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ABSTRACT. This paper presents a new formulation of the non-linear discrete Kirchhoff
quadrilateral shell element applicable for the analysis of geometrically nonlinear structures
undergoing finite rotations. The shell director is directly interpolated and the exact
linearization of the discreet form of the equilibrium equations is derived in closed form. The
consistent tangent stiffness matrix is symmetric and is given explicitly in this paper. Two or
three rotational variables are used at each node. To improve the in-plane deformation
enhanced incompatible modes are introduced. The formulation is then illustrated by a
comprehensive set of numerical experiments selected from the literature.
RÉSUMÉ. Ce papier présente une nouvelle formulation de l’élément de coque quadrilatéral de
type Kirchhoff discret non linéaire applicable à l’analyse des structures géométriquement
non linéaires avec des rotations finies. Le vecteur directeur de la coque est interpolé
directement et la linéarisation exacte de la forme discrète des équations de l’équilibre est
dérivée d’une façon exacte. La matrice tangente consistante est symétrique, elle est donnée
explicitement dans ce papier. Deux ou trois variables de rotation sont utilisées à chaque
nœud. Pour améliorer les déformations dans le plan, des modes incompatibles sont
introduits. La formulation est donc illustrée par un ensemble complet d’expériences
numériques sélectionné de la littérature.
KEYWORDS: nonlinear shell element, finite rotation, enhanced assumed strain.
MOTS-CLÉS : élément de coque non linéaire, grandes rotations, déformations enrichies supposées.
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1. Introduction

Large efforts have been made in recent years to develop finite elements for the
analysis of shell structures subjected to large displacements and rotations. Examples
of them are those proposed in (Saleeb et al., 1990; Parisch, 1991) where the
classical degerated concept is revisited in nonlinear setting to incorporate the exact
rotation updates, (Buechter et al., 1991; Buechter et al., 1992), where a comparison
between classical shell theory and degerated approach, (Sansour et al., 1992;
Wriggers et al., 1993) where non linear shell theories based on Biot formulation are
explored and (Buechter et al., 1994; Parisch, 1995) where an extension of nonlinear
shell formulation to continuum three dimension is investigated. Other shell
formulations based on the classical one director non-linear shell theory, considered
in this work, are presented in (Simo et al., 1990a; 1993a; Ibrahimbegovic,
1995; 1997) among others. All this development has been made on the kinematics
hypothesis of Reissner-Mindlin.

In this paper, the non linear finite shell element in developed starting from the
non linear classical shell theory where the Kirchhoff-Love constraint is applied in a
discreet form.

The Kirchhoff-Love hypothesis consists in annulling the transverse shear
deformation. This hypothesis requires a C1 continuity for a compatible displacement
model. This model, which only applies for the thin structures, has been used by
several authors to develop linear and non-linear elements. The continuity C1, that
requires the specification of the transverse displacement and all its derivatives at
nodes, is very difficult to assure. To avoid these difficulties, several approaches
have been proposed.

A first approach is based on an independent interpolation of variables of rotation
and displacement. The hypothesis of Kirchhoff_Love is introduced then on the
element boundaries or inside elements under collocation or integration form. One
then recovers the family of the effective discreet Kirchhoff plate and shell elements:
three nodes elements DKT: Discreet Kirchhoff Triangle (Dhatt, 1969; Batoz et al.,
1980; Kui, et al., 1985; Dhatt et al., 1986; Zienkiewicz et al., 1990; Talaslidis et al.,
1992) and four nodes elements DKQ: Discreet Kirchhoff Quadrilateral (Batoz et
al., 1982; Jeyachandrabose et al., 1987; Ibrahimbegovic, 1993; Krätzig et al., 1994;
Soh et al., 2000; Razaqpur et al., 2003).

In a second approach, to ensure C1 continuity, one finds the class of elements
based on the mixed formulations. We mention here, as an example, mixed/hybrid
element HSM: Hybrid Stress Model (Batoz et al., 1980) and the non-conforming
displacement element of (Morley, 1991; Keulen et al., 1993a; 1993b). These
elements, HSM and the one of Morley, are among the simplest elements of
Kirchhoff-Love type that pass the patch test of constant curvature with a number
reduces degrees of freedom. On the other hand, the inconvenience of these elements
resides of the presence of degrees of freedom on mid-side element boundaries. One
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finds in (Hughes, 1987; Batoz et al., 1990; Zienkiewicz et al., 1991) more details
formulations on the Kirchhoff plate and shell elements in the linear case.

In the case of nonlinear discrete Kirchhoff shell elements, most of papers deal
with the three nodes element (Fafard et al., 1989; Morley, 1991; Peng et al., 1992;
Keulen et al., 1993a, 1993b; Bédouani et al., 1995). For the four nodes elements,
one finds the work of (Jaamei et al., 1989) where the others use Marguerre theory
but there is no reference to finite rotation.

In this paper, the non-linear finite element formulation presented is based on the
four nodes discreet Kirchoff-Love element, DKQ where Kirchoff-Love constrain is
imposed under integral form on the element boundaries. Large rotations effects are
included in this element.

Since it is known that finite element base upon low order isoparametric
displacement formulation exhibit poor performance in bending and locking in the
near incompressible limit, an enhanced assumed strains is introduced to improve the
performances of the proposed non linear shell element. The assumed strain
formulation is preferred to the assumed stress due to their natural compatibility with
the strain driven format typically found in the algorithmic development of nonlinear
materials (Simo et al., 1990b, 1992, 1993b; Andelfinger et al., 1993; Korelc et al.,
1997).

The paper is outlined as follows. In section 2 the governing equation is given as
well as the variational formulation for the shell model which is then cast into its
weak form. Finite element formulation is introduced in section 3 and the
transformation relations and updating for the mixed enhanced assumed strain are
presented in section 4. Representative numerical verifications are presented in
section 5. Finally in section 6, conclusions are drawn and further work outlined.

2. Governing equation and weak form

It is well established that the local form of the equilibrium equation in terms of
stress and stress couple resultants can be written (Simo et al., 1990a):

( ) 0nn , =+α
αjj

1 ,            ( ) 0mlm , =+−α
αjj

1 [1]

where αn  and αm  are the resultant stress and director couple resultants, n  and

m  are the applied loads, j  is the surface Jacobien and l  is the cross the thickness
stress resultant. Making use of the divergence theorem, one obtain the following
expression of the weak form of the equilibrium equations:
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( ) 0GdAG ext
A

=−γ++= ∫
 

.. δδδ .qmn ρε [2]

where extG  is the external virtual work and given by

( ) ( )  
. . . .ext A A

G dA jdα α
α∂

= δ + δ + δ + δ ν Γ∫ ∫n m d n m dϕ ϕ [3]

where δϕ  and δd  are the variations associated to the position of the mid-surface
and director field respectively, n, m and q are components of the effective stress
tenser (Simo et al., 1990a) and are relative to the membrane, bending and transverse
shear which can be written in matrix form as
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where 0jjJ /= . εδ , ρδ  and γδ  are the variations of shell strain
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From [5], we introduce the strain measures defined by:
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and in matrix form
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In equations [5], dδ  and αδ ,d  are the variation of the director and its

derivative. These variations can be written either in spatial description

θΛθ δδδ =∧= dd ,        d~−=Λ [8]

where d  is the skew-symmetric tensor such that =d d 0 ,

or in material description

ΘΛΘΛ δδδ 3 == E~d ,        3E~ΛΛ −= [9]

where we assumed that 3Ed Λ=  . It is shown in (Simo, 1993a) that with

[ ]t
3 100=E , a spatial description leads to a shell problem with 6

DOF/node and the material description leads to a shell problem with 5 DOF/node,
where the transformation Λ  take the following form:

[ ]3x212 dd−=Λ [10]

We next introduce the differential matrix operator B, yet called the strain
operator defined as
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where mB and bB  are membrane and bending strain operators
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Moreover, by defining the total resultant stress vector as









=

m

n
R [14]

the weak form of the equilibrium equation in [2], with the Kirchhoff-Love
constraint, can be rewritten as

( ) ( ) 0δGdAδδG ext
A

t =−= ∫ ΦΦΦΦΦ  ,      ,   B.R [15]

The last expression defines the nonlinear shell problem, which can be solved by
the Newton iterative procedure. The consistent tangent operator for the Newton
solution procedure can be constructed by the directional derivative of the weak form
in the direction of the increment displacement and rotation ( )d∆∆∆  ,ϕΦ = . It
is a conventional practice to split the tangent operator into geometric and material
parts, denoted by ΦG.∆DG  and ΦG.∆DM , respectively, i.e,

ΦΦΦ G.∆ DG.∆DDG.∆ MG +=  [16]

The geometric part results from the variation of the virtual strains while holding
stress resultants constant. Accordingly, from [2] and [13], we obtain 

( )∫ +=
A

G dA∆δ∆δG.∆D      ρεΦ .m.n [17]

where the corresponding components are given by

( )αββααβ δ∆δ∆1/2∆δ ,,,, .  . ϕϕϕϕ +=ε [18]

( )αββααββααβ ∆∆δ∆δ∆1/2∆δ ,,,, ..  . . dddd ,,,, ϕϕϕϕ δδρ +++=

( ) . . ,, αββα ∆δ∆δ1/2 dd ,, ϕϕ ++ [19]
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The material part of the tangent operator results from the variation in the stress
resultants and thus takes the form

∫∫ ΦΦΦ=Φ =
A

T
A

M dA∆dA∆G.∆D  .         BH.BR.B δδ [20]

where TH is the material tangent modulus which is given by the constitutive
equations.

3. Finite element formulation

In this section, we elaborate the numerical implementation of the presented shell
theoretical formulation base upon a four node non-linear shell element. It can be
seen from [6] that the element geometry requires the position vector, as well as the
associated shell director. Using the isoparametric concept, the variation and
incremental position vector is approximated by

∑
=

=
4

1I
I

IN ϕϕ δδ ,        ∑
=

=
4

1I
I

I∆N∆ ϕϕ [21]

where iN  are the standard isoparametric shape functions. For further details
concerning isoparametic concept, we refer to standard references (Dhatt et al., 1981;
Hughes, 1987; Batoz et al., 1990; Zienkiewicz 1991).

For the variation and increment director field, we choose a quadratic
interpolation as the same one proposed in (Batoz et al., 1990), to formulate linear
discrete Kirchhoff plates elements.

∑∑
==

+=
8

5K
KKK

4

1I
I

I PN tdd δαδδ [22]

∑∑
==

+=
8

5K
KKK

4

1I
I

I ∆P∆N∆ tdd α [23]

where (I) represent a node of the element, (K) represent the mid-point of the element
boundaries and Kδα  are variables associated to dδ  on the element boundaries.

The vector Kt  is unit and its direction is defined by the position of the nodes couple
(I, J) as shown in figure 1.
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Figure 1. Position of the nodes couple 

( ) KIJK L/xxt −= ,        L

wehe KL  is the I-J side length. The sh
in the Table 1.

Table 1. Functions PK

PK

With these interpolations at hand, 
residual and geometric matrix for mem

3.1. Membrane deformation

We first consider the shell memb
associated strain matrix mB  can be wr
I

(I, J)

IJK xx −= [24]

ape functions PK are quadratic and are given

( )( )ηξ −−= 1150P 2
5 .

( ) ( )2
6 1150P ηξ −+= .

( )( )ηξ +−= 1150P 2
7 .

( )( )2
8 1150P ηξ −−= .

one can compute the discrete strain operator,
brane and bending.

rane part of the problem. At node (i), the
itten as
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The corresponding contribution to the element residual is

∫=
A

t
mm dA n.BR [26]

The discrete approximation of the geometric tangent operator contributed by the
membrane part associated with nodes (I, J) is then given by
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( ) ( )( )∫ +++=
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3.2. Bending deformation

When one introduces the vanishing shearing hypothesis over the element
boundaries under integral form, we have for side (I, J) :

∫ =
J

I
sz 0dsδγ ,          [29]

d.u,sssz δδβδγ += ,        d.t δδβ Ks = [30]

where (s) is a parametric coordinate. While using a linear interpolation of the
displacement vector uδ , this vector can be written for the side (I, J) as following :

( ) JI1 uuu ξδδξδ +−= ,     0Ls0 K ≤=≤ /ξ [31]

The director vector d is given by
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d~
d~d = [32]

d~P
d~

d δδ d
1= ,       ddIP ⊗−=d [33]

where Pd is an orthogonal projection. Vector d~δ  is defined by a quadratic
interpolation as in equation [21]:

( ) ( ) KKJI 141 tddd~ δαξξξδδξδ −++−= [34]

Then we have the final expression for the sδβ :

( ) ( )( )KsJsIs 1411 δαξξξδβδβξδβ −++−≈
d~

[35]

Then to integrate the two terms of the vanishing shearing hypothesis, we use the
relations [28], [29] and [32]. We can write after all made calculus:

( ) ( )
JI

JI
JI

J

I
s ds

dd
dduud.u, +

+
+≈∫ δδδ [36]

( )KsJsI
JI

K
J

I
s 3

4Lds δαδβδβδβ ++
+

≈∫ dd
[37]

The Kirchhoff-Love constraint is obtained by taking the sum of these last two
equations equals to zero. This leads to the following expression of variables kδα :

( ) ( )( )KJIKJI
K

K 4
3

L2
3 t.ddd.uu δδδδδα +−+= [38]

( )JIK 2
1 ddd += [39]

One deducts from interpolation [21], the following expression of the vector :
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in a matrix form:
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I
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where matrixes I
dM  and I

rM  are given by the following expressions :
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K 4
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The (K) and (M) are the two mid-side of every side of the quadrilateral, that are
bound to the node (I) (figure 1).

Finally, the bending deformation, in the local Cartesian reference is expressed
as:

nb UBδδ =ρ [44]
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and the contribution to the element residual becomes

∫=
A

T
bb dA m.BR [48]

The discrete approximation for the geometric tangent operator contributed by
bending part associated with nodes (I, J) is then given by
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where:
– Displacement terms are:
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– Coupling terms are:

J
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tJI
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– Rotation terms are:

0rr =IJ
b      for JI ≠ [54]

Irr II
II

b χ−= ,        for I=J [55]
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( ) I
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M
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( ) ( )( )∫ +++=
A

2
I
2

22I
1

12
1

I
2

12I
1

11I  dANmNmNmNm ,ϕϕ ,,,,,V [57]

( ) ( )( )∫ +++=
A

2
I

2K
22I

1K
12

1
I

2K
12I

1K
11I
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This completes our development of the material and geometric tangents
operators of the discrete Kirchhoff quadrilateral. We remark that as far as we are
aware, the expression of the tangent matrix appears not to have been recorded
previously in the literature.

4. Enhanced assumed strains

To improve the membrane behavior of the bilinear shell element, especially for
in-plane bending dominated case; we enhance the compatible in-plane strain. With a
fielfd α :

incc εεε += ,       cρρ = [59]

ΦΒε δδ m
c = ,      αΒε δδ m

inc ~= ,     ΦΒρ δδ bb= [60]

The orthogonality condition is expressed as:

0dA
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Further, after local condensation of parameter α  we obtain:

( ) ( )∫∫ +++=
A

bbbmmb
t
b

A
bmbmm

t
m dAdA ΒΗΒΗΒΒΗΒΗΒA [64]

( )∫ +=
A

bmbmm
t
m dAΒΗΒΗΒ~B ,       ∫=

A
mm

t
m dAΒΗΒ ~~C [65]

( )∆Φα∆ BRC +−= −1 [66]

The contribution of the element material tangent stiffness can then be computed as

BCBAK 1t
m

−−= [67]

The element geometric tangent stiffness is identical to displacement tangent
element.

5. Numerical verification

In all verification tests treated in this section, we denote by MITC4, the Simo
and al., 1990a) element with the displacement formulation used for membrane and
bending and assumed natural strain for shear. We denoted by SDK4 and SDK4I the
four node discrete Kirchhoff shell element proposed in this paper with displacement
and enhanced formulation.

The performance of the shell elements SDK4 and SDK4I is evaluated on several
non-linear problems, selected from the literature, that encompass a wide range of
deformation states involving warping, large rotations and large displacements.

5.1. Bending of a tapered beam

This example witch consist on a tapered beam subjected to an end load, serves to
demonstrate the performance of the enhanced formulation versus the displacement
formulation. J2 flow plasticity with isotropic hardening material is assumed with the
following material properties: Young modulus E=70, Poisson ‘s ratio ν=1/3, uniaxial
tensile yield stress σy=0.243 and hardening modulud H’=0.2. The Loading is increased
in increments of ∆F = 0.1 until a final value of 1.8 is reached. Initial and deformed
configurations are shown in figure 2 for the SKQ4I element. figure 3 shows the
vertical displacement of the top right node plotted versus number of element per side at
the load level of F=1.8. computed with the SDK4 and SDK4I elements. In this test the
geometric part is excuded. As demonstrated in figure 3, for this problem, SDK4
exhibits a significant degradation in accuracy over the mixed element SDK4I.
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5.2. Torsion of a flat plate strip

The purpose of this example is to demonstrate the ability of the formulation to
capture large rotations. An initially flat shell clamped on one end is subjected to a
torsional moment on the other end leading to a relative rotation of ≈180°. The initial
and deformed configurations are shown in figure 4. The material properties are
E=12 E6 and ν=0.3. The plate length is L=1.0, the widht is w=0.25 and the
thickness is t=0.1. The final configuration is attained in three load steps.

Figure 4. Initial and deformed configurations for the torsion of clamped plate

5.3. A pinched hemisphere

This numerical simulation is concerned with some analysis of the non-linear
response of a pinched hemispherical shell with a 18° hole at the top and two inward
and outward forces 90° apart. This test is given in (Simo et al., 1990a) with four
node quadrilateral elements. This problem is an excellent test of the ability of an
element to handle finite rotations. The radius is R=10, the thickness h=0.04 and
material properties are: E=12x106 and υ=0.3. The total load F=100 is applied in 5
equal increments. Using symmetry boundary conditions, one quadrant of the shell is
modeled with 4x4, 8x8 and 16x16 quadrilateral elements. The initial and deformed
configurations for 16x16 meshing are shown in figure 5 and 6 and the load-
deflection plots at the points of the application of the loads are shown in figure 7
and 8. The results for SDK4 and SDK4I are in complete agreement with those
obtained using the results based element MITC4.

Since we have developped an exact expression for the tangent operator, the
Newton method solution procedure exibits an asymtotic rate of convergence. This
rate was observed in all the problems examined. As an illustration, we record in
Table 2. the value of the energy norm obtained during the fifth load step. The same

T

T
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asymptotic rate of convergence is observed with both MITC4, SDK4 and SDK4I
elements.

R= 10

h=0.04

E=6.825 E7

ν =0.3

F=100  in 5 increments

AB : U=θY= θZ =0

BC : Free

CD : V= θX = θZ =0

AD :Free

Figure 5. Initial mesh configurations for the pinched hemisphere

Figure 6. Deformed mesh configurations for the pinched hemisphere
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Figure 7. Load-X_displacement for the different mesh configurations
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Figure 8. Load-Y_displacement for the different mesh configurations
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Table 2. A pinched hemisphere Convergence at th 5th load step

Iterations SDK4 SDK4I MITC4
1 0.1000E+1 0.1000E+1 0.1000E+1
2 0.2707E+3 0.2824E+3 0.3077E+3
3 0.3738E-1 0.4040E-1 0.4144E-1
4 0.1468E-2 0.1614E-2 0.3865E-2
5 0.3446E-3 0.4459E-3 0.3178E-2
6 0.3308E-5 0.1764E-5 0.1555E-4
7 0.8016E-8 0.4290E-8 0.6477E-7
8 0.1492E-11 0.8302E-11 0.7396E-14
9 0.2293E-13 0.2042E-13 0.3154E-22

10 0.6509E-16 0.4645E-16 ---

5.4. Hyperboloidal composite shell under two pairs of opposites loads

Finally, this example (figure 9) has to demonstrate the applicability of the
proposed shell models to arbitrary composite shell geometries and strong
nonlinearities.

R1= 15 m

R2=7.5 m

H=20 m

E1=40 106 kN/m2

E2= 106 kN/m2

ν 12=0.25

G12=G23=G13=0.6106

kN/m2

3 layers (h/3,h/3,h/3)

h=0.04 m

(0,90,0) or (90,0,90

F=5 kN

Figure 9. Hyperb

R1
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H

F

B

D

A

C

oloidal composite shell under two pairs of opposites loads

F
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Due to the symmetry only one eighth of the shell is discretized. The shell has
been analyzed for two set of laminate schemes 0/90/0 and 90/090.

In the figure 10 we show the deformed shape for this two laminate schemes.
These figures demonstrate the considerable influence of the lamination arrangement
on the deformation behaviour. The corresponding results illustrated in figure 11 and
12 for the displacement of the characteristic points A, B, C and D including results
due to (Basar et al., 1993) with a Mindlin-Reissner shell element.

a/ 0/90/0 b/ 90/0/90

Figure 10. Deformed mesh configurations for the load level f=32.0
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Figure 11. Hyperboloidal composite shell 0/90/0, Load-displacement at A,B,C,D
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Figure 12. Hyperboloidal composite shell 90/0/90, Load-displacement at A,B,C,D

6. Conclusions

In this paper we are derived a new formulation of the non-linear discrete
Kirchhoff quadrilateral shell element for the analysis of geometrically nonlinear
structures. The element allows the occurrence of finite rotations. The shell director
is directly interpolated and the exact linearization of the discreet form of the
equilibrium equations is derived in closed form. An enhanced incompatible modes
are introduced to improve the in-plane deformations. Examples show the
applicability and effectivity of the developed element.

In the proposed formulation of the non-linear discrete Kirchhoff quadrilateral
shell element, the Kirchhoff constraint is taken at each iteration. The rotations
updating at nodes are the same one used in a Mindlin formulation (Appendix
Table 3). At mid-side the updating of rotations is made consistent with the
Kirchhoff constraint (Appendix Table 4). According to our experience, the response
of the proposed element formulation converges to Kirchhoff theory. However, a
little slower convergence can be observed in same cases compared to the Mindlin
element MITC4 (Table 2). This can be due to the rotations mid-side updating where
we use the nodal displacements solution to compute the mid-side rotations ∆α  as
obtained from the Kirchhoff constraint. A deepened survey should be considered on
this topic.
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Appendix

Table 3. Nodal Updates

• Directors and matrix for 6ddl
kdd ∧= θ∆∆

( ) ( ) ddd ∆∆
∆∆ d

dsindcos k1k +=+ ,       d∆∆ =d

1k1k ++ −= d~Λ
• Directors and matrix for 5ddl

∆ΘΛ∆ k=d

( ) ( ) ddd ∆∆
∆∆ d

dsindcos k1k +=+ ,       d∆∆ =d

dd ∆θ∆ ∧= k ,          ( ) k1k exp Λθ∆Λ .=+
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Table 4. Mid-Side (K) director updates

k
I

k
JKL xx −=

( ) ( )( )k
KJI

k
KJI

K
K 4

3
L2
3 t.ddd.uu ∆∆∆∆∆ +−+=α

( ) k
KKJIK dd2

1 t.d α∆∆∆∆ ++=

( ) ( )
K

k
K

1k
K d

dsindcos ddd ∆∆
∆∆ +=+ ,       Kd d∆∆ =

Table 5. Gauss Points Updates

∑∑ +=
K

k
K

k
KK

I
I

I PN tdd α∆∆∆ ,     ∑∑ +=
K

k
K

k
KK

I
I

I PN tdd ,,, αααα ∆∆∆

( ) ( ) ddd ∆∆
∆∆ d

dsindcos k1k +=+ ,       d∆∆ =d

( ) ααα ,,, dTdd ∆∆ 1kk1k dcos ++ +=


