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Abstract

This report documents a FORTRAN computer code package that is used for the evaluation of
gas-phase multicomponent viscosities, thermal conductivities, diffusion coefficients, and thermal
diffusion coefficients. The TRANSPORT Property package is in two parts. The first is a preprocessor
that computes polynomial fits to the temperature dependent parts of the pure species viscosities and
binary diffusion coefficients. The coefficients of these fits are passed to a library of subroutines via a
linking file. Then, any subroutine from this library may be called to return either pure species
properties or multicomponent gas mixture properties. This package uses the gas-phase chemical
kinetics package CHEMKIN-III, and the TRANSPORT property subroutines are designed to be used in
conjunction with the CHEMKIN-III subroutine library.
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A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF
GAS-PHASE MULTICOMPONENT TRANSPORT PROPERTIES

I. INTRODUCTION

Characterizing the molecular transport of species, momentum, and energy in a
multicomponent gaseous mixture requires the evaluation of diffusion coefficients, viscosities, thermal
conductivities, and thermal diffusion coefficients. Although evaluation of pure species properties
follows standard kinetic theory expressions, one can choose from a range of possibilities for evaluating
mixture properties. Moreover, computing the mixture properties can be expensive, and depending on
the use of the results, it is often advantageous to make simplifying assumptions to reduce the
computational cost.

For most applications, gas mixture properties can be determined from pure species properties
via certain approximate mixture averaging rules. However, there are some applications in which the
approximate averaging rules are not adequate. The software package described here therefore
addresses both the mixture-averaged approach and the full multicomponent approach to transport
properties. The TRANSPORT property program is fully compatible with the CHEMKIN

Thermodynamic Database 1 and the CHEMKIN-III Gas-phase kinetics package. 2 The multicomponent
methods are based on the work of Dixon-Lewis 3 and the methods for mixture-averaged approach are
reported in Warnatz 4 and Kee et al. 5

The multicomponent formulation has several important advantages over the relatively simpler
mixture formulas. The first advantage is accuracy. The mixture formulas are only correct
asymptotically in some special cases, such as in a binary mixture, or in diffusion of trace amounts of
species into a nearly pure species, or systems in which all species except one move with nearly the
same diffusion velocity. 6 A second deficiency of the mixture formulas is that overall mass
conservation is not necessarily preserved when solving the species continuity equations. To
compensate for this shortcoming one has to apply some ad hoc correction procedure. 5,7 The
multicomponent formulation guarantees mass conservation without any correction factors, which is a
clear advantage. The only real deficiency of the multicomponent formulation is its computational
expense. Evaluating the ordinary multicomponent diffusion coefficients involves inverting a K x K

matrix, and evaluating the thermal conductivity and thermal diffusion coefficients requires solving a
3K x 3K system of algebraic equations, where K is the number of species.

To maximize computational efficiency , the multicomponent transport package is structured
such that a large portion of the calculations are done in a preprocessor that provides information to the
application code requiring the transport properties through a Linking File. Polynomial fits are thus
computed a priori for the temperature-dependent parts of the kinetic theory expressions for pure
species viscosities and binary diffusion coefficients. (The pure species thermal conductivities are also
fit, but are only used in the mixture-averaged formulation.) The coefficients from the fit are passed to
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a library of subroutines that can be used to return either mixture-averaged properties or
multicomponent properties. This fitting procedure is used so that expensive operations, such as
evaluation of collision integrals, need be done only once and not every time a property is needed.

This document first reviews the kinetic theory expressions for the pure species viscosities and
the binary diffusion coefficients. Then, we describe how momentum, energy, and species mass fluxes
are computed from the velocity, temperature and species gradients and either mixture-averaged or
multicomponent transport properties. Having these relationships in mind, the report next describes
the procedures to determine multicomponent transport properties from the pure species expressions.
The third part of the report describes how to use the software package and how it relates to CHEMKIN.
The following chapter describes each of the multicomponent subroutines than can be called by the
package’s user. The last chapter lists the data base that is currently available.
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II. THE TRANSPORT EQUATIONS

Pure Species Viscosity and Binary Diffusion Coefficients

The single component viscosities are given by the standard kinetic theory expression 8

,
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where σk is the Lennard-Jones collision diameter, mk is the molecular mass, kB is the Boltzmann
constant, and T is the temperature. The collision integral Ω(2,2)* depends on the reduced temperature
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In the above expression εk is the Lennard-Jones potential well depth and µk is the dipole moment. The
collision integral value is determined by a quadratic interpolation of the tables based on Stockmayer
potentials given in Monchick and Mason. 9

The binary diffusion coefficients 8 are given in terms of pressure and temperature as
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where mk is the reduced molecular mass for the (j,k) species pair
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and σjk is the reduced collision diameter. The collision integral Ω(1,1)∗ (based on Stockmayer
potentials) depends on the reduced temperature, Tjk

* which in turn may depend on the species dipole

moments µk, and polarizabilities αk. In computing the reduced quantities, we consider two cases,
depending on whether the collision partners are polar or nonpolar. For the case that the partners are
either both polar or both nonpolar the following expressions apply:
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For the case of a polar molecule interacting with a nonpolar molecule:
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In the above equations *
nα is the reduced polarizability for the nonpolar molecule and *

pµ is the

reduced dipole moment for the polar molecule. The reduced values are given by
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The table look-up evaluation of the collision integral ∗Ω )1,1( depends on the reduced temperature
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and the reduced dipole moment,
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Although one could add a second-order correction factor to the binary diffusion coefficients 10

we have chosen to neglect this since, in the multicomponent case, we specifically need only the first
approximation to the diffusion coefficients. When higher accuracy is required for the diffusion
coefficients, we therefore recommend using the full multicomponent option.

Pure Species Thermal Conductivities

The pure species thermal conductivities are computed only for the purpose of later evaluating
mixture-averaged thermal conductivities; the mixture conductivity in the multicomponent case does
not depend on the pure species formulas stated in this section. Here we assume the individual species
conductivities to be composed of translational, rotational, and vibrational contributions as given by
Warnatz. 4
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The molar heat capacity Cv relationships are different depending on whether or not the molecule is
linear or not. In the case of a linear molecule,

2
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In the above, Cv is the specific heat at constant volume of the molecule and R is the universal gas
constant. For the case of a nonlinear molecule,
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The translational part of Cv is always the same,
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In the case of single atoms (H atoms, for example) there are no internal contributions to Cv, and hence,
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where .25trans.=f The “self-diffusion” coefficient comes from the following expression,
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The density comes from the equation of state for a perfect gas,

,
RT

PMk=ρ (31)

with p being the pressure and Mk the species molar mass.

The rotational relaxation collision number is a parameter that we assume is available at 298K
(included in the data base). It has a temperature dependence given in an expression by Parker 11 and
Brau and Jonkman, 12
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The Pure-Species Fitting Procedure

To expedite the evaluation of transport properties in a computer code, such as a flame code,
we fit the temperature dependent parts of the pure species property expressions. Then, rather than
evaluating the complex expressions for the properties, only comparatively simple fits need to be
evaluated.

We use a polynomial fit of the logarithm of the property versus the logarithm of the
temperature. For the viscosity
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and the thermal conductivity,
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The fits are done for each pair of binary diffusion coefficients in the system.
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By default TRANSPORT uses third- order polynomial fits (i.e., N = 4) and we find that the fitting errors
are well within one percent. The fitting procedure must be carried out for the particular system of
gases that is present in a given problem. Therefore, the fitting can not be done “once and for all,” but
must be done once at the beginning of each new problem.

The viscosity and conductivity are independent of pressure, but the diffusion coefficients
depend inversely on pressure. The diffusion coefficient fits are computed at unit pressure; the later
evaluation of a diffusion coefficient is obtained by simply dividing the diffusion coefficient as
evaluated from the fit by the actual pressure.
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Even though the single component conductivities are fit and passed to the subroutine library
they are not used in the computation of multicomponent thermal conductivities; they are used only for
the evaluation of the mixture-averaged conductivities.

The Mass, Momentum, and Energy Fluxes

The momentum flux is related to the gas mixture viscosity and the velocities by
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where υ is the velocity vector, ( )υ∇ is the dyadic product, ( )Tυ∇ is the transpose of the dyadic

product, and δδδδ is the unit tensor. 6 In this software package we provide average values for the mixture
viscosity η, but we do not provide information on the bulk viscosity κ.

The energy flux is given in terms of the thermal conductivity λ 0 by
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The multicomponent species flux is given by
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where Yk are the mass fractions and the diffusion velocities are given by
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The species molar masses are denoted by Mk and the mean molar mass by M . jkD , are the ordinary

multicomponent diffusion coefficients, and T
kD are the thermal diffusion coefficients.

By definition in the mixture-average formulations, the diffusion velocity is related to the
species gradients by a Fickian formula as,
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The mixture diffusion coefficient for species k is computed as 6
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A potential problem with this expression is that it is not mathematically well-defined in the limit of the
mixture becoming a pure species. Even though diffusion itself has no real meaning in the case of a
pure species, the numerical implementation must ensure that the diffusion coefficients behave
reasonably and that the code does not “blow up” when the pure species condition is reached. We
circumvent these problems by evaluating the diffusion coefficients in the following equivalent way.

�

�
=

≠

≠
K

kj jkj

K
kj jj

km
XM

MX
D

ÿ
(44)

In this form the roundoff is accumulated in roughly the same way in both the numerator and
denominator, and thus the quotient is well-behaved as the pure species limit is approached. However,
if the mixture is exactly a pure species, the formula is still undefined.

To overcome this difficulty we always retain a small quantity of each species. In other words,
for the purposes of computing mixture diffusion coefficients, we simply do not allow a pure species
situation to occur; we always maintain a residual amount of each species. Specifically, we assume in
the above formulas that

,ˆ δ+= kk XX (45)

where X̂k is the actual mole fraction and δ is a small number that is numerically insignificant

compared to any mole fraction of interest, yet which is large enough that there is no trouble
representing it on any computer. A value of 10-12 for δ works well.

In some cases (for example, Warnatz 13 and Coltrin et al. 14) it can be useful to treat multicomponent
diffusion in terms of an equivalent Fickian diffusion process. This is sometimes a programming
convenience in that the computer data structure for the multicomponent process can be made to look
like a Fickian process. To do so supposes that a mixture diffusion coefficient can be defined in such a
way that the diffusion velocity is written as Eq. (42) rather than Eq. (41). This equivalent Fickian
diffusion coefficient is then derived by equating Eq. (41) and (42) and solving for Dkm as
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Unfortunately, this equation is undefined as the mixture approaches a pure species condition. To help
deal with this difficulty a small number (ε = 10−12 ) may be added to both the numerator and
denominator to obtain

Dkm = −
Mj Dkjd j + εj ≠k

K∑
M (d k + ε )

Furthermore, for the purposes of evaluating the “multicomponent” Dkm, it may be advantageous to
compute the dk in the denominator using the fact that � ∇−=∇ ≠

K
kj jk XX . In this way the summations

in the numerator and the denominator accumulate any rounding errors in roughly the same way, and
thus the quotient is more likely to be well behaved as the pure species limit is approached. Since there
is no diffusion due to species gradients in a pure species situation, the exact value of the diffusion
coefficient is not as important as the need for is simply to be well defined, and thus not cause
computational difficulties.

In practice we have found mixed results using the equivalent Fickian diffusion to represent
multicomponent processes. In some marching or parabolic problems, such as boundary layer flow in
channels,14 we find that the equivalent Fickian formulation is preferable. However, in some steady
state boundary value problems, we have found that the equivalent Fickian formulation fails to
converge, whereas the regular multicomponent formulation works quite well. Thus, we cannot
confidently recommend which formulation should be preferred for any given application.

The Mixture-Averaged Properties

Our objective in this section is to determine mixture properties from the pure species
properties. In the case of viscosity, we use the semi-empirical formula due to Wilke15 and modified
by Bird et al.6 The Wilke formula for mixture viscosity is given by
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For the mixture-averaged thermal conductivity we use a combination averaging formula16
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Thermal Diffusion Ratios

The thermal diffusion coefficients are evaluated in the following section on multicomponent
properties. This section describes a relatively inexpensive way to estimate the thermal diffusion of
light species into a mixture. This is the method that is used in our previous transport package, and it is
included here for the sake of upward compatibility. This approximate method is considerably less
accurate than the thermal diffusion coefficients that are computed from the multicomponent
formulation.

A thermal diffusion ratio Θk can be defined such that the thermal diffusion velocity k� is

given by
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where xi is a spatial coordinate. The mole fractions are given by Xk, and the Dkm are mixture diffusion
coefficients Eq. (42). In this form we only consider thermal diffusion in the trace, light component limit
(specifically, species k having molecular mass less than 5). The thermal diffusion ratio 17 is given by
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Three ratios of collision integrals are defined by
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We have fit polynomials to tables of *
ijA , *

ijB , and *
ijC . 9

In the preprocessor fitting code (where the pure species properties are fit) we also fit the
temperature dependent parts of the pairs of the thermal diffusion ratios for each light species into all
the other species. That is, we fit ( )kjkj XXθ for all species pairs in which 5<kM . Since the

kjθ depend weakly on temperature, we fit to polynomials in temperature, rather than the logarithm of

temperature. The coefficients of these fits are written onto the linking file.

The Multicomponent Properties

The multicomponent diffusion coefficients, thermal conductivities, and thermal diffusion
coefficients are computed from the solution of a system of equations defined by what we call the L

matrix. It is convenient to refer to the L matrix in terms of its nine block sub-matrices, and in this form
the system is given by
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where right hand side vector is composed of the mole fraction vectors Xk. The multicomponent
diffusion coefficients are given in terms of the inverse of the L00,00 block as
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The thermal conductivities are given in terms of the solution to the system of equations by

�−=
=

K

k
kkaX

1

1
10.tr,0λ (60)

�−=
=

K

k
kkaX

1

1
01.int,0λ (61)

.int,0.tr,00 λλλ += (62)

and the thermal diffusion coefficients are given by
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The components of the L matrix are given by Dixon-Lewis, 3
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In these equations T is the temperature, p is the pressure, Xk is the mole fraction of species k, ikÿ are the
binary diffusion coefficients, and mi is the molecular mass of species i. Three ratios of collision

integrals ∗
jkA , ∗

jkB , and ∗
jkC are defined by Eqs. (54-56). The universal gas constant is represented by R

and the pure species viscosities are given as ηk . The rotational and internal parts of the species
molecular heat capacities are represented by ck,rot and ck,int . For a linear molecule
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and for a nonlinear molecule
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The internal component of heat capacity is computed by subtracting the translational part from the full
heat capacity as evaluated from the CHEMKIN Thermodynamic Database. 1
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Following Dixon-Lewis, 3 we assume that the relaxation collision numbers ξij depend only on the

species i, i.e., all iiij ξξ = . The rotational relaxation collision number at 298K is one of the parameters in

the transport data base, and its temperature dependence was given in Eqs. (32) and (33).

For non-polar gases the binary diffusion coefficients for internal energy ki int.,ÿ are

approximated by the ordinary binary diffusion coefficients. However, in the case of collisions between
polar molecules, where the exchange is energetically resonant, a large correction of the following form
is necessary,
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where,

3

2985

T
pp =′δ (69)

when the temperature is in Kelvins.

There are some special cases that require modification of the L matrix. First, for mixtures
containing monatomic gases, the rows that refer to the monatomic components in the lower block row
and the corresponding columns in the last block column must be omitted. That this required is clear
by noting that the internal part of the heat capacity appears in the denominator of terms in these rows
and columns (e.g., Lij

10,01). An additional problem arises as a pure species situation is approached,

because all Xk except one approach zero, and this causes the L matrix to become singular. Therefore,

for the purposes of forming L we do not allow a pure species situation to occur. We always retain a
residual amount of each species by computing the mole fractions from

Xk =
MYk

Mk
+ δ (70)

A value of δ = 10−12 works well; it is small enough to be numerically insignificant compared to any
mole fraction of interest, yet it is large enough to be represented on nearly any computer.

Species Conservation

Some care needs to be taken in using the mixture-averaged diffusion coefficients as described
here. The mixture formulas are approximations, and they are not constrained to require that the net
species diffusion flux is zero, i.e., the condition.

� =
K

k
kkY

1
0

=
V (71)

need not be satisfied. Therefore, one must expect that applying these mixture diffusion relationships
in the solution of a system of species conservation equations should lead to some nonconservation, i.e.,
the resultant mass fractions will not sum to one. Therefore, one of a number of corrective actions must
be invoked to ensure mass conservation.

Unfortunately, resolution of the conservation problem requires knowledge of species flux, and
hence details of the specific problem and discretization method. Therefore, it is not reasonable in the
general setting of the present code package to attempt to enforce conservation. Nevertheless, the user
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of the package must be aware of the difficulty, and consider its resolution when setting up the
difference approximations to his particular system of conservation equations.

One attractive method is to define a “conservation diffusion velocity” as Coffee and Heimerl 7

recommend. In this approach we assume that the diffusion velocity vector is given as

,ˆ
ckk VVV += (72)

where V̂k is the ordinary diffusion velocity Eq. (42) and Vc is a constant correction factor (independent

of species, but spatially varying) introduced to satisfy Eq. (71). The correction velocity is defined by

.ˆ
1

�−=
=

K

k
kkc Y VV (73)

This approach is the one followed by Miller et al. 18-20in their flame models.

An alternative approach is attractive in problems having one species that is always present in
excess. Here, rather than solving a conservation equation for the one excess species, its mass fraction is
computed simply by subtracting the sum of the remaining mass fractions from unity. A similar
approach involves determining locally at each computational cell which species is in excess. The
diffusion velocity for that species is computed to require satisfaction of Eq. (71).

Even though the multicomponent formulation is theoretically forced to conserve mass, the
numerical implementations can cause some slight nonconservation. Depending on the numerical
method, even slight inconsistencies can lead to difficulties. Methods that do a good job of controlling
numerical errors, such as the differential/algebraic equation solver DASSL (Petzold, 1982), are
especially sensitive to inconsistencies, and can suffer computational inefficiencies or convergence
failures. Therefore, even when the multicomponent formulation is used, it is often advisable to
provide corrective measures such as those described above for the mixture-averaged approach.
However, the magnitude of any such corrections will be significantly smaller.
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III. THE MECHANICS OF USING THE PACKAGE

Using the TRANSPORT package requires the manipulation of several FORTRAN programs,
libraries and data files. Also, it must be used in conjunction with the CHEMKIN-III gas-phase chemical
kinetics package. The general flow of information is depicted in Fig. 1.

The first step is to execute the CHEMKIN Interpreter. The gas-phase CHEMKIN kinetics
package is documented separately, 2 so we only outline its use here. The CHEMKIN Interpreter first
reads (Unit 5) user-supplied information about the species and chemical reactions in a problem. It then
extracts further information about the species’ thermodynamic properties from the Thermodynamics
Database. 1 This information is stored on the CHEMKIN Linking File, a file that is needed by the
TRANSPORT Property Fitting routine, and later by the CHEMKIN subroutine library.

The next code to be executed is the TRANSPORT Property Fitting routine. It needs input from
the TRANSPORT Property Database, and from the CHEMKIN Linking File. The TRANSPORT database
contains molecular parameters for a number of species; these parameters are: The Lennard-Jones well
depth Bkε in Kelvins, the Lennard-Jones collision diameter σ in Angstroms, the dipole moment µ in

Debyes, the polarizability α in cubic angstroms, the rotational relaxation collision number Zrot and an

indicator regarding the nature and geometrical configuration of the molecule. The information coming
from the CHEMKIN Linking File contains the species names in both the CHEMKIN and the TRANSPORT

databases must correspond exactly. Like the CHEMKIN Interpreter, the TRANSPORT Fitting routine
produces a TRANSPORT Linking File that is later needed in the TRANSPORT Property Subroutine
Library.

Both the CHEMKIN and the TRANSPORT subroutine libraries must be initialized before use and
there is a similar initialization subroutine in each. The TRANSPORT subroutine library is initialized by
a call to SUBROUTINE MCINIT. Its purpose is to read the TRANSPORT Linking File and set up the
internal working and storage space that must be made available to all other subroutines in the library.
Once initialized, any subroutine in the library may be called from the application programs.
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Figure 1. Schematic representing the relationship of the TRANSPORT package,

CHEMKIN, and the application code.
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IV. SUBROUTINE DESCRIPTIONS

This section provides the detailed descriptions of all subroutines in the library. There are
eleven user-callable subroutines in the package. All subroutine names begin with MC. The following
letter is either an S and A or an M, indicating whether pure species (S), mixture-averaged (A), or
multicomponent (M) properties are returned. The remaining letters indicate which property is
returned: CON for conductivity, VIS for viscosity, DIF for diffusion coefficients, CDT for both
conductivity and thermal diffusion coefficients, and TDR for the thermal diffusion ratios.

A call to the initialization subroutine MCINIT must precede any other call. This subroutine is
normally called only once at the beginning of a problem; it reads the linking file and sets up the
internal storage and working space - arrays IMCWRK and RMCWRK. These arrays are required input
to all other subroutines in the library. Besides MCINIT there is only one other non-property
subroutine, called MCPRAM; it is used to return the arrays of molecular parameters that came from
the data base for the species in the problem. All other subroutines are used to compute either
viscosities, thermal conductivities, or diffusion coefficients. They may be called to return pure species
properties, mixture-averaged properties, or multicomponent properties.

In the input to all subroutines, the state of the gas is specified by the pressure in dynes per
square centimeter, temperature in Kelvins, and the species mole fractions. The properties are returned
in standard CGS units. The order of vector information, such as the vector of mole fractions or pure
species viscosities, is the same as the order declared in the CHEMKIN Interpreter input.

We first provide a short description of each subroutine according to its function. Then, a
longer description of each subroutine, listed in alphabetical order, follows.

Initialization and Parameters

SUBROUTINE MCINIT (LINKMC, LOUT, LENIMC, LENRMC, IMCWRK, RMCWRK)
This subroutine serves to read the linking file from the fitting code and to create the internal
storage and work arrays, IMCWRK(*) and RMCWRK (*). MCINIT must be called before any
other transport subroutine is called. It must be called after the CHEMKIN package is
initialized.

SUBROUTINE MCPRAM (IMCWRK, RMCWRK EPS, SIG, DIP, POL, ZROT, NLIN)
This subroutine is called to return the arrays of molecular parameters as read from the
transport data base.
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Viscosity

SUBROUTINE MCAVIS (T, RMCWRK, VIS)
This subroutine computes the array of pure species viscosities given the temperature.

SUBROUTINE MCAVIS (T, X, RMCWRK, VISMIX)
This subroutine computes the mixture viscosity given the temperature and the species mole
fractions. It uses modifications of the Wilke semi-empirical formulas.

Conductivity

SUBROUTINE MCSCON (T, RMCWRK, CON)
This subroutine computes the array pure species conductivities given the temperature.

SUBROUTINE MCACON (T, X, RMCWRK, CONMIX)
This subroutine computes the mixture thermal conductivity given the temperature and the
species mole fractions.

SUBROUTINE MCMCDT (P, T, X, KDIM, IMCWRK, RMCWRK, ICKWRK, CKWRK, DT, COND)
This subroutine computes the thermal diffusion coefficients and mixture thermal
conductivities given the pressure, temperature, and mole fractions.

Diffusion Coefficients

SUBROUTINE MCSDIF (P, T, KDIM, RMCWRK, DJK)
This subroutine computes the binary diffusion coefficients given the pressure and
temperature.

SUBROUTINE MCADIF (P, T, X, RMCWRK, D)
This subroutine computes the mixture-averaged diffusion coefficients given the pressure,
temperature, and species mole fractions.

SUBROUTINE MCMDIF (P, T, X, KDIM, IMCWRK, RMCWRK, D)
This subroutine computes the ordinary multicomponent diffusion coefficients given the
pressure, temperature, and mole fractions.

Thermal Diffusion

SUBROUTINE MCATDR (T, X, IMCWRK, RMCWRK, TDR)
This subroutine computes the thermal diffusion ratios for the light species into the mixture.
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SUBROUTINE MCMCDT (P, T, X, IMCWRK, RMCWRK, ICKWRK, CKWRK, DT, COND)
This subroutine computes the thermal diffusion coefficients, and mixture thermal
conductivities given the pressure, temperature, and mole fractions.
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Detailed Subroutine Descriptions

The following pages list detailed descriptions for the user interface to each of the package’s
eleven user-callable subroutines. They are listed in alphabetical order.

MCACON MCACON MCACON MCACON MCACON MCACON MCACON MCACON
*********************************************

*********************************
*********************

SUBROUTINE MCACON (T, X, RMCWRK, CONMIX)
Returns the mixture thermal conductivity given temperature and
species mole fractions.

INPUT
T - Real scalar, temperature.

cgs units, K
X(*) - Real array, mole fractions of the mixture;

dimension at least KK, the total species count.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
CONMIX - Real scalar, mixture thermal conductivity.

cgs units, erg/cm*K*s
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MCADIF MCADIF MCADIF MCADIF MCADIF MCADIF MCADIF MCADIF
*********************************************

*********************************
*********************

SUBROUTINE MCADIF (P, T, X, RMCWRK, D)
Returns mixture-averaged diffusion coefficients given pressure,
temperature, and species mass fractions.

INPUT
P - Real scalar, pressure.

cgs units, dynes/cm**2
T - Real scalar, temperature.

cgs units, K
X(*) - Real array, mole fractions of the mixture;

dimension at least KK, the total species count.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
D(*) - Real array, mixture diffusion coefficients;

dimension at least KK, the total species count.
cgs units, cm**2/s
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MCAVIS MCAVIS MCAVIS MCAVIS MCAVIS MCAVIS MCAVIS MCAVIS
*********************************************

*********************************
*********************

SUBROUTINE MCAVIS (T, X, RMCWRK, VISMIX)
Returns mixture viscosity, given temperature and species mole
fractions. It uses modification of the Wilke semi-empirical
formulas.

INPUT
T - Real scalar, temperature.

cgs units, K
X(*) - Real array, mole fractions of the mixture;

dimension at least KK, the total species count.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
VISMIX - Real scalar, mixture viscosity.

cgs units, gm/cm*s
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MCINIT MCINIT MCINIT MCINIT MCINIT MCINIT MCINIT MCINIT
*********************************************

*********************************
*********************

SUBROUTINE MCINIT (LINKMC, LOUT, LENIMC, LENRMC, IMCWRK, RMCWRK,
IFLAG)

This subroutine reads the transport linkfile from the fitting code
and creates the internal storage and work arrays, IMCWRK(*) and
RMCWRK(*). MCINIT must be called before any other transport
subroutine is called. It must be called after the CHEMKIN package
is initialized.

INPUT
LINKMC - Integer scalar, transport linkfile input unit number.
LOUT - Integer scalar, formatted output file unit number.
LENIMC - Integer scalar, minimum dimension of the integer

storage and workspace array IMCWRK(*);
LENIMC must be at least:
LENIMC = 4*KK + NLITE,
where KK is the total species count, and

NLITE is the number of species with molecular
weight less than 5.

LENRMC - Integer scalar, minimum dimension of the real storage
and workspace array RMCWRK(*);
LENRMC must be at least:
LENRMC = KK*(19 + 2*NO + NO*NLITE) + (NO+15)*KK**2,
where KK is the total species count,

NO is the order of the polynomial fits (NO=4),
NLITE is the number of species with molecular

weight less than 5.
OUTPUT
IMCWRK(*) - Integer workspace array; dimension at least LENIMC.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.
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MCLEN MCLEN MCLEN MCLEN MCLEN MCLEN MCLEN MCLEN
*********************************************

*********************************
*********************

SUBROUTINE MCLEN (LINKMC, LOUT, LI, LR, IFLAG)
Returns the lengths required for work arrays.

INPUT
LINKMC - Integer scalar, input file unit for the linkfile.
LOUT - Integer scalar, formatted output file unit.

OUTPUT
LI - Integer scalar, minimum length required for the

integer work array.
LR - Integer scalar, minimum length required for the

real work array.
IFLAG - Integer scalar, indicates successful reading of

linkfile; IFLAG>0 indicates error type.
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MCMCDT MCMCDT MCMCDT MCMCDT MCMCDT MCMCDT MCMCDT MCMCDT
*********************************************

*********************************
*********************

SUBROUTINE MCMCDT (P, T, X, IMCWRK, RMCWRK, ICKWRK, CKWRK,
DT, COND)

Returns thermal diffusion coefficients, and mixture thermal
conductivities, given pressure, temperature, and mole fraction.

INPUT
P - Real scalar, pressure.

cgs units, dynes/cm**2
T - Real scalar, temperature.

cgs units, K
X(*) - Real array, mole fractions of the mixture;

dimension at least KK, the total species count.

IMCWRK(*) - Integer TRANSPORT workspace array;
dimension at least LENIMC.

RMCWRK(*) - Real TRANSPORT workspace array;
dimension at least LENRMC.

ICKWRK(*) - Integer CHEMKIN workspace array;
dimension at least LENICK.

RCKWRK(*) - Real CHEMKIN workspace array;
dimension at least LENRCK.

OUTPUT
DT(*) - Real array, thermal multicomponent diffusion

coefficients;
dimension at least KK, the total species count.

cgs units, gm/(cm*sec)
CGS UNITS - GM/(CM*SEC)

COND - Real scalar, mixture thermal conductivity.
cgs units, erg/(cm*K*s)

MCMDIF MCMDIF MCMDIF MCMDIF MCMDIF MCMDIF MCMDIF MCMDIF
*********************************************

*********************************
*********************

SUBROUTINE MCMDIF (P, T, X, KDIM, IMCWRK, RMCWRK, D)
Returns the ordinary multicomponent diffusion coefficients,
given pressure, temperature, and mole fractions.

INPUT
P - Real scalar, pressure.

cgs units, dynes/cm**2
T - Real scalar, temperature.

cgs units, K
X(*) - Real array, mole fractions of the mixture;

dimension at least KK, the total species count.
KDIM - Integer scalar, actual first dimension of D(KDIM,KK);

KDIM must be at least KK, the total species count.
IMCWRK(*) - Integer workspace array; dimension at least LENIMC.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
D(*,*) - Real matrix, ordinary multicomponent diffusion

coefficients;
dimension at least KK, the total species count, for
both the first and second dimensions.

cgs units, cm**2/s
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MCPNT MCPNT MCPNT MCPNT MCPNT MCPNT MCPNT MCPNT
*********************************************

*********************************
*********************

SUBROUTINE MCPNT (LSAVE, LOUT, NPOINT, V, P, LI, LR, IERR)
Reads from a binary file information about a Transport linkfile,
pointers for the Transport Library, and returns lengths of work
arrays.

INPUT
LSAVE - Integer scalar, input unit for binary data file.
LOUT - Integer scalar, formatted output file unit.

OUTPUT
NPOINT - Integer scalar, total number of pointers.
V - Real scalar, version number of the Transport linkfile.
P - Character string, machine precision of the linkfile.
LI - Integer scalar, minimum dimension required for integer

workspace array.
LR - Integer scalar, minimumm dimension required for real

workspace array.
IERR - Logical, error flag.
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MCPRAM MCPRAM MCPRAM MCPRAM MCPRAM MCPRAM MCPRAM MCPRAM
*********************************************

*********************************
*********************

SUBROUTINE MCPRAM (IMCWRK, RMCWRK, EPS, SIG, DIP, POL, ZROT, NLIN)
Returns the arrays of molecular parameters as read from the
transport database.

INPUT
IMCWRK(*) - Integer workspace array; dimension at least LENIMC.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
EPS(*) - Real array, Lennard-Jones Potential well depths for

the species;
dimension at least KK, the total species count.

cgs units, K
SIG(*) - Real array, Lennary-Jones collision diameters for

the species;
dimension at least KK, the total species count.

cgs units, Angstrom
DIP(*) - Real array, dipole moments for the species;

dimension at least KK, the total species count.
cgs units, Debye

POL(*) - Real array, polarizabilities for the species;
dimension at least KK, the total species count.

cgs units, Angstrom**3
ZROT(*) - Real array, rotational collision numbers evaluated at

298K for the species;
dimension at least KK, the total species count.

NLIN(*) - Integer array, flags for species linearity;
dimension at least KK, the total species count.
NLIN=0, single atom,
NLIN=1, linear molecule,
NLIN=2, linear molecule.
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MCSAVE MCSAVE MCSAVE MCSAVE MCSAVE MCSAVE MCSAVE MCSAVE
*********************************************

*********************************
*********************

SUBROUTINE MCSAVE (LOUT, LSAVE, IMCWRK, RMCWRK)
Writes to a binary file information about a Transport linkfile,
pointers for the Transport library, and Transport work arrays.

INPUT
LOUT - Integer scalar, formatted output file unit number.
LSAVE - Integer scalar, unformatted output file unit number.
IMCWRK(*) - Integer workspace array; dimension at least LENIMC.
RMCWRK(*) - Real workspace array; dimension at least LENRMC.
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MCSCON MCSCON MCSCON MCSCON MCSCON MCSCON MCSCON MCSCON
*********************************************

*********************************
*********************

SUBROUTINE MCSCON (T, RMCWRK, CON)
Returns the array of pur species conductivities given temperature.

INPUT
T - Real scalar, temperature.

cgs units, K
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
CON(*) - Real array, species thermal conductivities;

dimension at least KK, the total species count.
cgs units, erg/cm*K*s
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MCSDIF MCSDIF MCSDIF MCSDIF MCSDIF MCSDIF MCSDIF MCSDIF
*********************************************

*********************************
*********************

SUBROUTINE MCSDIF (P, T, KDIM, RMCWRK, DJK)
Returns the binary diffusion coefficients given pressure and
temperature.

INPUT
P - Real scalar, pressure.

cgs units, dynes/cm**2
T - Real scalar, temperature.

cgs units, K
KDIM - Integer scalar, actual first dimension of DJK(KDIM,KK).
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
DJK(*,*) - Real matrix, binary diffusion coefficients;

dimension at least KK, the total species count, for
both the first and second dimensions.

cgs units, cm**2/s
CJK(J,K) is the diffusion coefficient of species J
in species K.
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MCSVIS MCSVIS MCSVIS MCSVIS MCSVIS MCSVIS MCSVIS MCSVIS
*********************************************

*********************************
*********************

SUBROUTINE MCSVIS (T, RMCWRK, VIS)
Returns the array of pure species viscosities, given temperature.

INPUT
T - Real scalar, temperature.

cgs units, K
RMCWRK(*) - Real workspace array; dimension at least LENRMC.

OUTPUT
VIS(*) - Real array, species viscosities;

dimension at least KK, the total species count.
cgs units, gm/cm*s
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V. TRANSPORT DATA BASE

In this section we list the data base that we currently use. New species are easily added and as
new or better data becomes available, we expect that users will change their versions of the data base
to suit their own needs. This data base should not be viewed as the last word in transport properties.
Instead, it is a good starting point from which a user will provide the best available data for his
particular application. However, when adding a new species to the data base, be sure that the species
name is exactly the same as it is in the CHEMKIN Thermodynamic Database. 1

Some of the numbers in the data base have been determined by computing “best fits” to
experimental measurements of some transport property (e.g. viscosity). In other cases the Lennard-
Jones parameters have been estimated following the methods outlined in Svehla. 21

The first 15 columns in each line of the data base are reserved for the species name, and the
first character of the name must begin in column 1. (Presently CHEMKIN is programmed to allow no
more than 10-character names.) Columns 16 through 80 are unformatted, and they contain the
molecular parameters for each species. They are, in order:

1. An index indicating whether the molecule has a monatomic, linear or nonlinear geometrical
configuration. If the index is 0, the molecule is a single atom. If the index is 1 the molecule is
linear, and if it is 2, the molecule is nonlinear.

2. The Lennard-Jones potential well depthε kB in Kelvins.

3. The Lennard-Jones collision diameter σ in Angstroms.

4. The dipole moment µ in Debye. Note: a Debye is 10-18cm3/2erg1/2.

5. The polarizability α in cubic Angstroms.

6. The rotational relaxation collision number Zrot at 298K.

7. After the last number, a comment field can be enclosed in parenthesis.
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Species Name Geometry ε/κε/κε/κε/κΒΒΒΒ σσσσ µµµµ αααα Zrot

Al2Me6 2 471. 6.71 0.0 0.0 1.0
AlMe3 2 471. 5.30 0.0 0.0 1.0
AR 0 136.500 3.330 0.000 0.000 0.000
AR* 0 136.500 3.330 0.000 0.000 0.000
AS 0 1045.5 4.580 0.000 0.000 0.000
AS2 1 1045.5 5.510 0.000 0.000 1.000
ASH 1 199.3 4.215 0.000 0.000 1.000
ASH2 2 229.6 4.180 0.000 0.000 1.000
ASH3 2 259.8 4.145 0.000 0.000 1.000
AsH3 2 259.8 4.145 0.000 0.000 1.000
BCL3 2 337.7 5.127 0.000 0.000 1.000
C 0 71.400 3.298 0.000 0.000 0.000
C-SI3H6 2 331.2 5.562 0.000 0.000 1.000
C2 1 97.530 3.621 0.000 1.760 4.000
C2F4 2 202.6 5.164 0.000 0.000 1.000
C2F6 2 194.5 5.512 0.000 0.000 1.000
C2H 1 209.000 4.100 0.000 0.000 2.500
C2H2 1 209.000 4.100 0.000 0.000 2.500
C2H2OH 2 224.700 4.162 0.000 0.000 1.000
C2H3 2 209.000 4.100 0.000 0.000 1.000
C2H4 2 280.800 3.971 0.000 0.000 1.500
C2H5 2 252.300 4.302 0.000 0.000 1.500
C2H5OH 2 362.6 4.53 0.000 0.000 1.000
C2H6 2 252.300 4.302 0.000 0.000 1.500
C2N 1 232.400 3.828 0.000 0.000 1.000
C2N2 1 349.000 4.361 0.000 0.000 1.000
C2O 1 232.400 3.828 0.000 0.000 1.000
C3H2 2 209.000 4.100 0.000 0.000 1.000
C3H3 1 252.000 4.760 0.000 0.000 1.000
C3H4 1 252.000 4.760 0.000 0.000 1.000
C3H4P 1 252.000 4.760 0.000 0.000 1.000
C3H6 2 266.800 4.982 0.000 0.000 1.000
C3H7 2 266.800 4.982 0.000 0.000 1.000
C3H8 2 266.800 4.982 0.000 0.000 1.000
C4H 1 357.000 5.180 0.000 0.000 1.000
C4H2 1 357.000 5.180 0.000 0.000 1.000
C4H2OH 2 224.700 4.162 0.000 0.000 1.000
C4H3 1 357.000 5.180 0.000 0.000 1.000
C4H4 1 357.000 5.180 0.000 0.000 1.000
C4H6 2 357.000 5.180 0.000 0.000 1.000
C4H8 2 357.000 5.176 0.000 0.000 1.000
C4H9 2 357.000 5.176 0.000 0.000 1.000
C4H9 2 357.000 5.176 0.000 0.000 1.000
C5H2 1 357.000 5.180 0.000 0.000 1.000
C5H3 1 357.000 5.180 0.000 0.000 1.000
C5H5OH 2 450.000 5.500 0.000 0.000 1.000
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Species Name Geometry ε/κε/κε/κε/κΒΒΒΒ σσσσ µµµµ αααα Zrot

C6H2 1 357.000 5.180 0.000 0.000 1.000
C6H5 2 412.300 5.349 0.000 0.000 1.000
C6H5(L) 2 412.300 5.349 0.000 0.000 1.000
C6H5O 2 450.000 5.500 0.000 0.000 1.000
C6H6 2 412.300 5.349 0.000 0.000 1.000
C6H7 2 412.300 5.349 0.000 0.000 1.000
CF 1 94.2 3.635 0.000 0.000 1.000
CF2 2 108.0 3.977 0.000 0.000 1.000
CF3 2 121.0 4.320 0.000 0.000 1.000
CF4 2 134.0 4.662 0.000 0.000 1.000
CH 1 80.000 2.750 0.000 0.000 0.000
CH2 1 144.000 3.800 0.000 0.000 0.000
CH2(S) 1 144.000 3.800 0.000 0.000 0.000
CH2(SING) 1 144.000 3.800 0.000 0.000 0.000
CH2CHCCH 2 357.000 5.180 0.000 0.000 1.000
CH2CHCCH2 2 357.000 5.180 0.000 0.000 1.000
CH2CHCH2 2 260.000 4.850 0.000 0.000 1.000
CH2CHCHCH 2 357.000 5.180 0.000 0.000 1.000
CH2CHCHCH2 2 357.000 5.180 0.000 0.000 1.000
CH2CO 2 436.000 3.970 0.000 0.000 2.000
CH2F2 2 318.0 4.080 0.000 0.000 1.000
CH2HCO 2 436.000 3.970 0.000 0.000 2.000
CH2O 2 498.000 3.590 0.000 0.000 2.000
CH2OH 2 417.000 3.690 1.700 0.000 2.000
CH3 1 144.000 3.800 0.000 0.000 0.000
CH3CC 2 252.000 4.760 0.000 0.000 1.000
CH3CCCH2 2 357.000 5.180 0.000 0.000 1.000
CH3CCCH3 2 357.000 5.180 0.000 0.000 1.000
CH3CCH2 2 260.000 4.850 0.000 0.000 1.000
CH3CH2CCH 2 357.000 5.180 0.000 0.000 1.000
CH3CHCH 2 260.000 4.850 0.000 0.000 1.000
CH3CHO 2 436.000 3.970 0.000 0.000 2.000
CH3CO 2 436.000 3.970 0.000 0.000 2.000
CH3O 2 417.000 3.690 1.700 0.000 2.000
CH3OH 2 481.800 3.626 0.000 0.000 1.000
CH4 2 141.400 3.746 0.000 2.600 13.000
CH4O 2 417.000 3.690 1.700 0.000 2.000
CHF3 2 240.0 4.330 0.000 0.000 1.000
CL 0 130.8 3.613 0.000 0.000 1.000
CL- 0 130.8 3.613 0.000 0.000 1.000
CL2BNH2 2 337.7 5.127 0.000 0.000 1.000
CN 1 75.000 3.856 0.000 0.000 1.000
CN2 1 232.400 3.828 0.000 0.000 1.000
CNC 1 232.400 3.828 0.000 0.000 1.000
CNN 1 232.400 3.828 0.000 0.000 1.000
CO 1 98.100 3.650 0.000 1.950 1.800
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CO2 1 244.000 3.763 0.000 2.650 2.100
DMG 2 675.8 5.22 0.000 0.000 1.000
E 0 850. 425. 0.000 0.000 1.000
F 0 80.000 2.750 0.000 0.000 0.000
F2 1 125.700 3.301 0.000 1.600 3.800
GA 0 2961.8 4.62 0.000 0.000 0.000
GACH3 2 972.7 4.92 0.000 0.000 1.000
GAH 1 335.5 4.24 0.000 0.000 1.000
GAME 2 972.7 4.92 0.000 0.000 1.000
GAME2 2 675.8 5.22 0.000 0.000 1.000
GAME3 2 378.2 5.52 0.000 0.000 1.000
GaMe3 2 378.2 5.52 0.000 0.000 1.000
H 0 145.000 2.050 0.000 0.000 0.000
H2 1 38.000 2.920 0.000 0.790 280.000
H2ASCH3 2 408.0 4.73 0.000 0.000 1.000
H2C4O 2 357.000 5.180 0.000 0.000 1.000
H2CCCCH 2 357.000 5.180 0.000 0.000 1.000
H2CCCCH2 2 357.000 5.180 0.000 0.000 1.000
H2CCCH 2 252.000 4.760 0.000 0.000 1.000
H2CN 1 569.000 3.630 0.000 0.000 1.000
H2NO 2 116.700 3.492 0.000 0.000 1.000
H2O 2 572.400 2.605 1.844 0.000 4.000
H2O2 2 107.400 3.458 0.000 0.000 3.800
H2S 2 301.000 3.600 0.000 0.000 1.000
H2SISIH2 2 312.6 4.601 0.000 0.000 1.000
H3SISIH 2 312.6 4.601 0.000 0.000 1.000
HC2N2 1 349.000 4.361 0.000 0.000 1.000
HCCHCCH 2 357.000 5.180 0.000 0.000 1.000
HCCO 2 150.000 2.500 0.000 0.000 1.000
HCCOH 2 436.000 3.970 0.000 0.000 2.000
HCL 1 344.7 3.339 0.000 0.000 1.000
HCN 1 569.000 3.630 0.000 0.000 1.000
HCNO 2 232.400 3.828 0.000 0.000 1.000
HCO 2 498.000 3.590 0.000 0.000 0.000
HCO+ 1 498.000 3.590 0.000 0.000 0.000
HE 0 10.200 2.576 0.000 0.000 0.000
HF 1 330.000 3.148 1.920 2.460 1.000
HF0 1 352.000 2.490 1.730 0.000 5.000
HF1 1 352.000 2.490 1.730 0.000 5.000
HF2 1 352.000 2.490 1.730 0.000 5.000
HF3 1 352.000 2.490 1.730 0.000 5.000
HF4 1 352.000 2.490 1.730 0.000 5.000
HF5 1 352.000 2.490 1.730 0.000 5.000
HF6 1 352.000 2.490 1.730 0.000 5.000
HF7 1 352.000 2.490 1.730 0.000 5.000
HF8 1 352.000 2.490 1.730 0.000 5.000
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HNCO 2 232.400 3.828 0.000 0.000 1.000
HNNO 2 232.400 3.828 0.000 0.000 1.000
HNO 2 116.700 3.492 0.000 0.000 1.000
HNOH 2 116.700 3.492 0.000 0.000 1.000
HO2 2 107.400 3.458 0.000 0.000 1.000
HOCN 2 232.400 3.828 0.000 0.000 1.000
HSO2 2 252.000 4.290 0.000 0.000 1.000
I*C3H7 2 266.800 4.982 0.000 0.000 1.000
I*C4H9 2 357.000 5.176 0.000 0.000 1.000
K 0 850. 4.25 0.000 0.000 1.000
K+ 0 850. 4.25 0.000 0.000 1.000
KCL 1 1989. 4.186 0.000 0.000 1.000
KH 1 93.3 3.542 0.000 0.000 1.000
KO 1 383.0 3.812 0.000 0.000 1.000
KO2 2 1213. 4.69 0.000 0.000 1.000
KOH 2 1213. 4.52 0.000 0.000 1.000
N 0 71.400 3.298 0.000 0.000 0.000
N*C3H7 2 266.800 4.982 0.000 0.000 1.000
N2 1 97.530 3.621 0.000 1.760 4.000
N2H2 2 71.400 3.798 0.000 0.000 1.000
N2H3 2 200.000 3.900 0.000 0.000 1.000
N2H4 2 205.000 4.230 0.000 4.260 1.500
N2O 1 232.400 3.828 0.000 0.000 1.000
NCN 1 232.400 3.828 0.000 0.000 1.000
NCNO 2 232.400 3.828 0.000 0.000 1.000
NCO 1 232.400 3.828 0.000 0.000 1.000
NH 1 80.000 2.650 0.000 0.000 4.000
NH2 2 80.000 2.650 0.000 2.260 4.000
NH3 2 481.000 2.920 1.470 0.000 10.000
NNH 2 71.400 3.798 0.000 0.000 1.000
NO 1 97.530 3.621 0.000 1.760 4.000
NO2 2 200.000 3.500 0.000 0.000 1.000
O 0 80.000 2.750 0.000 0.000 0.000
O(Si(OC2H5)3)2 2 522.7 5.25 0.000 0.000 1.000
O2 1 107.400 3.458 0.000 1.600 3.800
O3 2 180.000 4.100 0.000 0.000 2.000
OH 1 80.000 2.750 0.000 0.000 0.000
OSI(OC2H5)2 2 522.7 7.03 0.000 0.000 1.000
PH3 2 251.5 3.981 0.000 0.000 1.000
S 0 847.000 3.839 0.000 0.000 0.000
S*C4H9 2 357.000 5.176 0.000 0.000 1.000
S2 1 847.000 3.900 0.000 0.000 1.000
SH 1 847.000 3.900 0.000 0.000 1.000
SI 0 3036. 2.910 0.000 0.000 0.000
Si(OC2H5)4 2 522.7 7.03 0.000 0.000 1.000
SI(OC2H5)4 2 522.7 7.03 0.000 0.000 1.000
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Si(OH)(OC2H5)3 2 522.7 7.03 0.000 0.000 1.000
SI(OH)(OC2H5)3 2 522.7 7.03 0.000 0.000 1.000
SI(OH)2(OC2H5)2 2 522.7 6.35 0.000 0.000 1.000
Si(OH)2(OC2H5)2 2 522.7 6.35 0.000 0.000 1.000
SI(OH)3(OC2H5) 2 522.7 5.75 0.000 0.000 1.000
SI(OH)4 2 522.7 5.25 0.000 0.000 1.000
SI2 1 3036. 3.280 0.000 0.000 1.000
SI2H2 2 323.8 4.383 0.000 0.000 1.000
SI2H3 2 318.2 4.494 0.000 0.000 1.000
SI2H4 2 312.6 4.601 0.000 0.000 1.000
SI2H5 2 306.9 4.717 0.000 0.000 1.000
SI2H6 2 301.3 4.828 0.000 0.000 1.000
SI3 2 3036. 3.550 0.000 0.000 1.000
SI3H8 2 331.2 5.562 0.000 0.000 1.000
SIF 1 585.0 3.318 0.000 0.000 1.000
SIF3 2 309.6 4.359 0.000 0.000 1.000
SIF3NH2 2 231.0 4.975 0.000 0.000 1.000
SIF4 2 171.9 4.880 0.000 0.000 1.000
SIH 1 95.8 3.662 0.000 0.000 1.000
SIH2 2 133.1 3.803 0.000 0.000 1.000
SIH2(3) 2 133.1 3.803 0.000 0.000 1.000
SIH3 2 170.3 3.943 0.000 0.000 1.000
SIH3SIH2SIH 2 331.2 5.562 0.000 0.000 1.000
SIH4 2 207.6 4.084 0.000 0.000 1.000
SIHF3 2 180.8 4.681 0.000 0.000 1.000
SO 1 301.000 3.993 0.000 0.000 1.000
SO2 2 252.000 4.290 0.000 0.000 1.000
SO3 2 378.400 4.175 0.000 0.000 1.000
TMG 2 378.2 5.52 0.000 0.000 1.000
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