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1. Introduction

In an attempt to reduce the resonant bending of a struc
ture, intensive research on plates vibrations have been done over 
the years. It is well known that flexural vibrations in a plate can 
be damped by application of a viscoelastic layer constrained by a 
thin, elastic layer. Furthermore, the addition of a spacer between 
the plate to be damped and the viscoelastic layer have been found 
to enhance the damping performance. Kerwin [1] has shown that 
energy from such a structure is dissipated when shear deformation 
is induced in the viscoelastic layer. The spacer and the constrain
ing layer enhance the damping effectiveness by inducing addi
tional shear deformation in the viscoelastic layer.

The purpose of this work is to develop a rapid but rigorous 
tool to help acoustics engineers understand and predict the vibro- 
acoustic behavior of a constrained-layer damping of a plate. A 
rectangular four layered simply supported baffled plate is consid
ered. In addition, the plate is assumed to be semi-complex in the 
sense that it can support added masses, stiffeners and several 
types of excitation (i.e point, line, surface forces and moment). 
The problem is formulated using a variational approach and 
solved by the Rayleigh-Ritz method. The modeling of the stiffen- 
ers is based on an equivalent orthotropic layer. Since the plate is 
assumed to radiate in air, added mass due to fluid loading is ig
nored. However, possible cross modal coupling due to stiffening 
or the type of the excitation is accounted for. This is done using a 
novel method for evaluating the radiation impedance matrix based 
on multipoles expansions of Green's kernel [2], The numerical 
evaluation of the radiated power is done easily from the radiation 
impedance matrix.

2. Theoretical model

Several studies have been devoted to modeling plates 
constrained damping [3,4,5]. The most comprehensive is based on 
the Reissner-Mindlin's hypothesis which assumes that each layer 
could have pure bending, shear deformation and traction-com
pression effects [5], These models yield an accurate representation 
of constrained damping but need long computational time, hi ad
dition, most existing studies have been limited to the vibrational 
problem. The model developed herein is inspired from the work 
done by M.R. Garrison et al. [3], It is a simplification in compari
son with the Reissner-Mindlin's model in the sense that it uses the 
appropriate assumptions for each layer. The displacement field of 
the elastic outer layer is considered to allow for pure bending 
(Love-Kirchhoffs assumptions) and traction-compression effects.
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where «,• and v,- are the transverse displacements of the outer 
layers (/ = 1 for the plate to be damped and / = 3 for the con
straining layer), w is the normal displacement of the plate.

For the viscoelastic inner layer it is assumed that it can 
support both bending, traction-compression and shear deforma

tion. The displacement field in the viscoelastic layer is completly 
defined by the continuity of the displacement at its junction with 
the constraining layers. Consequently the displacement field in 
the vicoelastic layer is obtained by linear interpolation between 
the two outer layers displacements and hence it is expressed in 
term of the assumed displacement of the outer layers .
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w(x,y,z,t)  = w (x ,y ,t)

hlf h2, h3 and hs represent respectively the thicknesses of the 
plate to be damped, the viscoelastic layer, the constraining layer 
and the spacer.

Since the spacer is assumed to be rigid in shear and to 
have no bending stiffness, its motion follows the motion of the 
plate to be damped. Furthermore, in order to allow for the 
equivalent orthotropic modeling of stiffeners, the four layers are 
assumed to be orthotropic thus the stress field is deduced from the 
displacement field using an orthotropic matrix of elasticity, which 
satisfies the plane stresses hypothesis for each layer.

Once the displacement field is defined, the problem is 
formulated using a variational approach. The functional of 
Hamilton is written as

H(u) = j ( T - V  + W)dt (3)

where T is the kinetic energy (rotary inertia is neglected), V the 
potential energy, W is the work of the external forces and ü 
represents the unknown displacements.

In order to study pure bending, shear deformation and 
traction-compression effects, five degrees of freedom are needed, 
hence there are five unknown displacements. These unknown 
displacements are written in terms of series of sine functions that 
allow for simply supported boundary conditions. The coefficients 
of the sine functions are solved for using the Rayleigh-Ritz ap
proach which leads to the classical system of linear equations

[ # }  + [ # }  = {/} (4 )

where [M\ and |X] represent respectively the mass and stiffness 
matrices which are deduced from the kinetic and potential energy. 
{/} is the generalized vector of forces and {a} is the vector of the 
coefficients of the unknown displacement field.

3. Results

The developed model has been validated by comparison 
with a model based on Reissner-Mindlin's theory for the three
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layers[6], and good agreement has been found for the different 
vibro-acoustic indicators.

In order to show the effect of the constrained-layer damp
ing, the results (mean square velocity, acoustic ratiated power, 
radiation coefficient) of the present model (without a spacer) are 
compared with the predicted behavior o f an undamped plate. All 
of the results are obtained using a primary layer which is 0.533 m 
long, 0.203 m wide, 1.9 mm thick and whose density is 2762 
kg/rn3 (aluminum). The Young's modulus is 68.9 GPa and the loss 
factor is 0.005. The thickness o f the viscoelastic layer is 0.1 mm, 
the Young's modulus is 3.45 MPa, the loss factor is 0.1 and the 
density is 1024 kg/m3. The constrained layer is made with alu
minum whose properties are the same as the primary layer and a 
thickness o f 0.25 mm.

Figure 1 shows the effect o f constrained damping on the 
mean square velocity. This effect is more pronounced at lower 
frequencies and around the resonances. The radiation efficiency is 
shown in Fig. 2. As expected it is unchanged by the treatment, 
because it only characterizes the primary layer. Finally, the radi
ated power decreases mainly due to the decrease o f the mean 
square velocity as seen in Fig. 3.

4. Conclusion

The proposed model allows for an accurate modeling of 
the physics with minor computational effort. This is important 
since the main objective o f the study is the development of a 
simple and accurate model for viscoelastic damping. Furthermore, 
the model combines well with a novel integral approach for the 
calculation of the radiated field thus allowing for the investigation 
o f the effect o f viscoelastic damping on the radiated field.
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Frequency (Hz)

fig. 1 Mean square velocity, comparison between an undamped 
plate and the same plate with constrained layer damping.

Frequency (Hz)

fig. 2 Radiated coefficient, comparison between an undamped 
plate and the same plate with constrained layer damping.

Frequency (Hz)

fig. 3 Radiated power, comparison between an undamped plate 
and the same plate with constrained layer damping.
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