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ABSTRACT

A new formulation of an approximate conservation relation of wave-activity pseudomomentum is derived,
which is applicable for either stationary or migratory quasigeostrophic (QG) eddies on a zonally varying basic
flow. The authors utilize a combination of a quantity A that is proportional to wave enstrophy and another
quantity E that is proportional to wave energy. Both A and E are approximately related to the wave-activity
pseudomomentum. It is shown for QG eddies on a slowly varying, unforced nonzonal flow that a particular
linear combination of A and E, namely, M [ (A 1 E)/2, is independent of the wave phase, even if unaveraged,
in the limit of a small-amplitude plane wave. In the same limit, a flux of M is also free from an oscillatory
component on a scale of one-half wavelength even without any averaging. It is shown that M is conserved under
steady, unforced, and nondissipative conditions and the flux of M is parallel to the local three-dimensional group
velocity in the WKB limit. The authors’ conservation relation based on a straightforward derivation is a gen-
eralization of that for stationary Rossby waves on a zonally uniform basic flow as derived by Plumb and others.

A dynamical interpretation is presented for each term of such a phase-independent flux of the authors or
Plumb. Terms that consist of eddy heat and momentum fluxes are shown to represent systematic upstream
transport of the mean-flow westerly momentum by a propagating wave packet, whereas other terms proportional
to eddy streamfunction anomalies are shown to represent an ageostrophic flux of geopotential in the direction
of the local group velocity. In such a flux, these two dynamical processes acting most strongly on the node lines
and ridge/trough lines of the eddy streamfunction field, respectively, are appropriately combined to eliminate
its phase dependency. The authors also derive generalized three-dimensional transformed Eulerian-mean equa-
tions with the residual circulation and eddy forcing both expressed in phase-independent forms.

The flux may not be particularly suited for evaluating the exact local budget of M, because of several
assumptions imposed in the derivation. Nevertheless, these assumptions seem qualitatively valid in the assessment
based on observed and simulated data. The wave-activity flux is a useful diagnostic tool for illustrating a
‘‘snapshot’’ of a propagating packet of stationary or migratory QG wave disturbances and thereby for inferring
where the packet is emitted and absorbed, as verified in several applications to the data. It may also be useful
for routine climate diagnoses in an operational center.

1. Introduction

For small-amplitude disturbances superimposed on
a basic flow, wave activity satisfies a conservation
law (or an approximate one in some circumstances);
that is,
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]A
1 = · F 5 D, (1)

]t

where A and F are the density of wave activity and its
flux, respectively. The term D vanishes when the wave
and basic flow are both conservative. When the distur-
bances are slowly modulated in the Wentzel–Kramers–
Brillouin (WKB) sense—that is, weakly dissipated
waves for which the group velocity Cg is well defined—
a simple relation F 5 CgA holds and we can hence
illustrate the wave packet propagation by plotting F,
even on a sheared basic flow. The divergence and con-
vergence of F indicate where the wave packet is emitted
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and decaying (or absorbed), respectively. Identifying
these wave ‘‘sources’’ or ‘‘sinks’’ is important in un-
derstanding the dynamics behind various atmospheric
phenomena. It is convenient for this purpose if F and
A are independent of the wave phase so as to represent
phase-averaged statistics. However, the unaveraged A
and F inherently include an oscillatory component on
a scale of one-half wavelength, because by definition
they are quadratic terms in disturbance amplitude. This
half-wavelength component can be removed with some
sort of averaging.

In a traditional framework based on the separation of
eddies from a zonally uniform basic flow, the conven-
tional Eliassen–Palm (E–P) flux has been proven to be
a powerful tool for diagnosing propagation of Rossby
waves and their interactions with a zonal-mean flow on
the meridional plane (e.g., Andrews and McIntyre 1976;
Edmon et al. 1980; McIntyre 1982; Andrews et al.
1987). The E–P flux is a flux of wave-activity pseu-
domomentum on the meridional plane. Its meridional
and vertical components include zonally averaged eddy
momentum and temperature fluxes, respectively, which
ensure the phase independency of the flux. Since the
flux requires no time averaging, it can by nature rep-
resent a ‘‘snapshot’’ 1 of the wave propagation on the
meridional plane. However, it cannot represent the prop-
agation in the zonal direction.

If one is interested in the evolution of a locally forced
wave packet that influences local weather and climate,
its zonal propagation needs to be diagnosed explicitly.
Even the zonal inhomogeneities in a basic flow may
need to be taken into account in representing the wave
packet propagation. In the troposphere, especially in the
wintertime Northern Hemisphere (NH), the mean west-
erlies meander in the presence of thermally and topo-
graphically forced planetary waves. This meander sub-
stantially modulates amplitudes and propagation char-
acteristics of synoptic-scale, migratory cyclones and an-
ticyclones, including the localization of major storm
tracks (e.g., Blackmon et al. 1977; Wallace et al. 1988).
Furthermore, it has been indicated that cyclogenesis
along storm tracks may be caused by the ‘‘downstream
development’’ of baroclinic wave packets (e.g., Chang
1993). Even the propagation of quasi-stationary distur-
bances with longer wavelengths is complicated by zonal
asymmetries in the background westerlies (e.g., Sim-
mons et al. 1983; Hoskins and Ambrizzi 1993; Naoe et
al. 1997). Recent studies suggested that local absorption
of stationary Rossby wave packets is instrumental in
the formation of blocking phenomena at certain geo-

1 Throughout this paper, we use the term ‘‘snapshot’’ to signify a
particular phase of waves. It is used for referring not only to the
status of waves at a particular moment but also to a composite or
linear regression map that represents spatial distribution of typical
local anomalies at a particular wave phase based on a number of
realizations at different dates and/or times.

graphical locations where the background westerlies are
weaker than the zonal average (e.g., Nakamura et al.
1997).

For transient, migratory eddies, time averaging is ap-
propriate for eliminating the half-wavelength oscillatory
component in A and F, which admits the zonal com-
ponent in F that represents the zonal propagation. The
extended E–P flux as formulated by Hoskins et al.
(1983) and Trenberth (1986) has been widely used, since
it can represent the zonal propagation of a (small-am-
plitude) wave packet relative to the time-mean flow.
Plumb (1986, hereafter P86) defined a flux of wave-
activity pseudomomentum that can delineate three-di-
mensional propagation (relative to the earth) of transient
eddies embedded on a zonally asymmetric basic flow.
The flux includes products of velocity and temperature
perturbations. The phase independency is ensured for
the flux of P86 and extended E–P flux by time averaging,
but therefore they are not applicable to a snapshot anal-
ysis.

For stationary eddies, of course, time averaging is not
equivalent to phase averaging and therefore inappro-
priate. Hence, for an analysis of stationary eddies or a
snapshot analysis of migratory eddies, a conservation
relation meant to represent three-dimensional wave
propagation with a wave-activity flux that is free from
any oscillatory component should be derived without
any averaging. Plumb (1985, hereafter P85) was the first
to derive such a conservation law for small-amplitude
stationary eddies on a zonally uniform basic flow.2 The
wave-activity flux Fs based upon his conservation re-
lation is phase independent but it includes no terms
explicitly averaged. Therefore, it is suited for an analysis
of stationary eddies. In fact, its usefulness has been
demonstrated by him and others (e.g., P85; Karoly et
al. 1989) in applications to large-scale stationary dis-
turbances observed in the troposphere. Kuroda (1996)
extended Plumb’s formula to an axially symmetric flow
on a sphere. Its generalization to finite-amplitude eddies
has been achieved by Brunet and Haynes (1996). Since
the flux of P85 and its generalized forms mentioned
above were defined for a zonally uniform basic flow,
however, the usefulness and applicability to the real at-
mosphere are somewhat limited, especially for the NH
wintertime troposphere. Furthermore, in each of their
derivations a supplementary nondivergent flux (e.g., G
in P85) was introduced rather heuristically, in order to
render the flux independent of wave phase. Yet, the
physical meaning of such a supplementary flux as G is
not totally clear, nor a physical interpretation of each
term that composes such a phase-independent wave-
activity flux.

In this study, we attempt to generalize Fs of P85 and

2 In his paper a factor of ½ is missing in the formula of Fs, which
is apparently a typo.
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its conservation law so as to be applicable to small-
amplitude quasigeostrophic (QG) disturbances, either
stationary or migratory, that are superimposed on a zon-
ally varying basic flow. We derive an approximate con-
servation relation of the wave-activity pseudomomen-
tum and its phase-independent flux through an approach
different from and more straightforward than that of
P85. Our flux will be shown to be parallel to the local
three-dimensional group velocity of Rossby waves, and
hence to be suited for a snapshot diagnosis of the three-
dimensional propagation of wave packets of migratory
and stationary eddies on a zonally varying basic flow.
We argue through our derivation that phase-independent
fluxes of ours and P85 may be interpreted as a super-
position of two dynamical aspects of the QG wave pack-
et propagation, though P85 did not clarify physical
meanings of individual components of Fs. Furthermore,
a physical meaning of the supplementary flux G in P85
becomes clear through our particular approach, although
such a flux does not appear explicitly in our derivation.
It is also verified that our flux is indeed nearly phase-
independent in applications to simulated and observed
atmospheric data. Finally, we will derive formulas that
present an instantaneous feedback from a propagating
wave packet upon a basic flow on which it is embedded
and the associated ageostrophic residual circulation as
well. A summary of our results for stationary distur-
bances on a zonally varying basic flow has been pub-
lished in Takaya and Nakamura (1997, hereafter TN97).

2. Formulation

Our approach to formulate a phase-independent
wave-activity flux for QG eddies without any averaging
is based on a simple idea. If a perturbation stream-
function (c9) is proportional to the sine of the wave
phase, wave enstrophy and wave energy are proportional
to the sine squared and cosine squared, respectively.
Then, an appropriate linear combination of these two
quantities (one proportional to the wave enstrophy and
the other to the wave energy) can be phase-independent
even without averaging. In practice, a quantity A, en-
strophy divided by the magnitude of the basic potential
vorticity (PV) gradient, and another quantity E, energy
divided by the wave intrinsic phase speed, are both ma-
nipulated. The zonal mean of A has been related to
‘‘pseudomomentum’’ (e.g., Andrews and McIntyre
1976). The zonally averaged E has also been shown to
represent pseudomomentum (Uryu 1974), that is, the
second-order mean westerly momentum that a wave
packet could add to (subtract from) the zonal-mean basic
flow when emitted (absorbed). Thus, the phase-inde-
pendent quantity M defined as M [ (A 1 E)/2 in this
study is also related to the wave-activity pseudomo-
mentum.

We begin with the PV (q) equation on the log-pressure
coordinate with the QG scaling:

]q ]q ]q
1 u 1 y 5 s, (2)

]t ]x ]y

where (u, y)T 5 u 5 (2cy, cx)T is the geostrophic ve-
locity (superscript T indicates vector transpose), and s
represents a nonconservative term. On a b plane, PV is
defined as

2 2 2] c ] c f ] p ]c0q 5 f 1 by 1 1 1 , (3)0 2 2 21 2]x ]y p ]z N ]z

where f 5 f 0 1 by is the Coriolis parameter, z 5 2H
lnp where p 5 (pressure/1000 hPa) and H is a constant
scale height, and N 2 5 (Rapk/H)(]u/]z) is the buoyancy
frequency squared where u denotes potential tempera-
ture, Ra the gas constant of dry air, and k is defined as
Ra normalized by the specific heat of air for constant
pressure.

We consider small-amplitude (order e) perturbations
on a steady zonally inhomogeneous basic flow U 5
(U, V, 0)T. That is,

u 5 U(x, y, z) 1 u9, y 5 V(x, y, z) 1 y9,

c 5 C(x, y, z) 1 c9, q 5 Q(x, y, z) 1 q9, (4)

where the three-dimensional perturbations are denoted
by primes. Then, after neglecting O(e2) terms, the lin-
earized PV equation may be written as

]q9
1 U · = q9 1 u9 · = Q 5 s9, (5)H H]t

where

2 2 2] c9 ] c9 f ] p ]c90q9 5 1 1 , (6)
2 2 21 2]x ]y p ]z N ]z

and =H is the horizontal gradient operator. We now as-
sume that the wavelike perturbations consist of rela-
tively narrow ranges of wavenumber and frequency, so
that they bear a well-defined phase speed. For such per-
turbations we define A and E as A [ pq92/(2|=HQ|) and
E [ pe/(|U| 2 CP),3 respectively, where

2 2 21 ]c9 ]c9 f ]c90e 5 1 1 (7)1 2 1 2 1 2[ ]2 ]x ]y N ]z

is wave energy and CP the wave phase speed in the
direction of U. In the following, we use CU as the vector
that represents the phase propagation in the direction of
U; that is,

3 The definition of a quantity E is somewhat similar to that of wave
action A 5 [e]/ where denotes the intrinsic wave frequency andv̂, v̂
[ ] the zonal averaging. However, those two quantities have different
physical properties from one another. For example, A is conserved
in the exact sense even for a zonally varying basic flow, but E is so
only for a zonally uniform basic flow. For disturbances with the zonal
wavenumber k embedded on a zonally uniform basic flow, kA 5
2[E] holds [see Bretherton and Garret (1968) and Andrews et al.
(1987)].
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TU U V
C 5 C 5 C , C , 0 . (8)U P P P1 2|U| |U| |U|

Note that CP is equal to the zonal phase speed when U
is purely zonal.

Since the wave-activity pseudomomentum is exactly
conserved only for a zonally uniform basic flow, we
will derive its approximate conservation relation for a
zonally varying basic flow under the following two as-
sumptions. First, we assume that a steady basic flow is
nearly unforced; that is,

U · (=HQ) ø 0. (9)

Then, n [ =HQ/|=HQ| ø g(2V, U, 0)T/|U| holds, where
n is the unit vector in the direction of the PV gradient
and g 5 1 if the basic flow is ‘‘pseudoeastward’’ in the
same sense as the terminology of Andrews (1984) and
P86. Second, the standard WKB conditions are assumed,
where the basic state varies slowly horizontally and ver-
tically with scales much larger than the corresponding
wavelengths of the perturbations. Specifically, |=HQ|,
|U|, and n are assumed to vary slowly in space. We
further assume CP to be almost constant in the direction
of U.

There are at least two ways to derive an approximate
conservation relation of M. One is a derivation by means
of what may be called ‘‘local coordinate rotation.’’ If
at a particular location the X axis is taken to be in the
direction of U and the Y axis to be perpendicular to it
(Y . 0 for poleward in the NH), (5) can be converted
onto the local X–Y coordinate system as

]q9 ]C ]q9 ]Q ]c9
2 1 5 s9. (10)

]t ]Y ]X ]Y ]X

From (10), we can readily obtain an approximate con-
servation relation of M on the (X, Y) coordinate under
the aforementioned assumptions.4 Then, after rotating
the coordinate back, an explicit expression of the con-
servation relation on the latitude–longitude coordinate
is obtained. See appendix A for details.

For another approach, we directly manipulate the lin-
earized PV equation (5) on the latitude–longitude co-
ordinate system. Although rather complicated manipu-
lations are required, we adopt this method to specify
where the aforementioned approximations and assump-
tions need to be used in our derivation. Multiplying (5)
by pq9/|=HQ| yields the following equation of A:

2]A U · = q9H1 p 1 n · u9q9 5 D , (11)1[ ]]t 2|= Q|H

4 Starting with (10), one can even derive an approximate conser-
vation relation (31), simply following P85 based only on the equation
of A. As shown below, however, our derivation is more straightfor-
ward without any need of incorporating such an unknown nondiv-
ergent flux as G.

where D1 5 ps9q9/|=HQ|. In the case where the basic
state is zonally varying, the aforementioned WKB as-
sumptions may lead to the following two approximate
relations:

2p Uq9
= · 1 2|= Q| 2H

21 U C U pq9P5 = · (|U| 2 C ) 1P1 2[ ]|= Q| |U| |U| 2H

U C UPø = · (|U| 2 C ) 1 AP1 2[ ]|U| |U|
(1)5 = · (N 1 C A), (12)U

where N (1) [ (U 2 CU)A, and

pn · u9q9 ø = · E, (13)

with E defined as
2U(c9 2 e) 1 Vc9c9 x x y

p 2 Uc9c9 1 V(c9 2 e)x y yE 5 , (14) |U| 2f 0 (Uc9c9 1 Vc9c9)x z y z2N 

where subscripts denote partial derivatives. Note that
for a zonally uniform basic flow (V 5 0), E is closely
related to the extended E–P flux as defined by Trenberth
(1986). Thus, (11) yields the following equation of A:

]A
(1)1 = · (E 1 C A) 1 = · N 5 D . (15)U 1]t

In the case where the basic flow is zonally uniform (V
5 0), none of the aforementioned assumptions are re-
quired and hence (15) leads to an exact conservation
relation of A. Note that (15) becomes identical to (2.19)
in P86 after rearrangement of some terms.

Next, we multiply (5) by pc9/(|U| 2 CP) to yield the
following equation of E [ pe/(|U| 2 CP):

]E (k 3 = c9) · (c9= Q)H H2 p
]t |U| 2 CP

U CU2 pc9= q9 · 1H 1 2|U| |U| 2 CP

1
(1)1 = · R 5 D , (16)2|U| 2 CP

where D2 5 2ps9c9/(|U| 2 CP), k is an upward unit
vector, and

T2f 0(1)R 5 p 2c9c9 , 2c9c9 , 2 c9c9 .x t y t z t21 2N

Since CP is almost constant in the direction of U,

U U ]C V ]C ]CP P P· =C 5 1 5 ù 0P 1 2|U| |U| ]x |U| ]y ]X
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holds, which is used to show that a particular term in
(16) can be rewritten as

CU2pc9(= q9) ·H |U| 2 CP

C U VP (2) (3)ø = · (C E) 1 = · R 1 = · R ,U [ ]|U| 2 C |U| |U|P

(17)

with
T2f 0(2)R 5 p 2c9c9 , 2c9c9 , 2 (c9c9 ) ,xx xy xz21 2N

T2f 0(3)R 5 p 2c9c9 , 2c9c9 , 2 (c9c9 ) . (18)xy yy yz21 2N

Furthermore, another term in (16) yields

U
2p · (c9= q9) ø 2 pfn·(k 3 = q9) ø = · H, (19)H H|U|

where

eU 2 Uc9c9 2 Vc9c9 xx xy

p eV 2 Uc9c9 2 Vc9c9 xy yyH5 . (20) |U| 2f 0 2 (Uc9c9 1 Vc9c9 )xz yz2N 

Also, for an unforced basic flow, the second term of the
lhs of (16) yields the following approximate relation:

(k 3 = c9) · (c9= Q)H H (2)p ø = · N (21)
|U| 2 CP

with

k 3 = Q 1 U |= Q|H H(2) 2 2N 5 c9 5 2 c9 . (22)
2(|U| 2 C ) 2 |U| (|U| 2 C )P P

Finally, under the approximations mentioned earlier,
(16) is reduced to

]
(2)E 1 = · (H 1 C E ) 1 = · NU]t

R
5 D 1 , (23)2 |U| 2 CP

where the residual term R is given by

C U C VP P(1) (2) (3)R 5 2= · R 2 = · R 2 = · R . (24)
|U| |U|

This term can be simplified as

]e U ]e V ]e
R 5 p 1 C 1 CP P1 2]t |U| ]x |U| ]y

]q9 U ]q9 V ]q9
1 pc9 1 C 1 CP P1 2]t |U| ]x |U| ]y

]e ]e ]q9 ]q9
5 p 1 C 1 c9 1 C . (25)P P1 2[ ]]t ]X ]t ]X

For eddies with phase speed CP, R vanishes in the almost
plane-wave limit: that is, R 5 0. Again, for a zonally
uniform basic state, no such assumptions as above are
required in deriving (23) and hence it represents an exact
relation.

Now, we define a quantity M as

21 p q9 e
M [ (A 1 E ) 5 1 . (26)1 22 2 2|= Q| |U| 2 CH P

For a perturbation in the form of a plane wave; that is,
c9 5 c0 exp(z/2H) sin(kx 1 ly 1 mz 2 vt), M is
approximately represented as

4 2|K| c 0M ø , (27)
4|= Q|H

where K 5 [k, l, ( f 0N21)m]T is the wavenumber vector
and H21 K m is assumed. This relation is again exact
for a zonally uniform basic state. We can interpret M
as a generalization of small-amplitude pseudomomen-
tum for QG eddies onto a zonally varying basic flow.
Here M is phase independent in a sense that it is free
from the half-wavelength component without any time
or spatial averaging.

A conservation relation of M is obtained by combin-
ing (15) and (23):

]M R
1 = · W 5 D9 2 = · N 1 , (28)

]t 2(|U| 2 C )P

where D9 5 (D1 1 D2)/2 [ D0s9, N 5 (N (1) 1 N (2))/2
and W 5 (E 1 H)/2 1 CUM.

Before deriving an explicit expression of W, we will
show = · N also represents nonconservative effects.
Combining N (1) with N (2), we obtain

p U q9 c9
N 5 21 24 |U| |= Q| |U| 2 CH P

3 [(|U| 2 C )q9 1 |= Q|c9]. (29)P H

In the almost-plane wave limit, it follows from (10) that

U
= · r9 [ = · [(|U| 2 C )q9 1 |= Q|c9] ø s9, (30)P H|U|

with which (29) can be simplified as N 5 r9D0, where1
2

D0 has been defined in (28). Since |N| is proportional
to the forcing term, N can be regarded as another non-
conservative term, which vanishes in the limit of a free
plane wave (i.e., s9 5 0) under the assumption of an
unforced basic flow.

Unifying the nonconservative terms into DT 5 D9 2
= · N 5 (D0= · r9 2 r9 · =D0)/2, and noting that R 5
0 for eddies with phase speed Cp in the almost plane-
wave limit, we finally obtain an approximate conser-
vation relation as

]M
1 = · W 5 D . (31)T]t
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Recalling W 5 Ws 1 CUM where Ws [ (E 1 H)/2,
we obtain an explicit expression of W from (14) and
(20) as

2U(c9 2 c9c9 ) 1 V(c9c9 2 c9c9 ) x xx x y xy

p 2 U(c9c9 2 c9c9 ) 1 V(c9 2 c9c9 ) x y xy y yyW 5  2|U| 2f 0 [U(c9c9 2 c9c9 ) 1 V(c9c9 2 c9c9 )]x z xz y z yz2N 

1 C M.U (32)

We stress again that a conservation law (31) is obtained
without any averaging. We regard W, defined in (32),
as a phase-independent flux of pseudomomentum in the
almost plane-wave limit, as it includes no half-wave
length oscillatory components without any spatial- and/
or time-averaging taken.5 Therefore, the phase-indepen-
dent flux W is suitable for a snapshot analysis of sta-
tionary or migratory eddies on a zonally varying basic
flow, although a priori knowledge of CP is required for
migratory eddies (CP 5 0 prescribed for stationary ed-
dies). Effects of the phase propagation appear only in
the term CUM, and the rest (i.e., Ws) is identical to the
wave-activity flux for stationary eddies derived in TN97
(W in their notation). For a zonally uniform basic state
where V 5 0 and U 5 U(y, z), (31) is exact in the almost
plane-wave limit and W reduces to Fs of P85 when CP

5 0. Thus, we can interpret (31) as a generalized con-
servation law of phase-independent wave-activity pseu-
domomentum for small-amplitude QG eddies onto a
zonally varying basic flow with its phase-independent
flux.6

Through manipulations shown in appendix B, the
group velocity Cg for free Rossby waves on an unforced,
zonally varying basic flow may be expressed as

5 Additionally, a nonconservative term DT 5 (D 0 = · r9 2
r9 · =D0)/2 is in the same form as each of the components of W. It
may be possible to interpret DT as a ‘‘phase-independent forcing’’ of
a phase-independent pseudomomentum M.

6 Since M and W are independent of wave phase, the space and
time derivatives that explicitly appear in (31), in effect, represent
slow variations on the spatial and temporal scales of a wave packet,
respectively, which are much larger than the wavelengths and periods
of components that compose the wave packet.

2k U 1 klV 
2|= Q| 2H  klU 1 l V C 5 C 1 . (33)g U 4  |K| |U| 2f 0 (kmU 1 lmV )

2N 

With (27) one can easily verify that W 5 CgM in the
almost-plane wave limit, that is, W is parallel to the
local three-dimensional group velocity. This group ve-
locity property of W is consistent with the argument of
Vanneste and Shepherd (1998), as the coefficients re-
lated to the basic state defining M and W, specifically,
|U|, |=HQ|, and N 2 (and CP), are all varying slowly in
space, which validates the WKB approach.

The conservation law (31) can readily be applied to
QG eddies on a sphere with approximations as in P85
and P86. On a sphere, the geostrophic flow is repre-
sented by

1 ]c 1 ]c
u 5 2 , y 5 , (34)

a ]f a cosf ]l

where a is the earth’s radius, and (f, l) are latitude and
longitude, respectively. Geostrophic streamfunction is
defined as c 5 F/ f, where F is geopotential and f (52V
sinf ) the Coriolis parameter with the earth’s rotation
rate V. Then, QG PV is defined as

21 ] c 1 ] ]c
q 5 f 1 1 cosf

2 2 2 2 1 2a cos f ]l a cosf ]f ]f

2f ] p ]c
1 . (35)

21 2p ]z N ]z

After manipulations similar to those described earlier,
the following conservation relation can be derived:

]
M 1 = · W 5 D (36)T]t

for the wave-activity (angular) pseudomomentum M,
defined as

2p q9 e
M 5 1 cosf, (37)1 22 2|= Q| |U| 2 CH P

with its phase-independent flux W:

2 2 2U ]c9 ] c9 V ]c9 ]c9 ] c9
2 c9 1 2 c9

2 2 2 21 2 [ ][ ]a cos f ]l ]l a cosf ]l ]f ]l]f

2 2 2p cosf U ]c9 ]c9 ] c9 V ]c9 ] c9
 W 5 2 c9 1 2 c9 1 C M, (38)U2 2 21 2[ ] [ ]2|U| a cosf ]l ]f ]l]f a ]f ]f

2 2 2f U ]c9 ]c9 ] c9 V ]c9 ]c9 ] c90 2 c9 1 2 c9
25 6[ ] [ ]N a cosf ]l ]z ]l]z a ]f ]z ]f]z 
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FIG. 1. (a) Zonal wind velocity of the basic state for a barotropic
model experiment by Enomoto and Matsuda (1999). Contoured for
every 10 m s21 and the easterlies are shaded. (b) Day-14 stream-
function response c9 (every 106 m2 s21; dashed for negative values)
to divergence forcing centered at (408N, 908E). (c) Corresponding
wave-activity flux W (arrow), superimposed on contours for c9 5
62 3 106 m2 s21. Scaling for the arrows is given near the lower-
right corner (unit: m2 s22). (d) Wave-activity flux W (arrow) super-
imposed on contours for divergence of W. Contoured for every 62.0
3 1026 m s22; zero contours are omitted and dashed lines are for
negative values (i.e., convergence). Each of the above evaluations
was made by setting CP 5 0.

where CP is again the phase speed in the direction of
the basic flow U 5 (U, V, 0)T, and the three-dimensional
divergence and horizontal gradient operators are ex-
pressed as

T1 ] 1 ] ]
= · 5 , cosf, and1 2a cosf ]l a cosf ]f ]z

T1 ] 1 ]
= 5 , , 0 ,H 1 2a cosf ]l a ]f

respectively.

3. Examples

a. Stationary eddies in numerical simulations

As the first example of applications of our wave-
activity flux W, we briefly refer to Enomoto and Mat-
suda (1999), who examined the behavior of stationary
Rossby waves around critical latitudes through numer-
ical integrations of the two-dimensional nondivergent
barotropic vorticity equation on a sphere. In one of their
experiments, Rossby waves are forced by a localized
divergence centered at (408N, 908E) in the exit region
of a midlatitude westerly jet (Fig. 1a). On the map of
the response streamfunction (c9) 14 days after the ac-
tivation of the forcing (Fig. 1b), a wave train emanating
downstream from the forcing region appears to be split
into two branches, each of which is approximately along
a great circle as in a theoretical argument by Hoskins
and Karoly (1981). The wave-activity flux W, estimated
from c9 with CP 5 0 prescribed in (C5), clearly illus-
trates the wave propagation along these two branches
(Fig. 1c). Along the northern branch, W across the dif-
fluent westerlies converges into the weak-westerly re-
gion along the southern flank of the jet entrance. The
flux along the southern branch delineates that the wave
activity indeed propagates through an equatorial west-
erly duct and then across the diffluent Southern Hemi-
sphere (SH) westerlies until it finally converges into a
weak-westerly region along the northern flank of the
southern jet. Our flux diverges out of the forcing region
in the NH and traces positive and negative c9 centers
along the branch even beyond the equator, which clearly
indicates that the c9 centers in the SH are indeed as-
sociated with the wave train forced in the midlatitude
NH.7 Since zonal asymmetries in the background flow
in that experiment are not very strong, Fs derived in

7 There are some streamfunction anomalies in part of the Tropics
where the basic flow is easterly and hence stationary Rossby waves
cannot exist in the linear theory. Those anomalies are not associated
with the wave-packet propagation from the forcing region. They ap-
pear to be associated with patches of relative vorticity that are cut
off from the westerly duct due to wave breaking and then advected
by the background easterlies. See Enomoto and Matsuda (1999) for
details.

P85 for a zonally uniform basic flow can depict the
above-mentioned propagation over the extratropics in a
very similar manner (not shown). However, Fs cannot
be applied, in theory, to the tropical westerly duct where
the zonal-mean flow is easterly, and hence it cannot
illustrate the wave-packet propagation across the Trop-
ics. An important aspect evident in Figs. 1c and 1d is
that W and = · W are almost free from the half-wave-
length component of stationary Rossby waves. Another
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FIG. 2. Wave-activity fluxes associated with a stationary Rossby
wave train forced thermally by anomalous surface heat fluxes in
association with anomalous sea-ice cover within the Sea of Okhotsk,
in a simulation by Honda et al. (1999). Horizontal components of Fs

of P85 and W defined in (C5) were evaluated on pressure surfaces
and then averaged between the 200- and 500-hPa levels: (a) Fs (ar-
rows) and =H · Fs (contoured), (b) W (arrows) and =H · W (con-
toured). Scaling for the arrows is given between the panels. Light
solid and dashed lines indicate the flux divergence and convergence,
respectively. Contour interval: 1.0 3 1025 m s22; zero lines are omit-
ted. In the shaded regions surrounded by heavy solid and dashed
lines, anomalies of surface turbulent heat fluxes into the atmosphere
are significantly positive and negative, respectively, exceeding 200
W m22 in magnitude.

important aspect is that W is, in general, almost per-
pendicular to phase lines of the waves as represented
by the c9 5 0 contours. Apparently, W tends to be
parallel to the local group velocity of stationary Rossby
waves, as shown theoretically in the previous section.

Another application of W to a model-simulated sta-
tionary response is found in Honda et al. (1999), who
examined a stationary Rossby wave train forced ther-
mally by anomalous surface heat fluxes in association
with abnormal sea-ice cover within the Sea of Okhotsk.
They compared W with Fs of P85 both estimated from
the stationary response (Fig. 2). In the upper tropo-
sphere, W is strongly divergent right over a pair of the
primary cooling and heating sources in the Sea of
Okhotsk and to the east of it, respectively. Compared

to =H · W, =H · Fs is shifted to the west and spreads
over eastern Siberia, where no significant heating or
cooling source is present. Hence, in this example, = · W
leads to a more reasonable estimation of the wave forc-
ing region than = · Fs of P85 does.

b. Observed stationary eddies associated with
blocking

Blocking highs are associated with high-amplitude,
quasi-stationary anticyclonic anomalies that give rise to
prolonged abnormal weather situations. In most cases a
blocking anticyclone decays by releasing accumulated
wave activity toward downstream in the form of a sta-
tionary Rossby wave train. A number of studies indi-
cated that blocking formation is due primarily to local
feedbacks from migratory synoptic-scale eddies. Recent
studies have demonstrated, however, that in some lo-
cations a converging wave-activity flux associated with
an incoming stationary Rossby wave train is of primary
importance in blocking formation (e.g., Nakamura et al.
1997). Hence, diagnosing =H · W associated with sta-
tionary Rossby waves on a meandering mean flow may
be insightful for understanding the dynamics that un-
derlies the blocking formation. One may argue that ap-
plying a wave-activity flux to a blocking phenomenon
is inappropriate because a blocking high itself consists
of high-amplitude anomalies. With their nonlinearities,
the plane-wave assumption utilized in deriving W must
break down in the vicinity of the blocking center. Still,
a stationary Rossby wave train emanating from a block-
ing ridge or an incoming one from upstream to the ridge
should exhibit nonlinearity to a much lesser degree, and
hence they may be regarded as linear waves suited for
applying W.

We use twice-daily gridded fields of geopotential
height at the 250-hPa level, based on the operational
analyses by the National Meteorological Center [now
known as the National Centers for Environmental Pre-
diction (NCEP)] for 1965–92. The dataset was obtained
from the National Center for Atmospheric Research
(NCAR) Data Library. As in Nakamura et al. (1997),
these fields were composited relative to the peak times
of the 15 strongest blocking events observed around a
given location in the 27 winter seasons (mid-November–
mid-March). Before compositing, a low-pass filter with
a cutoff period of 8 days was applied to the data time
series, in order to isolate quasi-stationary eddies from
migratory, higher-frequency transients. The basic state
for the quasi-stationary eddies was defined as the 27-
winter mean (Fig. 3). Departures of the filtered data from
this mean state represent circulation anomalies associ-
ated with a blocking high and accompanied stationary
wave trains. We use W on the pressure coordinate whose
expression is given in appendix C. For simplicity, wind
fields were approximated by the local geostrophic
winds.

In Fig. 4, we plot the horizontal component of W and
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FIG. 3. Climatological-mean 250-hPa height (m) in winter (mid-
Nov–mid-Mar) for 1965–92. Contour interval is 100. Heavy lines
indicate 10 000 and 10 500. The closed circle corresponds to the
composited blocking center at (548N, 1008E).

FIG. 4. Composite time evolution associated with the 15 strongest blocking events at the 250-hPa level around (548N, 1008E) for 22, 0, and
12 days relative to the peak blocking time (from top to bottom; negative and positive values signify the amplification and decay stages,
respectively). Presented are (left column) the horizontal component of our flux W with arrows based on low-pass-filtered 250-hPa height
anomalies Z9 as contoured, (middle column) W with arrows superimposed on its horizontal divergence with shading, and (right column) horizontal
component of Fs of P85 with arrows and its divergence with shading. Here Z9 is normalized by sin(458N)/sin(lat). Contour intervals: every 100
m for Z9 (dashed for negative values); 60.25, 60.75, . . . (1024 m s22) for flux divergence; zero contours are omitted in all panels. Heavy and
light shading signify the flux convergence and divergence, respectively. Scaling for arrows is given near the lower-right panel (unit: m2 s22).

its divergence (=H · W) based on the composite blocking
flow centered around (548N, 1008E). It is obvious that
W and =H · W both exhibit little oscillatory component
with one-half wavelength. During the development (day
22) of the blocking ridge, quasi-stationary height
anomalies are evident near (608N, 408E) upstream of
the ridge. The associated W is dominantly eastward and

nearly perpendicular to the height anomaly contours.
The flux is converging into the amplifying blocking
ridge and divergent upstream, which is suggestive of a
particular importance of a converging wave-activity flux
associated with an incoming stationary Rossby wave
train in the blocking formation over Siberia, as Naka-
mura (1994) and Nakamura et al. (1997) demonstrated
for a European blocking ridge.8 During the breakdown
of the block, W diverges out of the blocking center and
converges into newly developing cyclonic anomalies
downstream.

In Fig. 4, we also compare W with Fs defined in P85
for a zonally uniform basic flow. Neither Fs nor our flux
W apparently exhibits an oscillatory component on a
scale of one-half wavelength, and Fs and W are dis-
tributed similarly at a first glance. A close inspection

8 We also applied W to the low-pass-filtered height anomalies com-
posited for the 15 strongest blocking anticyclones observed over Eu-
rope (548N, 108E). We confirmed the findings of Nakamura (1994)
and Nakamura et al. (1997) based on the flux of P86 artificially
smoothed in space.
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FIG. 5. Basic state for migratory disturbances, as defined by 8-day
low-pass-filtered 300-hPa height field at 0000 UTC on 20 Nov 1983.
Contour interval is 100 m. Heavy lines denote 8500, 9000, and 9500
m. Regions where |U| 2 CP , 2.0 m s21 are shaded.

reveals, however, that W exhibits a stronger meridional
component than Fs over central and eastern Siberia (Fig.
4), where V is significantly southward upstream of a
climatological-mean trough (Fig. 3). The lack of con-
tributions of V seems to cause an unrealistic undulation
in the stream of Fs (i.e., corresponding Cg) around the
blocking ridge. Farther to the east, Fs penetrates into
the trough, which is again unrealistic, whereas W is
suppressed within the trough and its main stream fol-
lows the jet axis detouring to the south of the trough.
Hence, W follows the meandering basic flow better than
Fs, thus better representing the advective nature of Cg

of stationary Rossby waves. The tendency that W is
systematically stronger than Fs over Siberia reflects the
fact that the background westerlies are substantially
stronger there than the zonal average.

Another comparison between W and Fs was presented
in TN97, who applied these fluxes to the low-pass-fil-
tered circulation anomalies composited for the 15 stron-
gest blocking anticyclones around (568N, 1608W). They
showed that W and Fs, including their divergence pat-
terns, were nearly phase-independent. It was shown
again that W follows the meandering mean westerlies
better than Fs.

c. Observed migratory eddies: A baroclinic wave
packet

In this subsection, we present an example of our
wave-activity flux applied to migratory eddies. The data
we use are 12-hourly gridded fields of geopotential
height and temperature based on the NCEP–NCAR re-
analyses. A high-pass filter with a cutoff period of 8
days was applied to the data time series, in order to
extract migratory, high-frequency transient disturbanc-
es. As in the previous subsection, W was evaluated on
pressure surfaces. We focus on the period around 20
November 1983, when strong high-frequency distur-
bances were observed over the North Pacific.

Since the static stability of basic state is assumed to
be uniform on a pressure surface in QG scaling, inter-
pretations of W may be somewhat complicated at the
250-hPa level where a tropopause intersection often oc-
curs. In the lower tropopause levels, on the other hand,
a tropopause intersection is much less frequent. However,
a region where M and hence W are well defined is much
narrower horizontally, because these pressure levels are
close to the steering level of the baroclinic disturbances.
Thus, the 300-hPa level was chosen for plotting the hor-
izontal distribution of W, in order both to suppress in-
fluence of the intersecting tropopause to some extent and
to depict horizontal wave propagation reasonably well
within substantial part of the analysis domain.

Figure 5 shows the 8-day low-pass-filtered 300-hPa
height for that day, regarded as the basic state on which
those high-frequency disturbances are embedded. A
strong westerly jet over the midlatitude North Pacific,
where (|U| 2 CP) exceeds a certain positive value, say

2.0 (m s21), approximately defines a ‘‘wave guide’’ for
the migratory eddies.

Before computing W based on (C5) with evaluatedc9p
from the high-pass-filtered temperature fluctuations, we
estimated CP at each grid point in the following manner.
First, we computed the correlation coefficients of the
high-pass-filtered 250-hPa geopotential height time series
between a particular grid point and other grid points over
the 21-day period centered on the day of interest, im-
posing a lag of 212 h. Then, the correlation coefficients
were calculated in the same manner but this time with a
lag of 112 h imposed. Next, the actual phase propagation
was estimated by tracing the maximum positive corre-
lation center on the one-point correlation maps thus con-
structed from the negative to positive lag (Blackmon et
al. 1984). Finally, the local value of CP for that grid point
was determined as the projection of this phase propa-
gation onto the direction of the local basic flow U.

In Fig. 6, we plot W to show snapshots of a ‘‘bar-
oclinic wave packet’’ at the 300-hPa level. Each of the
wave components (i.e., highs and lows) move eastward
with CP ø 10 (m s21), while their envelope appears to
propagate eastward much faster accompanied by the
rapid decay of a cyclonic anomaly center over the west-
ern Pacific. These features may be indicative of down-
stream development of the disturbances (e.g., Chang and
Orlanski 1993) although it may be more or less under-
estimated here in the high-pass-filtered fields. Over the
Gulf of Alaska the stream of W splits into two branches,
following the split mean flow. While part of the wave
activity is propagating into higher latitudes, most of the
activity propagates southeastward along the main branch
of the westerly jet. A region of strong upper-level di-
vergence (=H · W) almost coincides with that of the
strongest upward W at the 600-hPa level9 (Fig. 6). This
‘‘wave source’’ region gradually weakens, as it quickly

9 The units of the vertical component of W shown in Fig. 2 of
TN97 should be 1021 (Pa m s22). Also, the unit is different from that
of P85 because of the difference in the vertical coordinate ( p vs
logp).
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FIG. 6. Time sequence of (left column) 8-day high-pass-filtered 300-hPa height (Z9), superimposed on the horizontal component of W
with arrows, (middle column) horizontal component of W with arrows and its divergence/convergence with contours, and (right column)
horizontal component of W with arrows superimposed on the vertical component of 600 hPa with contours. The sequence begins at 1200
UTC on 19 Nov 1983 with 12-h intervals (from top to bottom). Here Z9 is contoured for every 100 m from 50 m and dashed for negative
values, and =H · W is contoured for every 8.0 3 1024 m s22. Light shading with solid lines and heavy shading with dashed lines denote the
divergence and convergence, respectively. The vertical component of W is contoured for every 5.0 Pa m s22. Solid and dashed lines indicate
where the flux is upward and downward, respectively. Scaling of W is given near the lower panel (unit: m2 s22).

moves eastward following the wave packet toward the
region where the basic-state baroclinicity is weaker. An-
other wave source region seems to be around (508N,
1508W), just upstream of the split of the jet. In Fig. 6,
W and =H · W appear to be somewhat noisier than in
the applications to stationary eddies (as in Fig. 4). Nev-
ertheless, the suppression of half-wavelength noise and
the dominance of the wave-packet signal on scales of
a wavelength or larger are both apparent in Fig. 6, which
manifest the greatest advantage of our flux W.

It is clear in the zonal and meridional cross sections
(Figs. 7a and 7b) that the wave-activity flux are dom-
inantly upward in the mid- to upper troposphere over
the primary wave source region between the date line
and 1608W, indicating conversion of the available po-
tential energy from the mean flow to the disturbances.
From this ‘‘source region’’ the wave activity propagates
dominantly eastward along the upper-tropospheric jet.
Part of the wave activity appears to be propagating
slightly upward and downward above and beneath of
the 350-hPa level, respectively, around 1558W as if there
were another wave source region, which is consistent
with the distribution of =H · W shown in Fig. 6.

d. Validity assessment of the approximations

In the previous subsections, we applied an approxi-
mate conservation relation of the phase-independent

wave-activity pseudomomentum M with its phase-in-
dependent flux W for QG eddies to simulated and ob-
served data. In the derivation for the case where a basic
flow is zonally inhomogeneous, we needed to assume
that it is unforced and varying slowly in space, which
corresponds to approximations, for example, of (12),
(13), (17), (19), and (21) in section 2. In this section,
we attempt to assess their validity in the individual ap-
plications in the previous subsections. Specifically, the
following relation on the pressure coordinate is readily
derived from (12), (13), (17), and (19):

1 u9 · (= Q) U · (= q9)H HL [ q9 2 c9[2 |= Q| |U|H

21 C q9P1 = · U1 2|= Q| 2|U|H

C UP1 · =e ø = · W. (39)
(|U| 2 C ) |U|P

The rhs of (39) has been derived from the lhs under the
assumption of an unforced, slowly varying basic flow.
However, we are not certain how reasonable this as-
sumption is in our applications, for example, to the ob-
served mean flow that undulates in the presence of the
planetary waves. In the following, we attempt to assess
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FIG. 7. (a) Zonal-vertical section along 508N where the zonal and vertical components of W
are plotted with arrows. (b) Meridional-vertical section along 1708W where the meridional and
vertical components of W are plotted with arrows. In (a) and (b) the basic-state westerlies are
superimposed with contours (every 5 m s21). Scaling of W is given just below the individual
panels. (units: for horizontal component m2 s22; for vertical component 1022 Pa m s22). Note that
M can be defined only in regions where |U| . CP.

the validity of that assumption based on the spherical
version of the approximate relation (39). The two sides
of (39), that is, L and = · W, are distributed alike if the
aforementioned assumption is reasonable. In our deri-
vation we also neglected the residual term R, which is
expressed on the pressure coordinate as

]e U ]e V ]e
R 5 1 C 1 CP P1 2]t |U| ]x |U| ]y

]q9 U ]q9 V ]q9
1 c9 1 C 1 C , (40)P P1 2]t |U| ]x |U| ]y

under the assumption that the eddies are in the form of
a plane wave on a b plane. We evaluate = · W and
R/2(|U| 2 CP) with the spherical version based on the
actual data. If the latter (hereafter referred to as R) is

substantially less than the former (= · W), our neglect
of the residual term may be justified.

First, we evaluated the two sides of (39) at each grid
point, based on the barotropic simulation by Enomoto
and Matsuda (1999, see Fig. 1). In the evaluation, only
the horizontal component was used and PV was replaced
by the absolute vorticity. The patterns of L and =H · W
[i.e., rhs of (39)] are almost identical (Figs. 8a and 8b),
indicating that the approximations adopted in our der-
ivation are reasonable. Next, the dominance of =H · W
over the residual term R is checked by setting CP 5 0
in (40). Again, we evaluated the horizontal component
only. It is apparent in Fig. 8c that R is indeed negligible
compared to =H · W all over the midlatitudes and even
in a tropical westerly duct.

The same assessment as above was performed based
on the composited height anomalies for the Siberian
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FIG. 8. (a) Divergence of W, (b) L; i.e., lhs of (39) and (c) the
residual term R in (40), all based on day-14 response of a barotropic
model experiment by Enomoto and Matsuda (1999) as shown in Fig.
1. Each of the above evaluations was made by setting CP 5 0. Con-
toured for every 62.0 3 1026 m s22, zero contours are omitted in
all panels, and dashed lines are for negative values (or convergence).

FIG. 9. (a) Horizontal component of W (arrows with scaling given near the lower-right panel; unit: m2 s22) and its divergence (contoured
and shaded), (b) L of (39); and (c) the residual term R evaluated on the basis of (40), all based on the composite low-pass-filtered evolution
at the 250-hPa level for the 15 strongest blocking events around (548N, 1008N), for the peak blocking time (see Fig. 4). Contoured for
60.25, 60.75, . . . (1024 m s22; dashed for negative values) and zero contours are omitted in all panels. Heavy and light shading signifies
negative (or convergence) and positive (or divergence) values, respectively.

blocking. At each grid point, =H · W, L, and R in (39)
and (40) for the peak blocking time (lag 5 0) were
evaluated with the local geostrophic balance assumed.
Since these stationary anomalies are nearly equivalent
barotropic and hence W is almost horizontal, we again
evaluated only the horizontal component in (39). Even

at the peak time (lag 5 0) when nonlinearities are the
strongest, L and =H · W are distributed alike and their
values do not differ substantially (Figs. 9a and 9b). Fur-
thermore, it is apparent in Figs. 9a and 9c that the R is
negligible relative to =H · W. The same tendency ap-
pears also for other blocking composites for the Pacific
and Europe, except in the vicinity of the blocking center
where the plane-wave assumption breaks down due to
strong nonlinearities. We should remember that uncer-
tainties at a certain level are included in the above as-
sessment, which arises from several assumptions made
in our data manipulations. Still, it appears that our flux
W presents a qualitatively correct snapshot of the prop-
agation of a stationary wave packet, but the flux may
be not suited for the exact evaluation of the local budget
of M.

The pattern of our flux W and its three-dimensional
divergence (= · W) at the 300-hPa level associated with
migratory synoptic-scale eddies are shown in Fig. 10a.
Again, we use the data at 20 November 1983. We com-
pare = · W with L shown in Fig. 10b to assess how
reasonable the assumptions are for the basic flow. We
find that their spatial patterns and their values are both
similar, respectively. Therefore, the assumption of an
unforced, slowly varying basic state seems to be valid,
at least qualitatively. The residual term R shown in Fig.
10c tends to be negligible compared to = · W along the
Pacific stormtrack, indicative of the validity of the al-
most-plane wave assumption for the high-pass-filtered
disturbances. The residual term is noticeable only near
the wave source region at the western edge of the wave
packet.

4. Physical interpretations of phase-independent
wave-activity fluxes

In section 2, we formulate a phase-independent wave-
activity flux W. Though shown to be parallel to the
local three-dimensional group velocity Cg of a Rossby
wave packet, a rather complicated expression of the flux
may make it difficult to intuitively relate it to the wave
packet propagation mechanisms. In this section, we pre-
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FIG. 10. Same as Fig. 9 but based on 8-day high-pass-filtered data
at 0000 UTC on 20 Nov 1983 (see Fig. 6). (a) Three-dimensional
divergence is plotted. Contoured for every 8.0 (1024 m s22) and
dashed for negative values. Zero contours are omitted. Heavy and
light shading signifies negative (or convergence) and positive (or
divergence) values, respectively.

sent an interpretation in which each term of the indi-
vidual components of our flux or Fs of P85 is related
to an explicit physical process involved in the wave
packet propagation. We also formulate a set of gener-
alized transformed Eulerian-mean (TEM) equations that
represent instantaneous feedbacks from a propagating
Rossby wave packet upon a basic flow on which the
packet is embedded.

For simplicity, we consider disturbances propagating
through a zonally uniform basic flow (U), for which
pseudomomentum is exactly conserved. In this case, the
following argument directly applies to Fs of P85 if the
disturbances are stationary. A linearized QG equation
of meridional momentum for the disturbances may be
written as

]y9 ]y9 ]f9
1 U 1 f (u9 1 u ) 5 2 , (41)(a)]t ]x ]x

where u(a) is the Eulerian zonal ageostrophic flow as-
sociated with the disturbances and other quantities of
the disturbances are denoted by primes. For unforced

disturbances propagating zonally with phase speed c on
a b plane, the above equation may be simplified as

]y9
(U 2 c) 1 f u 1 byu9 5 0 (42)0 (a)]x

(e.g., Holton 1992). Thus, an approximate relation c9xx

5 . 2 f 0u(a)/(U 2 c) holds on and around ridge/y9x
trough lines associated with the disturbance. Likewise,
from linearized equations of zonal momentum and ther-
modynamics, we obtain 5 2 . 2 f 0y (a)/(U 2 c)c9 u9xy x

and f 0Qz /N 2 5 . 2Qzw(a)/(U 2 c), where y (a)c9 u9xz x

and w(a) are the meridional and vertical ageostrophic
motions associated with the disturbance, respectively. It
follows that when U . c,

T2f 02c9c9 , 2c9c9 , 2 c9c9xx xy xz21 2N
T(F9u , F9y , F9w )(a) (a) (a).

(U 2 c)

holds on and around the ridge/trough lines, where F9
denotes eddy geopotential. Therefore, the second term
of each component of Fs is related to a three-dimensional
ageostrophic geopotential flux that corresponds to the
rate of working by the pressure force in the direction
of Cg of a Rossby wave packet acting most strongly on
the ridge/trough lines of the wave (Figs. 11a and 11b).
In fact, it can readily be shown that the vector
[2c9 , 2c9 , 2( /N 2)c9 ]T points to the direc-2c9 c9 f c9xx xy 0 xz

tion of Cg in the almost plane-wave limit.
We next consider the first term of each component of

Fs (or Ws). We begin with an interpretation of y92, re-
lating it to wave-packet propagation in the zonal direc-
tion (in Fig. 11c). A meridional flux of the meridional
momentum (y92) at point E on a node line of the c9
field acts to induce the southward and northward geo-
strophic motions to the south (point B) and north (point
D), respectively. Due to the nondivergent nature of the
geostrophic flow, compensating westerly and easterly
accelerations must occur to the west (point A) and east
(point C). These accelerations at points A and C man-
ifest the westward transport of the second-order westerly
momentum, acting most strongly on node lines of the
c9 field, in the direction opposite to the eastward group
velocity of the wave packet. An interpretation of u9y9
in the meridional component of Fs (or Ws) is more
straightforward. It represents the meridional transport
of the second-order westerly momentum in the direction
opposite to the meridional group velocity (Fig. 11c).
The vertical component of Fs (or Ws) includes the me-
ridional temperature flux y9u9. For an upward propa-
gating wave packet, the flux is poleward that acts to
reduce the vertical westerly shear in a basic state (Fig.
11b), resulting in the downward transport of the second-
order mean westerly momentum. Therefore, the first
term of Fs including eddy momentum and heat fluxes
represents the systematic ‘‘backward’’ transport of the
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FIG. 11. Schematic diagrams for explanations of an instantaneous
Rossby wave-packet propagation mechanism. In each diagram, thin
solid lines denote node lines in the perturbation streamfunction (c9)
field at which perturbation QG flows are strongest, and thin dashed
lines denote ridge (H)/trough (L) lines. Arrows with U and Cg signify
the mean westerly flow and group velocity of the wave packet, re-
spectively. (a) Horizontal ageostrophic flows (ua) associated with a
wave-packet propagation, which aligned coherently on the ridge/
trough lines and parallel to the horizontal group velocity. Thin arrows
indicate the direction of the perturbation geostrophic flows. (b) Zonal-
vertical section of an upward propagating Rossby wave packet. Short
arrows with wa indicate vertical (ageostrophic) motions aligned on
the ridge/trough lines in association with wave packet. Open arrows
signify the second-order acceleration of the mean westerly flow as a
result of systematic poleward heat transport strongest on the node
lines. (c) Second-order mean flow accelerations (indicated with open
arrows) induced by eddy momentum transport (y92 on left and u9y9
on right). See text for more details.

mean westerly momentum that occurs mainly around
the node lines of the c9 field associated with a propa-
gating Rossby wave packet.

The above arguments can readily be extended to W
(or Ws) applicable to wave-packet propagation through
a zonally asymmetric basic flow. Thus, a snapshot of a
Rossby wave-packet propagation can be represented as
a superposition of the aforementioned two ‘‘comple-
mentary’’ dynamical processes involved in the propa-
gation. It also becomes apparent that they exhibit dif-
ferent dependencies of the wave phase. Specifically, in
the almost plane-wave limit of c9 5 c0 sin(kx 1 ly 1
mz 2 vt), the ageostrophic flux of geopotential on ridge/
trough lines of the c9 field and the systematic backward
transport of the mean ‘‘westerly’’ momentum on the
node lines are proportional to sine squared and cosine
squared of the wave phase, respectively. Hence, an ap-

propriate combination of those two processes as in Fs

and W leads to the elimination of their phase depen-
dencies.

Finally, we consider interactions of QG eddies with a
basic flow on which they are embedded. We follow the
derivation of P86, but unlike P86, we utilize our phase-
independent wave-activity flux W, so that instantaneous
eddy feedbacks on the basic flow can also be independent
of the wave phase. We begin with an O(e2) equation of
an instantaneous tendency in the westerly momentum of
the basic state on an f plane, which may be written as

(0) (2) (2)D U ]F ] ]
(2) 22 f V 1 5 2 u9 2 u9y9

Dt ]x ]x ]y

] ]
5 c9c9 2 c9c9 , (43)yy xy]x ]y

where the superscript (2) denotes second-order modi-
fications of the basic state and D (0)U (2)/Dt [ ]U (2)/]t 1
(U · =)U (2) 1 (U (2) · =)U. Note that the two expressions
on the rhs of (43) are both phase-independent for almost
plane-wave limit.10 Combining these two equivalent ex-
pressions, we can write the eddy forcing term in a flux-
divergence form:

(0) (2) (2)D U ]F
(2)2 f V 1

Dt ]x

1 ] 1 ]
25 (2u9 1 c9c9 ) 2 (u9y9 1 c9c9 ). (44)yy xy2 ]x 2 ]y

We stress that not only rhs of (44) but also each term
of eddy flux component itself (within parentheses) is
now independent of the wave phase. After simple ma-
nipulations, the baroclinic component of the eddy feed-
back can also be incorporated into (44) as

(0) (2) (2)D U ]F
(2)2 f V 1

Dt ]x

1
5 (c9q9 2 c9q9)x x2

1 ]
2 22 [(c9 2 c9c9 ) 1 (c9 2 c9c9 )]x xx y yy2 ]x

21 ] f 02 p (c9c9 2 c9c9 ) .x z xz2[ ]2p ]z N

Likewise, equations of instantaneous second-order ten-
dencies in the basic-state meridional momentum and
potential temperature have been derived. Unifying these
equations, the second-order tendency equations for the
basic-state momentum and thermal fields may be ex-
pressed as follows:

10 Therefore, derivatives in rhs of (43) indicate slow variations on
the spatial and temporal scales of the wave packet, as in the same
manner as in (31).
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(0) (2)D U
2 f k 3 U* 5 J 1 X, (45)(a)Dt

(0) (2)D Q dQ
1 W* 5 Q, (46)(a)Dt dz

where X and Q are nonconservative terms proportional
to frictional force and diabatic heating, respectively.
This system may be viewed as an extension of the stan-
dard TEM set defined on the meridional plane in a zon-
ally averaged form, which was introduced by Andrews
and McIntyre (1976), to the three-dimensional circu-
lation in a phase-independent form. The vector J in (45)
represents the eddy-induced forcing acting on the basic
flow, which may be expressed in a phase-independent
form as

p
J 5 2 k 3 (u9q9 2 c9k 3 = q9)H2

p
[ 2 k 3 P. (47)

2

The vector in (45) denotes a phase-independentU*a
three-dimensional residual ageostrophic circulation de-
fined as

1
T (2)U* 5 (U* , V* , W* ) 5 U 1 = 3 pR, (48)(a) (a) (a) (a) (a) p

where 5 ( , , )T is the second-order Eu-(2) (2) (2) (2)U U V W(a) (a) (a) (a)

lerian ageostrophic flow. The second term on the rhs of
(48), which may be related to the Stokes drift in the
limit of small wave amplitude, includes the phase-in-
dependent vector R given by

2(y9u9 2 c9u9)/Q x z1  
R 5 (u9u9 1 c9u9)/Q . (49) y z 2

2 2[(y9 2 c9c9 ) 1 (u9 2 c9c9 )]/ f xx yy

These relations (45), (46), (47), (48), and (49) are in
correspondence to (4.3), (4.4), (4.5), and (4.6) in P86,
which are expressed in a time-averaged form and there-
fore inappropriate for stationary eddies. Our relations,
in contrast, are expressed in a phase-independent form
without any averaging required. They can therefore be
used for evaluating instantaneous feedback forcing on
the mean flow induced by a wave packet propagating
through it, regardless of whether the packet consists of
migratory or stationary eddies.

With a unit vector s normal to the PV gradient (=HQ)
defined as s [ k 3 n, an alternative expression of J
may be given by

p
J 5 2 [(P · n)s 2 (P · s)n]. (50)

2

From (13), (19) and the relation of Ws [ (E 1 H)/2,
the following approximate relation may be obtained

p p
= · W ø n · (u9q9 2 c9k 3 = q9) 5 P · n (51)s H2 2

for an unforced basic state on a b plane. The first term
on the rhs of (50) is related to = · Ws. It indicates in-
stantaneous acceleration of a mean flow that a three-
dimensionally propagating Rossby wave packet induces
through the effect that corresponds to downgradient and
upgradient fluxes of PV at the leading and trailing edges
of the wave packet, respectively. Note that = · Ws con-
tributes to the mean-flow acceleration only in the di-
rection along basic-state PV contours, but = · Ws does
not represent the total eddy-induced feedback, as point-
ed out by P86.

Our expression of a three-dimensional residual ageo-
strophic circulation is somewhat different from the cor-
responding expressions derived in P86 and Trenberth
(1986), with respect particularly to the vertical com-
ponent of R and its counterparts. The differences can
be attributed partly to a distinction between our instan-
taneous phase-independent form and their time-aver-
aged form. It can be attributed also to another distinction
that eddy feedbacks in our formulation are evaluated on
a coordinate system moving with wave phase speed,
whereas the feedbacks in their formulations are on a
coordinate system moving with a basic flow. Note that
the vertical component R contributes to the horizontal
residual motion in the TEM framework. Thus, a specific
expression of the residual circulation does depend upon
a coordinate system on which the eddy feedbacks are
evaluated and upon a particular definition of a wave-
activity flux as well, although these expressions of the
residual circulation reduce to a single form when zonally
averaged.

5. Conclusions

We have derived an approximate conservation rela-
tion of the wave-activity pseudomomentum for QG ed-
dies on a zonally varying basic flow through averaging
neither in time nor in space. We have shown that a linear
combination of quantities A and E , that is, (A 1 E )/2,
is a conservative quantity (M) that can be interpreted
as a wave-activity density for QG eddies and is inde-
pendent of the wave phase in the almost-plane wave
limit. We consider that M is a generalization of the
small-amplitude pseudomomentum (q9)2/(2Qy) to non-
zonal flows. We also consider that our conservation re-
lation is a generalization of conservation laws of pseu-
domomentum as defined by P85 and TN97 with its
phase-independent flux for stationary eddies. We have
shown that the flux W of M is also phase-independent
and parallel to the local Cg in the WKB limit. Derived
without any averaging, W can depict instantaneous
three-dimensional wave-packet propagation. Thus, W
may be a useful diagnostic tool for a snapshot analysis
for either migratory and stationary disturbances prop-
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agating through a zonally varying basic flow, which is
its greatest advantage.

Furthermore, we have presented a physical interpre-
tation of individual terms of our flux W and Fs in P85.
They illuminate the following two dynamical aspects of
Rossby wave-packet propagation: one is the systematic
transport of basic-state westerly momentum in the form
of eddy momentum and heat fluxes that are strongest
along node lines of an eddy streamfunction field, and
the other is an associated ageostrophic flux of geopo-
tential strongest along trough/ridge lines, which is re-
lated to the rate of working by the pressure force in the
direction of the local group velocity of a Rossby wave
packet. Although only the former aspect appears ex-
plicitly in the conventional and extended E–P fluxes and
the flux of P86, they can still represent wave-packet
propagations because they are expressed in phase-av-
eraged forms by zonal or time averaging. In the wave-
activity fluxes of P85 and ours, those two aspects of the
wave-packet propagation are combined in an explicit
manner so as to eliminate their phase dependencies. We
have shown that the flux Fs of P85 can be derived, as
our flux W, through manipulations of both the eddy
enstrophy and energy equations, whereas the conven-
tional and extended E–P fluxes were derived only on
the basis of the enstrophy conservation form.

We now discuss relationships of our conservation law
with others. First, we attempt to clarify the meaning of
the supplementary nondivergent flux G, introduced rath-
er heuristically in P85 for ensuring the phase indepen-
dency of a wave-activity flux Fs. With phase speed CP

5 0 prescribed, we may rewrite (15) as follows

]A
(1)1 = · F 5 D ; F [ E 1 N . (52)1]t

In P85 a phase-independent flux Fs was derived for a
zonally uniform basic flow (U) as Fs 5 F 1 G, utilizing
arbitrariness in adding any nondivergent vector to F in
(52). In contrast, we (and TN97) derived a phase-in-
dependent flux based not only on the conservation of
A but also on that of E . Since N (1) 1 N (2) 5 0 for
unforced (s9 5 0), stationary (CP 5 0) eddies, our flux
is expressed as

1 1
W 5 (F 1 H*) 5 (E 1 H),

2 2

where H* [ H 1 N (2) as shown in (23). Since Fs 5
W for a zonally uniform basic flow, it is readily obtained
that G 5 (H* 2 F)/2, which therefore represents a flux
of a quantity (E 2 A)/2 for stationary eddies. It should
be noted that this quantity can be related to ‘‘pseudo-
energy’’ (Andrews 1983; McIntyre and Shepherd 1987;
Haynes 1988), which is expressed in our notations as
U( E 2 A).

Generally, pseudoenergy obeys an exact (local) con-
servation law even for finite-amplitude disturbances on
a zonally varying basic flow (McIntyre and Shepherd

1987; Haynes 1988). Conservation of pseudoenergy re-
flects the time invariance of a basic flow, whereas that
of pseudomomentum reflects the translational invari-
ance of a basic state in the zonal direction (e.g., Held
1987). Unlike pseudoenergy, an exact conservation of
pseudomomentum for finite-amplitude perturbations is
realized only for a zonally uniform basic flow. Hence,
a conservation relation of pseudomomentum is neces-
sarily an approximate one when extended to a zonally
inhomogeneous basic state, as we needed to assume on
several occasions during our derivation that the basic
state is unforced and slowly varying in space, and that
perturbations are small in amplitude as well. However,
as P85 pointed out, pseudoenergy, if averaged over the
wave phase, vanishes for any stationary waves even in
the generalized Lagrangian-mean theory (Andrews and
McIntyre 1978). For example, it is easily checked that
[E 2 A] vanishes for stationary eddies in the form of
a plane wave and so does U[E 2 A], where [ ] represents
phase averaging. This is why G is nondivergent for
stationary eddies under s9 5 0. Furthermore, pseudo-
energy depends strongly on the wave phase, as it con-
sists only of the half-wavelength component in the al-
most plane-wave limit. Therefore, a pseudoenergy flux
is not applicable to diagnosing phase-averaged statistics
of stationary disturbances, and it may not be particularly
convenient for visualizing a snapshot of the wave-pack-
et propagation of migratory eddies.

Applying M and W to the simulated and observed
atmospheric data, we have verified their phase-inde-
pendency and ability to depict the wave-packet propa-
gation of both stationary and migratory QG eddies. In
particular, W is the first diagnostic tool capable of il-
lustrating an instantaneous status of the three-dimen-
sional propagation of a packet of migratory waves in a
phase-independent manner. The price we ought to pay
for it is that we need a priori knowledge of the local
phase speed of the eddies, which should be either pre-
scribed theoretically or estimated statistically in ad-
vance. It should be kept in mind that this estimation is
apt to induce certain errors in the evaluation of W. For
stationary eddies, we have shown that W can depict
wave-packet propagation on a zonally varying basic
flow in a more realistic manner than such a wave-ac-
tivity flux as Fs defined for a zonally uniform basic flow,
in a sense that W better represents the advective nature
of Cg. We have also shown that =H · W leads to a more
realistic estimation of a wave source region than =H · Fs.
Of course, it may be enough to use Fs for diagnosing
the planetary waves, although W applied to a zonally
uniform basic flow is equivalent to Fs. We claim that
W is a useful diagnostic tool for disturbances embedded
on a basic flow, which is asymmetric in the zonal di-
rection in the presence of the planetary waves.

The validity of the approximations we used has also
been assessed. In our applications, the residual term R
is negligible almost everywhere, which means that the
almost plane-wave assumption is reasonably valid. Yet,
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our assessment indicates that the validity of the as-
sumptions concerning a basic flow is more cautionary.
Although qualitatively valid, those assumptions may re-
sult in nonnegligible errors in evaluating = · W, espe-
cially when the QG scaling breaks down, for example,
due to the tropopause intersection on a pressure surface,
and/or when uncertainties in the estimation of CP of
migratory eddies are combined. Therefore W may not
be particularly suited for the exact budget evaluation of
M. Still, it is useful for illustrating (instantaneous) three-
dimensional propagation of a wave packet, as we have
demonstrated in several applications to stationary and
migratory eddies in simulated and observed datasets. In
addition, our flux has broader practical applicabilities
than that of P85. Our conservation law just fits to the
framework based on the separation between a three-
dimensional time-mean flow and anomalies embedded
on it. Therefore, our flux can readily be applied to such
circulation anomalies defined as departures from a time-
mean flow (e.g., the climatological-mean flow). In con-
trast, a certain ambiguity exists for Plumb’s flux Fs for
stationary eddies with respect to whether it is applied
to eddies defined as total departures from an instanta-
neous zonally averaged flow or to the anomalies defined
as above that are assumed to be embedded on a zonally
averaged time-mean flow. In the former application, the
flux field is dominated by the contribution of the plan-
etary waves in the time-mean flow, which makes it dif-
ficult to isolate a rather small contribution from the
anomalies. The latter application is unlikely to depict
the wave-packet propagation associated with the anom-
alies as in a realistic manner as our flux can. Hence,
our flux may be a useful tool for routine climate di-
agnoses in an operational center. In fact, our flux has
been used in regular monthly climate diagnoses at the
Japan Meteorological Agency since 2 yr ago, for ana-
lyzing stationary Rossby waves in pentad-mean anom-
aly fields as the departures from the climatological mean
state.
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APPENDIX A

Derivation of Wave-Activity Conservation Law
through ‘‘Local Coordinate Rotation’’

An alternative approach to deriving an approximate
conservation relation of wave-activity pseudomomen-
tum M for a zonally varying basic flow is what may be
called local coordinate rotation. We begin with a line-
arized PV equation on a zonally varying basic state as
taken from (10):

]q9 ]C ]q9 ]Q ]c9
2 1 5 s9. (A1)

]t ]Y ]X ]Y ]X

We multiply (A1) by pq9/QY and pc9/(|U| 2 CP) to yield
respective conservation relations of A and E. Since X
variations in C and QY are neglected under the as-
sumption of a slowly varying basic flow, a derivation
of a conservation relation of A can be somewhat sim-
plified and becomes similar to that in P85. Likewise, a
derivation of a conservation relation of E can also be
somewhat simplified. We obtain an approximate con-
servation relation of M by combining those two rela-
tions:

]M
(X,Y )1 = · W 5 D9, (A2)(X,Y )]t

with

2(c9 2 c9c9 ) 1 2C M X XX P

p  c9c9 2 c9c9 (X,Y ) X Y XYW 5 . (A3) 2 2f 0 (c9c9 2 c9c9 )X z Xz2N 

In (A2), =(X,Y ) is the three-dimensional divergent op-
erator in the (X, Y, z) coordinate system. Finally, we
manipulate (A3) rotating the local coordinate system
back, in order to obtain an explicit expression of W on
the latitude–longitude coordinate system.

APPENDIX B

Group Velocity of Rossby Waves on a Zonally
Varying Basic Flow

Here, we derive an expression of the group velocity
Cg of free Rossby waves on a zonally varying basic
flow. We begin with an explicit form of the linearized
PV equation (5) for free waves:

]q9 ]q9 ]q9 ]Q ]Q
1 U 1 V 1 u9 1 y9 5 0. (B1)

]t ]x ]y ]x ]y

In the following, we assume that the buoyancy fre-
quency N varies slowly in z and a vertical scale m21 is
much less than a constant scale height H. From (A1)
with s9 5 0, the phase speed CP in the direction of the
basic flow U is given by
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|= Q|HC ø |U| 2 . (B2)P 2|K|

Since U/|U| 5 Qy/|=HQ| and V/|U| 5 2Qx/|=HQ| for an
unforced, ‘‘pseudoeastward’’ basic flow, we obtain from
(B2)

Q UyU 2 ø C or (B3)P2|K| |U|

Q VxV 1 ø C . (B4)P2|K| |U|

Based on (B1), the dispersion relation for a QG per-
turbation c9 5 c0 exp(z/2H) sin(kx 1 ly 1 mz 2 vt)
may be represented as

Q Qy xv 5 k U 2 1 l V 1 . (B5)
2 21 2 1 2|K| |K|

Then, with the aid of (B3) and (B4), the local group
velocity is given by

 2U 2k Q 2klQy xC 1 2P 4 41 2 1 2|U| |K| |K|

v  k 2V 2klQ 2l Q  y x C 5 v 5 C 1 2 g l P 4 41 2 1 2  |U| |K| |K|
v m

2f 2kmQ 2lmQ0 y x  2
2 4 41 2 1 2[ ]N |K| |K| 

2k U 1 klV 
2|= Q| 2H  klU 1 l V 5 C 1 . (B6)U 4  |K| |U| 2f 0 (kmU 1 lmV )

2N 

APPENDIX C

A Conservation Law of M and Its Flux W on the
Pressure Coordinates

The PV equation on a b plane on the pressure (p)
coordinates may be written as

]q ]q ]q
1 u 1 y 5 s, (C1)

]t ]x ]y

where PV on the QG scaling is defined as

2 2 2] c ] c ] f ]c0q 5 f 1 by 1 1 1 . (C2)0 2 2 21 2]x ]y ]p S ]p

In (C2) a static stability parameter is defined by S 2 5
2a(]lnu/]p) where u denotes potential temperature and
a specific volume. Equation (C1) may be linearized as

]q9
1 U · = q9 1 u9 · = Q 5 s9, (C3)H H]t

and we obtain an approximate conservation relation of
M after manipulations similar to those described in sec-
tion 2.; that is,

]M
1 = · W 5 D , (C4)T]t

with

2U(c9 2 c9c9 ) 1 V(c9c9 2 c9c9 ) x xx x y xy

1 2 U(c9c9 2 c9c9 ) 1 V(c9 2 c9c9 ) x y xy y yyW 5  2|U| 2f 0 [U(c9c9 2 c9c9 ) 1 V(c9c9 2 c9c9 )]x p xp y p yp2S 

1 C M.U (C5)

Here, the wave-activity pseudomomentum is defined as
M 5 (A1E) with A 5 q92/(2|=HQ|) and E 5 e/(|U| 21

2

CP).
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