
 operated by UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

A FORTRAN PROGRAM FOR CALCULATING

SINGLE CRYSTAL ABSORPTION CORRECTIONS
D. J. Wehe
W. R. Busing
H. A. Levy

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dis. semination without the approval of the ORNL patent branch, Legal and Information Control Department.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, not any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information cantained in this report, or that the use of any information, opparatus, methad, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes ony liabilities with respoct to the use of, or for damages resulting fram tha use of ony informotion, apparatus, method, or process disclosed in this report.
As used in the above, "person aeting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his emplayment or contract with the Commission, ar his employment with suth controctor.

A FORTRAN PROGRAM FOR CALCULATING
 SINGLE CRYSTAL ABSORPTION CORRECTIONS
 by
 D. J. Wehe, W. Re Busing, and H. A. Levy

April, 1962

DATE ISSUED
JUN 271962
OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee Operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMLSSION

CONIENTS

Abstract 1
Introduction 2
Mathematical Method 3
Outline of Program 5
Flow Chart 7
Preparation of the Program Deck 8
Details of the Subprograms 9
Subroutine SIZE 10
Subroutine CLOCK 10
Subroutine EPSR 11
Subroutine FACE 11
Subroutine ANGLE 13
Figure 1. Angles and Coordinate Systems 15
Restrictions and Machine Requirements 17
Timing 18
Data Input 18
Card Deck for Oak Ridge Installation 21
Operating Procedure for Oak Ridge Installation 21
Symbols Used 21
Storage Table for the Array DATA. 24
References 25
Program Iisting 26
Distribution 43

ABSIRACTI

This memorandum describes a Fortran program for calculating the absorption correction to be applied to single crystal x-ray or neutron diffraction intensity measurements. Instructions are included for using the program which is available from the authors in the form of symbolic punched cards.

INIRODUCTION

The derivation of structure factors from integrated intensity measurements in X may or neutron diffraction usually requires a correction for absorption of radiation in the specimen. Tabulated values of this correction, expressed as the ratio of integrated intensity yielded by an absorbing specimen to that yielded by an hypothetical non-absorbing specimen of equal volume, are available for cylindrical (Bradiey, 1935) and spherical (Evans and Ekstein, 1952) sample shapes. For accurate measurement of structure factors, the specimen is often reduced to one of these simple forms.

However, for a number of reasons, it frequently proves to be undesirable or difficult to shape a sample. The size and shape of available crystals may not permit cutting a sphere or cylinder large enough to give satisfactory intensities. Physical properties such as anisotropic resistance to grinding, or ease of cleavage or fracture may make shaping difficult. Furthermore, a cylindrical specimen may be used in only one orientation: while a spherical specimen obviates this difficulty, it may not permit optimum use of a beam with a long narrow cross section such as is usual in neutron diffraction spectrometers.

Several methods of correcting for absorption in samples of other shapes have been reported by Hendershot (1937), Aibrecht (1939), Howells (1950) and Evans (1952), but all of them appear to be rather laborious. The aveilability of highospeed computers now makes possible the rapid calculation of the absorption correction factor for each reflection from a crystal of essentially arbitrary shape. The program to be described is similar to one prepared for the Oak Ridge computer, the Oracle (Busing and Levy, 1956).

MATHEMATITCAL METTOD

It is assumed that the crystal is bounded by n plane surfaces and thus is described by a set of inequalities

$$
\begin{equation*}
a_{s} x+b_{s} y+c_{s} z-d_{s} \geq 0, \quad s=1,2, \ldots, n \tag{1}
\end{equation*}
$$

with coefficients $a_{s}, b_{s}, c_{s}, d_{s}$ chosen so that the inequalities are all satisfied only if the point x, y, z lies inside or on the surface of the crystal. This is a satisfactory description if there are no rementrant angles between bounding planes, a condition which is assumed for this treatment. Cartesian coordinate axes for this description are those used to describe the angles which give the directions of the primary and diffracted beam. Two configurations are discussed under the subroutine ANGLE.

The factor to be computed is given by

$$
\begin{equation*}
A=\int(1 / V) \exp \left[-\mu\left(r_{\alpha}+r_{\beta}\right)\right] d V \tag{2}
\end{equation*}
$$

where the integration is orex the volume of the crystal, V, and where μ is the linear absorption coefficients ${ }^{\circ} \alpha$ the path length along the primary beam direction, and r_{β} that along the diffracted beam direction. In this program the integral is evaluated numerically using the method of Gauss (see, for example, Margenau and Murphy, $1943, \mathrm{p} .462$) which will be described first for a one-dinensional integration. The method approximates the integral by a weighted sum of m tems:

$$
\int_{a}^{b} g(x) d x \approx(b-a) \sum_{i=1}^{m} R_{i} g\left(x_{i}\right)
$$

where

$$
x_{i}=a+(b-a) u_{i}
$$

and where the $u_{i}^{s} s$ and R_{i} 's are fractional constants which depend only on m, and their values are available for $m \leq 36$ (Lowar, Davids, and Levenson, 1942). The u_{i} 's detemmine the points, x_{i}, at which the integrand
is evaluated, while the R_{i} 's are the relative weights of the terms in the sum.

For triple integration, the approximation becomes
$\int_{a}^{b} d x \int_{c(x)}^{d(x)} d y \int_{e(x, y)}^{f(x, y)} g(x, y, z) d z \approx$
$\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{m}(b-a)\left[d\left(x_{i}\right)-c\left(x_{i}\right)\right]\left[f\left(x_{i}, y_{j}\right)-e\left(x_{i}, y_{j}\right)\right] R_{i} R_{j} R_{k} g\left(x_{i}, y_{j}, z_{k}\right)$,
where

$$
\begin{align*}
& x_{i}=a+(b-a) u_{i} \tag{3}\\
& y_{j}=c\left(x_{i}\right)+\left[d\left(x_{i}\right)-e\left(x_{i}\right)\right] u_{j}, \tag{4}\\
& z_{k}=e\left(x_{i}, y_{j}\right)+\left[f\left(x_{i}, y_{j}\right)-e\left(x_{i}, y_{j}\right)\right] u_{k} \tag{5}
\end{align*}
$$

Tests of the method for conditions typical of neutron diffraction studies indicate that an m of 8 is satisfactory. The problem of determining A then reduces to finding the limits of integration, $a, b, c\left(x_{i}\right), d\left(x_{i}\right)$, $e\left(x_{i}, y_{j}\right)$, and $f\left(x_{i}, y_{i}\right)$ and evaluating $g\left(x_{i}, y_{j}, z_{k}\right)=(1 / v) \exp \left[\sim \mu\left(r_{\alpha}+r_{\beta}\right)\right]$ 。

In order to find a and b, the lower and upper limits on x, the routine first takes all possible combinations of three of the n planes which bound the crystal and solves for the coordinates of their interm sections. Because there are no re-entrant angles between the faces, those intersections which are not comers of the crystal must lie outside of it. These are distinguished from the corners by rejecting points which fail to satisfy any one of the inequalities (i). The smallest and largest x values in the remaining set are then taken as a and b, respectively.

For a given value of x_{i}, the limits on y are found in a similar way by solving the equations of all possible pairs of faces, subject to the condition that $x=x_{i}$. Points outside the crystal are again rejected
and the smallest and largest y values remaining are taken as $c\left(x_{i}\right)$ and $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right)$, respectively. The limits on z are determined in an analogous way for given values of x_{i} and y_{j}.

For a point x_{i}, y_{j}, z_{k}, the function $\exp \left[-\mu\left(r_{\alpha}+r_{\beta}\right)\right]$ is evaluated as follows. The distance fron this point to the intersection of the primary beam with a face s of the crystai (o in its extension) specified by one of the inequalities (1) is given by

$$
\begin{equation*}
r_{\alpha s}=\frac{d_{s}-a_{s} x_{i}-b_{s} y_{j}-c_{s} z_{k}}{a_{s} \gamma_{\alpha z}+b_{s} \gamma_{\alpha y}+c_{s} \gamma_{\alpha_{z}}} \tag{6}
\end{equation*}
$$

where the $\gamma_{\alpha}{ }^{\text {s }}$, are the direction cosines of a vector parallel to the primary beam and directed toward its source. This quantity is positive if the intersection lies toward the source of the primary beam from (x_{i}, y_{j}, z_{k}) and negative if it lies away from the source. The desired path length, r_{α}, is the smallest positive quantity of the set $r_{\alpha_{s}}$. Similarly, the path length r_{β} is the smallest positive quantity in the set

$$
\begin{equation*}
r_{\beta s}=\frac{d_{s}-a_{s} x_{i}-b_{s} y_{j}-c_{s} z_{k}}{a_{s} \gamma_{\beta x}+b_{s} \gamma_{\beta y}+c_{s} \gamma_{\beta z}} \tag{7}
\end{equation*}
$$

where the $\gamma_{\beta}{ }^{\prime}$ s are the direction cosines of the diffracted beam. The exponential is then evaluatea in a straightormara way.

OURLITE OF PRCGRAM

It is usualiy necessamy to deternine the values or A for many reflections from a given crystal, and, scmetines, for several values of μ. The program avoids much repetition by calculating oniy once the limits of integration a, b, c, d, e, and f and the points of integration x_{i}, y_{i}, z_{i}. These determine the n^{3} numerators of Equations (6) and (7) and the m^{3} weights of integration

$$
R_{i j k}=(b-a)(d-c)(f-e) R_{i} R_{j} R_{k},
$$

which are saved in a block of core, or on magnetic tape, if necessary. In the second part of the program the numerators are used to determine A for each reflection.

The amount of core available for data storage is determined by a subroutine (which must be the last one loaded) which determines the length of the code, size of machine, and amount of upper core unavailable. The size of the numerator block is then computed as the largest factor of m^{2} possible, considering the number of faces, number of points of integration, and number of μ. In some cases, all numbers can be stored in fast storage, and no magnetic tape is used.

The majority of the input is read by two subroutines, one of which describes the shape of the crystal (FACE) and the other of which describes the angles of the reflection (AVGIE). Thus the user may describe his crystal and reflections in any convenient manner and supply a subroutine which will convert his input into the desired data.

The calculations begin with the determination of the limits a and b as described earlier, and the values of x_{i} are then found from (3), using the tabulated u 's. For each x_{i} the limits c and d are then calculated and the values of y_{j} found from (4). Finally, for each combination x_{i}, y_{j} the limits e and f are determined and the values z_{k} taken from (5). Given the coordinates x_{i}, y_{j}, and z_{k} the n numerators of (6) and (7) may be calculated and stored, together with the weight which is determined using the tabulated values of R. The crystal volume, which is simply. the sum of all the weights, is also determined in this part of the code.

In the second part of the program remaining storage is used for reflection data for several reflections. By performing the calculation

for several reflections at a time, magnetic tape handing is minimized. As each block of numerators is read from magnetic tape, the $2 n$ denomi nators of (6) and (7) are calculated. The distances r_{α} and r_{β} are determined, and appropriate contribution added to the sums for each reflection in core.

An on-line clock helps the user to estimate the time required for each run. The clock is sampled at the beginning of the program, at the end of the first part, and at the end of the problem. The last page of output for any crystal is a \log giving the crystal identification, date, n, m, number of blocks of magnetic tape used, the number of values of μ, the number of reflections, and the time required for the two parts of the program. The volume of the crystal is also reported at this time for checking purposes.

Several checks are made during the calculations. Should the program fail a check, a notation is made on the output as to the nature of the error and the extent of the calculation before the run is terminated.

PREPARATION OF THE PROGRAM DECK

There are many features of this program which depend either on the arrangement of the diffraction equipment used or on the requirements of the computing installation. For this reason it is expected that in most cases minor modifications will have to be made before the program can be used. The program is therefore being transmitted in the form of symbolic cards, although column-binary cards are also available on request.

The following is a list of the subprograms which should be included in the assembled program deck. Several of them are discussed in more
detail in the next section.

DETATLS OF THE SUBPROGRAMS

Subroutines ERRgR and EXIT
The Oak Ridge irstelintion requires that a run be teminated in one of three ways. The Fortman input routine has been modified to recognize an end of fisle on the imput tape as the normal end of the run. An entrance
into EXIT subroutine terminates the problem in a similar fashion. An entrance into ERR ϕ R implies that an octal dump of core is desired. The user must supply EXIT and ERRфR routines which conform to local standards.

Subroutine SIZE

This subroutine determines the number of cells available in core for storage of data.

The routine labelled S in columns $77-78$ should be usable on a IBM 704, 709, or 7090 of any size. In the decrement of SIZE +5 is the amount of upper core not available to the program (205 for Oak Riage). The routine uses the fact that it is the last subprogram loaded to determine the length of the code and the part of lower core not available to the program.

If a new routine is written it must use the calling sequence CALU SIZE (NS)
and place the number of cells available for data storage in the decrement of NS as an integer. The main program will subtract from this the number of cells used by variables and fixed arrays in $C \phi M \phi N$, thus determining the length of the array DAIA.

Subroutine CLфCK

The routine CLDCK is entered three times for each crystal to provide the user with the date of the run and the time required for Parts I and II of the program.

Two subroutines are provided. CLdoK with the identification $C l$ in columns $77-78$ is a dumm which places blanks in DATE and gives zero for the time in T. It may be used when no on line clock is available.

The second routine, identified by C 2 in colums $77-78$, reads a Chrono-log digitai clock model 2704-1, which kas been connected to the 716 on-line printer control panel according to arawing $2704-9$ which is furnished with the clock by the Chrono-log Corporation of Philadelphia 3l, Pennsyivania. In addition to the wiring shown on the drawing, a wire is run from the load switching circuit (clock cable wire 50) through a filter into the sense entry hub, The resd out of the clock is under control of printer sense exit six. The dawe of the run is given in BCD in DATE in the form rmddyy, mm being the monti, di, the day, and yy, the year. The time of the run in $10^{\circ} \mathrm{s}$ of seconcis is placed in the decrement of IT.

The calling sequence is CALL CLDNK (IF DATE). The routine, in general, must place 6 BCD charasters in DAES and an integer in the decrement of IT. The main program will report eiapsea time as IT. MN_{2} (min crtained on an earliex entry).

Subroutire EPSR

When determining the coraers of the rrystal, it is necessary, because of rounding errors, to accept a point as on the crystal surface if

$$
a_{s} x+b_{s} y+c_{s} z-a_{s}+\varepsilon \geq 0
$$

for some small $\epsilon>0$. If the program is not giving correat results, it is possible that an examination of the comers of the crystai that were found would indicate that an adustmert of tae tolerance e is required.

The main program reads an input parameter EPS. The subroutine EPSR must calculate EPSI which is to be used as ϵ in the above inequality. The subprogram identified by El in column $77-78$ simply sets EPSI equal to EPS. Subroutine FACE

This subroutine provides the progrom with the 42 coefticients a_{5}, b_{s}, c_{5}, and c_{s} defined in Equetion (1). The subroutine thenudea
the reading of input, the alcolation of coefficients, and the reporting of input or coefficients, if desired.

The subroutine identified by Fl in columns $77-78$ reads the following input cards via tape 10:

Card 1: Columns 1-5: N, the number of faces of the crystal, $N<100$ 6-10: N $\phi \mathrm{P}$. A number other than zero implies that the input is to be reported.

Cards 2, $\ldots, N+1$: Columns $1-10$
a_{s}
11-20 $\quad b_{s}$ 21-30 c_{s} 31-40 $\quad d_{s}$

The coefficients $a_{s}, b_{s}, c_{s}, d_{s}$ must be given with references to a coordinate system which is consistent with the angle description (see below). If $N \phi P$ is not zero, the title card read in the main program and a list of the coefficients a, b, c, and d are reported on tape 9.

To write a different subroutine FACE, the following conventions should be observed:
(1) The subroutine is entered with the statement CAId FACE (IDENT, $\mathrm{N}, \mathrm{DATA}, \mathrm{NC} \phi \mathrm{F}, \mathrm{DATE})$ 。
(2) The subroutine should include the reading and reporting of all data needed to define the crystal faces. Output on tape K may be headed with the title and date of run by using the statement CALL IDфUT (IDENT, DATE, K) 。
(3) The number of faces is stored by the subroutine as an integer in the decrement of N.
(4) The 4 n coefficients are stored in DATA (NC ϕ F) through DATA $(\operatorname{NC} \phi F+4 N-1)$ in the order $a_{1}, b_{1}, c_{1}, d_{1}, a_{2}$, etc. At least

Abstract

$2 N$ cells beyond DATA (NC $\varnothing \mathrm{F}+4 \mathrm{~N}-1$) are available to the subroutine for temporary storage. (5) If sense lights 1 and 2 are used, they must be turned off before returning to the main program.

Subroutine ANGIE

This subroutine gives the main program an identification for each reflection and calculates the direction cosines $\gamma_{\alpha x}, \gamma_{\alpha y}{ }^{\prime} \gamma_{\alpha z}, \gamma_{B x}$, $\gamma_{B y}$, and $\gamma_{\beta z}$ used in Equations (6) and (7). Two versions of this subroutine have been provided.

The subprogram identified by Al in columns 77-78 deals with reflections in one zone. Let the z-axis be parallel to the zone axis being studied, and let the x-axis lie in a crystal plane which will be used as a reference plane for ail the reflections being studied. The y-axis is chosen to give a right handed coordinate system. The configuration of the crystal and the spectrometer for a given reflection is specified by θ, the Bragg angle, and $\chi_{\text {, }}$ the interplanar angle with respect to the reference plane. (See Busing and Levy, 1957, Fig. 1.) From these the routine calculates

$$
\alpha=x+\theta+\pi
$$

and

$$
\beta=\chi-\theta
$$

which define the reverse directions of the primary beam and the forward direction of the diffracted beam. The direction cosines required by the main program are

$$
\begin{array}{ll}
\gamma_{\alpha x}=\cos \alpha & \gamma_{\beta x}=\cos \beta \\
\gamma_{\alpha y}=\sin \alpha & \gamma_{\beta y}=\sin \beta \\
\gamma_{\alpha z}=0 & \gamma_{\beta z}=0 .
\end{array}
$$

Input for each reflection consists of a $B C D$ identification and the angles θ and X. This input will be reported as $B C D$ output on tape 6 if desired. The subprogram identified $A 2$ in columns $77-78$ is for use with the Oak Ridge automatic neutron diffractometer or with the General Electric single crystal orienter. The geometry for each reflection is defined by three angles: θ, the Bragg angle, and X and ϕ, the orienter settings.

The crystal may be mounted on the orienter in an arbitrary way (but the values of X and ϕ depend on the way in which it is mounted). The coordinate system to which the crystal faces are referred is chosen as shown in Fig. 1. Assume the instrument to be in position for a hypothetical reflection for which $X=\varnothing=0$ and θ has a small positive value. The x-axis is then chosen as the normal to this hypothetical reflecting plane, and the z-axis is taken parallel to the ϕ-axis in the direction away from the goniometer mount. The y-axis is then parallel to the X-axis in a direction chosen so that the coordinate system will be right-handed. For the Oak Ridge diffractometer (Fig. Ia) the y-axis will point in the general direction of the primary and diffracted beams, while for the General Electric orienter (Fig. Ib) the opposite will be true. (Note that for the General Electric orienter the roles of the primary and diffracted beams are interchanged but this has no effect on the calculation.)

The subprogram evaluates the required direction cosines as follows: $\gamma_{\alpha x}=\cos X \cos \phi \sin \theta+\sin \phi \cos \theta \quad \gamma_{\beta x}=\cos X \cos \phi \sin \theta-\sin \phi \cos \theta$ $\gamma_{\alpha y}=\cos X \sin \phi \sin \theta-\cos \phi \cos \theta \quad \gamma_{\beta y}=\cos X \sin \phi \sin \theta+\cos \phi \cos \theta$ $\gamma_{\alpha z}=\sin \chi \sin \theta \quad \gamma_{\beta z}=\sin \chi \sin \theta_{0}$

Input for the subroutine consists of a BCD identification and the angles θ, X, and ϕ. If desired, the identification and input angles will be reported as BCD output on tape 6.

Figure 1. The angles and coordinate systems for (a) the Oak Ridge automatic diffractometer and (b) the General Electric single crystal orienter. The axes to which the crystal faces are referred are show for $\chi=\varnothing=0$.

To write ANGLE subroutines for other crystal orientations, the following specifications must be adhered to.
(1) Entry is by the statement

CAL工 ANGLE (IDENI, DATA, IANG, NANGL, DATE, NANGLL). The arguments are defined below.
(2) The routine must read all of the input needed to define the reflections. If the user wishes to report this input or other results, this must be done within the subroutine. Tape 6 is rewound only once at the beginning of the main program and may be used for output by ANGLE.
(3) The crystal identification is found in the twelve word $B C D$ array IDENT, and the date is in BCD in DATE. These may be reported by the subroutine on tape K, together with a skip to Channel 1 , by the statement

CALL IDOUT (IDENT, DATE, K)
(4) The first entry into ANGIE may be distinguished from subsequent entries, since NANGLI is zero only for the first entry.
(5) The program is nore efficient on small machines if the data for several reflections are in core as a group. The maximum number of reflections that can be processed in such a group is found in NANGL on the first entry only. The subroutine should set NANGL to the actual number of reflections for which the angle data has been stored in core.
(6) Data for the reflections must be stored in the one-dimensional array DATA beginning at DATA (IANG). At exit, the data should be stored in groups of seven words in the following order:
lst word: Six $B C D$ characters to identify the following reflection
2nd word: $\gamma_{\alpha x}$)

NANGL words of storage in DANA following the reflection data may be used as temporary storage.
(7) When the data for the last reflection has been read into core, the subroutine mast tura on sense light 1 .

RESTRICTIONS AND MACHINE REQUIREMENTS

The following restrictions and requirements apply to the program as written. Most of them can be changec by making the appropriate modification. Equipment needed:
(1) The source program ray be assembied and run on an IBM 704, 709, or 7090. At least 8,192 rowe of stroge are required.
(2) At most 4 tape unts are required. One for scratch (tape 2), one for input (tape 10), and two tor ontput. (Main output is on tape 9, but reflection angles are put out via tape 6 , if desired).
(3) A card-to-tape unit is usea to prepare the input tape.
(4) All output is printec cifi-ine.
(5) An on-line clock is used for timing.

Program restrictions:

(1) Uses sense lights 1 and 2.
(2) Does not use sense switches.
(3) Output gives 56 lines per page. It should be listed under program control. Automatic overflow switch should be off if the carriage tape has less than 56 lines.
(4) Program does not rewind input or output tapes. No end of file is written on the main output tape by the program at the end of a run.

TIMING

The machine time for a problem may be estimated from the expression

$$
T=\left(C_{1} N+C_{2}\right) R
$$

Here T is the time in seconds, N is the number of crystal faces, and R is the number of reflections for which the correction is to be calculated. Preliminary tests on an IBM 704 computer show that $C_{1}=1.1$ seconds per face per reflection, and $C_{2}=2.0$ seconds per reflection if intermediate magnetic tape storage is used, or $C_{2}=0$ when magnetic storage is not needed. Usually magnetic storage will be needed with an 8 K memory but not with a 32 K memory.

DATA INPUT

1. Title card. FORMAT (12A6)
cols.
1-72 Any 72 Hollerith characters. This title will head each section of the output.
2. Card control. FORMAT (I5, E15.8, I5)
cols.
1-5 NMU, the number of absorption coefficients. $1 \leq \mathbb{N M U} \leq 6$.
6-20 EPS, the increment used to compensate for round-off error in determining the limits of integration. For crystals of dimensions of the order of 0.1 and face equations with coefficients of the order of 1 an EPS of 10^{-6} (i.e. 1.OE-6) will usually be satisfactory.

21-25 $K \phi=0$ if cutput of coordinates of crystal corners is not desired. $K \phi=1$ to obtain this output.
3. Absorption coefficients. FORMAT (6E10.8)
cols.
1-10 $\mathrm{MU}(\mathrm{K})$, the absorption coefficients to be used in calculating
ll-20 A for each reflection. The number of MU(K) must be NMU given etc. on the control card above.
4. Input for FACE routine Fl.
a. Face control card. FфRMAT (2I5)
col.
1-5 N, the number of faces of the crystal. $4 \leq N<100$
6-10 N $\phi \mathrm{P}=0$ if output of the coefficients $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are not desired; $N \not \subset P=1$ if this output is desired.
b. Coefficients of planes describing faces of crystal. F $\begin{aligned} & \text { RMAT (4E10.8) }\end{aligned}$

The number of cards is equal to N, the number of faces of the crystal.
col.
1-10 a.
11-20 b。
21-30 c.
31-40 d.
Note that the coordinate system to which these equations refer must be consistent with the angle description used below.
5. Input for ANGIE routine Al. (Used for zero level reflections).
a. Angle control card FфRMAT (Il)

Column $1=1$ if the input angles are to be reported.
Column $1=0$ or blank, if this output is not desired.
b. Reflection angles and identification. FøRMAT (2(A6, 2FG.3))

Two reflections are placed on each card. For a definition of the reference system used in measuring the angles, see the discussion of the subroutine.
col.
1-6 6 BCD characters to identify the following reflection
7-14 $\quad \theta$, the Bragg angle
15-22 ψ, the interplanar angle
23-28 6 BCD characters to identify the following reflection
29-36 θ, the Bragg angle
37-44 χ, the interplanar angle
Angles are given in degrees. The list of reflections is terminated. with six zeros in the identification field following the last χ. 6. Input for ANGIE routine A2. (Used with three-dimensional orienter).
a. Angle control card $F \varnothing \mathrm{RMAT}(\mathrm{II})$

Column $1=1$ if the input angles are to be reported.
Column $1=0$ or blank if this output is not desired.
b. Reflection angles and identification FøRMAT (2(A6, 3F8.3))

Two reflections are placed on each card. For a definition of the reference system used in measuring the angles, see the discussion of the subroutine.
col.
1-6 6 BCD characters identifying the following reflection.
7-14 θ, the Bragg angle
$\left.\begin{array}{ll}\text { 15-22 } & \chi \\ 23-30 & 0\end{array}\right\}$ orienter angles
3l-36 6 BCD characters identifying the following reflection.
37-44 θ, the Bragg angle
$\left.\begin{array}{ll}45-52 & \chi \\ 53-60 & \phi\end{array}\right\}$ orienter angles
Angles are given in degrees. The list of reflections is terminated with six zeros in the identification field following the last ϕ.

1. Monitor control cards
2. Program deck
3. Data
a. Tit?s card
b. Control card
c. Absorption coefficients
d. Input for FACE routine
e. Input for ANGLE routine
4. Repeat (3) if absorption coefficients are to be calculated for more than one crystal in a singie monitor job.

OPERATING PROCEDURE FOR OAK RIDGE INSTALLATION
When preparing the monitor control caids the user should call for tapes on units 2 and 6. If either ANGIE routines Al or A2 are used and the angle output is called for, the rumber of the files on tape 6 to be printed is equal to the number of exystais rui. If the angle output has not been called for, there will be nothing on tape 6. The program rewinds tape 6 regardless of which AVCD rontine is being used.

SXMBOLS USED
EPS input parameter. It is used in the calculation of ϵ, the tolerance used in the determination of the corners. amount or cose stocage avainable in data block.
$\mathrm{NP} \quad \mathrm{NP}{ }^{*} \mathrm{M}$ * ($\mathrm{N}+1$) words are written in each block of magnetic tape in the first part of the program.

NANGL number of reflections to be processed at one time.
N number of pianes bounding crystal.
V volume of crystel.

Vl volume of crystal computed with weights read from magnetic tape; used as a check.

IDENT
ITI IT2 IT3

NANGLI
NMU
NC ϕ F

NEND

NUM
NUMED
$J C \varnothing R$

IANG
ISUM
IDIFI

IDIF2
r_{α}
RB
r_{β}
WX
B

BCD array containing crystal identification.
clock time at beginning of program; time for part I. clock time at end of part I of program; time for part II. clock time at end of program. total number of reflections processed.
number of values of μ to be used.
DATA subscript of first coefficient a_{1} of planes describing crystal.

DATA subscript of last coefficient d_{N} of planes describing crystal.

DATA subscript of first numerator of $r_{\alpha_{S}}$ in core.
DATA subscript of last numerator of $r_{\alpha_{s}}$ in core.
the number of words to be reported in one line crystal corner output.

DATA subscript of first angle identification.
DATA subscript of first absorption correction factor.
DATA subscript of the first of the N differences $d_{s}-a_{s} x_{i}$ (Part 1); DATA subscript of the first of the N denominators $\mathrm{a} \gamma_{\alpha_{s}}+\mathrm{b} \gamma_{\alpha_{s}}+\mathrm{c} \gamma_{\alpha_{s}}$ (Part 2).

DATA subscript of the first of the N differences $d_{S}-a_{s} x_{i}$ $-b_{s} y_{\text {, (}}$ (Part 1); DATA subscript of the first of the N denominators $a \gamma_{\beta s}+b \gamma_{\beta s}+c \gamma_{\beta s}$ (Part 2).
temporary storage used by Gaussian elimination routine.
current value of $r_{\alpha s}$.
current value of $r_{\beta s}$.
current value of x coordinate of point of integration.
$(b-a) x_{i}$
y current vaiue of y coordinate of point of integration.
WI $\quad(c-d)(a-b) x_{i} y_{j}$
z equivalent to $I 6$, current value of z coordinate of point of integration.

A a, lower limit of integration on x axis.
B $\quad b$, upper limit of integration on x axis.
DIF1 $\mathrm{b}-\mathrm{a}$: equivalent to B .
$C \quad c\left(x_{i}\right)$, lower limit of integration on y axis.
D $\quad d\left(x_{i}\right)$, upper limit of integration on y axis
DIF2 $d\left(x_{i}\right)-c\left(x_{i}\right)$, equivalent to D.
$E \quad e\left(x_{i}, y_{j}\right)$ lower limit of integration on z axis.
$F \quad f\left(x_{i}, y_{j}\right)$ upper limit of integration on z axis.
VMU
DATA

NDATA
IX DATA subscript for first index of comers of crystal.
R Gaussian weighte.
U Gaussian poirts.
IP
IQ DATA subscripts used in detemining corners of crystal.

IPl and IQ1
II, I2, I3, I4, I5, I6, I7, J, K, KI Dummy subscripts for DATA.
EPSI tolerance e usecu in determining corners of crystal.
$K \phi \quad$ output option on the reporting of the corners of the crystal.
M number of Gaussian points used in integration.

K \varnothing NST \quad number of words of $C \varnothing M M \phi N$ storage used excepting DATA block. NPI number of blocks on magnetic tape.

STORAGE TABLE FOR THE ARRAY DATA*

Number
of words
$\mathrm{NMU} \leq 6$
$\mu_{1}, \ldots, \mu_{\mathrm{MMU}}$
Subscript 1 NMU
$4 * N$
$a_{s}, b_{s}, c_{s}, d_{s},(s=1, \ldots, n)$
$\mathrm{NC} \phi \mathrm{F}$
NEND
$N P * M *(N+1)$
$d_{s}-a_{s} x_{i}-b_{s} y_{j}-c_{s} z_{k}$
(b-a) (d-c) $(f-e) R_{i} R_{j} R_{k}$ for $s=1, \ldots, n$
$i, j, k=1, \ldots, m$
NUM

NUMED
$\mathrm{N} \quad\left(\right.$ Part I) $d_{s}-\mathrm{a}_{\mathrm{s}} \mathrm{x}_{\mathrm{i}}(\mathrm{s}=1, \ldots, \mathrm{n})$ (Part 2) $a_{s} \gamma_{\alpha x}+b_{s} \gamma_{\alpha y}+c_{s} \gamma_{\alpha z}$

IDIFI

N
(Part 1) $d_{s}-a_{s} x_{i}-b_{s} y_{j}(s=1, \ldots, n)$
(Part 2) $a_{s} \gamma_{\beta x}+b_{s} \gamma_{\beta y}+c_{x} \gamma_{\beta z}$
IDIF2
IX-I

12
(Part 1) Indices of planes and coordinates of corners

TX
IX +11

7*NANGL
(Part 2) Id, $\gamma_{\alpha x}, \gamma_{\alpha y}, \gamma_{\alpha z}, \gamma_{\beta x}, \gamma_{\beta y}, \gamma_{\beta z}$ for each reflection

IANG

NMU*NANGL (Part 2) $A_{1}\left(\mu_{k}\right), A_{2}\left(\mu_{k}\right) \ldots$ ISUM-1

ISUM
*DATA is equivalent to VMU and NDATA.

REFERENCES

Albrecht, G. (1939). Rev. Sci. Instrum. 10, 221.
Bradley, A. J. (1935). Proc. Phys. Soc. $47,879$.
Busing, W. R. and Levy, H. A. (1957). Acta Cryst. 10, 180.
Evans, H. T. (1952). J. Appl. Phys. 23, 663.
Evans, H. T. and Ekstein, M. G. (1952). Acta Cryst. 5, 540.
Hendershot, 0. P. (1937). Rev. Sci. Instrum. 8, 324.
Howells, R. G. (1950). Acta Cryst. 3, 366.
Lowan, A. N., Davids, N. and Levenson, A. (1942). Bull. Amer. Math. Soc. 48, 739.

Margenau, H. and Murphy, G. M. (1943). The Mathematics of Physics and Chemistry. New York: Van Nostrand.

```
C ABSORPTION CALCULATION, 3-DIMENSIONAL P1 000
    COMMON EPS,NS,NB,NP,NANGL,N,V,V1,IDENT,IT1,IT
    2NCOF,NEND,NUM,NUMED,IDIF1,IDIF2,IANG,ISUM,JCOR,
    3T,X,WX,Y,WY,Z,A,B,C,D,E,F,DIF1,DIFZ,DIF3,TA,TB,RA,RB,
    4VMU,DATA
        DIMENSIONIDENT(12),T(12),R(16),U(16),VMU(1),DATA(1),NDATA(1)
        EQUIVALENCE(EPS,DUM4),(NS,DUM5),
    1(NB,DUMG),(NP,DUM7),(NANGL,DUM8),(N,DUM9),(V,DUM10),(V1,DUM11),
    2(IDENT,DUM12),(IT1,DUM13),(IT2,DUM14),(IT3,DUM15),(NANGL1,DUM16),
    3(NMU,DUM17),(IANG,DU33),(ISUM,DU34),
    4(NCOF,DUM19),(NEND,DUM20),(NUM,DUM21),(NUMED,DUM22),(JCOR,DUM23), P
    5(IDIF1,DU31),(IDIF2,DU32),(T(3),X),(T(6),WX),(T(9),Y),(T(12),WY), P
    6(2,I6),(A,DUM24),(B,DIF1),(C,DUM25),(D,DIF2),(E,DUM26),(F,DIF3), P1
    7(IP1,IQ1,I),(T(1),TA),(T(2),TB),(T(4),RA),(T(5),RB),
    8(DATA,VMU,NDATA)
    READINPUTTAPE10,1003:M
    IF(M-16)9001,9001,9002
9001 READINPUTTAPE10,1005,(U(I),I=1,M),(R(I),I=1,M)
    REWIND }
    LINES =50
    SENSELIGHTO
    CALLSIZE(NS)
3213 CALLCLOCK(ITI,DATE)
    READINPUTTAPE10,1001,(IDENT(I),I=1,12)
    READINPUTTAPE10,1003,NMU,EPS,KO
    IF(NMU-6)314,314.315
314 NCOF=NMU+1
    READINPUTTAPE10,1004,(VMU(I), I=1,NMU)
    CALLFACEIIDENT,N,DATA,NCOF,DATE)
9020 CALLEPSR(EPS,EPSI)
    I1=NS-KONST-NMU-6*N-1?
    NP=11/(M* (N+1))
    I2=M***2
316 IF(XMODF(I2,NP)/318,312,318
318 NP=NP-1
    GO TO316
312 IF(NP18313,8313,311
311 NANGL=(I1-NP*M*(N+1)+12)/(7+NMU)
    IF(NANGL-2)317,317,313
317 IF(NP-1)8313,8313,318
313 NB=I2/NP
    NEND=NCOF+4*N
```

NUM $=$ NEND +1					P1	042
NUMED $=N P * M *(N+1)+N E N D$					P1	043
IDIFI $=$ NUMED +1					P1	044
IDIF2 $=$ IDIF1+N					$\bigcirc 1$	045
$I X=I D I F 2+N$					P1	046
I $A N G=I X$					P1	047
I SUM $=$ NANGL*7+I ANG					P1	048
C	DETERMINE COEFFICIENTS OF	CORNERS	AND	REPORT	P1	049
C	CALCULATE $A, B, B-A$				P1	050
	IF (NB-1) $7006,7006,7007$				P1	051
7007	REWIND2				P1	052
7006	IF (KO) 60,60,61				P1	053
61	CALLIDOUT (IDENT, DATE,9)				P1	054
	WR ITEOUTPUTTAPE 9,2001				P1	055
	NLINES $=$ LINES				P1	056
60	$A=10.0 E 37$				P1	057
	$B=-A$				P1	058
	$J C O R=0$				P1	059
	I $1=\mathrm{N}-2$				P1	060
	D027IP=1, II				P1	061
	$I P I=I P+1$				P1	062
	$11=N-1$				P1	063
	DO26IQ=IPI, II				Pl	064
	$I Q 1=I Q+1$				P1	065
	D054 IR=IQ1, N				P1	066
	$11=\mathrm{NCOF}+4 *(\mathrm{IP}-1)$				P1	067
	DO24K=1,12,3				P1	068
	$\mathrm{T}(\mathrm{K})=\mathrm{DATA}(\mathrm{I} 1)$				P1	069
24	$\mathrm{I} 1=\mathrm{I} 1+1$				P1	070
	$11=N C O F+4 *(1 Q-1)$				P1	071
	DO23K=1,12,3				P1	072
	$\mathrm{T}(\mathrm{K}+1)=\mathrm{DATA}$ (I1)				P1	073
23	$\mathrm{I} 1=\mathrm{I} 1+1$				P1	074
	I $1=\mathrm{NCOF}+4 \times(\mathrm{IR}-1)$				P1	075
	DO22K=1,12,3				P1	076
	$T(K+2)=$ DATA (I1)				P1	077
22	$11=11+1$				P1	078
	CALLGAUSOL (T,3)				P1	079
	IF (SENSELIGHT2)54,69				P1	080
69	DO28K=NCOF, NEND, 4				P1	081
	IF (DATA $(K) * T(10)+$ DATA $(K+1) *$	11)+DAT	A $1 \mathrm{~K}+$) $* T(12$	P1	082
	14,28,28				P1	083
28	CONTINUE				P1	084

```
    IF(A-T(10))50,50,51
    51 A=T(10)
    51 A=T(10)
    53 B=T(10)
    52 IF(KO)54,54,62
    62 I1 = IX +JCOR
    NDATA(II)=IP
    NDATA(I 1+1)=IQ
    NDATA(I1+2)=IR
    DO2OK=3,5
    II = JCOR +K+I X
    20 DATA(II)=T (K+7)
    JCOR=JCOR+6
    IF(JCOR-12)54.29,29
    29 CALLOCOR(DATA,IX,JCOR)
    54 CONTINUE
    26 CONTINUE
    27 CONTINUE
    IF(KO)57,57,64
    64 IF(JCOR)57,57,58
    5 8 ~ ( A L L O C O R ( D A T A , I X , J C O R )
    57 DIFI=B-A
    IF(DIF1)56,56.55
    55 CONTINUE
    V =0.0
    NP1=NP
    K1=NUM
    DO107I=1.M
    X=A+DIFI*U(I)
    WX=R\I|*DIFI
    I2=IDIFI
    DO7OI1=NCOF,NEND,4
    DATA(I2)=DATA(I1+3)-DATA(I1)*X
70 I2=I2+1
CALCULATE C, D, D-C
    C=10.0E37
D=-C
I20=N-1
    D071IP=1,120
    IP1 = IP+1
    DO76IQ=IP1,N
I1=NCOF+1+4* (IP-1)
    P1 086
C
```

DO73K=1,4,3
$T(X)=D A T A(I 1)$
$73 \quad 11=11+1$
$\mathrm{I} 1=\mathrm{NCOF}+1+4 *(1 \mathrm{Q}-1)$
DO $74 K=1,4,3$
$T(K+1)=\mathrm{DATA}(I I)$
74 II = I 1 + 1
$I 1=10 I F I+I P-1$
$T(7)=D A T A(I 1)$
$I 1=1 D I F 1+I Q-1$
$T(8)=$ DATA(I1)
CALLGAUSOL (T,2)
IF(SENSELIGHT2) 76,68
68 I2 $=1 \mathrm{DIFI}$
DO75I1=NCOF, NEND,4
IF (DATA(I1+1)*T(7)+DATA(I1+2)*T(8)-DATA(I2)+EPS1)76:75,75
$75 \quad 12=12+1$
IF $(C-T(7)) 77,77,78$
$78 \mathrm{C}=\mathrm{T}(7)$
77 IF (T (7)-D)76.76.79
$79 \mathrm{D}=\mathrm{T} 171$
76 CONTINUE
71 CONTINUE
DIF2 $=\mathrm{D}-\mathrm{C}$
IF (DIF2)72,72,80
80 CONTINUE
D091J=1,M
$Y=C+D I F 2 \% U(J)$
$W Y=W X * D I F 2 * R(J)$
I2=10IF1
I3 $=1 \mathrm{DIF} 2$
DO90I1=NCOF, NEND,4
DATA(13)=DATA(I2)-DATA(11+1)*Y
$I 2=I 2+1$
$90 \quad 13=13+1$
$E=10.0 E 37$
$F=-E$
$13=\operatorname{IDIF} 2$
DO9311=NCOF,NEND, 4
$z=\mathrm{DATA}(I 3) / \mathrm{DATA}(I 1+2)$
I4 = IDIF2
DO94I2=NCOF,NEND, 4
IF (DATA(I2+2)*Z-DATA(I4)+EPS1)93.94,94

$P 1$	127
$P 1$	128
$P 1$	129
$P 1$	130
$P 1$	131
$P 1$	132
$P 1$	133
$P 1$	134
$P 1$	135
$P 1$	136
$P 1$	137
$P 1$	138
$P 1$	139
$P 1$	140
$P 1$	141
$P 1$	142
$P 1$	143
$P 1$	144
$P 1$	145
$P 1$	146
$P 1$	147
$P 1$	148
$P 1$	149
$P 1$	150
$P 1$	151
$P 1$	152
$P 1$	153
$P 1$	154
$P 1$	155
$P 1$	156
$P 1$	157
$P 1$	158
$P 1$	159
$P 1$	160
$P 1$	168
$P 1$	161
$P 1$	162
$P 1$	163
$P 1$	164
$P 1$	165
$P 1$	166
$P 1$	

```
        94 14=14+1
        IF(E-Z)96.96.97
        97 E=2
        96 IF(Z-F)93.93.98
    98 F=2
    9 13=13+1
        DIF3=F-E
        IF(DIF3)99,99,100
    100 CONTINUE
        DO101K=1.M
        Z=E+DIF3*U(K)
        I2=IDIF2
        DO102II=NCOF,NEND,4
        DATA(K1)=DATA(I2)-DATA(11+2)*2
        IF(DATA(K1))103:103,104
    104 DATA(K1)=0.0
    103 K1=K 1+1
    102 I 2=I2+1
        DATA(K1)=WY*DIF3*R(K)
        V=V+DATA(K1)
    101 K1=K1+2
        IF(NB-1)91,91,7002
    7002 NPI=NP1-1
        IF(NP1)105,105.91
    105 WRITETAPE2,(DATA(II), II=NUM,NUMED)
        Kl=NUM
        NP1=NP
    91 CONTINUE
    107 CONTINUE
        IF(NB-1)7004,7004,7005
    7005 ENDFILE2
    REWIND2
    7004 CALLCLOCK(ITZ,DATE)
C END OF PART I, BEGINNING OF PART II
CALLIDOUT (IDENT:DATE*Q)
WRITEOUTPUTTAPE9,2003,IVMU(I),I=1*NMUI
NANGLI=0
2 1 1 ~ C A L L A N G L E ( I D E N T , D A T A , I A N G , N A N G L , D A T E , N A N G L I )
VI=0.0
NANGL1 =NANGL1+NANGL
K1 =N+1
I 3=NANGL*T-I+IANG
\begin{tabular}{|c|c|}
\hline P1 & 170 \\
\hline PI & 171 \\
\hline P1 & 172 \\
\hline P1 & 173 \\
\hline P1 & 174 \\
\hline P1 & 175 \\
\hline Pl & 176 \\
\hline PI & 177 \\
\hline PI & 178 \\
\hline PI & 179 \\
\hline PI & 180 \\
\hline PI & 181 \\
\hline PI & 182 \\
\hline PI & 183 \\
\hline PI & 184 \\
\hline PI & 185 \\
\hline Pl & 186 \\
\hline P1 & 187 \\
\hline P1 & 188 \\
\hline P1 & 189 \\
\hline PI & 190 \\
\hline P1 & 191 \\
\hline PI & 192 \\
\hline PI & 193 \\
\hline P1 & 194 \\
\hline P1 & 195 \\
\hline P1 & 196 \\
\hline P1 & 197 \\
\hline P1 & 198 \\
\hline P1 & 199 \\
\hline P1 & 200 \\
\hline P1 & 201 \\
\hline P1 & 202 \\
\hline P1 & 204 \\
\hline P1 & 205 \\
\hline P1 & 206 \\
\hline P1 & 207 \\
\hline Pl & 208 \\
\hline P1 & 209 \\
\hline Pl & 210 \\
\hline P1 & 211 \\
\hline P1 & 212 \\
\hline
\end{tabular}
```

I2 $=1 S U M+N M U * N A N G L-1$
DO200II=ISUM:I2
200 DATA $(I 1)=0.0$
DO201II=1, NB
IF (NB-1) $7001,7001,7003$
7003 READTAPE2, (DATA(12), I2=NUM,NUMED)
$7001 \mathrm{I} 6=15 \mathrm{MM}$
DO20212=1ANG:13.7
I9=IDIFI
$18=I D I F 2$
11
$\operatorname{DATA}(I 9)=\mathrm{DATA}(I 4) * D A T A(I 2+1)+D A T A(14+1) * D A T A(I 2+2)+D A T A(I 4+2) H D A T A P 1 \quad 224$
$1(12+3)$
P1
224
DATA $(I 8)=\mathrm{DATA}\left(I_{4}\right) * D A T A(I 2+4)+\mathrm{DATA}(14+1) * \mathrm{DATA}(I 2+5)+\mathrm{DATA}(I 4+2) * \mathrm{DATAP} 1$
$1(12+6)$
$19=19+1$
$P 1$
$203 \begin{aligned} & 18=18+1 \\ & \\ & \\ & D O 215 I 7=\text { NUM }, N U M E D, K 1\end{aligned}$
228
$15=17$
$R A=10.0 E 37$
P1 230
231
$R B=R A$
232
I9=IDIF2-1
I $8=I D I F 2$
DC208I4=IDIF1,I9
IF(DATA(I4))911,213,213
P1 234
$2 P 1 \quad P 1$
$11 \mathrm{TA}=\mathrm{DATA}(\mathrm{I})$
236
237

TF (RA-TA)213,213,205
$205 \mathrm{RA}=\mathrm{TA}$
213 IF(DATA(I8))216,217,217
216 TB=DATA(I5)/DATA(I8)
IF (RB-TB) $217,217,207$
$207 \mathrm{RB}=\mathrm{TB}$
$217 \quad 15=15+1$
$18=18+1$
208 CONTINUE
$R A=R A+R B$
$110=16$
DO20614 $=1$, NMU
DATA(I10) $=\mathrm{DATA}(110)+\operatorname{EXPF}(-\mathrm{VMU}(\mathrm{I} 4) * \mathrm{RA}) * D A T A(15)$
$206 \quad 110=110+1$
215 CONTINUE
$16=16+N M U$
202 CONTINUE

```
        DO8204I4=NUM,NUMED,K1 P1 256
        15=14+N
8204 VI=VI+DATA(I5)
    201 CONTINUE
    IF (NB-1)7009,7009,7010
    7010 REWIND2
7009 16=ISUM+NANGL*NMU-1
DO802114=ISUM,I6
3021 DATA(I4)=DATA(I4)/V
3021 DATA(I4)=DATA(I4)/V
    210 I2=ISUM
        I5=IANG+7*NANGL-1
        DO40011=IANG,I5,7
        I3=12+NMU-1
        NLINES=NLINES-1
        IF(NLINES)240,240,241
    240 NLINES=LINES
        NLINES=LINES
        WRITEOUTPUTTAPE9,2003,(VMU(I),I=1,NMU)
    241 WRITE OUTPUT TAPE9,2008,DATA(I1),(DATA(I4),I4=I2,I3)
    400 I 2=13+1
        IF(SENSELIGHTI)212,211
    212 CALLCLOCK(IT3,DATE)
        ITl=IT2-IT1
        IT2=IT3-IT2
        CALLIDOUTIIDENT,DATE,9)
        WRITEOUTPUTTAPEg,2093,V
        WRITEOUTPUTTAPE9,2004,N,NANGL1,NMU,IT1,IT2
        GOTO8213
        ERROR RETURNS
    315 CALLIDOUTIIDENT,DATE,9)
        WRITEOUTPUTTAPEG,2010,NMU
        CALLEXIT
    5 6 ~ C A L L I D O U T ( I D E N T , D A T E , 9 1 ~
        CALLERROR (IDENT,DATE,g)
        72 CALLERROR
        WRITEOUTPUTTAPE9,2012,C,DIF2
        CALLERROR
        9 CALLERROR (IDENT,DATE,9)
        WRITEOUTPUTTAPES,2013,E,DIF3
        CALLERROR
    P1 257
P1 }25
    259
    P1 261
        WRITEOUTPUTTAPEg,2011,A,DIF1
```

```
209 (ALLIDOUT(IDENT,DATE,9)
TIAPEg,202n*V,v
CALL ERROR
9021 CALLIDOUT IIDENT,DATE,9)
    WRITEOUTPUTTAPE9,2092,N
    CALLEXIT
9002 WRITEOUTPUTTAPE9,2090,M
    CALLEXIT
3313 CALLIDOUT(IDENT,DATE,9)
    WRITEOUTPUTTAPE9,2313,N,M,NMU,NS.NP
    CALLEXIT
    FORMAT (36HOMEMORY IS TOO SMALL FOR PARAMETERS./4HON =I 3,3HM = 13,5HP1
    1NMU =I2,19HAVAILABLE STORAGE =I6,4HNP =15) P1
2090 FORMAT(21H1M IS TOO LARGE:M = I5) P1
2092 FORMAT (5HON = 15*15H IS TOO LARGE.)
2093 FORMAT(IOHOVOLUME =F15.81
1001 FORMAT(12AG)
1002 FORMAT(1I1)
1003 FORMAT(I5,E15.8,I5)
1004 FORMAT(6E10.8)
1005 FORMAT(4F10.8)
    IORMING CORNER, FOLLOWED BY }X,Y,Z//1)P1
2003 FORMAT(33HOABSORPTION CORRECTION FACTOR, A/GHOMU = 6(E10.5)//) P1
2004 FORMAT(5HON = I5,3X,1gHNUMBER OF ANGLES = I5,3X,15HNUMBER OF MU = P1
    112//29H TIME USED IN PARTS 1 AND 2 = 2I10.3X.18HIN 1OS OF SEGONDS.P1
    2)
2008 FORMAT(1HOLAG,3X,6F12.8) P1
2 0 1 0 ~ F O R M A T I ~ 2 9 H O I N P U T ~ E R R O R . ~ N U M B E R ~ O F ~ M U ~ = I 5 . 2 4 H W H I C H ~ I S ~ G R E A T E R ~ T H A N P 1 ~
    16.1
        HANP1
        FORMATIG2HOERROR IN GALCULATION OF UPPER AND LOWER LIMITS IB, A,I.PI
    1 A = E15.8,8H, B-A = E15.8/19HOCORE DUMPS FOLLOW.I P
2012 FORMAT (G2HOERROR IN CALCULATION OF UPPER AND LOWER LIMITS (D: C).PI
    1 C = E15.8,8H, D-C=E15.8/19HOCORE DUMPS FOLLOW.1
    FORMAT (62HOERROR IN CALCULATION OF UPPER ANO LOWER LIMITS (F, E). PI
    1 E = E15.8,8H, F-E = EI5.8/19HOCORE DUMPS FOLLOW.) PI
2020 FORMAT (58HOERROR. VOLUME FROM CORE IS NOT EQUAL TO VOLUME FROM TAPI
    IPE/11HOV (CORE) = E15.8.10HV (TAPE) = E15.8/14HODUMP FOLLOWS.) P1
        END (0,1,0,0,0)
P1
```


SUBROUTINE GAUSOL (A,N)

338
DIMENSION A(3,4)
339
SOLUTION OF SYSTEM OF EQUATIONS BY GAUSSIAN ELIMINATION
340 USING INTERCHANGES

341
$A=$ NAME OF MATRIX GORIGINAL MATRIX IS DESTROYEDI
342
MATRIX IS STORED BY COLUMNS, VECTOR FOLLOWS
343
$N=$ ORDER OF MATRIX
34
(N MUST BE LESS THAN OR EQUAL DIMENSION STATEMENT)
SOLUTION IS FOUND IN A(I,N+1) THROUGH A(N,N+1)
345
346
IF (SENSELIGHT2)20,20
N2 $=\mathrm{N}-1$
$N 1=N+1$
DO9I1=1, N2
$L=0$
$\mathrm{R}=\mathrm{A}(11, \mathrm{II})$
$111=11+1$
002 IR $=111$, N
IF (ABSF(R)-ABSF(A)(IR,11))13,2,2
$3 R=A(I R, I 1)$
$L=I R$
2 CONTINUE
IF(L) 4, 4:5
5 DO6IJ=11,N1
$X=A(L, I J)$
$A(L, I J)=A(I I, I J)$
6 A(11, IJ) $=x$
4 DO812=I11,N
$T=A(I 2, I 1) / A(I 1, I 1)$
DO713 = I11, N1
$7 \mathrm{~A}(12, I 3)=\mathrm{A}(\mathrm{I} 2,131-\mathrm{A}(\mathrm{I} 1, I 3)+\mathrm{T}$
8 CONTINUE
9 CONTINUE
$A(N, N 1)=A(N, N 1) / A(N, N)$
DO11I=1,N2
$\mathrm{II}=\mathrm{N}-\mathrm{I}$
$12=I I+1$
DO1013 $=12, \mathrm{~N}$
$10 A(I 1, N 1)=A(I 1, N 1)-A(11, I 3) * A(13, N 1)$
$11 \mathrm{~A}(\mathrm{II}, \mathrm{N} 1)=\mathrm{A}(I 1, N 1) / \mathrm{A}(\mathrm{II}, \mathrm{II})$
IFDIVIDECHECK 15,14
15 SENSELIGHT2


```
        I 3 = IANG+7*NANGL-1
        IF(NANGL1)30,31,30
    31 READINPUTTAPE10,1002,NOP
    30 DO10I2=IANG,I3,14
    I4=I 2+13
    READINPUTTAPE10,1001,(DATA(I1),DATA(I1+1),DATA(II+2),I 1=I2,I4,7)
    DO13I5=I2,I4,7
    IF(DATA(I5)) 13,12,13
13 Kl=Kl+1
    IF(NANGL-K1-2) 11,10,10
12 SENSELIGHTI
    NANGL=KI
    GOTOl1
    10 CONTINUE
11 I3=IANG+7*NANGL-1
    IF(NOP)17,16,15
15 NOP=-1
    CALLIDOUT(IDENT,DATE,6)
    WRITEOUTPUTTAPE6,2001
    17 WRITEOUTPUTTAPE6,2002,(DATA(II),DATA(II+1),DATA(II+2),II=IANG,I3,7A
    1)
    IF(SENSELIGHT1)20,16
    20 SENSELIGHTI
        END FILE 6
    16 DO14I2=IANG,I3,7
    DATA(I 2+6)=(DATA(I 2+2)-DATA(I 2+1))*0.0174533
    DATA( I2+3)=(DATA(I 2+2)+DATA(I2+1))*0.0174533+3.1415926
    DATA(I I +1) = COSF(DATA (I2+3))
    DATA(I2+2)=SINF(DATA(I2+3)
    DATA(I2+3)=0
    DATA(I2+4)=COSF(DATA(I2+6)
    DATA(I2+5)=SINF(DATA(I2+6))
    14 DATA(I2+6)=0
1001 FORMAT(2(1A6,2F8.3))
1002 FORMAT(1I1)
2001 FORMAT(12HOANGLE INPUT/1HO,9X,14HTHETA CHI//)
2002 FORMAT(1H (2(1A6,2F10.3,5X)))
    RETURN
    END (0,1,0,0,0
```

$\begin{array}{lllll}C \\ C & \text { SURITTENOUTINE ANGLE(2), FOR 3-D ORIENTING EQUTPMENT } & \text { A2 } & 534 \\ 535\end{array}$
SUBROUTINEANGLE (IDENT,DATA,IANG,NANGL,DATE,NANGLI)
DIMENSION IDENT(12),DATA(1)
K1 1 O
I3*IANG+7*NANGL-1
IF (NANGL 1) $30,31,30$
31 READINPUTTAPE $10,1002, N O P$
30 DO!OI2 \#IANG, I3, 14
CONTINUE
continue
$14 \neq 12+13$

READINPUTTAPE $10,1001,\left(\right.$ DATA(II),DATA(Il+1),DATA(I)+2),DATA(I| $\left.{ }^{\&_{3}}\right)$
1,I1\#I2,I4.7)
DO13I5\#12,14.7
IF(DATA(I5)) $13,12,13$
$13 \mathrm{~K} \mid * K 1+1$
IF!NANGL-K1-2) $11,10,10$
12 SEMSELIGHT
NAMGL\#K1
GOTOII
Io continue
11 I3*IANG +7 *NANGL-
IF: NOP $117,16,15$
15 NOP \#-1
CALLIDOUT (IDENT, DATE, 6)
WRITEOUTPUTTAPE6,2001
7 WRITEOUTPUTTAPE6,2002, (DATA(11), DATA(I1+1),DATA(I1+2), DATA(11+3) A2
II I\#IANG, 13,7)
IF(SENSELIGHT1)20,16
20 SENSELIGHTI
END FILE 6
160014 I 2 \#IANG, 13,7
DATA($12+1)$ \#DATA $(12+1) * 0.174532925 \mathrm{E}-1$
DATA($12+2)$ ADATA $(12+2) * 0.174532925 E-1$
DATA $(I 2+3) \neq D A T A(I 2+3) * 0.174532925 E-1$
TI\#SINF (DATA(I2+1))
T2\#COSF (DATA(12+1))
T3*VINF(DATA(I $2+3)$)
T4ACOSF (DATA $(12+3))$
DATA $(12+6) * S I N F(D A T A(12+2)) * T 1$
DATA $(12+3) * \operatorname{COSF}(D A T A(12+2)) * T 1$
DATA $(12+4)$ \#DATA $(12+3) * T 4$

534
535
536
537 538
539
540
540
541
542
543
544
545
546
547
548
548
549
550
551
552
552
553
554
555
556
556
557
558
559
560
561
562
563
564
564
565
566
567
568
568
569
570
571
572
573
574
575
576

```
    DATA(12+1)=DATA(I2+4)+DATA(12+5) A2
    DATA(I2+4)=DATA(I 2+4)-DATA(12+5)
    DATA(I 2+5) =T4*T2
DATA(I2+3)=DATA (12+3)*T3
DATA(12+2)=DATA(12+3)-DATA(12+5)
    DATA(I2+5)=DATA (I2+3)+DATA(I 2+5)
DATA(I2+3)=DATA(I2+6)
14 CONTINUE
1001 FORMAT(2(1A6,3F8.3))
1002 FORMAT(111)
2001 FORMAT(1HO16X,11HANGLE INPUT/1HOIOX,5HTHETA,8X,3HCHI,8X,3HPHI//)
2002 FORMAT(1H (2(A6,3F11.3,5X)))
RETURN
ENO 10,1,0,0,01 A2 591
SUBROUTINEFACE(IDENT,N,DATA,NCOF,DATE)
DIMENSION IDENT(12),DATA(1)
READINPUTTAPE1O,1001,N,NOP
NEND=4*N+NCOF-1
READINPUTTAPE10,1002,(DATA(I1),I1=NCOF,NEND)
IF(NOP)2,2,3
3 NBEG=NCOF
k3=0
7 \text { CALLIDOUT(IDENT,DATE,g)}
WRITEOUTPUTTAPE9,2001,N
DO4KI=NBEG,NEND,4
K2=K1+3
578
578
579
580
5 8 1
582
583
584
585
58
586
1002 FORMAT(111), A2
587
588
589
590
yuvuvuvuvuvu%
592
\begin{tabular}{ll}
A 2 & 577 \\
A 2 & 578 \\
A 2 & 579 \\
A 2 & 580 \\
A 2 & 581 \\
A 2 & 582 \\
A 2 & 583 \\
A 2 & 584 \\
A 2 & 585 \\
A 2 & 586 \\
A 2 & 587 \\
A 2 & 588 \\
A 2 & 589 \\
A 2 & 590 \\
A 2 & 591
\end{tabular}
```

```
SUBROUTINE FACE(IDENT,N,DATA,NCOF,DATEI, 3 DIMENSIONAL PROBLEM
```

SUBROUTINE FACE(IDENT,N,DATA,NCOF,DATEI, 3 DIMENSIONAL PROBLEM
SUBROUTINE FACE(IDENT,N,DATA,NCOF,DATEI, 3 DIMENSIONAL PROBLEM
SUBROUTINE FACE(IDENT,N,DATA,NCOF,DATEI, 3 DIMENSIONAL PROBLEM
SUBROUTINE FACEIIDENT,N,DATA,NCOF,DATEI, 3 DIMENSIONAL PRO
NOTATION IOENT = IDENTIFICATION OF CRYSTAL
NOTATION IOENT = IDENTIFICATION OF CRYSTAL
N = NUMBER OF FACES
N = NUMBER OF FACES
DATA = BLOCK OF GENERAL STORAGE
DATA = BLOCK OF GENERAL STORAGE
NCOF = ELEMENT OF DATA CONTAINING FIRST
NCOF = ELEMENT OF DATA CONTAINING FIRST
COEFFICIENT DESCRIBING PLANES, OR FIRST
COEFFICIENT DESCRIBING PLANES, OR FIRST
AVAILABLE CELL OF STORAGE UPON ENTRY
AVAILABLE CELL OF STORAGE UPON ENTRY
NOP = AVAILABLE CELL OF STORAGE UPON
NOP = AVAILABLE CELL OF STORAGE UPON
NOP }=00\mathrm{ IMPLIES DO NOT REPORT
NOP }=00\mathrm{ IMPLIES DO NOT REPORT
DATE = BCD DATE
DATE = BCD DATE
OR FI
OR FI
NTRY
NTRY
F1 594
NOTATION
NOTATION
596
596
597
598
599
600
600
6 0 1
601
602
603
604
604
605
606
6 0 7
608
6 0 8
6 0 9
M,NOMCO,
6 1 0
NBEG=NCOF
6 1 1
6 1 1
6 1 2

```
\(K 3=K 3+1\)

        (DATA(I1),II=K1:K2)
        IF (50-K3)5,5,4
    5 NBEG=K1
        GOTOT
    4 CONTINUE
1001 FORMAT(2I5)
(Fl 623
1002 FORMAT(4E10.3) F1 624
2001 FORMAT \(1 \mathrm{H}+, 70 \mathrm{X}, 17 \mathrm{HNUMBER} \mathrm{OF} \mathrm{FACES}=I 5 / 75 \mathrm{HOCOEFFICIENTS} \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} F 1 \mathrm{G}, 5\)
    1WHERE \(A X+B Y+C 2=D\) DESCRIBES FACE OF CRYSTAL/1HO,2X:1HN:7X,1F1 626
    \(2 H A \cdot 9 X, 1 H B, 9 X, 1 H C, 9 X, 1 H D / / 1\) F1
2002 FORMATITH I 3,2X,4F10.51 FI
F1
2 RETURN FI
    END \((0,1,0,0,0)\)
629
* SUBROUTINE SIZE
    REM TO DETERMINE AMOUNT OF STORAGE AVAILABLE FOR DATA 5
    REM MAKE DECREMENT OF SIZE \(+5=P A R T\) OF UPPER CORE NOT AVAILABLE 5633
    REM ENTER WITH TSX SIZE:4 4
    \(\begin{array}{lll}\text { REM ENTER WITH TSX SIZE:4 } & \text { HTR NS } & 5 \\ \text { REM } & 634 \\ & \text { TRA } & 635\end{array}\)
    REM HTR NS
REM EXIT WITH TRA 2,4
    REM NS WILL CONTAIN AMOUNT OF AVAILABLE STORAGE IN DECREMENT. 5637
    REM THIS SUBROUTINE MUST BE THE LAST SUBROUTINE LOADED.
    FUL
    FUL \(O\) PROGRAM CARD
    \(M Z E O, 0,4 \quad 9 L\)
    PZE O \(9 R\)
    \(\begin{array}{ll}P L E & 9 R \\ P Z E ~ E N D+1 & 8 L\end{array}\)
    PZE \(0 \quad 8 R\)
    BCD ISIZE 7
    PRE 0 TR
    PZE O
        ORG 0
        REL
SI2E SXD END: 4
    CLA 1:4
    \(\begin{array}{ll}\text { STA } & \text { SIZE+6 }\end{array}\)
    STA SIZE +6
LXA END: 4
    LXA END, 4
    IX \(x+1\),4,END
    TIX * \(+1,4,205\)
    SXD 0,4 NS
    LXD END. 4
    TRA 2,4
END HTR -1
    HTR \({ }^{-1}\)
END 0
\(8 R\)
\(7 R\)
634
635
636
    637
FUL
ORG 0 PROGRAM CARD
\(M Z E O: 0.4 \quad 9 L\)
\(\begin{array}{lll}P Z E & E N D+1 & 8 L \\ P Z E ~ & 8 R\end{array}\)
\(\begin{array}{ll}B C D & \text { ISIZE } \\ P Z E ~ & 7 L \\ O R G & 7 R\end{array}\)
ORG 0
SXD END: 4
638
638
639
CLA \(1: 4\)
LXA END,4
TIX \(n+1,4\), FND
TIX *+1,4.205 653LXD END. 455655
TRA \(2: 4\)
HTP -1 656
END 0
.019855072 .101666761 .237233795 .408282679
.591717321 .762766205 .898333239 .980144928
\(.050614268 \cdot 111190517.156853323 \cdot 181341892\)
.181341892 .156853323 .111190517 .050614268

\section*{DISTRTBUTION}
I. D. Jo Wehe
2m. W. Ro Busing
5-7. H. A. Levy
8-9. Central Research Liibrary
10. Document Reference Section
11-25. Division of Technical Information Extension
26. Research and Development Division
27. Laboratory Records = Record Copy
28-200. Laboratory Records```

