction on tensor fields of type (1,1), which
commutes with covariant differentiation (cf. Kobayashi-Nomizu [3, p. 123]).
Since

trace FyA
2 = trace (PrA)A + trace A(PyA)

= 2 trace (FYA)A ,

we have

Yf = 2 trace (FyA)A .

Thus we have

XYf = 2 trace {yx{VYA))A + 2 trace (FyA)(FxA)

as well as

(FΛY)f = 2 trace (FΓχYA)A .

Hence

1 / = Σ {trace (FM)(; et\et)A + trace {FHA)2},

where {eu , en} is an orthonormal basis in ΓX(M). Thus

-i J/ = trace (ΔΆ)A + Σ trace (Pe.A)2.
2 1 = 1

By extending the metric g to the tensor space in the standard fashion, we may
write

( 9 ) 1 Δf =
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We shall now compute ΔΆ. For this purpose, let us write K(X, Y) for
(F2A)(;Y;X) so that

K(X9 Y) = VX(VYA) - VTχYΛ .

Using the identities VXY- FyX - [X, Y] = 0 and R(X, Y) = [FΛ , F Γ ] - Γ [Λ. iΓ],
where the curvature transformation R(X, Y) and the other terms are regarded
as derivations of the algebra of tensor fields, we obtain

(10) K(X, Y) = K(Y,X) + [Λ(A\ YhA] .

Let {ex, , e,,} be an orthonormal basis in 7.r(Λf), and extend them to vector
fields £, ,-•-,£„ in a neighborhood of JC such that P£, = 0 at x. Let Λ' be a
vector field such that ΓX — 0 at JC. (Such vector fields can be easily obtained
by using parallel displacement along each geodesic with origin x.) In (10) take
Ej and X instead of X and Y, respectively, and apply each endomorphism to
Ef. Since

K(Eh X)Et = (F,;.(F.VΛ))£, - (ΓΓ/. λA)Et (the second term is 0 at JC)

= FKi((V.YA)E,) - ( F Λ Λ X Γ , ^ , ) (the second term is 0 at x)

= ΓKi((VKiA)X) (by virtue of CodazzΓs equation)

= (FΛ ^PA Λ ) ) * + (F^./DίF/^) (the second term is 0 at JC)

= K(EhE,)X ,

we get at JC

(11) K(£ M E()X - /Cί^, £

By a similar computation we get at x

(12)

^ e now assume that M has constant mean curvature, that is, trace A = con-

stant. Under this assumption we prove

(13) Σ ί F ^ / l )£, = <>.
ί 1

Indeed, since VKΛ is a symmetric operator together with A, we get, by using

Codazzi's equation,

git (F
\ί = 1

= trace (P*/l) = Z (trace /ί) = 0 .
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Since this is valid for an arbitrary vector Z, we conclude (13). Substituting
(13) in (12) we obtain

(14)
ϊ = l

From (11) and (14) we get

(15) U'A)iX) =
i = l

The right-hand side can be computed as follows. By the Gauss equation, we
have

R(EUX) = c(£ f Λ X) + AE, A AX .

Thus

Σ R(Ei9X)AEί = Σ c{g(AEi9X)Ei - g{EuAE
i=l i=l

+ Σ {g(,AEt,AX)AEi -
i = l

Here

i, AEt) = trace A ,

Σ 8(AEU AEt) = Σ 8(AΈU EJ = trace A2,

Σ g(AEi,X)Ei = Σ g{Ei,AX)Ei = AX,
t=l i=l

and

Σ g(AEi9 AX)AE, = A Σ g(Ei9A
2X)Et = A(A2X) = A*X .

i = l ι=l

Hence

Σ R(Ei9 X)AE{ = cAX - c(trace A)X + A3X - (trace A2)AX .
<»1

Similarly, we get

Σ AR(Et, X)Ei = cAX - cnAX + A3X - (trace A)A2X .
i l
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From these two equations we obtain

Σ [R(Ei9X)9A]Ei = ncAX - (trace A2)AX
i = l

- c(tτaceA)X + (trace A)A2X ,

that is, (15) gives

(16) ά'A = ncA - (trace Λ2M - c(traceΛ)/ + (trace A)A2,

where / is the identity transformation. From (9), we obtain

(17) — Δf = c/7(trace A2) - (trace A2)2 - c(trace A)2

+ (traceΛ)(traceΛ3) + g(FA,VA) .

In particular, if M is minimal in M, that is, trace A = 0, then

(160 4'Λ = Λc/ί - (trace/ί2)/ί ,

(170 jdf = cnf-f + g{FA9FA)9

In the case where M is the unit sphere Sn+ι (so that c = 1), (160 and (170
are found in Simons [8].

We shall now transform (17) into a form which is convenient for our appli-
cations. We first prove

Lemma. Let A be an n X n symmetric matrix with eigenvalues λl9 , λH.
Then, for any constant c,

nctrA2 - (tτA2)2 - c(trA)2 + (tr A)(tr A3) = Σ tfί - *jY(c + λjj) .

Proof. Since the equality is trivial for n = 1, assume that it is valid for
the degree n — 1. Then the left-hand side is equal to

(n-l

Σ
\ 2 (n-\ \ ln-\

+ a») + (Σ h + h) (Σ Ά + Z
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On the above right side the first term is, by inductive assumption, equal to

the second is equal to

and the third is equal to

Therefore the whole sum is equal to

which completes the proof of the lemma.
Now for each point x of the hypersurface M, let {e,, , en) be an ortho-

normal basis in TX(M) such that Aet = λteh 1 < / < / ? . By the Gauss equation
(3) we see that the sectional curvature Ku for the 2-plane spanned by et and
ej9 i Φ /, is equal to c + λtλt. Thus (17) can be written as follows:

(18) 1 J / - Σ U/ - λiYKij + g{ΓAJA).
2 i<j

2. Main results

Let M be a connected hypersurface immersed with constant mean curvature
in a space form M of dimension n + 1 with constant curvature, say, c. We
establish the following lemmas.

Lemma 1. If M is compact and has non-negative sectional curvature (for
all 2-planes), then at every point of M we have

FA = 0 and (Λ, - λjfK^ = 0 for all /, / .

In particular, the eigenvalues of A are constant {where the field of unit normals
ξ is defined).

Proof. By assumption, Ktj > 0. From the formula (18) we have Δf > 0.
Since M is compact, we conclude that / is constant and Δf = 0 (see, for in-
stance, Yano [10, p. 215] or Kobayashi-Nomizu [4, Note 14]). Thus we get
FA =0 and (λt - λ3)Ktj = 0 for all /, /.

Lemma 2 // M has non-negative sectional curvature, and f = trace A2 is
constant on M, then we have the same conclusions as Lemma 1.
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Proof. This is obvious from the formula (18) itself.
Lemma 3. Under the assumptions of Lemma 1 or Lemma 2, either M is

totally umbilical or A has exactly two distinct constants as eigenvalues at every
point.

Proof. As we already know, the eigenvalues of A remain constant (in its
domain of definition). Thus the set of umbilics is an open set in M. Since it
is obviously a closed set, either M is totally umbilical or M has no umbilic. In
the second case, we show that A has at most (hence exactly) two eigenvalues
at any point x. Let λ{ > λ2 > > λn be the eigenvalues of A at x. We may
assume that λλ > 0 for the following reason. If λx < 0, then λn < 0. Since
λn — 0 implies λι — = λn = 0 contrary to our premise, we must have
λn < 0. We may then change the field of unit normals ξ around x into — ξ
thus changing A into — A, whose largest eigenvalue — λn is positive. Having
assumed that λx>λ2> > λn with λλ > 0, we have Kn > Kl2 > > Kln

and these are all non-negative by assumption. Assume that p is the largest
integer such that Kιp > 0 and /Clp+1 = 0 (set p = n if KUι > 0, although we
see in a moment that this does not arise). From the second conclusion of
Lemma 1 or 2, we get

U - λ,yκιt = 0 for all 1 < i < p ,

which imply that

Λ = = λp = λ , say.

Here p Φ n, since x is not an umbilic. In addition we have

that is,

c + MPn = = c + λxλn = 0 ,

which imply that

Λ;>+1 — * * * — Λ/i — Cj A .

This proves our assertion that A has at most two distinct eigenvalues.
With these preparations we shall now prove our main results.
Theorem 1. Let M be a complete Riemannian manifold of dimension n

with non-negative sectional curvature, and φ: M —> RnΛλ an isometric immer-
sion with constant mean curvature into a Euclidean space Rnλλ. If f = trace A2

is constant on M, then φ(M) is of the form SJ) X Rn~p, 0 < p < n, where
Rn-p j s Qγχ ^n _ pydimensional subspace of Rnn\ and Sp is a sphere in the
Euclidean subspace perpendicular to Rn"v. Except for the case p = 1, φ is an
imbedding.
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Poorf. We first assume that M is simply connected. By Lemma 3 we know
that either M is totally umbilical or A has exactly two distinct constant eigen-
values λ, μ, where λ Φ 0 has multiplicity p, I <p <n — 1, and μ is actually
0 (since c = 0 in the proof of Lemma 3). In the first case, it follows that φ(M)
is actually a Euclidean hyperplane Rn or a sphere Sn, depending on whether
A is 0 or not. Since M and φ(M) are simply connected, we conclude that 6 is
an imbedding (cf. Theorem 4.6, p. 176 of Kobayashi-Nomizu [3]).

In the second case, we can define two distributions

Γ(x) = {xe TX(M) AX = XX),

and

of dimensions p and n — p, respectively. Knowing that λ is a constant, it is
easy to see that both distributions are differentiable, involutive and totally
geodesic on M. Thus M is the Riemannian direct product M ι x M°, where Mι

and M° are the maximal integral manifolds of T1 and Γ°, respectively, through
a certain point of M. From this point on, we may use the same arguments as
those for Proposition 3 in Nomizu [6] to conclude that φ{M) is of the form
Sp x Rn~p. If p > 2, then φ(M) is simply connected and we conclude that φ is
an imbedding. (If p = 1, then M may be R x Rnλ which is immersed onto
Sι x Rn] inRn+ι.)

In the general case, let M be the universal covering manifold on M with
the projection π: lίf —> M. With respect to the naturally induced metric, M and
φ = φ o 7r satisfy the same assumptions as those for M and φ. Thus ̂ (M)
= φ(M) is of the form Sp x /?Λ~P. \ί p Φ 1, then 0 is an imbedding and so
is φ.

Corollary 1. If M is, in particular, minimal in Theorem 1, then φ(M) is
a hyperplane and φ is an imbedding.

Remark 1. Without completeness of M the corresponding local versions
of Theorem 1 and Corollary 1 are valid.

Remark 2. Theorem 1 may be thought of as a partial extension of a result
of Klotz and Osserman [2].

Corollary 2. Let M be a connected compact Riemannian manifold of
dimension n with non-negative sectional curvature. If φ: M -> Rnn is an iso-
metric immersion with constant mean curvature, then φ(M) is a hypersphere
and φ is an imbedding.

Proof. By Lemma 1, we know that / is a constant. Since φ(M) is compact,
we must have p = n in the conclusion of Theorem 1.

Remark. Corollary 2 is slightly stronger than the classical theorem of Sϋss
[9], where M is assumed to be a convex hypersurface.

Before we prove our results for hypersurfaces in the unit sphere 5 n + 1 (i.e.
the standard model for a space form of dimension n + 1 with constant sectional
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curvature 1), we explain a few examples. In Rn+2 with usual inner product,
Sn+1 = {xeRn+2;(x,x) = 1}.

For any unit vector a and for any r, 0 < r < 1, let

Σn = { * e S n + I ; (x,a) = r} .

When r = 0, £ w is a greαί .ypAere in Sn+ι. When r > 0, we call £ M a ίmα//
sphere in Sn+1. By elementary computation we find that the second fundamental
form of 2 ] w as a hypersurface of Sw + 1 is given by

(up to a sign),

where / is the identity transformation. The mean curvature is constant and so
is the function / = trace A2. It is known that a totally umbilical hypersurface
in Sn+ι is locally (globally if it is complete) Σ" in particular, it is a great
sphere if it is totally geodesic.

Another example is a product of spheres Sp(r) x S"(s), where p -f q — n
and r2 + s2 = 1. For such p,q> 0, consider R"1 as RίHl x fl"1 and let

S»(r) = {xeR»^;(x,x) = r},

SHs) = {yeR«+ι; (y,y) = s1} .

Then

S"(r) X S«(s) = {(JC, y ) ^ " 1 2 ; π 5^(r), y e S«Cv)}

is a hypersurface of 5M+1. The second fundamental form A has eigenvalues
s/r of multiplicity p and — r/s of multiplicity g. Both the mean curvature and
the function / are constants. Sp(r) x S(l(s) is minimal if and only if r = sp/n.

In particular, consider the case n — 2. For /\ .y such that r2 + f = 1, 5!(r)
X 5 ! (J) in S3 is called a flat torus. When r = Λ* = 1 / s 2 , it is a minimal
surface in S\

We now prove
Theorem 2. Let M be an n-dimensional complete Riemannian manifold

with non-negative sectional curvature, and φ: M —> S" M an isometric immer-
sion with constant mean curvature. // / — trace A'1 is constant on M, then either

(1) φ(M) is a great or small sphere in Sn + \ and φ is an imbedding;
or

(2) φ(M) is a product of spheres Sp(r) X S"(.v), and for p φ\, n — \, φ
is an imbedding.

Proof. We may assume that M is simply connected. By Lemma 3 we know
that either M is totally umbilical, in which case we get the conclusion (I), or
A has two constants λ, μ such that λμ = — 1 as the eigenvalues at all points.
Let p, q be the multiplicities of λ, μ (so that p + q = n). It follows that M is
the direct product Mx x M2, where Mλ is a p-dimensional space of constant
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curvature 1 + λ2, and M2 is a ^-dimensional space of constant curvature 1 + μ2.
(We may prove this fact again by considering the distributions of eigenspaces
for λ and μ; for the detail, see Ryan [7]). If p Φ 1, then Mι = Sp(r) where
r = l / > f ϊ + 7 2 . Similarly, if g Φ 1, then Λf2 = 5*0) where 5 = 1/-J1 + μ2. Of
course, r2 + s2 = 1. If p = 1 or g = 1, we take Rι instead of S\r) or S'C*).
At any rate, the type number for φ (i.e. the rank of A) is equal to n every-
where. Thus if n > 3, the classical rigidity theorem (cf., for example, Ryan
[7]) shows that φ{M) is the product of spheres Sv{r) x Sq(s) in Sn+ι and that
φ is an imbedding unless p — 1 or q — 1. It remains to show that, for Λ = 2,
0(M) is a flat torus. But this can be done by an elementary argument. We
have thus proved Theorem 2.

Corollary 1. // M is, in particular, minimal in Theorem 2, then φ(M) is
a great sphere or Sv(JpJn) x Sn-pU(n — p)/n).

Remark. Without completeness of M, the corresponding local versions of
Theorem 2 and Corollary 1 are valid.

Corollary 2. Let M be a connected compact Riemannian manifold of
dimension n with non-negative sectional curvature. If φ: M —> Sn + ι is an iso-
metric immersion with constant mean curvature, then (I) or (2) of Theorem
2 holds.

The following special case is worth mentioning.
Corollary 3. Let M be a connected compact minimal hypersurface im-

mersed in Sn + ι. If M has positive sectional curvature, then M is imbedded as
a great sphere.

Remark. Corollary 3 is a generalization of a result of Almgren [ 1 ] which
says that a compact minimal surface of genus 0 in S3 is a great sphere.
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