A FORMULA OF SIMONS' TYPE AND HYPERSURFACES WITH CONSTANT MEAN CURVATURE

KATSUMI NOMIZU & BRIAN SMYTH

In a recent work [8] J. Simons has established a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold and has obtained an important application in the case of a minimal hypersurface in the sphere, for which the formula takes a rather simple form. The application is made by means of the Laplacian of the function f on the hypersurface, which is defined to be the square of the length of the second fundamental form.

In the present paper, by a more direct route than Simons' we first obtain the same type of formula (see (16)) in the case of a hypersurface M immersed with constant mean curvature in a space \tilde{M} of constant sectional curvature, and then derive a new formula (see (18)) for the function f which involves the sectional curvature of M. Based on this new formula our main results are the determination of hypersurfaces M of non-negative sectional curvature immersed in the Euclidean space \mathbb{R}^{n+1} or the sphere S^{n+1} with constant mean curvature under the additional assumption that the function f is constant. This additional assumption is automatically satisfied if M is compact. We state the general results in a global form assuming completeness of M, but they are essentially of local nature.

1. Formula of Simons' type

Let \overline{M} be an (n + 1)-dimensional space form, i.e., a Riemannian manifold of constant sectional curvature, say, c. Let $\phi: M \to \overline{M}$ be an isometric immersion of an *n*-dimensional Riemannian manifold M into \overline{M} . For simplicity, we say that M is a hypersurface immersed in \overline{M} and, for all local formulas and computations, we may consider ϕ as an imbedding and thus identify $x \in M$ with $\phi(x) \in M$. The tangent space $T_x(M)$ is identified with a subspace of the tangent space $T_x(\overline{M})$, and the normal space T_x^{\perp} is the subspace of $T_x(\overline{M})$ consisting of all $X \in T_x(\overline{M})$ which are orthogonal to $T_x(M)$ with respect to the Riemannian metric g. For the basic notations and formulas concerning differential geometry of submanifolds, we follow Chapter VII of Kobayashi-Nomizu [4].

Received September 24, 1968. This work was partially supported by NSF grants.

For an arbitrary point $x_0 \in M$, we may choose a field of unit normal vectors ξ defined in a neighborhood U. The second fundamental form h and the corresponding symmetric operator A are defined and related to covariant differentiations \tilde{V} and V in \tilde{M} and M, respectively, by the following formulas:

(1)
$$\tilde{V}_X Y = V_X Y + h(X, Y),$$

where X and Y are vector fields tangent to M. The Gauss equation is:

$$(3) R(X,Y) = cX \wedge Y + AX \wedge AY, X, Y \in T_x(M),$$

where $X \wedge Y$ denotes the skew-symmetric endomorphism of $T_x(M)$ defined by $(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y$.

The Codazzi equation is expressed by

$$(4) \qquad (\nabla_X A)(Y) = (\nabla_Y A)(X) \ .$$

Since ξ is defined locally up to a sign, so is A, and A^2 is thus defined globally on M. We consider the function $f = \text{trace } A^2$ which is globally defined on Mand wish to compute its Laplacian Δf . This is given as the trace of the symmetric bilinear form

(5)
$$H_{f}(X, Y) = X(Yf) - (V_{X}Y)f;$$

in fact, H_f coincides with the usual Hessian of f at a critical point of f. If $\{e_1, \dots, e_n\}$ is an arbitrary orthonormal basis in $T_x(M)$, then

$$(6) \qquad (\varDelta f)(x) = \sum_{i=1}^{n} H_{j}(e_{i}, e_{i}) .$$

In order to compute Δf , we need to compute the "restricted" Laplacian of the tensor field A, which we now explain. Let T be an arbitrary tensor field of type (r, s) on M. Then the second covariant differential $\nabla^2 T$ is a tensor field of type (r, s + 2) which is given by

(7)
$$(\overline{V}^2T)(;Y;X) = \overline{V}_X(\overline{V}_YT) - \overline{V}_{\overline{V}_YY}T,$$

where X and Y are vector fields on M. At each point $x \in M$, we take an orthonormal basis $\{e_1, \dots, e_n\}$ in $T_x(M)$ and set

(8)
$$(\Delta'T)(x) = \sum_{i=1}^{n} (\nabla^2 T)(; e_i; e_i).$$

This is independent of the choice of an orthonormal basis and the tensor field $\Delta'T$ of type (r, s) so defined is called the *restricted Laplacian* of T. When T is

a function f, $\nabla^2 T$ coincides with H_f in (5) and $\Delta' T$ is nothing but Δf . The expression for $\Delta' T$ in conventional tensor notation is

$$(\varDelta'T)_{j_1\cdots j_s}^{i_1\cdots i_r} = \sum_{p,q=1}^n g^{pq} T_{j_1\cdots j_s;p;q}^{i_1\cdots i_r}.$$

If T is a differential form ω of degree r, $\Delta'T$ does not coincide with the Laplacian $\Delta \omega$ as defined in the theory of harmonic integrals; indeed, $\Delta' \omega$ is part of $\Delta \omega$. This accounts for the name of "restricted Laplacian" which we are proposing. (In Simons [8], $\Delta'T$ is called simply the Laplacian; for results on the restricted Laplacian, see, for example, Lichnerowicz [5; pp. 1-4].)

Going back to the function $f = \text{trace } A^2$ on the hypersurface M, we have

$$Yf = Y(\operatorname{trace} A^2) = \operatorname{trace} (\nabla_Y A^2),$$

since taking the trace is a contraction on tensor fields of type (1, 1), which commutes with covariant differentiation (cf. Kobayashi-Nomizu [3, p. 123]). Since

trace
$$V_{Y}A^{2}$$
 = trace $(V_{Y}A)A$ + trace $A(V_{Y}A)$
= 2 trace $(V_{Y}A)A$,

we have

$$Yf = 2 \operatorname{trace} (\nabla_{Y}A)A$$
.

Thus we have

$$XYf = 2 \operatorname{trace} \left(\nabla_{X} (\nabla_{Y} A) \right) A + 2 \operatorname{trace} \left(\nabla_{Y} A \right) (\nabla_{X} A)$$

as well as

$$(\nabla_X Y)f = 2 \operatorname{trace} (\nabla_{\nabla_X Y} A)A$$

Hence

$$\frac{1}{2}f = \sum_{i=1}^{n} \{ \operatorname{trace} (\nabla^2 A)(; e_i; e_i)A + \operatorname{trace} (\nabla_{e_i} A)^2 \},$$

where $\{e_1, \dots, e_n\}$ is an orthonormal basis in $T_x(M)$. Thus

$$\frac{1}{2} \Delta f = \operatorname{trace} \left(\Delta' A \right) A + \sum_{i=1}^{n} \operatorname{trace} \left(\nabla_{e_i} A \right)^2.$$

By extending the metric g to the tensor space in the standard fashion, we may write

(9)
$$\frac{1}{2} \Delta f = g(\Delta' A, A) + g(\nabla A, \nabla A).$$

We shall now compute $\Delta'A$. For this purpose, let us write K(X, Y) for $(\nabla^2 A)(; Y; X)$ so that

$$K(X, Y) = V_X(V_Y A) - V_{\Gamma_Y Y} A.$$

Using the identities $\mathcal{F}_X Y - \mathcal{F}_Y X - [X, Y] = 0$ and $\mathcal{R}(X, Y) = [\mathcal{F}_X, \mathcal{F}_Y] - \mathcal{F}_{[X, Y]}$, where the curvature transformation $\mathcal{R}(X, Y)$ and the other terms are regarded as derivations of the algebra of tensor fields, we obtain

(10)
$$K(X, Y) = K(Y, X) + [R(X, Y), A].$$

Let $\{e_1, \dots, e_n\}$ be an orthonormal basis in $T_x(M)$, and extend them to vector fields E_1, \dots, E_n in a neighborhood of x such that $\nabla E_i = 0$ at x. Let X be a vector field such that $\nabla X = 0$ at x. (Such vector fields can be easily obtained by using parallel displacement along each geodesic with origin x.) In (10) take E_i and X instead of X and Y, respectively, and apply each endomorphism to E_i . Since

$$K(E_i, X)E_i = (\nabla_{E_i}(\nabla_X A))E_i - (\nabla_{\Gamma_{E_i}X}A)E_i \quad \text{(the second term is 0 at } x)$$

= $\nabla_{E_i}((\nabla_X A)E_i) - (\nabla_X A)(\nabla_{E_i}E_i) \quad \text{(the second term is 0 at } x)$
= $\nabla_{E_i}((\nabla_{E_i}A)X) \quad \text{(by virtue of Codazzi's equation)}$
= $(\nabla_{E_i}(\nabla_{E_i}A)X + (\nabla_{E_i}A)(\nabla_{E_i}X) \quad \text{(the second term is 0 at } x)$
= $K(E_i, E_i)X$,

we get at x

(11)
$$K(E_i, E_i)X = K(X, E_i)E_i + [R(E_i, X), A]E_i.$$

By a similar computation we get at x

(12)
$$K(X, E_i)E_i = \Gamma_X((\Gamma_{E_i}A)E_i) .$$

We now assume that M has constant mean curvature, that is, trace A = constant. Under this assumption we prove

(13)
$$\sum_{i=1}^{n} (\boldsymbol{\Gamma}_{E_i} \boldsymbol{A}) \boldsymbol{E}_i = 0.$$

Indeed, since $V_{E_i}A$ is a symmetric operator together with A, we get, by using Codazzi's equation,

$$g\left(\sum_{i=1}^{n} (\nabla_{E_i} A) E_i, Z\right) = \sum_{i=1}^{n} g(E_i, (\Gamma_{E_i} A) Z)$$
$$= \sum_{i=1}^{n} g(E_i, (\nabla_Z A) E_i)$$
$$= \operatorname{trace} (\nabla_Z A) = Z \cdot (\operatorname{trace} A) = 0.$$

Since this is valid for an arbitrary vector Z, we conclude (13). Substituting (13) in (12) we obtain

(14)
$$\sum_{i=1}^{n} K(X, E_{i})E_{i} = 0.$$

From (11) and (14) we get

(15)
$$(\varDelta' A)(X) = \sum_{i=1}^{n} [R(E_i, X), A] E_i.$$

The right-hand side can be computed as follows. By the Gauss equation, we have

$$R(E_i, X) = c(E_i \wedge X) + AE_i \wedge AX.$$

Thus

$$\sum_{i=1}^{n} R(E_i, X)AE_i = \sum_{i=1}^{n} c\{g(AE_i, X)E_i - g(E_i, AE_i)X\}$$
$$+ \sum_{i=1}^{n} \{g(AE_i, AX)AE_i - g(AE_i, AE_i)AX\}.$$

Here

$$\sum_{i=1}^{n} g(E_i, AE_i) = \text{trace } A ,$$

$$\sum_{i=1}^{n} g(AE_i, AE_i) = \sum_{i=1}^{n} g(A^2E_i, E_i) = \text{trace } A^2 ,$$

$$\sum_{i=1}^{n} g(AE_i, X)E_i = \sum_{i=1}^{n} g(E_i, AX)E_i = AX ,$$

and

$$\sum_{i=1}^{n} g(AE_{i}, AX)AE_{i} = A \sum_{i=1}^{n} g(E_{i}, A^{2}X)E_{i} = A(A^{2}X) = A^{3}X.$$

Hence

$$\sum_{i=1}^{n} R(E_i, X) A E_i = c A X - c(\operatorname{trace} A) X + A^3 X - (\operatorname{trace} A^2) A X.$$

Similarly, we get

$$\sum_{i=1}^{n} AR(E_i, X)E_i = cAX - cnAX + A^3X - (\text{trace } A)A^2X.$$

From these two equations we obtain

$$\sum_{i=1}^{n} [R(E_i, X), A] E_i = ncAX - (\text{trace } A^2)AX$$
$$- c(\text{trace } A)X + (\text{trace } A)A^2X,$$

that is, (15) gives

(16)
$$\Delta' A = ncA - (\operatorname{trace} A^2)A - c(\operatorname{trace} A)I + (\operatorname{trace} A)A^2,$$

where I is the identity transformation. From (9), we obtain

(17)
$$\frac{1}{2}\Delta f = cn(\operatorname{trace} A^2) - (\operatorname{trace} A^2)^2 - c(\operatorname{trace} A)^2 + (\operatorname{trace} A)(\operatorname{trace} A^3) + g(\nabla A, \nabla A).$$

In particular, if M is minimal in \overline{M} , that is, trace A = 0, then

(16')
$$\Delta' A = ncA - (\operatorname{trace} A^2)A,$$

(17')
$$\frac{1}{2}\Delta f = cnf - f^2 + g(\nabla A, \nabla A),$$

In the case where M is the unit sphere S^{n+1} (so that c = 1), (16') and (17') are found in Simons [8].

We shall now transform (17) into a form which is convenient for our applications. We first prove

Lemma. Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Then, for any constant c,

$$nc \operatorname{tr} A^2 - (\operatorname{tr} A^2)^2 - c(\operatorname{tr} A)^2 + (\operatorname{tr} A)(\operatorname{tr} A^3) = \sum_{i < j} (\lambda_i - \lambda_j)^2 (c + \lambda_i \lambda_j).$$

Proof. Since the equality is trivial for n = 1, assume that it is valid for the degree n - 1. Then the left-hand side is equal to

$$nc\left(\sum_{i=1}^{n-1}\lambda_{i}^{2}+\lambda_{n}^{2}\right)-\left(\sum_{i=1}^{n-1}\lambda_{i}^{2}+\lambda_{n}^{2}\right)^{2} \\ -c\left(\sum_{i=1}^{n-1}\lambda_{i}+\lambda_{n}\right)^{2}+\left(\sum_{i=1}^{n-1}\lambda_{i}+\lambda_{n}\right)\left(\sum_{i=1}^{n-1}\lambda_{i}^{3}+\lambda_{n}^{3}\right) \\ =\left\{c(n-1)\left(\sum_{i=1}^{n-1}\lambda_{i}^{2}\right)-\left(\sum_{i=1}^{n-1}\lambda_{i}^{2}\right)^{2}-c\left(\sum_{i=1}^{n-1}\lambda_{i}\right)^{2}+\left(\sum_{i=1}^{n-1}\lambda_{i}\right)\left(\sum_{i=1}^{n-1}\lambda_{i}^{3}\right)\right\} \\ +\left\{c\left(\sum_{i=1}^{n-1}\lambda_{i}^{2}\right)-2c\left(\sum_{i=1}^{n-1}\lambda_{i}\right)\lambda_{n}+c(n-1)\lambda_{n}^{2}\right\} \\ +\sum_{i=1}^{n-1}\left(\lambda_{i}^{3}\lambda_{n}-2\lambda_{i}^{2}\lambda_{n}^{2}+\lambda_{i}\lambda_{n}^{3}\right).$$

372

On the above right side the first term is, by inductive assumption, equal to

$$\sum_{1\leq i< j< n} (\lambda_i - \lambda_j)^2 (c + \lambda_i \lambda_j) ,$$

the second is equal to

$$\sum_{i< n} c(\lambda_i - \lambda_n)^2$$
,

and the third is equal to

$$\sum_{i< n} \lambda_i \lambda_n (\lambda_i - \lambda_n)^2$$

Therefore the whole sum is equal to

$$\begin{split} &\sum_{1\leq i< j< n} (\lambda_i - \lambda_j)^2 (c + \lambda_i \lambda_j) + \sum_{i< n} (\lambda_i - \lambda_n)^2 (c + \lambda_i \lambda_n) \\ &= \sum_{i< j} (\lambda_i - \lambda_j)^2 (c + \lambda_i \lambda_j) , \end{split}$$

which completes the proof of the lemma.

Now for each point x of the hypersurface M, let $\{e_1, \dots, e_n\}$ be an orthonormal basis in $T_x(M)$ such that $Ae_i = \lambda_i e_i$, $1 \le i \le n$. By the Gauss equation (3) we see that the sectional curvature K_{ij} for the 2-plane spanned by e_i and e_j , $i \ne j$, is equal to $c + \lambda_i \lambda_j$. Thus (17) can be written as follows:

(18)
$$\frac{1}{2} \Delta f = \sum_{i < j} (\lambda_i - \lambda_j)^2 K_{ij} + g(FA, FA).$$

2. Main results

Let M be a connected hypersurface immersed with constant mean curvature in a space form \overline{M} of dimension n + 1 with constant curvature, say, c. We establish the following lemmas.

Lemma 1. If M is compact and has non-negative sectional curvature (for all 2-planes), then at every point of M we have

$$\nabla A = 0$$
 and $(\lambda_i - \lambda_j)^2 K_{ij} = 0$ for all i, j .

In particular, the eigenvalues of A are constant (where the field of unit normals ξ is defined).

Proof. By assumption, $K_{ij} \ge 0$. From the formula (18) we have $\Delta f \ge 0$. Since M is compact, we conclude that f is constant and $\Delta f = 0$ (see, for instance, Yano [10, p. 215] or Kobayashi-Nomizu [4, Note 14]). Thus we get VA = 0 and $(\lambda_i - \lambda_j)K_{ij} = 0$ for all i, j.

Lemma 2. If M has non-negative sectional curvature, and $f = \text{trace } A^2$ is constant on M, then we have the same conclusions as Lemma 1.

Proof. This is obvious from the formula (18) itself.

Lemma 3. Under the assumptions of Lemma 1 or Lemma 2, either M is totally umbilical or A has exactly two distinct constants as eigenvalues at every point.

Proof. As we already know, the eigenvalues of A remain constant (in its domain of definition). Thus the set of umbilics is an open set in M. Since it is obviously a closed set, either M is totally umbilical or M has no umbilic. In the second case, we show that A has at most (hence exactly) two eigenvalues at any point x. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of A at x. We may assume that $\lambda_1 > 0$ for the following reason. If $\lambda_1 \le 0$, then $\lambda_n \le 0$. Since $\lambda_n = 0$ implies $\lambda_1 = \cdots = \lambda_n = 0$ contrary to our premise, we must have $\lambda_n < 0$. We may then change the field of unit normals ξ around x into $-\xi$ thus changing A into -A, whose largest eigenvalue $-\lambda_n$ is positive. Having assumed that $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ with $\lambda_1 > 0$, we have $K_{12} \ge K_{13} \ge \cdots \ge K_{1n}$ and these are all non-negative by assumption. Assume that p is the largest integer such that $K_{1p} > 0$ and $K_{1p+1} = 0$ (set p = n if $K_{1n} > 0$, although we see in a moment that this does not arise). From the second conclusion of Lemma 1 or 2, we get

$$(\lambda_1 - \lambda_i)^2 K_{1i} = 0$$
 for all $1 \le i \le p$,

which imply that

$$\lambda_1 = \cdots = \lambda_p = \lambda$$
, say.

Here $p \neq n$, since x is not an umbilic. In addition we have

$$K_{1n+1}=\cdots=K_{1n}=0,$$

that is,

$$c + \lambda_1 \lambda_{n+1} = \cdots = c + \lambda_1 \lambda_n = 0$$

which imply that

$$\lambda_{n+1} = \cdots = \lambda_n = -c/\lambda.$$

This proves our assertion that A has at most two distinct eigenvalues.

With these preparations we shall now prove our main results.

Theorem 1. Let M be a complete Riemannian manifold of dimension n with non-negative sectional curvature, and $\phi: M \to R^{n+1}$ an isometric immersion with constant mean curvature into a Euclidean space R^{n+1} . If $f = \text{trace } A^2$ is constant on M, then $\phi(M)$ is of the form $S^p \times R^{n-p}$, $0 \le p \le n$, where R^{n-p} is an (n-p)-dimensional subspace of R^{n+p} , and S^p is a sphere in the Euclidean subspace perpendicular to R^{n-p} . Except for the case p = 1, ϕ is an imbedding.

374

Poorf. We first assume that M is simply connected. By Lemma 3 we know that either M is totally umbilical or A has exactly two distinct constant eigenvalues λ, μ , where $\lambda \neq 0$ has multiplicity $p, 1 \leq p \leq n - 1$, and μ is actually 0 (since c = 0 in the proof of Lemma 3). In the first case, it follows that $\phi(M)$ is actually a Euclidean hyperplane \mathbb{R}^n or a sphere S^n , depending on whether A is 0 or not. Since M and $\phi(M)$ are simply connected, we conclude that ϕ is an imbedding (cf. Theorem 4.6, p. 176 of Kobayashi-Nomizu [3]).

In the second case, we can define two distributions

$$T^{1}(x) = \{x \in T_{x}(M); AX = \lambda X\},\$$

and

$$T^{0}(x) = \{X \in T_{x}(M); AX = 0\}$$

of dimensions p and n - p, respectively. Knowing that λ is a constant, it is easy to see that both distributions are differentiable, involutive and totally geodesic on M. Thus M is the Riemannian direct product $M^1 \times M^0$, where M^1 and M^0 are the maximal integral manifolds of T^1 and T^0 , respectively, through a certain point of M. From this point on, we may use the same arguments as those for Proposition 3 in Nomizu [6] to conclude that $\phi(M)$ is of the form $S^p \times R^{n-p}$. If $p \ge 2$, then $\phi(M)$ is simply connected and we conclude that ϕ is an imbedding. (If p = 1, then M may be $R \times R^{n-1}$ which is immersed onto $S^1 \times R^{n-1}$ in R^{n+1} .)

In the general case, let \hat{M} be the universal covering manifold on M with the projection $\pi: \hat{M} \to M$. With respect to the naturally induced metric, \hat{M} and $\hat{\phi} = \phi \circ \pi$ satisfy the same assumptions as those for M and ϕ . Thus $\hat{\phi}(\hat{M})$ $= \phi(M)$ is of the form $S^p \times R^{n-p}$. If $p \neq 1$, then $\hat{\phi}$ is an imbedding and so is ϕ .

Corollary 1. If M is, in particular, minimal in Theorem 1, then $\phi(M)$ is a hyperplane and ϕ is an imbedding.

Remark 1. Without completeness of M the corresponding local versions of Theorem 1 and Corollary 1 are valid.

Remark 2. Theorem 1 may be thought of as a partial extension of a result of Klotz and Osserman [2].

Corollary 2. Let M be a connected compact Riemannian manifold of dimension n with non-negative sectional curvature. If $\phi: M \to R^{n+1}$ is an isometric immersion with constant mean curvature, then $\phi(M)$ is a hypersphere and ϕ is an imbedding.

Proof. By Lemma 1, we know that f is a constant. Since $\phi(M)$ is compact, we must have p = n in the conclusion of Theorem 1.

Remark. Corollary 2 is slightly stronger than the classical theorem of Süss [9], where M is assumed to be a convex hypersurface.

Before we prove our results for hypersurfaces in the unit sphere S^{n+1} (i.e. the standard model for a space form of dimension n + 1 with constant sectional

curvature 1), we explain a few examples. In \mathbb{R}^{n+2} with usual inner product, $S^{n+1} = \{x \in \mathbb{R}^{n+2}; (x, x) = 1\}.$

For any unit vector a and for any r, $0 \le r < 1$, let

$$\sum^{n} = \{x \in S^{n+1}; (x, a) = r\}.$$

When r = 0, \sum^{n} is a great sphere in S^{n+1} . When r > 0, we call \sum^{n} a small sphere in S^{n+1} . By elementary computation we find that the second fundamental form of \sum^{n} as a hypersurface of S^{n+1} is given by

$$A = \frac{r}{\sqrt{1-r^2}} I \qquad (\text{up to a sign}) ,$$

where *I* is the identity transformation. The mean curvature is constant and so is the function $f = \text{trace } A^2$. It is known that a totally umbilical hypersurface in S^{n+1} is locally (globally if it is complete) $\sum_{i=1}^{n}$; in particular, it is a great sphere if it is totally geodesic.

Another example is a product of spheres $S^{p}(r) \times S^{q}(s)$, where p + q = nand $r^{2} + s^{2} = 1$. For such p, q > 0, consider R^{n+2} as $R^{p+1} \times R^{q+1}$ and let

$$S^{p}(r) = \{x \in R^{p+1}; (x, x) = r^{2}\},\$$

$$S^{q}(s) = \{y \in R^{q+1}; (y, y) = s^{2}\}.$$

Then

$$S^{p}(r) \times S^{q}(s) = \{(x, y) \in \mathbb{R}^{n+2}; x \in S^{p}(r), y \in S^{q}(s)\}$$

is a hypersurface of S^{n+1} . The second fundamental form A has eigenvalues s/r of multiplicity p and -r/s of multiplicity q. Both the mean curvature and the function f are constants. $S^{p}(r) \times S^{u}(s)$ is minimal if and only if $r = \sqrt{p/n}$.

In particular, consider the case n = 2. For r, s such that $r^2 + s^2 = 1$, $S^1(r) \times S^1(s)$ in S^3 is called a *flat torus*. When $r = s = 1/\sqrt{2}$, it is a minimal surface in S^3 .

We now prove

Theorem 2. Let M be an n-dimensional complete Riemannian manifold with non-negative sectional curvature, and $\phi: M \to S^{n+1}$ an isometric immersion with constant mean curvature. If $f = \text{trace } A^2$ is constant on M, then either (1) $\phi(M)$ is a great or small sphere in S^{n+1} , and ϕ is an imbedding;

or

(2) $\phi(M)$ is a product of spheres $S^{p}(r) \times S^{q}(s)$, and for $p \neq 1$, n - 1, ϕ is an imbedding.

Proof. We may assume that M is simply connected. By Lemma 3 we know that either M is totally umbilical, in which case we get the conclusion (1), or A has two constants λ, μ such that $\lambda \mu = -1$ as the eigenvalues at all points. Let p, q be the multiplicities of λ, μ (so that p + q = n). It follows that M is the direct product $M_1 \times M_2$, where M_1 is a p-dimensional space of constant

376

curvature $1 + \lambda^2$, and M_2 is a q-dimensional space of constant curvature $1 + \mu^2$. (We may prove this fact again by considering the distributions of eigenspaces for λ and μ ; for the detail, see Ryan [7]). If $p \neq 1$, then $M_1 = S^p(r)$ where $r = 1/\sqrt{1 + \lambda^2}$. Similarly, if $q \neq 1$, then $M_2 = S^q(s)$ where $s = 1/\sqrt{1 + \mu^2}$. Of course, $r^2 + s^2 = 1$. If p = 1 or q = 1, we take R^1 instead of $S^1(r)$ or $S^1(s)$. At any rate, the type number for ϕ (i.e. the rank of A) is equal to n everywhere. Thus if $n \geq 3$, the classical rigidity theorem (cf., for example, Ryan [7]) shows that $\phi(M)$ is the product of spheres $S^p(r) \times S^q(s)$ in S^{n+1} and that ϕ is an imbedding unless p = 1 or q = 1. It remains to show that, for n = 2, $\phi(M)$ is a flat torus. But this can be done by an elementary argument. We have thus proved Theorem 2.

Corollary 1. If M is, in particular, minimal in Theorem 2, then $\phi(M)$ is a great sphere or $S^p(\sqrt{p/n}) \times S^{n-p}(\sqrt{(n-p)/n})$.

Remark. Without completeness of M, the corresponding local versions of Theorem 2 and Corollary 1 are valid.

Corollary 2. Let M be a connected compact Riemannian manifold of dimension n with non-negative sectional curvature. If $\phi: M \to S^{n+1}$ is an isometric immersion with constant mean curvature, then (1) or (2) of Theorem 2 holds.

The following special case is worth mentioning.

Corollary 3. Let M be a connected compact minimal hypersurface immersed in S^{n+1} . If M has positive sectional curvature, then M is imbedded as a great sphere.

Remark. Corollary 3 is a generalization of a result of Almgren [1] which says that a compact minimal surface of genus 0 in S^3 is a great sphere.

Bibliography

- [1] F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and extensions of Bernstein's theorem, Ann. of Math. 84 (1966) 277-292.
- [2] T. Klotz & R. Osserman, Complete surfaces in E^a with constant mean curvature, Comment, Math. Helv. 41 (1966/67) 313-318.
- [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- [4] —, Foundations of differential geometry, Vol. II, Interscience, New York, 1969.
- [5] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [6] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968) 46–59.
- [7] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969) 363-388. Thesis, Brown University, 1968.
- [8] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
- [9] W. Süss, Zur relativen Differentialgeometrie V, Tôhoku Math. J. 31 (1929) 202–209.
- [10] K. Yano, The theory of Lie derivatives and its applications, North Holland, Amsterdam, 1957.

BROWN UNIVERSITY UNIVERSITY OF NOTRE DANE