```
The Project Gutenberg EBook of A Fortran Program for Elastic Scattering
Analyses with the Nuclear Optical Model, by Michel A. Melkanoff
and David S. Saxon and John S. Nodvik and David G. Cantor
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
Title: A Fortran Program for Elastic Scattering Analyses with the
    Nuclear Optical Model
Author: Michel A. Melkanoff
    David S. Saxon
    John S. Nodvik
    David G. Cantor
Release Date: August 24, 2009 [EBook #29784]
Language: English
Character set encoding: ISO-8859-1
*** START OF THIS PROJECT GUTENBERG EBOOK ELASTIC SCATTERING ANALYSES ***
```

Produced by David Starner, Andrew D. Hwang, and the Online
Distributed Proofreading Team at http://www.pgdp.net

TRANSCRIBER'S NOTE
Minor typographical corrections, changes to the presentational style, and regularizations of spelling and hyphenation have been made without comment.

Every effort has been made to remove OCR errors from the FORTRAN code.

This PDF file is formatted for screen viewing, but may be easily recompiled for printing. Please see the preamble of the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ source file for instructions.

A FORTRAN Program for Elastic Scattering Analyses with the Nuclear Optical Model

MICHEL A. MELKANOFF
University of California, Los Angeles

JOHN S. NODVIK
University of Southern California

DAVID S. SAXON

University of California, Los Angeles
DAVID G. CANTOR
University of California, Los Angeles

UNIVERSITY OF CALIFORNIA PUBLICATIONS IN AUTOMATIC COMPUTATION

Number 1

This publication was prepared partly under the sponsorship of the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.
university of california press, Berkeley and Los Angeles, California
cambridge university press, London, England
$\$ 4.50$

Second Printing, 1961

PRINTED IN THE UNITED STATES OF AMERICA

Acknowledgements

The authors would like to express their sincere appreciation to the Western Data Processing Center, Graduate School of Business Administration, UCLA, for the use of their IBM 709 computer. Special thanks are due to Mrs. Lisa Greenstadt and Mrs. Lois Holloway who have worked intensively and skillfully to prepare the program.

This program is largely based on experience gained on the SWAC, and the authors recall this with gratitude to Numerical Analysis Research, Department of Mathematics, UCLA.

Finally the authors would like to express their appreciation to the National Science Foundation and the Office of Naval Research for financial support.

Table of Contents

I. Introduction 1
II. Mathematical Description 2
A. General Formulation 2

1. Uncharged Incident Particles 3
2. Charged Incident Particles 7
B. Optical Model Potential 10
3. Diffuse Surface Optical Model with Volume Absorption and Coulomb Spin-Orbit. 10
4. Nuclear Form Factors 13
5. Final Formulation for Machine Calculation 19
6. Numerical Integration 19
7. Coulomb Functions 23
8. Phase Shifts 26
9. Cross Section and Polarization 26
10. Chi Square Deviation 27
11. Normalization 28
III. Program Description 29
A. General Description 29
12. Machine Specifications 29
13. General Program Description 29
14. Use of the WDPC Load-and-Go System 30
15. Error Indications: 31
B. Detailed Descriptions of the Specific Routines of the Program 32
IV. Description of Input Data 42
V. Glossary and Description of Symbolic Variables Appearing in Common and Dimension Statements 45
VI. Symbolic Listing of the Program 52
VII. Typical Input and Output 92
A. Input Data for Protons against Copper at 9.75 MeV 92
B. Output Listing 93
VIII. Further Subroutines and Programs in Preparation 97

I. Introduction

The purpose of the present report is to describe in complete detail a FORTRAN code named Program SCAT 4 written by the UCLA group in order to analyze elastic scattering of various particles against complex nuclei by means of the diffuse surface optical model of the nucleus.

While a number of similar programs have been prepared and used by other groups, there have been many requests for the UCLA program because of its flexibility and the availability of IBM 704 and 709 computers for which the program is written.

The present program still contains some undesirable features and the UCLA group is constantly modifying it to make it more efficient and flexible. However, a "final" program will probably never be reached and it was decided to release Program SCAT 4 without further delay; as they develop, modifications and additions will be described in later reports.

Other laboratories will probably add further modifications and the UCLA group will be grateful for description of such modifications as well as for any suggestions in this regard. Modifications and additions deemed worthwhile will be passed on to other users of the program but while the UCLA group is willing to serve partially as a central clearing house, the entire clerical responsibility cannot be assumed by the UCLA group.

It should also be noted that, while every effort has been made to check out the program, the UCLA group cannot guarantee its complete correctness.

Program SCAT 4 is available on a symbolic deck and will be mailed on request. Air mailing will require prepaid postage by requesting parties.

Potential users of program SCAT 4 may find it useful to follow these suggestions in reading the present report:

1) If the potential user is only interested in analyses with standard potentials he may proceed as follows:
a) Read the introduction to the mathematical description.
b) Consider the fundamental equations: (34), (35), (51), (78) through (85), (132), (137) through (139) in chapter II.
c) Read chapter III, section A and the general flow chart.
d) Read the description of subroutines INPT4 and OUTPT4 in chapter III, section B.
e) Read chapter IV and VII.
2) If the potential user is interested in all the features of the program, then a perusal of the whole report is advisable. The mathematical description of chapter II is a brief review of the theory and the basic equations are all listed there. Symbolic FORTRAN variables are indicated in capital letters and may be looked up in the glossary making up chapter V.

Note that the program may be used for incident neutral particle by letting $Z Z^{\prime}=0$.

II. Mathematical Description

Program SCAT 4 calculates in the center-of-mass system the differential elastic scattering cross sections $\sigma(\theta)$, the polarization $P(\theta)$, and the total reaction cross section σ_{R} for particles of spin 0 or $1 / 2$ having any mass, charge and (non-relativistic) energy scattered by spinless nuclei of any mass and charge for various sets of diffuse surface optical model parameters. The incident and target particles are assumed to interact through a two-body potential consisting of a complex nuclear potential which includes spin-orbit interaction and whose shape can be specified by input parameters. When the incident particle is charged, the two body potential contains, in addition, the coulomb potential between an incident point charge and an extended, constant charge density target.

The calculations include numerical integrations of the radial Schroedinger equations for the effective partial waves. The complex phase shifts are obtained as usual by matching the logarithmic derivatives of the numerically obtained nuclear wave functions to that of the coulomb (or spherical Bessel) functions. The phase shifts are then used to compute polarizations and cross sections which may be compared to the experimental values by means of the χ^{2} test.

A. General Formulation

We begin with a brief review of the basic theory relating to the scattering of spin $1 / 2$ particles by a zero spin target ${ }^{1}$. We shall first consider the case of an uncharged incident particle and indicate later the modifications necessary if the incident particle is charged.

The interaction is assumed to be of the form

$$
\begin{equation*}
V_{T}=V_{1}+V_{2} \vec{S} \cdot \vec{L} \tag{1}
\end{equation*}
$$

where V_{1} and V_{2} are complex quantities depending only on the distance r between the incident particle and the target particle. In terms of the Pauli spin operator $\vec{\sigma}$, the spin operator of the incident particle, \vec{S}, is given by

$$
\begin{equation*}
\vec{S}=\frac{1}{2} \hbar \vec{\sigma} \tag{2}
\end{equation*}
$$

and the (relative) orbital angular momentum operator is given by

$$
\begin{equation*}
\vec{L}=\vec{r} \times\left(\frac{\hbar}{i} \vec{\nabla}\right) \tag{3}
\end{equation*}
$$

The Schroedinger equation is then

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \vec{\nabla}^{2}+V_{1}(r)+V_{2}(r) \vec{S} \cdot \vec{L}\right] \Psi=E \Psi \tag{4}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
\mu=\frac{m_{i} m_{b}}{m_{i}+m_{b}} \tag{5}
\end{equation*}
$$

\]

is the reduced mass, m_{i} and m_{b} being respectively the masses of the incident and target particles in atomic mass units.

$$
\begin{equation*}
E=\frac{m_{b}}{m_{i}+m_{b}} E_{\mathrm{LAB}} \tag{6}
\end{equation*}
$$

is the energy in the center of mass system, E_{LAB} being the lab energy of the incident particle in MeV .

1. Uncharged Incident Particles

The wave function corresponding to a wave incident in the positive z direction and normalized to one incident particle per unit time per unit area is

$$
\begin{equation*}
\Psi_{\mathrm{inc}}=\frac{1}{\sqrt{v}} e^{i k z} \chi_{\mathrm{inc}} \tag{7}
\end{equation*}
$$

where v is the relative velocity, the wave number k is given by

$$
\begin{equation*}
k=\sqrt{\frac{2 \mu E}{\hbar^{2}}}=0.2195376 \sqrt{\mu E} \mathrm{fermi}^{-1} \tag{8}
\end{equation*}
$$

and the incident spin function is

$$
\begin{equation*}
\chi_{\mathrm{inc}}=a_{1 / 2} \alpha+a_{-1 / 2} \beta \tag{9}
\end{equation*}
$$

where α and β are normalized spin eigenfunctions of S_{z} and $a_{1 / 2}, a_{-1 / 2}$ the corresponding amplitudes.

The partial wave expansion corresponding to (7) is given by:

$$
\begin{equation*}
\Psi_{\mathrm{inc}}=\frac{1}{\sqrt{v}} \sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(k r) \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{0}(\theta, \varphi)\left[a_{1 / 2^{\alpha}}+a_{-1 / 2} \beta\right] \tag{10}
\end{equation*}
$$

where $j_{\ell}(k r)$ is the regular spherical Bessel function of order ℓ and the normalized spherical harmonics are defined as

$$
\begin{equation*}
Y_{\ell}^{m}(\theta, \varphi)=(-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2 \ell+1}{4 \pi}} \sqrt{\frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell}^{|m|}(\cos \theta) e^{i m \varphi} \tag{11}
\end{equation*}
$$

where $P_{\ell}^{|m|}(\cos \theta)$ are the associated Legendre polynomials.
The product functions $Y_{\ell}^{0} \alpha$ and $Y_{\ell}^{0} \beta$ which appear in (10) are simultaneous eigenfunctions of the operators $\vec{L}^{2}, L_{z}, \vec{S}^{2}$, and S_{z} but not of the operator $\vec{L} \cdot \vec{S}$ which appears in the spin-orbit interaction. This may be remedied by introducing functions $\mathscr{Y}_{j \ell s}^{m_{j}}$ which
are simultaneous eigenfunctions of $\vec{L}^{2}, \vec{S}^{2}, \vec{J}^{2}$, and J_{z} and thus of $\vec{L} \cdot \vec{S}$ where \vec{J} is the total angular momentum,

$$
\begin{equation*}
\vec{J}=\vec{L}+\vec{S} \tag{12}
\end{equation*}
$$

Since $s=1 / 2$, the possible values of j are $j=\ell+1 / 2$ and $j=\ell-1 / 2$; the corresponding eigenfunctions are given by

$$
\left.\begin{array}{l}
\mathscr{Y}_{\ell+1 / 2, \ell, s}^{m_{j}}=\sqrt{\frac{\ell+m_{j}+1 / 2}{2 \ell+1}} Y_{\ell}^{m_{j}-1 / 2} \alpha+\sqrt{\frac{\ell-m_{j}+1 / 2}{2 \ell+1}} Y_{\ell}^{m_{j}+1 / 2} \beta, \text { for } j=\ell+1 / 2 \tag{13}\\
\mathscr{Y}_{\ell-1 / 2, \ell, s}^{m_{j}}=-\sqrt{\frac{\ell-m_{j}+1 / 2}{2 \ell+1}} Y_{\ell}^{m_{j}-1 / 2} \alpha+\sqrt{\frac{\ell+m_{j}+1 / 2}{2 \ell+1}} Y_{\ell}^{m_{j}+1 / 2} \beta, \text { for } j=\ell-1 / 2
\end{array}\right\}
$$

The incident wave function may now be written as

$$
\begin{align*}
\Psi_{\mathrm{inc}} & =\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell+1} i^{\ell} j_{\ell}(k r)\left[a_{1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{1 / 2}+a_{-1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \tag{14}\\
& +\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell} i^{\ell} j_{\ell}(k r)\left[-a_{1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{1 / 2}+a_{-1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{-1 / 2}\right]
\end{align*}
$$

The total wave function can be written in a form similar to (14):

$$
\begin{align*}
\Psi_{\text {total }} & =\Psi_{\text {inc }}+\Psi_{\text {scatt }} \\
& =\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell+1} i^{\ell} \frac{\Psi_{\ell}^{+}(r)}{k r}\left[a_{1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{1 / 2}+a_{-1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \\
& +\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell} i^{\ell} \frac{\Psi_{\ell}^{-}(r)}{k r}\left[-a_{1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{1 / 2}+a_{-1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \tag{15}
\end{align*}
$$

where Ψ_{ℓ}^{+}is the radial function associated with $j=\ell+1 / 2$ and Ψ_{ℓ}^{-}is associated with $j=\ell-1 / 2$.

The terms appearing in (15) are not coupled by the spin-orbit interaction, and substitution into the Schroedinger equation (4) yields the following radial equations:

$$
\frac{d^{2} \Psi_{\ell}^{ \pm}}{d r^{2}}+\left\{k^{2}-\frac{2 \mu}{\hbar^{2}}\left[V_{1}+\frac{\hbar^{2}}{2}\left(\begin{array}{c}
\ell \tag{16}\\
\text { or } \\
-\ell-1
\end{array}\right) V_{2}\right]-\frac{\ell(\ell+1)}{r^{2}}\right\} \Psi_{\ell}^{ \pm}=0
$$

where the quantity ℓ appears in the equation for $\Psi_{\ell}^{ \pm}$and $-\ell-1$ appears in the equation for Ψ_{ℓ}^{-}.

The radial wave function $\Psi_{\ell}^{ \pm}$must reduce to that of the incident wave, $k r j_{\ell}(k r)$, when there is no interaction and must be such that only the outgoing wave is modified by the interaction. These conditions are satisfied by the asymptotic expression

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong k r j_{\ell}(k r)+C_{\ell}^{ \pm}\left[-y_{\ell}(k r)+i j_{\ell}(k r)\right] \tag{17}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong k r j_{\ell}(k r)+C_{\ell}^{ \pm} e^{i(k r-\ell \pi / 2)} \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong \sin \left(k r-\frac{\ell \pi}{2}\right)+C_{\ell}^{ \pm} e^{i(k r-\ell \pi / 2)} \tag{19}
\end{equation*}
$$

as may be seen by applying the asymptotic expression for the regular and irregular spherical Bessel functions:

$$
\left.\begin{array}{l}
k r j_{\ell}(k r) \cong \sin (k r-\ell \pi / 2) \tag{20}\\
k r y_{\ell}(k r) \cong-\cos (k r-\ell \pi / 2)
\end{array}\right\}
$$

On the other hand, in terms of complex phase shifts $\delta_{\ell}^{ \pm},(19)$ must be of the form

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong A_{\ell}^{ \pm} \sin \left(k r-\ell \pi / 2+\delta_{\ell}^{ \pm}\right) \tag{21}
\end{equation*}
$$

Comparison of the coefficients of $e^{i k r}$ and $e^{-i k r}$ in eqs. (21) and (19) yields

$$
\begin{align*}
C_{\ell}^{ \pm} & =\frac{1}{2 i}\left(e^{2 i \delta_{\ell}^{ \pm}}-1\right) \tag{22}\\
A_{\ell}^{ \pm} & =e^{i \delta_{\ell}^{ \pm}} \tag{23}
\end{align*}
$$

Substituting (18) into (15) and subtracting $\Psi_{\text {inc }}$ as given by (14), yields for $\Psi_{\text {scatt }}$ the asymptotic form:

$$
\begin{equation*}
\Psi_{\mathrm{scatt}} \cong \frac{1}{\sqrt{V}} \frac{e^{i k r}}{r}\left\{A(\theta)\left[a_{1 / 2} \alpha+a_{-1 / 2} \beta\right]+i B(\theta)\left[a_{-1 / 2} e^{-i \varphi} \alpha-a_{1 / 2} e^{i \varphi} \beta\right]\right\} \tag{24}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A(\theta)=\frac{1}{k} \sum_{\ell=0}^{\infty}\left[(\ell+1) C_{\ell}^{+}+\ell C_{\ell}^{-}\right] P_{\ell}(\cos \theta) \\
B(\theta)=-\frac{i}{k} \sum_{\ell=0}^{\infty}\left[C_{\ell}^{+}-C_{\ell}^{-}\right] P_{\ell}^{1}(\cos \theta) \tag{25}
\end{array}\right\}
$$

The wave function of the scattered wave can more conveniently be expressed in terms of $\vec{\sigma}$ and \vec{n}, the unit vector normal to the scattering plane defined by

$$
\begin{equation*}
\vec{n} \sin \theta=\overrightarrow{k_{1}} \times \overrightarrow{k_{0}} \tag{26}
\end{equation*}
$$

where \vec{k}_{0} and \vec{k}_{1} are unit vectors in the direction of propagation before and after scattering; thus

$$
\begin{equation*}
\Psi_{\mathrm{scatt}} \cong \frac{1}{\sqrt{V}} \frac{e^{i k r}}{r}[A(\theta)+B(\theta) \vec{\sigma} \cdot \vec{n}] \chi_{\mathrm{inc}}=\frac{1}{\sqrt{V}} \frac{e^{i k r}}{r} f(\theta) \chi_{\mathrm{inc}} \tag{27}
\end{equation*}
$$

where $f(\theta)$ is the operator

$$
\begin{equation*}
f(\theta)=A(\theta)+B(\theta) \vec{\sigma} \cdot \vec{n} \tag{28}
\end{equation*}
$$

The differential elastic scattering cross section and polarization vector which are given by

$$
\begin{align*}
\sigma(\theta) & =\left\langle\left[f(\theta) \chi_{\mathrm{inc}}\right\rfloor^{\dagger}\left[f(\theta) \chi_{\mathrm{inc}}\right]\right\rangle \tag{29}\\
\vec{P}(\theta) & =\frac{\left\langle\left[f(\theta) \chi_{\mathrm{inc}}\right]^{\dagger}\left[f(\theta) \chi_{\mathrm{inc}}\right]\right\rangle}{\sigma(\theta)} \tag{30}
\end{align*}
$$

thus become

$$
\begin{align*}
\sigma(\theta) & =|A|^{2}+|B|^{2}+\left(A^{*} B+A B^{*}\right) \vec{n} \cdot \vec{P}_{0} \tag{31}\\
\vec{P}(\theta) & =\frac{\left(|A|^{2}-|B|^{2}\right) \vec{P}_{0}+\left[A^{*} B+A B^{*}+2|B|^{2} \vec{P}_{0} \cdot \vec{n}\right] \vec{n}+i\left(A^{*} B-A B^{*}\right) \vec{n} \times \vec{P}_{0}}{|A|^{2}+|B|^{2}+\left(A^{*} B+A B^{*}\right) \vec{P}_{0} \cdot \vec{n}} \tag{32}
\end{align*}
$$

where the incident polarization vector \vec{P}_{0}, is given by

$$
\begin{equation*}
\vec{P}_{0}=\left\langle\chi_{\mathrm{inc}}^{\dagger} \vec{\sigma} \chi_{\mathrm{inc}}\right\rangle \tag{33}
\end{equation*}
$$

If the incident beam is unpolarized, i.e., $\vec{P}_{0}=0$, the scattered beam is polarized along the direction \vec{n}, perpendicular to the scattering plane and

$$
\begin{align*}
& \sigma(\theta)=|A|^{2}+|B|^{2} \tag{34}\\
& \vec{P}(\theta)=P(\theta) \vec{n}=\frac{\left(A^{*} B+A B^{*}\right)}{|A|^{2}+|B|^{2}} \vec{n} \tag{35}
\end{align*}
$$

Experimentally, the polarization is sometimes obtained from a double scattering experiment in the same plane wherein the polarization in the first scattering is known ${ }^{2}$.
The differential elastic scattering cross section for the second scattering may then be obtained from (31) and (35):

$$
\begin{align*}
\sigma_{2}(\theta) & =\left(|A|^{2}+|B|^{2}\right)\left[1+\frac{A^{*} B+A B^{*}}{|A|^{2}+|B|^{2}} \vec{n}_{2} \cdot \vec{P}_{1}\right] \tag{36}\\
& =\left(|A|^{2}+|B|^{2}\right)\left(1+\vec{P}_{2} \cdot \vec{P}_{1}\right)
\end{align*}
$$

Referring to Figure 1, it is clear that

$$
\begin{equation*}
\vec{n}_{1}=\vec{n}_{2}^{r}=-\vec{n}_{2}^{\ell} \tag{37}
\end{equation*}
$$

so that the differential scattering cross sections along the r and ℓ beams are as follows:

$$
\left.\begin{array}{rl}
\sigma_{2}^{r}(\theta) & =\left(|A|^{2}+|B|^{2}\right)\left(1+P_{2} P_{1}\right) \tag{38}\\
\sigma_{2}^{\ell}(\theta) & =\left(|A|^{2}+|B|^{2}\right)\left(1-P_{2} P_{1}\right),
\end{array}\right\}
$$

[^1]

Fig. 1
the ratio of the scattering intensities becomes

$$
\begin{equation*}
\frac{\sigma_{2}^{\ell}(\theta)}{\sigma_{2}^{r}(\theta)}=\frac{1-P_{2} P_{1}}{1+P_{2} P_{1}} \tag{39}
\end{equation*}
$$

and solving for P_{2} :

$$
\begin{equation*}
P_{2}=\frac{1}{P_{1}} \frac{\sigma_{2}^{\ell}-\sigma_{2}^{r}}{\sigma_{2}^{\ell}+\sigma_{2}^{r}} \tag{40}
\end{equation*}
$$

which reduces when $P_{1}=1$ to

$$
\begin{equation*}
P_{2}=\frac{\sigma_{2}^{\ell}-\sigma_{2}^{r}}{\sigma_{2}^{\ell}+\sigma_{2}^{r}} \tag{41}
\end{equation*}
$$

2. Charged Incident Particles

We next consider the case in which the incident particle has charge $Z e$ and the target particle has charge $Z^{\prime} e$. The potential $V(r)$ must now include a term $V_{c}(r)$ which describes the coulomb interaction. For small values of r, V_{c} will depend on the assumed charge distribution, while for large values of r, we must have

$$
\begin{equation*}
V_{c}=\frac{Z Z^{\prime} e^{2}}{r} \quad(r \text { large }) \tag{42}
\end{equation*}
$$

It is convenient to introduce the parameter η,

$$
\begin{equation*}
\eta=\frac{\mu Z Z^{\prime} e^{2}}{\hbar^{2} k}=0.15805086 Z Z^{\prime} \sqrt{\frac{m_{i}}{E_{\mathrm{LAB}}}} \tag{43}
\end{equation*}
$$

For the "incident wave" we take $\Psi_{c}(r) \chi_{\mathrm{inc}}$, where Ψ_{c} is the solution to the Schroedinger equation

$$
\begin{equation*}
-\frac{\hbar}{2 \mu} \vec{\nabla}^{2} \Psi_{c}+\frac{Z Z^{\prime} e^{2}}{r} \Psi_{c}=E \Psi_{c} \tag{44}
\end{equation*}
$$

corresponding to the scattering of two point charges.

It is well known that in that case

$$
\begin{equation*}
\Psi_{c}=\frac{1}{\sqrt{V}} \Gamma(1+i \eta) e^{-1 / 2 \eta \pi} e^{i k z} F(-i \eta, 1, i k \xi) \tag{45}
\end{equation*}
$$

where $\xi=r-z$ and F is the confluent hypergeometric function.
It is important to note that Ψ_{c} includes a distorted incoming wave plus a scattered wave due to the point charge potential, and as such is not strictly an incident wave.

The asymptotic form of Ψ_{c} is given by

$$
\begin{align*}
\Psi_{c} & \cong \frac{1}{\sqrt{V}}\left\{e^{i[k z-\eta \ln k(r-z)]}\left(1-\frac{\eta^{2}}{i k(r-z)}\right)\right. \tag{46}\\
& \left.+\frac{1}{r} f_{c}(\theta) e^{i(k r-\eta \ln 2 k r)}\right\}
\end{align*}
$$

where

$$
\begin{equation*}
f_{c}(\theta)=-\frac{\eta}{2 k \sin ^{2} \theta / 2} e^{-i \eta \ell n\left(\sin ^{2} \theta / 2\right)+2 i \sigma_{0}} \tag{47}
\end{equation*}
$$

is the Rutherford scattering amplitude and σ_{0} is given by equation (49), below, with $\ell=0$.

The partial wave expansion of Ψ_{c} is given by

$$
\begin{equation*}
\Psi_{c}=\frac{1}{\sqrt{V}} \sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} e^{i \sigma_{\ell}} \frac{F_{\ell}(\eta, k r)}{k r} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{0}(\theta, \varphi) \tag{48}
\end{equation*}
$$

where $F_{\ell}(\eta, k r)$ is the regular coulomb function and σ_{ℓ} is the usual coulomb phase shift given by

$$
\begin{equation*}
\sigma_{\ell}=\arg \Gamma(\ell+1+i \eta) \tag{49}
\end{equation*}
$$

Comparing equation (48) with (10) we see that in equation (14) it is necessary to replace $j_{\ell}(k r)$ by $e^{i \sigma_{\ell}} \frac{F_{\ell}(\eta, k r)}{k r}$; thus, in this case,

$$
\begin{align*}
\Psi_{\mathrm{inc}} & =\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell+1} i^{\ell} e^{i \sigma_{\ell}} \frac{F_{\ell}(\eta, k r)}{k r}\left[a_{1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{1} / 2+a_{-1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \\
& +\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell} i^{\ell} e^{i \sigma_{\ell}} \frac{F_{\ell}(\eta, k r)}{k r}\left[-a_{1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{1} / 2+a_{-1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \tag{50}
\end{align*}
$$

The total wave function can be written as a sum of the "incident" wave, $\Psi_{\text {inc }}$, plus a "scattered" wave, $\Psi_{\text {scatt }}$, where $\Psi_{\text {scatt }}$ now includes only interference terms and deviations
from pure Rutherford scattering:

$$
\begin{align*}
\Psi_{\text {total }} & =\Psi_{\text {inc }}+\Psi_{\text {scatt }} \\
& =\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell+1} i^{\ell} e^{i \sigma_{\ell}} \frac{\Psi_{\ell}^{+}(r)}{k r}\left[a_{1 / 2} \mathscr{\mathscr { Y }}_{\ell+1 / 2, \ell, 1 / 2}^{1} / 2+a_{-1 / 2} \mathscr{Y}_{\ell+1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \\
& +\sqrt{\frac{4 \pi}{V}} \sum_{\ell=0}^{\infty} \sqrt{\ell} i^{\ell} e^{i \sigma_{\ell}} \frac{\Psi_{\ell}^{-}(r)}{k r}\left[-a_{1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{1} / 2+a_{-1 / 2} \mathscr{Y}_{\ell-1 / 2, \ell, 1 / 2}^{-1 / 2}\right] \tag{51}
\end{align*}
$$

This wave function, $\Psi_{\text {total }}$, is formally almost identical to the expression given by equation (15) and the radial wave functions $\Psi_{\ell}^{ \pm}$obey an equation which is formally identical to equation (16) except that $V_{1}(r)$ must now include the coulomb potential $V_{c}(r)$ which may differ from a point charge potential at close distances.

The radial wave function $\Psi_{\ell}^{ \pm}$must now reduce to the "incident" wave, $F_{\ell}(\eta, k r)$, when the potential becomes a coulomb point charge potential, and must be such that only the outgoing wave is modified by the non-coulomb interaction. These conditions are satisfied by the asymptotic expression:

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong F_{\ell}(\eta, k r)+C_{\ell}^{ \pm}\left[G_{\ell}(\eta, k r)+i F_{\ell}(\eta, k r)\right] \tag{52}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong F_{\ell}(\eta, k r)+C_{\ell}^{ \pm} e^{i\left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}\right)} \tag{53}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong \sin \left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}\right)+C_{\ell}^{ \pm} e^{i\left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}\right)} \tag{54}
\end{equation*}
$$

as may be seen by introducing the asymptotic expressions for the regular and irregular coulomb functions:

$$
\left.\begin{array}{rl}
F_{\ell}(\eta, k r) & \cong \sin \left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}\right) \\
G_{\ell}(\eta, k r) \cong \cos \left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}\right) \tag{55}
\end{array}\right\}
$$

In this case, the "nuclear phase shift" $\delta_{\ell}^{ \pm}$is taken to be such that the asymptotic form of $\Psi_{\ell}^{ \pm}$is given by

$$
\begin{equation*}
\Psi_{\ell}^{ \pm} \cong A_{\ell}^{ \pm} \sin \left(k r-\eta \ell n 2 k r-\ell \pi / 2+\sigma_{\ell}+\delta_{\ell}^{ \pm}\right) \tag{56}
\end{equation*}
$$

Comparison of the coefficients of $e^{i(k r-\eta \ell n 2 k r)}$ and $e^{-i(k r-\eta \ell n k r)}$ in equations (54) and (56) yields

$$
\begin{align*}
C_{\ell}^{ \pm} & =\frac{1}{2 i}\left[e^{2 i \delta_{\ell}^{ \pm}}-1\right] \tag{57}\\
A_{\ell}^{ \pm} & =e^{i \delta_{\ell}^{ \pm}} \tag{58}
\end{align*}
$$

Substituting (53) into (51) and making use of (46) and (50) we obtain for the asymptotic form of the total wave function

$$
\begin{align*}
\Psi_{\text {total }} & \cong \frac{1}{\sqrt{V}}\left\{e^{i[k z-\eta \ln k(r-z)]}\left[1-\frac{\eta^{2}}{i k(r-z)}\right]\right\} \chi_{\mathrm{inc}} \tag{59}\\
& +\frac{1}{\sqrt{V}} \frac{e^{i(k r-\eta \ell n 2 k r)}}{r}\left\{A(\theta)\left[a_{1 / 2} \alpha+a_{-1 / 2} \beta\right]+i B(\theta)\left[a_{-1 / 2} e^{-i \varphi} \alpha-a_{1 / 2} e^{i \varphi} \beta\right]\right\}
\end{align*}
$$

where

$$
\begin{align*}
& A(\theta)=f_{c}(\theta)+\frac{1}{k} \sum_{\ell=0}^{\infty} e^{2 i \sigma_{\ell}}\left[(\ell+1) C_{\ell}^{+}+\ell C_{\ell}^{-}\right] P_{\ell}(\cos \theta) \\
& B(\theta)=-\frac{i}{k} \sum_{\ell=0}^{\infty} e^{2 i \sigma_{\ell}}\left[C_{\ell}^{+}-C_{\ell}^{-}\right] P_{\ell}^{1}(\cos \theta) \tag{60}
\end{align*}
$$

and $f_{c}(\theta)$ is given by equation (47).
From this point, the formulation follows through as in the case of uncharged particles.

B. Optical Model Potential

1. Diffuse Surface Optical Model with Volume Absorption and Coulomb Spin-Orbit.

The interaction (1) is assumed to have the form

$$
\begin{equation*}
V_{T}=V_{\mathrm{CN}}+V_{\mathrm{SO}}+V_{\mathrm{Coul}}+V_{\mathrm{Coul} \mathrm{SO}} \tag{61}
\end{equation*}
$$

where the terms appearing in equation (61) are respectively the central nuclear, spin-orbit nuclear, coulomb, and coulomb spin-orbit potentials.

We shall first consider the case for which the real and imaginary parts of the central potential have a special common form factor (corresponding to volume absorption), and the spin-orbit potential is of the Thomas type. This particular central potential form factor has been used extensively and will be referred to as the standard form factor. We shall then discuss other form factors available in the program.

(a) CENTRAL NUCLEAR POTENTIAL

$$
\begin{equation*}
V_{\mathrm{CN}}=(-V-i W) \frac{1}{\left(1+e^{\left(r-R_{N}\right) / a}\right)} \tag{62}
\end{equation*}
$$

where V and W are respectively the depths of the real and imaginary part of the nuclear potential in MeV (V and W are positive for an attractive, absorbing potential), and a common volume absorption form factor is assumed, where

$$
\begin{equation*}
R_{N}=R_{\mathrm{ON}} m_{b}^{1 / 3} \times 10^{-13} \mathrm{~cm} \tag{63}
\end{equation*}
$$

$R_{\text {ON }}$ being the nuclear radius constant and a is the rounding parameter in $10^{-13} \mathrm{~cm}$.

(b) Nuclear spin-orbit potential

The nuclear spin-orbit potential is often written in the Thomas form

$$
\begin{equation*}
V_{\mathrm{SO}}=\lambda \frac{1}{2 M_{p}^{2} c^{2}}\left\{\frac{1}{r} \frac{d}{d r}\left[\frac{-V}{1+e^{\left(r-R_{N}\right) / a}}\right]\right\} \vec{S} \cdot \vec{L} \tag{64}
\end{equation*}
$$

where M_{p} is the proton test mass and c the velocity of light. If λ were 1 , the spin-orbit term would be that predicted by the Dirac equation. To provide more freedom in the model one writes

$$
\begin{equation*}
\lambda=4\left(\frac{M_{p}}{M_{\pi}}\right)^{2} \frac{V_{S}+i W_{S}}{V} \tag{65}
\end{equation*}
$$

where M_{π} is the pion rest mass and V_{S} and W_{S} are respectively the strengths of the real and imaginary parts of the nuclear spin-orbit potential in MeV .

It may be noted that a negative value of the real part of λ would be in accordance with the shell model of the nucleus where a (real) negative spin-orbit term is required to give the proper level sequence in contra-distinction to the atomic case.

(c) Coulomb potential

The coulomb potential is taken here to correspond to a constant charge density within the nucleus extending to a distance R_{c} given by

$$
\begin{equation*}
R_{c}=R_{\mathrm{oc}} m_{b}^{1 / 3} \times 10^{-13} \mathrm{~cm} \tag{66}
\end{equation*}
$$

where $R_{\text {oc }}$ is the coulomb radius constant; thus

$$
\begin{align*}
V_{\text {Coul }} & =\left(Z Z^{\prime} e^{2} / 2 R_{c}\right)\left(3-r^{2} / R_{c}^{2}\right) & & \text { for } r \leq R_{c} \\
& =Z Z^{\prime} e^{2} / r & & \text { for } r \geq R_{c} \tag{67}
\end{align*}
$$

(d) Coulomb Spin-Orbit potential

The coulomb spin-orbit term is assumed to have the form ${ }^{3}$

$$
\begin{equation*}
V_{\mathrm{Coul} \mathrm{SO}}=\left(\mu_{P}-\frac{1}{2}\right) \frac{1}{M_{P}^{2} c^{2}}\left[\frac{1}{r} \frac{d}{d r} V_{\mathrm{Coul}}\right] \vec{S} \cdot \vec{L} \tag{68}
\end{equation*}
$$

where μ_{P} is the proton magnetic moment in nuclear magnetons. It may be noted that the coulomb spin-orbit term is negligible except at very high energies.

Substituting equations (62), (64), (67), and (68) into equation (16) and transforming to the dimensionless variable

$$
\begin{equation*}
\rho=k r \tag{69}
\end{equation*}
$$

[^2]we find
\[

$$
\begin{align*}
& \left\{-\frac{d^{2}}{d \rho^{2}}+\frac{\ell(\ell+1)}{\rho^{2}}-\left(\frac{V+i W}{E}\right)\left(\frac{1}{\left.1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}\right)}\right.\right. \\
& +\left(\frac{\hbar}{M_{\pi} c}\right)^{2}\left(\frac{V_{S}+i W_{S}}{E}\right) k^{2}\left[-\frac{1}{\rho} \frac{d}{d \rho}\left(\frac{1}{1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}}\right)\right]\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right) \\
& \left.\quad+U_{\mathrm{Coul}}+U_{\mathrm{Coul} \mathrm{SO}}-1\right\} \Psi_{\ell}^{ \pm}(\rho)=0 \tag{70}
\end{align*}
$$
\]

where

$$
\begin{gather*}
U_{\mathrm{Coul}}=\frac{\eta}{\bar{\rho}_{c}}\left(3-\frac{\rho^{2}}{\bar{\rho}_{c}^{2}}\right) \quad \text { for } \rho \leq \bar{\rho}_{c} \tag{71}\\
=2 \eta / \rho \quad \text { for } \rho \geq \bar{\rho}_{c} \\
U_{\text {Coul SO }}=-\frac{1}{2}\left(\frac{\hbar}{M_{P} c}\right)^{2}\left(\mu_{P}-\frac{1}{2}\right)(2 \eta)\left(k^{2} / \bar{\rho}_{c}^{3}\right)\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right) \quad \text { for } \rho \leq \bar{\rho}_{c} \\
=-\frac{1}{2}\left(\frac{\hbar}{M_{P} c}\right)^{2}\left(\mu_{P}-\frac{1}{2}\right)(2 \eta)\left(k^{2} / \rho^{3}\right)\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right) \quad \text { for } \rho \geq \bar{\rho}_{c} \tag{72}
\end{gather*}
$$

and where

$$
\begin{align*}
\bar{\rho}_{N} & =k R_{N} \tag{73}\\
\bar{\rho}_{c} & =k R_{c} . \tag{74}
\end{align*}
$$

Substituting now

$$
\begin{align*}
& \left(\frac{\hbar}{M_{\pi} c}\right)^{2}=2.00 \times 10^{-26} \mathrm{~cm}^{2} \tag{75}\\
& 2 \eta k^{2} \cdot \frac{1}{2}\left(\frac{\hbar}{M_{P} c}\right)^{2} \cong 2 \eta\left(\frac{E}{M_{P} c^{2}}\right)=2 \eta \frac{E}{931} \tag{76}\\
& \mu_{P}-\frac{1}{2}=2.7934-0.5=2.2934 \tag{77}
\end{align*}
$$

into equation (70) yields:

$$
\begin{align*}
& \frac{d^{2}}{d \rho^{2}} \Psi_{\ell}^{ \pm}(\rho)=\left\{-1+\frac{\ell(\ell+1)}{\rho^{2}}-\left(\frac{V+i W}{E}\right)\left(\frac{1}{1+e^{\left(\rho-\bar{\rho}_{N}\right)} / k a}\right)+\frac{\eta}{\bar{\rho}_{c}}\left(3-\frac{\rho^{2}}{\bar{\rho}_{c}^{2}}\right)\right. \\
& \left.+\left[2\left(\frac{V_{S}+i W_{S}}{E}\right)\left(\frac{k}{a}\right)\left(\frac{1}{\rho} \frac{e^{\left(\rho-\bar{\rho}_{N}\right) / k a}}{\left(1+e^{\left.\left(\rho-\bar{\rho}_{N}\right) / k a\right)^{2}}\right.}\right)-0.004926 \frac{\eta E}{\bar{\rho}_{c}^{3}}\right]\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right)\right\} \Psi_{\ell}^{ \pm}(\rho), \text { for } \rho \leq \bar{\rho}_{c} \\
& \quad=\left\{-1+\frac{\ell(\ell+1)}{\rho^{2}}-\left(\frac{V+i W}{E}\right)\left(\frac{1}{1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}}\right)+\frac{2 \eta}{\rho}\right. \tag{78}\\
& \left.+\left[2\left(\frac{V_{S}+i W_{S}}{E}\right)\left(\frac{k}{a}\right)\left(\frac{1}{\rho} \frac{e^{\left(\rho-\bar{\rho}_{N}\right) / k a}}{\left(1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}\right)^{2}}\right)-0.004926 \frac{\eta E}{\rho^{3}}\right]\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right)\right\} \Psi_{\ell}^{ \pm}(\rho), \text { for } \rho \geq \bar{\rho}_{c}
\end{align*}
$$

2. Nuclear Form Factors

Equation (78) may be rewritten in such a way as to display explicitly the various nuclear form factors:

$$
\begin{align*}
& \frac{d^{2}}{d \rho^{2}} \Psi_{\ell}^{ \pm}(\rho)=\left\{-1+\frac{\ell(\ell+1)}{\rho^{2}}-\frac{V}{E} f_{\mathrm{CR}}(\rho)-i \frac{W}{E} f_{\mathrm{CI}}(\rho)+\frac{\eta}{\bar{\rho}_{c}}\left(3-\frac{\rho^{2}}{\bar{\rho}_{c}^{2}}\right)\right. \\
& \left.+\left[\frac{V_{S}}{E} \frac{2 k}{a} f_{\mathrm{SR}}(\rho)+i \frac{W_{S}}{E} \frac{2 k}{a} f_{\mathrm{SI}}(\rho)-0.004926 \frac{\eta E}{\bar{\rho}_{c}^{3}}\right]\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right)\right\} \Psi_{\ell}^{ \pm}(\rho), \text { for } \rho \leq \bar{\rho}_{c} \\
& \quad=\left\{-1+\frac{\ell(\ell+1)}{\rho^{2}}-\frac{V}{E} f_{\mathrm{CR}}(\rho)-i \frac{W}{E} f_{\mathrm{CI}}(\rho)+\frac{2 \eta}{\rho}\right. \tag{79}\\
& \left.+\left[\frac{V_{S}}{E} \frac{2 k}{a} f_{\mathrm{SR}}(\rho)+i \frac{W_{S}}{E} \frac{2 k}{a} f_{\mathrm{SI}}(\rho)-0.004926 \frac{\eta E}{\rho^{3}}\right]\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right)\right\} \Psi_{\ell}^{ \pm}(\rho), \text { for } \rho \geq \bar{\rho}_{c}
\end{align*}
$$

Three basic nuclear form factors and some special modifications of them are presently available in the program. In addition the coulomb spin-orbit term may be excluded at will. The required form factors may be chosen by assigning the proper values to the symbolic quantities KTRL as described on pages 33 ff .

(a) Basic Form Factors

(i) Volume absorption $\quad(\operatorname{KTRL}(\mathrm{I})=0, \mathrm{I}=1,7,8,9,10)$

$$
\begin{align*}
& f_{\mathrm{CR}}(\rho)=f_{\mathrm{CI}}(\rho)=\frac{1}{\left(1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}\right)} \tag{80}\\
& f_{\mathrm{SR}}(\rho)=f_{\mathrm{SI}}(\rho)=\frac{1}{\rho} \frac{e^{\left(\rho-\bar{\rho}_{N}\right) / k a}}{\left(1+e^{\left(\rho-\bar{\rho}_{N}\right) / k a}\right)^{2}} \tag{81}
\end{align*}
$$

(ii) Gaussian Absorption ($\operatorname{KTRL}(1)=1)$
f_{CR} is given by (80), f_{SR} and f_{SI} are given by (81) and

$$
\begin{equation*}
f_{\mathrm{CI}}(\rho)=e^{-\left[\left(\rho-\bar{\rho}_{G}\right) / k b\right]^{2}} \tag{82}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\rho}_{G}=k R_{\mathrm{OG}} m_{b}^{1 / 3} \tag{83}
\end{equation*}
$$

$R_{\text {OG }}$ being the nuclear Gaussian radius constant, and b determines the Gaussian width.
(iii) Square well $\quad(\operatorname{KTRL}(1)=2)$

$$
\begin{align*}
f_{\mathrm{CR}}(\rho)=f_{\mathrm{CI}}(\rho) & =1 & & \text { for } \rho \leq \bar{\rho}_{N} \tag{84}\\
& =0 & & \text { for } \rho \geq \bar{\rho}_{N} \\
f_{\mathrm{SR}}(\rho)=f_{\mathrm{SI}}(\rho) & =0 & & \tag{85}
\end{align*}
$$

(b) Special Central Nuclear Form Factors ${ }^{4}$

$(\operatorname{KTRL}(1)=0)$
The purpose of these form factors is to allow one to modify the knee or tail of the potential curve and produce central rises or depressions in the real and/or imaginary parts of the central nuclear potential, as specified by proper choice of the KTRL's.
(i) Form A $\quad(\operatorname{KTRL}(7)=1$ for real part, $\operatorname{KTRL}(8)=1$ for imaginary part).

$$
\begin{align*}
& f_{\mathrm{CR}}(\rho) \text { and } / \text { or } f_{\mathrm{CI}}(\rho)=\left[1+h_{A}(\rho)\right] f_{n A_{1}}(\rho) \quad 0<\rho \leq \rho_{m_{A}} \\
& =f_{n A_{1}}(\rho) \quad \rho_{m_{A}} \leq \rho \leq \bar{\rho}_{N} \tag{86}\\
& \left.=f_{n A_{2}}(\rho) \quad \bar{\rho}_{N} \leq \rho \leq \rho_{\max }\right\}
\end{align*}
$$

(ii) FORM B $\quad(\operatorname{KTRL}(7)=2$ for real part, $\operatorname{KTRL}(8)=2$ for imaginary part).

$$
\left.\begin{array}{rlrl}
f_{\mathrm{CR}}(\rho) \text { and } / \text { or } f_{\mathrm{CI}}(\rho) & =\left[1+h_{B}(\rho)\right] f_{n B_{1}}(\rho) & 0 & <\rho \leq \rho_{m_{B}} \\
& =f_{n B_{1}}(\rho) & \rho_{m_{B}} & \leq \rho \leq \bar{\rho}_{N} \tag{87}\\
& =f_{n B_{2}}(\rho) & \bar{\rho}_{N} & \leq \rho \leq \rho_{\max }
\end{array}\right\}
$$

The presence of forms A and B allows distinct form factors in the real and imaginary parts. The presence of A_{1}, A_{2} and B_{1}, B_{2} allows distinct shapes in the knee and tail of the form factors. Letting x be either A or B, and n be either $n A_{1}, n A_{2}, n B_{1}$, or $n B_{2}$,

$$
\begin{align*}
h_{x}(\rho) & =h_{0 x}\left[2\left(\frac{\rho}{\rho_{m_{x}}}\right)^{3}-3\left(\frac{\rho}{\rho_{m_{x}}}\right)^{2}+1\right]=h_{0 x}\left(1-\frac{\rho}{\rho_{m_{x}}}\right)^{2}\left(1+\frac{\rho}{\rho_{m_{x}}}\right) \tag{88}\\
f_{n}(\rho) & =\frac{1}{1+g_{n}(\rho)} \tag{89}
\end{align*}
$$

where

$$
\begin{equation*}
g_{n}(\rho)=\exp \left\{\frac{1}{n}\left(\frac{\bar{\rho}_{N}}{k a}\right)\left[\left(\frac{\rho}{\bar{\rho}_{N}}\right)^{n}-1\right]\right\} \tag{90}
\end{equation*}
$$

where $h_{0 A}, h_{0 B}, n A_{1}, n A_{2}, n B_{1}, n B_{2}, \rho_{m_{A}}, \rho_{m_{B}}$ are selected constants. (The n 's are always taken as ≥ 0.)

Note 1: If $h_{0 x}$ is taken to be zero and $n x_{1}, n x_{2}$ are taken to be 1 , forms A and B reduce to the volume absorption form.

Note 2: The three curves defined by equations (86) and (87) join smoothly with continuous derivatives as long as $\rho_{m_{x}}$ is chosen less than $\bar{\rho}_{N}$.

Note 3: Positive values of $h_{0 x}$ will produce central rises in the form factors while negative values will produce a central depression.

[^3]Note 4: If $n x_{1}>1$, the knee of the potential will be sharper than for the usual volume absorption case, while $0 \leq n x_{1} \leq 1$ will soften the knee of the curve.

Note 5: If $n x_{2}>1$, this will shorten the potential tail while $0 \leq n x_{2} \leq 1$ will extend it.

Some typical shapes are presented in Figures 2, 3, and 4.

(c) Special Nuclear Spin-Orbit Form Factors (KTRl(1) $=0$)

Two special nuclear spin-orbit form factors are available. They can be applied to the real and/or imaginary parts of the nuclear spin-orbit potential. The first of these form factors corresponds to the Thomas term applied to form A in the central nuclear potential, while the second uses form B itself; this permits one to study the result of deviations from the Thomas form.
(i) DERIVATIVE FORM FACTOR A $\quad(\operatorname{KTRL}(9)=1$ for real part, $\operatorname{KTRL}(1 \mathrm{O})=1$ for imaginary part)

$$
\left.\begin{array}{rlr}
f_{\mathrm{SR}}(\rho) \text { and } / \text { or } f_{\mathrm{SI}}(\rho) & =(k a)\left[-\frac{1}{\rho} \frac{d}{d \rho} \text { (form factor A) }\right] \\
& =(k a)\left[-\left(\frac{1}{\rho} \frac{d h_{A}(\rho)}{d \rho}\right) f_{n A_{1}}(\rho)-\left(1+h_{A}(\rho)\right)\left(\frac{1}{\rho} \frac{d f_{n A_{1}}(\rho)}{d \rho}\right)\right] \\
& =(k a)\left[-\frac{1}{\rho} \frac{d f_{n A_{1}}(\rho)}{d \rho}\right] & \text { for } 0 \leq \rho \leq \rho_{m_{a}} \tag{91}\\
& =(k a)\left[-\frac{1}{\rho} \frac{d f_{n A_{2}}(\rho)}{d \rho}\right] & \\
\text { for } \rho_{m_{a}} \leq \rho \leq \bar{\rho}_{N} \\
& & \text { for } \bar{\rho}_{N} \leq \rho \leq \rho_{\max }
\end{array}\right\}
$$

where

$$
\begin{align*}
-\frac{1}{\rho} \frac{d h_{A}(\rho)}{d \rho} & =\frac{6 h_{0 A}}{\rho_{m_{A}}^{2}}\left(1-\frac{\rho}{\rho_{m_{A}}}\right) \tag{92}\\
-\frac{1}{\rho} \frac{d f_{n} \rho}{d \rho} & =\left(\frac{\bar{\rho}_{N}}{k a}\right) \frac{1}{\rho^{2}}\left(\frac{\rho}{\bar{\rho}_{N}}\right)^{n} g_{n}(\rho)\left[f_{n}(\rho)\right]^{2} \tag{93}
\end{align*}
$$

and $f_{n}(\rho)$ and $g_{n}(\rho)$ are given by equations (89) and (90).
(ii) FORM FACTOR B $\quad(\operatorname{KTRL}(9)=2$ for real part, $\operatorname{KTRL}(10)=2$ for imaginary part $)$

$$
\begin{equation*}
f_{\mathrm{SR}}(\rho) \text { and } / \text { or } f_{\mathrm{SI}}(\rho)=\frac{1}{2} .[\text { form factor } \mathrm{B} \text { as per equation }(87)] \tag{94}
\end{equation*}
$$

Note: If $h_{0 A}$ is taken to be zero while $n A_{1}$ and $n A_{2}$ are taken to be 1 , the derivative form factor in (91) becomes identical to the usual spin-orbit form factor (81).

Some typical shapes are presented in Figures 5, 6, and 7.

3. Final Formulation for Machine Calculation

The complex radial wave function $\Psi_{\ell}^{ \pm}(\rho)$ may be written as

$$
\begin{equation*}
\Psi_{\ell}^{ \pm}(\rho)=x_{\ell}^{ \pm}(\rho)+i y_{\ell}^{ \pm}(\rho) \tag{95}
\end{equation*}
$$

and equation (79) for $\vec{\sigma} \cdot \vec{\ell}=\ell$ or $-\ell-1$ can now be separated into two real coupled differential equations, and dropping the subscripts and superscripts for convenience:

$$
\left.\begin{array}{rl}
\frac{d^{2} x}{d \rho^{2}} & =p x-q y \tag{96}\\
\frac{d^{2} y}{d \rho^{2}} & =q x+p y
\end{array}\right\}
$$

where

$$
\left.\begin{array}{l}
p=U_{\mathrm{CR}}+U_{\mathrm{SR}}\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right)+\frac{\ell(\ell+1)}{\rho^{2}} \\
q=U_{\mathrm{CI}}+U_{\mathrm{SI}}\left(\begin{array}{c}
\ell \\
\text { or } \\
-\ell-1
\end{array}\right) \tag{97}
\end{array}\right\}
$$

Formulas (97) are convenient for programming purposes as the U 's are now independent of ℓ, indeed:

$$
\left.\begin{array}{rlr}
U_{\mathrm{CR}} & =-1-\frac{V}{E} f_{\mathrm{CR}}+\frac{\eta}{\bar{\rho}_{c}}\left(3-\frac{\rho^{2}}{\bar{\rho}_{c}^{2}}\right) & \\
\text { for } \rho \leq \bar{\rho}_{c} \\
& =-1-\frac{V}{E} f_{\mathrm{CR}}+\frac{2 \eta}{\rho} & \\
\text { for } \rho \geq \bar{\rho}_{c}
\end{array}\right\}
$$

4. Numerical Integration

Equations (96) must be integrated numerically twice for each $\ell=0$ to $\ell_{\max }$ where $\ell_{\max +1}$ corresponds to a partial wave negligibly disturbed by the scattering.

The method chosen for numerical integration is the 3-point Runge-Kutta method: it lends itself to easy starting, permits one to change the interval quite easily and gives excellent accuracy with relatively large steps.

ISA甘 IO/pu® とSAH

Given $x_{i 1}, y_{i 1}, \dot{x}_{i 1}, \dot{y}_{i 1}$, at ρ_{i}, where $\dot{x}_{i 1} \equiv\left(\frac{d x}{d \rho}\right)_{i, 1}$ etc.

$$
\begin{align*}
& \ddot{x}_{i 1}=f\left(x_{i 1}, y_{i 1}, \rho_{i}\right) ; \quad \ddot{y}_{i 1}=g\left(x_{i 1}, y_{i 1}, \rho_{i}\right) \tag{102}\\
& x_{i 2}=x_{i 1}+\dot{x}_{i 1} \frac{\Delta \rho}{2} ; \quad y_{i 2}=y_{i 1}+\dot{y}_{i 1} \frac{\Delta \rho}{2} \tag{103}\\
& \ddot{x}_{i 2}=f\left(x_{i 2}, y_{i 2}, \rho_{i}+\frac{\Delta \rho}{2}\right) ; \quad \ddot{y}_{i 2}=g\left(x_{i 2}, y_{i 2}, \rho_{i}+\frac{\Delta \rho}{2}\right) \tag{104}\\
& x_{i 3}=x_{i 2}+\ddot{x}_{i 1} \frac{(\Delta \rho)^{2}}{4} ; \quad y_{i 3}=y_{i 2}+\ddot{y}_{i 1} \frac{(\Delta \rho)^{2}}{4} \tag{105}\\
& \ddot{x}_{i 3}=f\left(x_{i 3}, y_{i 3}, \rho_{i}+\frac{\Delta \rho}{2}\right) ; \quad \ddot{y}_{i 3}=g\left(x_{i 3}, y_{i 3}, \rho_{i}+\frac{\Delta \rho}{2}\right) \tag{106}\\
& x_{i 4}=x_{i 2}+\dot{x}_{i 1} \frac{\Delta \rho}{2}+\ddot{x}_{i 2} \frac{(\Delta \rho)^{2}}{2} ; \quad y_{i 4}=y_{i 2}+\dot{y}_{i 1} \frac{\Delta \rho}{2}+\ddot{y}_{i 2} \frac{(\Delta \rho)^{2}}{2} \tag{107}\\
& \ddot{x}_{i 4}=f\left(x_{i 4}, y_{i 4}, \rho_{i}+\Delta \rho\right) ; \quad \ddot{y}_{i 4}=g\left(x_{i 4}, y_{i 4}, \rho_{i}+\Delta \rho\right) \tag{108}
\end{align*}
$$

and finally

$$
\begin{align*}
& x_{i+1,1}=x_{i 1}+\Delta x_{i}=x_{i 1}+\frac{(\Delta \rho)^{2}}{6}\left(\ddot{x}_{i 1}+\ddot{x}_{i 2}+\ddot{x}_{i 3}\right)+\Delta \rho \dot{x}_{i 1} \tag{109}\\
& \dot{x}_{i+1,1}=\dot{x}_{i 1}+\Delta \dot{x}_{i}=\dot{x}_{i 1}+\frac{\Delta \rho}{6}\left(\ddot{x}_{i 1}+2 \ddot{x}_{i 2}+2 \ddot{x}_{i 3}+\ddot{x}_{i 4}\right) \tag{110}\\
& y_{i+1,1}=y_{i 1}+\Delta y_{i}=y_{i 1}+\frac{(\Delta \rho)^{2}}{6}\left(\ddot{y}_{i 1}+\ddot{y}_{i 2}+\ddot{y}_{i 3}\right)+\Delta \rho \dot{y}_{i 1} \tag{111}\\
& \dot{y}_{i+1,1}=\dot{y}_{i 1}+\Delta \dot{y}_{i}=\dot{y}_{i 1}+\frac{\Delta \rho}{6}\left(\ddot{y}_{i 1}+2 \ddot{y}_{i 2}+2 \ddot{y}_{i 3}+\ddot{y}_{i 4}\right) \tag{112}
\end{align*}
$$

The process is continued until the nuclear potential becomes negligible at which time the wave functions and their first derivatives must be saved for later matching with those of the coulomb function.

Starting values: If $\rho_{\text {initial }}$ is very small, the following starting values may be used:

$$
\left.\begin{array}{r}
x_{\ell}\left(\rho=\rho_{\text {initial }}\right)=\left(\Delta \rho_{1}\right)^{\ell+1} ; \quad \dot{x}_{\ell}\left(\rho=\rho_{\text {initial }}\right)=(\ell+1)\left(\Delta \rho_{1}\right)^{\ell} \tag{113}\\
y_{\ell}\left(\rho=\rho_{\text {initial }}\right)=0 ; \quad \dot{y}_{\ell}\left(\rho=\rho_{\text {initial }}\right)=0
\end{array}\right\}
$$

5. Coulomb Functions

The regular and irregular coulomb functions are given by the following asymptotic formulas which may be used successfully for large values of ρ :

$$
\left.\begin{array}{l}
F_{0} \sim \sin \left[\operatorname{Re}\left(\varphi_{0}\right)\right] e^{-\operatorname{Im}\left(\varphi_{0}\right)} \tag{114}\\
F_{1} \sim \sin \left[\operatorname{Re}\left(\varphi_{1}\right)\right] e^{-\operatorname{Im}\left(\varphi_{1}\right)} \\
G_{0} \sim \cos \left[\operatorname{Re}\left(\varphi_{0}\right)\right] e^{-\operatorname{Im}\left(\varphi_{0}\right)} \\
G_{1} \sim \cos \left[\operatorname{Re}\left(\varphi_{1}\right)\right] e^{-\operatorname{Im}\left(\varphi_{1}\right)}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{l}
\varphi_{0}=\rho-\eta \ln 2 \rho+\sigma_{0}+\sum_{k=2}^{\infty} \frac{a_{k}}{\rho^{k-1}}\left(\frac{1}{1-k}\right) \tag{115}\\
\varphi_{1}=\rho-\eta \ln 2 \rho+\sigma_{1}-\frac{\pi}{2}+\sum_{k=2}^{\infty} \frac{b_{k}}{\rho^{k-1}}\left(\frac{1}{1-k}\right)
\end{array}\right\}
$$

and where

$$
\left.\begin{array}{c}
a_{1}=-\eta, \quad a_{2}=\frac{-\eta^{2}}{2}+i \eta \\
b_{1}=-\eta, \quad b_{2}=-\frac{2+\eta^{2}}{2}+i \frac{\eta}{2} \tag{116}\\
a_{k}=-\left(\frac{1}{2} \sum_{m=1}^{k-1} a_{m} a_{k-m}\right)-i \frac{k-1}{2} a_{k-1}
\end{array}\right\}
$$

with a similar recurrence formula holding for b_{k}

$$
\left.\begin{array}{l}
\sigma_{0}=\arg \Gamma(1+i \eta) \tag{117}\\
\sigma_{1}=\sigma_{0}+\tan ^{-1} \eta
\end{array}\right\}
$$

Furthermore the quantity σ_{0} may be successfully approximated over the whole range of η by the following formula:

$$
\begin{align*}
\sigma_{0}= & -\eta+\left(\frac{\eta}{2}\right) \ln \left(\eta^{2}+16\right)+\frac{7}{2} \tan ^{-1}\left(\frac{\eta}{4}\right)-\left[\tan ^{-1} \eta+\tan ^{-1}\left(\frac{\eta}{2}\right)+\tan ^{-1}\left(\frac{\eta}{3}\right)\right] \tag{118}\\
& -\frac{\eta}{12\left(\eta^{2}+16\right)}\left[1+\frac{1}{30} \frac{\eta^{2}-48}{\left(\eta^{2}+16\right)^{2}}+\frac{1}{105} \frac{\eta^{4}-160 \eta^{2}+1280}{\left(16+\eta^{2}\right)^{4}}\right]
\end{align*}
$$

The above formulas which can of course be generalized for any value of ℓ are equivalent though not formally identical to the formulas listed by Abramowitz ${ }^{5}$ and by Fröberg ${ }^{6}$.

Rather than use these formulas for obtaining F_{ℓ} and G_{ℓ} for any value of $\ell>1$, it is preferable to make use of recurrence formulas.

The following upward recurrence formula is suitable for finding G_{ℓ} :

$$
\begin{equation*}
G_{\ell+1}=\frac{(2 \ell+1)\left[\eta+\frac{\ell(\ell+1)}{\rho}\right] G_{\ell}-(\ell+1)\left[\ell^{2}+\eta^{2}\right]^{1 / 2} G_{\ell-1}}{\ell\left[(\ell+1)^{2}+\eta^{2}\right]^{1 / 2}} . \tag{119}
\end{equation*}
$$

[^4]A similar recurrence relation can only be used for downward recurrence on the F_{ℓ} 's, otherwise results rapidly lose all significance. This may be done by means of a method due to Stegun and Abramowitz ${ }^{7}$ and which is essentially as follows.

Let it be required to compute F_{ℓ} from $\ell=0$ to $\ell=\ell_{\max }$.
(1) Let $\ell^{(1)}=\ell_{\max }+10$
(The number 10 is arbitrary but has found satisfactory from practical experience)
Let $F_{\ell^{(1)}+1}^{(1)}=0$ and $F_{\ell^{(1)}}^{(1)}=0.1$. Successive values of $F_{\ell}^{(1)}$ can be computed from $\ell=0$ to $\ell=\ell^{(1)}-1$ by means of the downward recurrence formula:

$$
\begin{equation*}
F_{\ell-1}^{(1)}=\frac{(2 \ell+1)\left[\eta+\frac{\ell(\ell+1)}{\rho}\right] F_{\ell}^{(1)}-\ell\left[(\ell+1)^{2}+\eta^{2}\right]^{1 / 2} F_{\ell+1}^{(1)}}{(\ell+1)\left[\ell^{2}+\eta^{2}\right]^{1 / 2}} . \tag{120}
\end{equation*}
$$

Letting the constant

$$
\begin{equation*}
\alpha=\left(F_{0}^{(1)} G_{1}-F_{1}^{(1)} G_{0}\right)\left(1+\eta^{2}\right)^{1 / 2} \tag{121}
\end{equation*}
$$

one may compute successively

$$
\begin{equation*}
F_{\ell}=F_{\ell}^{(1)} \alpha^{-1} \tag{122}
\end{equation*}
$$

for $\ell=\ell_{\max }+1$ to $\ell=0$.
(2) To verify the accuracy of the F_{ℓ} 's obtained above one may compute as above a new set of functions $F_{\ell}^{(2)}$ starting perhaps from $\ell^{(2)}=\ell^{(1)}+5$ (again the number 5 is obtained from practical experience) and letting now $F_{\ell^{(2)}+1}^{(2)}=0, F_{\ell^{(2)}}^{(2)}=0.1$. This yields a new set of F_{ℓ} 's.
(3) Comparison of the two sets of F_{ℓ} 's obtained in (1) and (2) above indicates the accuracy of the computation. If this proves insufficient, let $\ell^{(3)}=\ell^{(2)}+5$ and starting from $F_{\ell^{(3)}+1}^{(3)}=0, F_{\ell^{(3)}}^{(3)}=0.1$ one may obtain a third set set of F_{ℓ} 's which is to be compared with the second set.
This procedure may be continued until two successive sets of F_{ℓ} 's are found to agree. The derivatives of the coulomb functions may be obtained from the formula

$$
\begin{equation*}
Y_{\ell}^{\prime}=\frac{\left[\frac{(\ell+1)^{2}}{\rho}+\eta\right] Y_{\ell}-\left[(\ell+1)^{2}+\eta^{2}\right]^{1 / 2} Y_{\ell+1}}{(\ell+1)} \tag{123}
\end{equation*}
$$

where Y_{ℓ} stands for either F_{ℓ} or G_{ℓ}.

[^5]
6. Phase Shifts

The phase shifts are obtained in the usual fashion by matching the logarithmic derivatives of the coulomb functions with those of the numerically integrated functions at a value of ρ sufficiently large so that the nuclear potential becomes negligible.

Matching the logarithmic derivative of the nuclear function $\Psi_{\ell}=x_{\ell}+i y_{\ell}$ with that of its asymptotic form

$$
F_{\ell}+\left(G_{\ell}+i F_{\ell}\right) C_{\ell}
$$

yields

$$
\begin{equation*}
\frac{\Psi_{\ell}^{\prime}}{\Psi_{\ell}}=\frac{F_{\ell}^{\prime}+\left(G_{\ell}^{\prime}+i F_{\ell}^{\prime}\right) C_{\ell}}{F_{\ell}+\left(G_{\ell}+i F_{\ell}\right) C_{\ell}} \tag{124}
\end{equation*}
$$

which lead to

$$
\begin{equation*}
C_{\ell}^{ \pm}=\frac{\Psi_{\ell}^{ \pm} F_{\ell}^{\prime}-\Psi_{\ell}^{ \pm^{\prime}} F_{\ell}}{\Psi_{\ell}^{ \pm^{\prime}} G_{\ell}-\Psi_{\ell}^{ \pm} G_{\ell}^{\prime}+i\left(\Psi_{\ell}^{ \pm^{\prime}} F_{\ell}-\Psi_{\ell}^{ \pm} F_{\ell}^{\prime}\right)} \tag{125}
\end{equation*}
$$

the quantities C_{ℓ} being related to the complex phase shifts through equation (57).

7. Cross Section and Polarization

The differential elastic scattering cross section $\sigma(\theta)$ and the polarization $P(\theta)$ for an unpolarized incident beam are obtained from equations (34) and (35) while the reaction cross section may be obtained as follows.

$$
\begin{equation*}
\sigma_{R}=\frac{N_{\mathrm{abs}}}{N_{\mathrm{inc}}} \tag{126}
\end{equation*}
$$

where $N_{\text {abs }}$ is the absorbed flux, and $N_{\text {inc }}$ is the incident flux which was assumed to be 1 (see equation (7)). By definition,

$$
\begin{equation*}
N_{\mathrm{abs}}=-\frac{\hbar}{2 i \mu} \int\left[\Psi_{\text {total }}^{\dagger} \frac{\partial \Psi_{\text {total }}}{\partial r}-\Psi_{\text {total }} \frac{\partial \Psi_{\text {total }}^{\dagger}}{\partial r}\right] r_{0}^{2} \sin \theta d \theta d \varphi \tag{127}
\end{equation*}
$$

where the integral is taken over the surface of a large sphere of radius $r=r_{0}$. Substituting equation (51) for $\Psi_{\text {total }}$ into equation (127) and making use of the orthonormality of the $\mathscr{Y}_{j, \ell, s}^{m_{j}}$ s and of the relation

$$
\begin{equation*}
\left|a_{1 / 2}\right|^{2}+\left|a_{-1 / 2}\right|^{2}-1 \tag{128}
\end{equation*}
$$

yields after carrying out the surface integration:

$$
\begin{align*}
\sigma_{R}=N_{\mathrm{abs}} & =\frac{4 \pi}{V} \sum_{\ell=0}^{\infty}(\ell+1)\left\{r^{2}\left(-\frac{\hbar}{2 i \mu}\right)\left[\frac{\Psi_{\ell}^{+*}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{+}}{k r}\right)-\frac{\Psi_{\ell}^{+}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{+*}}{k r}\right)\right]\right\}_{r=r_{0}} \tag{129}\\
& -\frac{4 \pi}{V} \sum_{\ell=0}^{\infty} \ell\left\{r^{2}\left(-\frac{\hbar}{2 i \mu}\right)\left[\frac{\Psi_{\ell}^{-*}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{-}}{k r}\right)-\frac{\Psi_{\ell}^{-}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{-*}}{k r}\right)\right]\right\}_{r=r_{0}}
\end{align*}
$$

Now substituting the asymptotic form (52) for $\Psi_{\ell}^{ \pm}$and making use of the Wronskian relations

$$
\begin{equation*}
G_{\ell} F_{\ell}^{\prime}-F_{\ell} G_{\ell}^{\prime}=1 \tag{130}
\end{equation*}
$$

we are led to the following:

$$
\begin{equation*}
\frac{4 \pi}{V}\left\{r^{2}\left(-\frac{\hbar}{2 i \mu}\right)\left[\frac{\Psi_{\ell}^{ \pm *}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{ \pm}}{k r}\right)-\frac{\Psi_{\ell}^{ \pm}}{k r} \frac{\partial}{\partial r}\left(\frac{\Psi_{\ell}^{ \pm *}}{k r}\right)\right]\right\}_{r=r_{0}}=\frac{4 \pi}{k^{2}}\left[\operatorname{Im}\left(C_{\ell}^{ \pm}\right)-\left|C_{\ell}^{ \pm}\right|^{2}\right] . \tag{131}
\end{equation*}
$$

Finally, substitution of (131) into (129) yields

$$
\begin{align*}
\sigma=\frac{4 \pi}{k^{2}} \sum_{\ell=0}^{\infty}\{(\ell+1) & {\left[\operatorname{Im}\left(C_{\ell}^{+}\right)-\left(\operatorname{Im}\left(C_{\ell}^{+}\right)\right)^{2}-\left(\operatorname{Re}\left(C_{\ell}^{+}\right)\right)^{2}\right] } \\
+ & \left.\ell\left[\operatorname{Im}\left(C_{\ell}^{-}\right)-\left(\operatorname{Im}\left(C_{\ell}^{-}\right)\right)^{2}-\left(\operatorname{Re}\left(C_{\ell}^{-}\right)\right)^{2}\right]\right\} \tag{132}
\end{align*}
$$

Note: The quantities $e^{2 i \sigma_{\ell}}$ appearing in equation (60) may be obtained by the following recurrence formulas:

$$
\begin{align*}
& \operatorname{Re}\left(e^{2 i \sigma_{\ell+1}}\right)=\cos 2 \sigma_{\ell+1}=\left[\frac{(\ell+1)^{2}-\eta^{2}}{(\ell+1)^{2}+\eta^{2}} \cos 2 \sigma_{\ell}\right]-\left[\frac{2 \eta(\ell+1)}{(\ell+1)^{2}+\eta^{2}} \sin 2 \sigma_{\ell}\right] \tag{133}\\
& \operatorname{Im}\left(e^{2 i \sigma_{\ell+1}}\right)=\sin 2 \sigma_{\ell+1}=\left[\frac{(\ell+1)^{2}-\eta^{2}}{(\ell+1)^{2}+\eta^{2}} \sin 2 \sigma_{\ell}\right]+\left[\frac{2 \eta(\ell+1)}{(\ell+1)^{2}+\eta^{2}} \cos 2 \sigma_{\ell}\right]
\end{align*}
$$

while the Legendre polynomials obey the usual relations

$$
\begin{gather*}
P_{0}(\cos \theta)=1, \quad P_{1}(\cos \theta)=\cos \theta \\
P_{\ell+1}(\cos \theta)=\frac{1}{\ell+1}\left[(2 \ell+1) \cos \theta P_{\ell}(\cos \theta)-\ell P_{\ell-1}(\cos \theta)\right] \tag{134}\\
P_{\ell}^{(1)}(\cos \theta)=\frac{\ell+1}{\sin \theta}\left[\cos \theta P_{\ell}(\cos \theta)-P_{\ell+1}(\cos \theta)\right] \tag{135}
\end{gather*}
$$

One may also compute the Rutherford scattering cross section:

$$
\begin{equation*}
\sigma_{c}(\theta)=\left|f_{c}(\theta)\right|^{2} \tag{136}
\end{equation*}
$$

8. Chi Square Deviation

Experimental and theoretical quantities may be compared by means of the chi square deviation:

$$
\begin{equation*}
\chi_{T}^{2}=\chi_{\sigma}^{2}+\chi_{P}^{2} \tag{137}
\end{equation*}
$$

where

$$
\begin{align*}
& \chi_{\sigma}^{2}=\sum_{\theta} \chi_{\sigma}^{2}(\theta)=\sum_{\theta}\left[\frac{\sigma^{\mathrm{th}}(\theta)-\sigma^{\mathrm{ex}}(\theta)}{\Delta \sigma^{\mathrm{ex}}(\theta)}\right]^{2} \tag{138}\\
& \chi_{P}^{2}=\sum_{\theta} \chi_{P}^{2}(\theta)=\sum_{\theta}\left[\frac{P^{\mathrm{th}}(\theta)-P^{\mathrm{ex}}(\theta)}{\Delta P^{\operatorname{ex}}(\theta)}\right]^{2} \tag{139}
\end{align*}
$$

where the $\sigma^{\text {th }}(\theta)$ and $P^{\text {th }}(\theta)$ are the theoretically obtained cross sections and polarizations while $\sigma^{\operatorname{ex}}(\theta), \Delta \sigma^{\operatorname{ex}}(\theta), P^{\operatorname{ex}}(\theta), \Delta P^{\mathrm{ex}}(\theta)$ are respectively the experimentally given cross sections, standard deviations in the cross sections, polarization and standard deviations in the polarization.

It should be noted that the constants were chosen such that the differential and reaction cross section will be obtained in units of $10^{-26} \mathrm{~cm}^{2}$. The polarizations are of course dimensionless ratios.

9. Normalization

The radial wave functions $\Psi_{\ell}^{ \pm}$and their derivatives obtained from numerical integration of the radial Schroedinger equation contain an arbitrary normalization factor, $1 / M_{\ell}^{ \pm}$. This factor however does not affect the cross section and polarization since these are obtained from the phase shifts which in turn are obtained from ratios of logarithmic derivatives (see equation (125)) wherein the M_{ℓ} 's cancel out. If on the other hand the normalized radial wave functions and their derivatives are required, the normalization terms may be obtained as follows:

The asymptotic form of $\Psi_{\ell}^{ \pm}$must obey equation (52) but improper normalization results in the fact that the calculated wave functions are actually given by

$$
\begin{equation*}
x_{\ell}^{ \pm}(\rho)+i y_{\ell}^{ \pm}(\rho)=M_{\ell}^{ \pm}\left\{F_{\ell}(\eta, \rho)+C_{\ell}^{ \pm}\left[G_{\ell}(\eta, \rho)+i F_{\ell}(\eta, \rho)\right]\right\} \tag{140}
\end{equation*}
$$

Now, for $\rho \leq \rho_{\text {max }}$ the nuclear potentials are negligible and equation (52) represents the exact solution; in particular, at $\rho=\rho_{\text {max }}$, we must have

$$
\begin{equation*}
x_{\ell}^{ \pm}\left(\rho_{\max }\right)+i y_{\ell}^{ \pm}\left(\rho_{\max }\right)=M_{\ell}^{ \pm}\left\{F_{\ell}\left(\eta, \rho_{\max }\right)+C_{\ell}^{ \pm}\left[G_{\ell}\left(\eta, \rho_{\max }\right)+i F_{\ell}\left(\eta, \rho_{\max }\right)\right]\right\} \tag{141}
\end{equation*}
$$

whereby

$$
\begin{equation*}
M_{\ell}^{ \pm}=\frac{x_{\ell}^{ \pm}\left(\rho_{\max }\right)+i y_{\ell}^{ \pm}\left(\rho_{\max }\right)}{F_{\ell}\left(\eta, \rho_{\max }\right)+C_{\ell}^{ \pm}\left[G_{\ell}\left(\eta, \rho_{\max }\right)+i F_{\ell}\left(\eta, \rho_{\max }\right)\right]} \tag{142}
\end{equation*}
$$

and the normalized radial wave functions and their derivatives are given by

$$
\left.\begin{array}{rl}
\Psi_{\ell}^{ \pm}(\rho) & =\frac{1}{M_{\ell}^{ \pm}}\left[x_{\ell}^{ \pm}(\rho)+i y_{\ell}^{ \pm}(\rho)\right] \\
\frac{d \Psi_{\ell}^{ \pm}(\rho)}{d \rho} & =\frac{1}{M_{\ell}^{ \pm}}\left[\dot{x}_{\ell}^{ \pm}(\rho)+i \dot{y}_{\ell}^{ \pm}(\rho)\right] \tag{143}
\end{array}\right\}
$$

and the complete normalized wave function is given in equation (51) with $\Psi_{\ell}^{ \pm}$as above in equation (143).

Note: During the numerical integration the program may renormalize the wave functions and their derivatives at any value of ρ for which overflow takes place by dividing the functions and their derivatives by the largest of these. This is accompanied by an explicit printout as explained in the description of subroutine RKINT. Such occasional internal renormalization must of course be taken into account if correctly normalized functions are required.

III. Program Description

A. General Description

1. Machine Specifications

Program SCAT 4 has been written for an IBM 704 with floating point traps or an IBM 709, with a 32,768 words memory, no drum and a minimum of two tape units.

The program can probably be modified for a 16 K memory by reducing the number of θ 's (up to 75 allowed here) and the number of ℓ 's (up to 50 allowed here). A large part of the memory (7500 words) is occupied by the Legendre polynomials and this may also be reduced by computing the polynomials as required. Furthermore, the program contains a large number of printouts which may be abbreviated to save storage space.

2. General Program Description

The program was designed to compute cross sections, polarizations and chi square deviations at a number of specified points in the space of the optical model parameters V , $\mathrm{W}, \mathrm{A}, \mathrm{VS}$, WS, and if needed BG (RO, RC and RG are kept fixed), for a given set of input data.

The time to carry out a run for a single set of parameters depends of course upon the maximum values of ℓ and ρ; for $\mathrm{p}-\mathrm{Cu}$ at $10 \mathrm{MeV}\left(\ell_{\max }=10, \rho=0.0625(.0625) 0.50\right.$ (0.25) 10.0) a run takes about 45 seconds including about 15 seconds for maximum output to tape.

The program has been written in the form of subroutines to allow easy checking and modification. Some of these subroutines are not yet available, but some provision have been made to include them in the future. The following subroutines written in FORTRAN are specific (sub)routines of the program:

| Main routine - MAIN4 | |
| :--- | :--- | :--- |
| Subroutine - CTRL4 | |
| Subroutine - INPT4 | Subroutine - PGEN4 |
| Subroutine - POT1CH | Subroutine - INTCTR |
| Subroutine - POP1 | Subroutine - RKINT |
| Subroutine - SIGZRO | Subroutine - CSUBL |
| Subroutine - FSUBC | Subroutine - AB |
| Subroutine - EXSGML | Subroutine - SGSGCP |
| Subroutine - RHOTB | Subroutine - SIGMAR |
| Subroutine - COULFN | Subroutine - CHISQ |
| Subroutine - RMXINC | Subroutine - OUTPT4 |

The following subroutines are general utility routines used by the program:
Subroutine - SKIP written in FORTRAN

Subroutine - LEAVE written in FORTRAN
Subroutine - SPILL written in FAP
The following subroutines are used in conjunction with the Load-and-Go system in use at WDPC (Western Data Processing Center, UCLA). The effect of using this system is described in section III-A-3 below.

Subroutine - SAVE
Subroutine - PDUMP
Subroutine - EXIT

The program assumes the presence of the following Fortran elementary function subroutines:

$$
\begin{array}{ll}
\text { LOGF } & - \text { (natural logarithm) } \\
\text { SINF } & - \text { (sine) } \\
\text { COSF } & - \text { (cosine) } \\
\text { EXPF } & - \text { (exponential) } \\
\text { SQRTF } & - \text { (square root) } \\
\text { ATANF } & - \text { (arc tangent) }
\end{array}
$$

3. Use of the WDPC Load-and-Go System

Program SCAT 4 has been written for the Load-and-Go system in use at the WDPC, UCLA. This only affects it as follows:
(i) Special subroutines of the load-and-Go system.

Subroutine SAVE

The purpose of this subroutine is to allow the operator to interrupt the calculation without loss. The program is normally run with Sense Switch 1 off; turning on Sense Switch 1 will cause the program to call SAVE after completing the innermost DO loop of subroutine CTRL4. SAVE then writes on tape the content of the core memory as well as all other information required to continue the computation such as the contents of the AC, MQ, index registers, etc....

A restart routine will then later reload the core memory, reset all registers etc..., and return right after the CALL SAVE statement. The following statements up to statement number 66 are then required to properly position the input data tape as the latter was probably rewound when the computation was interrupted.

To eliminate the use of subroutine SAVE, remove from subroutine CTRL4 all statements from statement number 118 to statement number 66 inclusive.

Subroutine $\operatorname{PDUMP}(\alpha, \beta)$

The purpose of this subroutine is to provide a partial core dump of all quantities between the location of the arguments in the call statement. Subroutine PDUMP is called by subroutine LEAVE whenever difficulties such as overflow or division by zero take place.

To eliminate subroutine PDUMP, replace in subroutine LEAVE the statement CALL $\operatorname{PDUMP}(\mathrm{A}, \mathrm{ZZ})$ by whatever statements will cause the required core dump.

Subroutine EXIT

This subroutine terminates the program.
To eliminate subroutine EXIT, replace statement number 151 in subroutine INPT4 by whatever statement will be used to terminate the program.
(ii) END Statements.

The usual FORTRAN END statements do not appear in the program as the load-and-go system provides them automatically.
(iii) Input and Output Statements.

In conjunction with the load-and-go system, the program is input from tape, while the input data is brought in from tape 7 and all the output is to tape 6 .

All these particular features can of course be easily modified to use the program either directly or in conjunction with any other system.

4. Error Indications:

(i) Division by zero.

Every division which could conceivably have a zero divisor either because of the range of numbers used or because of an error in the input data is followed by an IF DIVIDE CHECK. Detection of a zero denominator is then followed by an explicit print out and a CALL LEAVE statement which leads to the next set of input data. In order to be sure that no division by zero remains undetected, every subroutine which contains an IF DIVIDE CHECK statement also begins with an IF DIVIDE CHECK to verify that the trigger is off at the start of the subroutine; if the divide check trigger is found on at the start, there is an explicit printout to that effect followed by a CALL LEAVE statement.
(ii) Overflow. Underflow.

Overflow and underflow are monitored by subroutine SPILL (JSPILL, ISPILL, x, y) which needs only be called once by MAIN4. When SPILL is called, it replaces the quantities JSPILL and ISPILL by zeros. Thereafter, in case of overflow (underflow) the subroutine replaces the overflowed (underflowed) quantity with $x(y)$ and places into JSPILL (ISPILL) the address of the command which caused overflow (underflow) to occur for the first time. Program SCAT 4 uses $x=y=0$.

Every subroutine in which computations are carried out starts by setting ISPILL and JSPILL equal to zero to insure correct identification of possible subsequent overflow or underflow. The subroutine then ends with a check of ISPILL and JSPILL. If either of these is not zero, there is an explicit printout describing the overflow or underflow. Underflow results therefore in substituting zero for the underflowed quantity, but the computation
proceeds. Overflow on the other hand results in substituting zero for the overflowed quantity and leads to a CALL LEAVE statement to stop the computation.

B. Detailed Descriptions of the Specific Routines of the Program

MAIN4

The main routine which is only used at the start of the program carries out the following steps:

1) Calls SPILL which controls overflow and underflow (see III-A-4-ii). One such call statement is sufficient to put SPILL in permanent control for all subroutines.
2) Sets up EPS1, EPS2, EPS3, which are constants used to control the accuracy of the Coulomb functions computations, and EPS4 which is used in subroutine POT1CH.
3) Inputs identification and program numbers.
4) Calls CTRL4.

CTRL4 (Control 4)

This subroutine controls the whole flow of the program. It was coded as a subroutine to allow it to be called by subroutine LEAVE. It carries out the following steps:

1) Advances group identification and resets run identification numbers.
2) Call INPT4.
3) Calls POT1CH.
4) If $\operatorname{KTRL}(5)=1$, calls POP1
if $\operatorname{KTRL}(5)=0$, proceeds.
5) Calls SIGZRO, FSUBC, EXSGML.
6) Sets up five (or six) nested DO loops for varying successively V, W, a, V_{s}, W_{s} (and b for a surface absorption potential). The following steps are always done within the innermost DO loop:
a) If Sense Switch 1 is on, calls SAVE if Sense Switch 1 is off, proceeds.
b) Advances run identification number.
c) Calls RHOTB, COULFN, RMXINC, PGEN4, INTCTR, CSUBL, AB, SGSGCP, SIGMAR.
d) If $\operatorname{KTRL}(2)=0$, proceeds if $\operatorname{KTRL}(2)=1$, calls CHISQ.
e) Calls Outpt4.
7) When all the DO loops have been completed, returns to step 1 .

INPT4 (Input 4)

1) Inputs $\operatorname{KTRL}(1) ;$ if $\operatorname{KTRL}(1)=100$, calls EXIT
if $\operatorname{KTRL}(1) \neq 100$, proceeds.
2) Inputs $\operatorname{KTRL}(\mathrm{I}), \mathrm{I}=2$ to 13 .
3) Inputs FMI, FMB, ELAB, ZZ, RC, V, W, RO, A, VS, WS, RG, BG, DV, DW, DA, DVS, DWS, DBG, HA, PMA, FN1A, FN2A, HB, PMB, FN1B, FN2B, NVMAX, NWMAX, NAMAX, NVSMAX, NWSMAX, NBGMAX.
4) Sets up TV $=\mathrm{V}$ to $\mathrm{TBG}=\mathrm{BG}$ (starting values of the parameters).
5) Inputs NMAX, forms NMAXP $=$ NMAX -1 .
6) Inputs RHOIN(I), $\mathrm{I}=1$ to NMAX and $\operatorname{DRHOIN}(\mathrm{I}), \mathrm{I}=1$ to NMAXP.
7) Computes FMU as per equation (5)

Computes ECM as per equation (6)
Computes FKAY as per equation (8)
Computes RHOBN as per equation (73)
Computes RMA and RMB (see Glossary, under PMA, PMB)
Computes RHOBC as per equation (74)
Computes ETA as per equation (43).
8) Inputs LMAXM, forms IMAX $=$ LMAXM +1 .
9) Sets $\operatorname{IIN}(\mathrm{J})=1, \mathrm{~J}=1$ to LMAX (see description of subroutine INTCTR)
10) If $\operatorname{KTRL}(5)=0$, proceeds
if $\operatorname{KTRL}(5) \neq 0:$ a) inputs JMAX
b) inputs THETAD(I), I = 1 to JMAX
c) computes THETA(I), I = 1 to JMAX.
11) If $\operatorname{KTRL}(2)=0$ and $/$ or $\operatorname{KTRL}(3)=0$, proceeds,
if $\operatorname{KTRL}(2) \neq 0$ and $\operatorname{KTRL}(3) \neq 0$, inputs
$\operatorname{SGMARX}(\mathrm{I}), \operatorname{DSGMEX}(\mathrm{I}), \operatorname{POLEX}(\mathrm{I}), \operatorname{DPOLEX}(\mathrm{I}), \mathrm{I}=1$ to JMAX.
12) Returns to CTRL4.

POT1CH (potential 1 check)

The purpose of this subroutine is to check whether $\ell_{\max }$ is sufficiently large so that all the partial waves sensibly affected by the potential are included and to check whether $\rho_{\max }$ (the point at which the coulomb functions will be matched to the nuclear wave functions) is sufficiently large to insure that the non-coulomb part of the potential is negligible. If $\ell_{\max }$ and/or $\rho_{\max }$ are too small, the subroutine increases them, and sets $\operatorname{IIN}\left(\ell_{\max }\right)=1$. The quantities $\rho_{\max }$ and $\ell_{\max }$ may be checked or not according to the value assigned to KTRL(13):
$\operatorname{KTRL}(13)=1:$ check both $\ell_{\text {max }}$ and $\rho_{\max }$
$\operatorname{KTRL}(13)=2$: check $\rho_{\max }$ only
$\operatorname{KTRL}(13)=3:$ check $\ell_{\max }$ only
$\operatorname{KTRL}(13)=4:$ do not check either.
$\rho_{\text {max }}$ and $\ell_{\text {max }}$ are checked in various ways depending upon the potential form. The routine operates as follows:

1) The routine first calculates the maximum values of $\mathrm{V}, \mathrm{W}, \mathrm{A}, \mathrm{VS}, \mathrm{WS}$, and, in the case of a Gaussian absorption, of BG over the specified grid of these parameters.
2) If $\operatorname{KTRL}(1)=0$, standard potential (or variation thereof), the routine checks, if required, that:
a) $\rho_{\max }$ is sufficiently large so that

$$
\begin{equation*}
\frac{\left(V^{2}+W^{2}\right)^{1 / 2}}{E} \frac{1}{\left(1+e^{\left(\rho_{\max }-\bar{\rho}_{N}\right) / k a}\right)} \leq \epsilon_{4} \tag{144}
\end{equation*}
$$

If this condition is not met, $\rho_{\max }$ is increased by the last value of $\Delta \rho$ and the check is repeated. This is accompanied by the print out:
RHOIN $($ NMAX $)=\left(\right.$ value of old $\left.\rho_{\max }\right)+$ (last value of DRHOIN)
RHOIN(NMAX) IS TOO SMALL IN NUCLEAR POTENTIAL.
b) The routine also checks, if required, that $\ell_{\max }$ is sufficiently large so that

$$
\begin{equation*}
\frac{\sqrt{V^{2}+W^{2}}}{E} \frac{1}{\left(1+e^{\left(\ell_{\max }-\bar{\rho}_{N}\right) / k a}\right)} \leq \epsilon_{4} \tag{145}
\end{equation*}
$$

If this condition is not met, $\ell_{\max }$ is increased by 1 and the check is repeated; this is accompanied by the following printout:
LMAXM $=($ value of old LMAXM $)+1$
LMAXM TOO SMALL BECAUSE OF CENTRAL POTENTIAL.
The routine then checks that $\ell_{\max }$ is sufficiently large so that

$$
\begin{equation*}
2 k^{2} \frac{\sqrt{V_{S}^{2}+W_{S}^{2}}}{E} \frac{1}{\left(1+e^{\left(\ell_{\max }-\bar{\rho}_{N}\right) / k a}\right)} \leq \epsilon_{4} \tag{146}
\end{equation*}
$$

If this condition is not met, $\ell_{\max }$ is increased by 1 and the check is repeated; this is accompanied by the following printout:
LMAXM $=($ value of old LMAXM $)+1$
LMAXM TOO SMALL BECAUSE OF SPIN ORBIT POTENTIAL.
3) If $\operatorname{KTRL}(1)=1$, Gaussian absorption,
a) The check on $\rho_{\max }$ is as follows:

$$
\begin{equation*}
\frac{V}{E} \frac{1}{\left(1+e^{\left(\rho_{\max }-\bar{\rho}_{N}\right) / k a}\right)} \leq \epsilon_{4} \tag{147}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{W}{E} e^{-\left(\rho_{\max }-\bar{\rho}_{G} / k b\right)^{2}} \leq \epsilon_{4} \tag{148}
\end{equation*}
$$

If these conditions are not met $\rho_{\text {max }}$ is increased as before and the checks are repeated; this is accompanied by the same printout as above.
b) The check on $\ell_{\max }$ is as follows:

$$
\begin{equation*}
\frac{V}{E} \frac{1}{\left(1+e^{\left(\ell_{\max }-\bar{\rho}_{N}\right) / k a}\right)} \leq \epsilon_{4} \tag{149}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{W}{E} e^{-\left(\ell_{\max }-\bar{\rho}_{G} / k b\right)^{2}} \leq \epsilon_{4} \tag{150}
\end{equation*}
$$

and as in equation (146).
If these conditions are not met $\ell_{\text {max }}$ is increased by 1 and the checks repeated. The prints-out are given on the previous page.
4) If $\operatorname{KTRL}(1)=2$, Square well
a) The check on $\rho_{\max }$ is as follows

$$
\begin{equation*}
\rho_{\max }>\bar{\rho}_{N} \tag{151}
\end{equation*}
$$

b) The check on $\ell_{\text {max }}$ is as follows

$$
\begin{equation*}
\ell_{\max }>\bar{\rho}_{N}+3 \tag{152}
\end{equation*}
$$

Failure to meet these conditions leads to increases in $\rho_{\text {max }}$ and/or $\ell_{\text {max }}$ accompanied by the same printouts as given above, after which the checks are repeated.

The program uses EPS4 $=0.001$. This quantity is specified in the MAIN4 routine.
The checks described above are based on a rough estimate of the phase shifts using a WKB expression.

POP1

Computes $\mathrm{P}(\mathrm{L}, \mathrm{J}), \operatorname{PP}(\mathrm{L}, \mathrm{J}), \mathrm{L}=1$ to LMAXP, $\mathrm{J}=1$ to JMAX as per equations (134) and (135) and returns to CTRL4.

SIGZRO (Sigma zero)

Computes SIGMA0 and SIGMA1 as per equations (117) and (118) and returns to CTRL4. FSUBC

Computes $\operatorname{FCR}(\mathrm{J})$ and $\operatorname{FCI}(\mathrm{J}), \mathrm{J}=1$ to JMAX as per equation (47) and returns to CTRL4. EXSGML (Exponential sigma ℓ)

Computes $\operatorname{EXSGMR}(\mathrm{J}), \operatorname{EXSGMI}(\mathrm{J})$ for $\mathrm{J}=1$ to LMAX as per equation (133) and returns to CTRL4.

RHOTB (Rho tabulation)

The purpose of this subroutine is to construct a table of ρ 's and $\Delta \rho$'s corresponding to each step of the numerical integration. This table is formed from the arrays of RHOIN(I) and DRHOIN(I) which are input by subroutine INPT4

Input Arrays	
RHOIN(I)	DRHOIN(I)
RHOIN(1)	DRHOIN(1)
RHOIN(2)	DRHOIN(2)
\cdot	\cdot
RHOIN(NMAX-1)	DRHOIN(NMAX-1)
RHOIN(NMAX)	

Computed Tables

$\mathrm{RHO}(\mathrm{I})$	$\mathrm{DRHO}(\mathrm{I})$
$\mathrm{RHO}(1)$	$\mathrm{DRHO}(1)$
$\mathrm{RHO}(2)$	$\mathrm{DRHO}(2)$
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
RHO(ILAST-1)	DRHO(ILAST-1)
RHO(ILAST)	

$\rho=$ RHOIN(1) (DRHOIN(1)) RHOIN(2) $\ldots($ DRHOIN(NMAX-1)) RHOIN(NMAX)
$\mathrm{RHO}(\mathrm{I}+1)=\mathrm{RHO}(\mathrm{I})+\mathrm{DRHO}(\mathrm{I})$
$\operatorname{DRHO}(1)=\operatorname{DRHO}(2)=\cdots=\operatorname{DRHO}(\mathrm{I})=\operatorname{DRHOIN}(1)$
up to $\operatorname{RHO}(\mathrm{I})=$ RHOIN(2), etc. \ldots
RHO $(1)=$ RHOIN $(1) ;$ RHO $($ ILAST $)=$ RHO $($ NMAX $)$
$\operatorname{ILAST} \geq$ NMAX.
If RHOIN(NMAX) is given in such a way that it cannot be reached by an integral number of $\operatorname{DRHO}(\mathrm{I})$'s, the last interval is shortened (up to 50%) or lengthened (by no more than 50%) so that RHO(ILAST) $=$ RHOIN(NMAX).

COULFN (Coulomb functions)

This is the most complex subroutine of the program. It computes the regular and irregular coulomb functions and their derivatives for $\mathrm{L}=1$ to LMAXM at $\rho=$ RHOMAX by means of asymptotic formulas. The main steps are as follows:

1) The a and b series appearing in equation (115) are calculated according to equations (116) and are cut off when either:
(a) The term N_{a} (or N_{b}) is such that the next term exceeds in magnitude the previous one, i.e., when

$$
\begin{equation*}
\left[\operatorname{Re}\left(U_{N_{a}}+1\right)\right]^{2}+\left[\operatorname{Im}\left(U_{N_{a}}+1\right)\right]^{2} \geq\left[\operatorname{Re}\left(U_{N_{a}}\right)\right]^{2}+\left[\operatorname{Im}\left(U_{N_{a}}\right)\right]^{2} \tag{153}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{k}=\frac{a_{k}}{(k-1) \rho_{\max }^{k-1}} \tag{154}
\end{equation*}
$$

and similarly for the b series.
(b) The contributions of both the real and imaginary terms give undetectable contributions to the real and imaginary parts of φ_{0} (and similarly for φ_{1}). During these computations, the value of $\rho_{\max }$ may be increased by addition of the last value of DRHOIN and the computation starts all over again under the following condition:
a) The a or b series is identically equal to zero. This is accompanied by the printout:
SERIES IN PHI0 OR PHI1 IS ZERO, CHECK DATA, IF OK
INCREASE RHOMAX $=$ (value of old RHOMAX) + (value of last DRHOIN)
b) Either of the two series diverges too quickly, i.e., the N_{a}-th (or N_{b}-th) term still gives a non-negligible contribution to the series obtained so far, viz.

$$
\begin{equation*}
\left|\frac{\left[\operatorname{Re}\left(U_{N_{a}}\right)\right]^{2}+\left[\operatorname{Im}\left(U_{N_{a}}\right)\right]^{2}}{\left[\operatorname{Re}\left(\sum_{k=2}^{N_{a}-1} U_{k}\right)\right]^{2}+\left[\operatorname{Im}\left(\sum_{k=2}^{N_{a}-1} U_{k}\right)\right]^{2}}\right| \geq E P S 3 \tag{155}
\end{equation*}
$$

(EPS3 is given the value 0.00001 in the MAIN4 routine.)
This is accompanied by the printout:
IF OK A OR B SERIES DIVERGES TOO QUICKLY
INCREASE RHOMAX $=$ (value of old RHOMAX) $+($ value of last DRHOIN).
c) Over 48 terms are required in either the a or b series. This is accompanied by the printout:
INCREASE RHOMAX $=($ value of old RHOMAX $)+($ value of last DRHOIN $)$
A OR B SERIES CONVERGES TOO SLOWLY.
2) The quantities $\varphi_{0}, \varphi_{1}, F_{0}, F_{1}, G_{0}, G_{1}$ are formed according to equations (114) and (115), and the Wronskian is checked for accuracy requiring that

$$
\begin{equation*}
\left|\mathscr{W}-\left[1+\eta^{2}\right]^{-1 / 2}\right|=\left|F_{0} G_{1}-F_{1} G_{0}-\left[1+\eta^{2}\right]^{-1 / 2}\right| \leq E P S 1 \tag{156}
\end{equation*}
$$

(EPS1 is given the value 0.00001 in the MAIN4 routine.)
If this condition is violated $\rho_{\max }$ is increased and the computation starts all over again; this is accompanied by the following printout:
INCREASE RHOMAX $=($ old value of RHOMAX $)+($ last value of DRHOIN $)$
BAD INITIAL WRONSKIAN.
3) The regular coulomb functions are formed by downward recurrence as per equations (120) and (122) according to the accompanying description.
Agreement between successive sets of F_{ℓ} 's is verified by checking that

$$
\begin{equation*}
\left|\left(F_{\ell}^{(n)} / F_{\ell}^{(n+1)}\right)-1\right| \leq E P S 2 \tag{157}
\end{equation*}
$$

(EPS2 is given the value 0.00001 in the MAIN4 routine) for $\ell=0$ to $\ell_{\text {max }}$.
During this computation the value of $\rho_{\max }$ is increased and the computation starts all over if it turns out that $\ell_{(1)}>\ell_{\max }+40$. This is accompanied by the printout:
INCREASE RHOMAX $=$ (old value of RHOMAX) + (last value of DRHOIN)
L TOO LARGE IN FBAR(L).
4) The irregular coulomb functions are formed by upward recurrence as per equation (119) and the Wronskian for every $\ell=0$ to $\ell_{\max }+1$ is checked for accuracy requiring that

$$
\begin{equation*}
\left|F_{\ell} G_{\ell+1}-F_{\ell+1} G_{\ell}-\frac{\ell+1}{\left[(\ell+1)^{2}+\eta^{2}\right]^{1 / 2}}\right| \leq E P S 1 \tag{158}
\end{equation*}
$$

(EPS1 is given the value 0.00001 in the MAIN4 routine.)
If this condition is violated the value of $\rho_{\max }$ is increased and the computation starts all over again; this is accompanied by the printout:
INCREASE RHOMAX $=($ old value of RHOMAX $)+($ last value of DRHOIN $)$
BAD WRONSKIAN FOR $L=$ (value of $\ell+1$ for which equation (158) failed).
5) Finally the derivatives of the coulomb functions for $\ell=0$ to $\ell_{\max }$ are formed as per equation (123).

RMXINC (Rho max increase)

The purpose of this subroutine is to extend the table of $\mathrm{RHO}(\mathrm{I})$ and $\operatorname{DRHO}(\mathrm{I})$ by increments of the last value DRHOIN until the final value of RHO(I) equals RHOMAX which may have been increased by the subroutine COULFN.

PGEN4 (Potential generator 4)

The purpose of this subroutine is to form tables of the ℓ-independent parts of the potential corresponding to the $\mathrm{RHO}(\mathrm{I})$ tables and suitable for using in the numerical integrations.

These include:
$\operatorname{UCRB}(\mathrm{I}), \operatorname{UCIB}(\mathrm{I}), \operatorname{USRB}(\mathrm{I}), \operatorname{USIB}(\mathrm{I})$ for $\mathrm{I}=1$ to ILAST and corresponding to the values at the beginning of an interval of integration; a corresponding table of form factors is also formed:
$\operatorname{FFCR}(\mathrm{I}), \operatorname{FFCI}(\mathrm{I}), \operatorname{FFSR}(\mathrm{I}), \operatorname{FFSI}(\mathrm{I})$,
and
$\operatorname{UCRM}(\mathrm{I}), \operatorname{UCIM}(\mathrm{I}), \operatorname{USRM}(\mathrm{I}), \operatorname{USIM}(\mathrm{I})$,
and
$\operatorname{FFCRM}(\mathrm{I}), \operatorname{FFCIM}(\mathrm{I}), \operatorname{FFSRM}(\mathrm{I}), \operatorname{FFSIM}(\mathrm{I})$ for $\mathrm{I}=1$ to ILAST -1 corresponding to the values in the middle of an interval of integration.

The original and tightest part of the subroutine corresponds to a standard form factor; modifications have been added to permit use of a variety of form factors briefly described earlier.

The subroutine operates as follows: The UCR-'s are calculated as per equation (98), the UCI-'s as per equation (99), the USR-'s as per equation (100) and the USI-'s as per equation (101), wherein:
(i) $\operatorname{KTRL}(\mathrm{I})=0$: VOLUME ABSORPTION OR SPECIAL NUCLEAR FORM FACTOR:

If $\operatorname{KTRL}(7)=0, \quad f_{\mathrm{CR}}$ is computed as per equation (80); $\quad[\mathrm{FFCR}]^{8}=f_{\mathrm{CR}}$
$=1, \quad f_{\mathrm{CR}}$ is computed as per equation (86); $\quad[\mathrm{FFCR}]=f_{\mathrm{CR}}$
$=2, \quad f_{\mathrm{CR}}$ is computed as per equation (87); $\quad[\mathrm{FFCR}]=f_{\mathrm{CR}}$
If $\operatorname{KTRL}(8)=0, \quad f_{\mathrm{CI}}$ is computed as per equation (80); $\quad[\mathrm{FFCI}]=f_{\mathrm{CI}}$
$=1, \quad f_{\mathrm{CI}}$ is computed as per equation (86); $\quad[\mathrm{FFCI}]=f_{\mathrm{CI}}$
$=2, \quad f_{\mathrm{CI}}$ is computed as per equation (87); $\quad[\mathrm{FFCI}]=f_{\mathrm{CI}}$
If $\operatorname{KTRL}(9)=0, \quad f_{\mathrm{SR}}$ is computed as per equation (81); $\quad[\mathrm{FFSR}]=f_{\mathrm{SR}}$
$=1, \quad f_{\mathrm{SR}}$ is computed as per equation (91); $\quad[\mathrm{FFSR}]=f_{\mathrm{SR}} / k a$
$=2, \quad f_{\mathrm{SR}}$ is computed as per equation (94); $\quad[\mathrm{FFSR}]=f_{\mathrm{SR}} / 2$
If $\operatorname{KTRL}(10)=0, \quad f_{\mathrm{SI}}$ is computed as per equation (81); $\quad[\mathrm{FFSI}]=f_{\mathrm{SI}}$
$=1, \quad f_{\mathrm{SR}}$ is computed as per equation (91); [FFSI] $=f_{\mathrm{SI}} / k a$
$=2, \quad f_{\mathrm{SR}}$ is computed as per equation (94); [FFSI] $=f_{\mathrm{SI}} / 2$
(ii) $\operatorname{KTRL}(1)=1$: GAUSSIAN ABSORPTION
f_{CR} is computed as per equation (80); $\quad[\mathrm{FFCR}]=f_{\mathrm{CR}}$
f_{CI} is computed as per equation (82); $\quad[\mathrm{FFCI}]=f_{\mathrm{CI}}$
f_{SR} is computed as per equation (81); $\quad[\mathrm{FFSR}]=f_{\mathrm{SR}}$
f_{SI} is computed as per equation (81); $\quad[\mathrm{FFSI}]=f_{\mathrm{SI}}$
(iii) $\operatorname{KTRL}(1)=2:$ SQUARE WELL
f_{CR} is computed as per equation (84); $\quad[\mathrm{FFCR}]=f_{\mathrm{CR}}$
f_{CI} is computed as per equation (84); $\quad[\mathrm{FFCI}]=f_{\mathrm{CI}}$
f_{SR} and f_{CI} are taken to be zero.
Furthermore,
If $\operatorname{KTRL}(11)=1$, USR- are computed as per equation (100) including the coulomb spin-orbit term.

If $\operatorname{KTRL}(11)=0$, USR - are computed as per equation (100) excluding the coulomb spinorbit term, i.e, the second term on the right hand side. $\operatorname{KTRL}(7)$ to $\operatorname{KTRL}(11)$ can of course be given any combination of permitted values.

INTCTR (Integration Control)

For each value of $L=1$ to LMAX this subroutine carries out the following steps:

1) Sets up starting values for the numerical integration as per equation (113). The quantities $\operatorname{IIN}(\mathrm{L})$ are not especially useful at the present time, but they have been included in order to permit start of the numerical integration at various values of ρ depending on ℓ and thus permitting considerable time saving by foreshortening the numerical integrations. A study of this method is presently under way.
2) Calls RKINT which performs the numerical integration.

[^6]3) Stores the final values of the functions and their derivatives at the completion of each integration.

RKINT (Runge-Kutta integration)

This is the most crucial subroutine in the program as most of the time is spent in numerical integration. Special efforts have therefore been made to produce a rapid program.

The subroutine integrates numerically as per equations (102) to (112) the differential equations (96) operating simultaneously on the two sets corresponding to $\vec{\sigma} \cdot \vec{\ell}=\ell$ and $-\ell-1$.

Special provisions have been made to avoid overflow; this is accomplished by dividing all the functions and their derivatives by the largest of these at every step (RENORM); whenever such renormalization is carried out it is accompanied by the following printout: RENORMALIZATION FACTOR $=$ (value of RENORM) IN RKINT FOR CODED
$\mathrm{L}=($ value of $\ell+1)$ and $\mathrm{RHO}=($ value of ρ at which renormalization took place).

CSUBL

This subroutine computes $C_{\ell}^{ \pm}$as per equation (125) for $\ell=0$ to $\ell_{\text {max }}$.
AB
This subroutine computes $\mathrm{A}(\mathrm{J})$ and $\mathrm{B}(\mathrm{J})$ for $\mathrm{J}=1$ to JMAX i.e., for the various angles θ required, as per equation (60).

SQSGCP (Sigma, sigma-coulomb, polarization)

This subroutine computes $\sigma(\theta), P(\theta), \sigma_{c}(\theta)$, as per equations (34), (35); (136) and finally $\sigma(\theta) / \sigma_{c}(\theta)$ for the various angles required.

SIGMAR

This subroutine computes σ_{R} as per equation (132).

CHISQ (Chi Square)

This subroutine computes $\chi_{\sigma}^{2}(\theta), \chi_{\sigma}^{2}, \chi_{P}^{2}(\theta), \chi_{P}^{2}, \chi_{T}^{2}$ as per equations (137), (138) and (139).

Note: The quantities $\Delta \sigma^{\operatorname{ex}}(\theta)$ and $\Delta P^{\operatorname{ex}}(\theta)$ are always assumed to be non-zero. Thus to avoid including an unknown experimental quantity, the corresponding standard deviation must be taken as very large.

OUTPT4 (Output 4)

Several output formats are available:
(1) Minimum output $(\operatorname{KTRL}(6)=1)$.
(a) Basic quantities

NUMPRG
KTRL(I) for $\mathrm{I}=1$ to 13
FMI, FMB, ELAB, ZZ, V, W, A, RO, VS, WS, RC, BG, RG RHOBN, RHOBC, RHOBNG, ECM,ETA, FKAY, FKAYA, FKAYB
and, if either $\operatorname{KTRL}(7)$, (8), (9), or (10) is not zero,
HA, RMA, FN1A, FN2A, PNA, HB, RMB, FN1B, FN2B, PMB,
then RHOMAX, LMAXM, NMAX, RHOIN(I) for $\mathrm{I}=1$ to NMAX,

DRHOIN(I) for $\mathrm{I}=1$ to NMAX-1, SGMRTH
and, if $\operatorname{KTRL}(2)=1$, CHI2ST, CHI2PT, CHI2T.
(b) Basic Table

THETAD(I), SGMATH(I), SRATIO(I), POLTH(I), and, if $\operatorname{KTRL}(2)=1, \operatorname{SGMAEX}(\mathrm{I}), \operatorname{POLEX}(\mathrm{I})$, for $\mathrm{I}=1$ to JMAX.
(2) Normal output $(\operatorname{KTRL}(6)=0)$
(a) Basic quantities
(See above)
(b) Basic Table
(See above)
(c) Form factor table (output only if $\operatorname{KTRL}(12)=1$)

RHO(I), $\operatorname{FFCR}(\mathrm{I}), \operatorname{FFCI}(\mathrm{I}), \operatorname{FFSR}(\mathrm{I}), \operatorname{FFSI}(\mathrm{I})$, for $\mathrm{I}=1$ to ILAST .
(d) Fitting table (output only if $\operatorname{KTRL}(2)=1$)

THETAD(I), DSGMEX(I), DPOLEX(I), CHI2S(I), CHI2P(I), CHI2(I) for $\mathrm{I}=1$ to JMAX.
(e) L table
$\mathrm{L}, C R 1(L), C I 1(L), C R 2(L), C I 2(L)$ for $\mathrm{L}=1$ to LMAXM (corresponding to $\ell=0$ to $\ell_{\max }$).

This output is made for every run, and maybe preceded by underflow descriptions which may be ignored, and by other comments referring to an increase in $\rho_{\max }, \ell_{\max }$, renormalization, etc.

Every page of output is headed by the run number on the left and the page number on the right. The number of lines per page is held to be less than 50 , otherwise the subroutine calls subroutine SKIP which starts a new page.

SKIP

This subroutine increases the page number, resets K , the line counter, and outputs the run and page number. Note that arguments giving the number of lines, page and run numbers are required.

LEAVE

This subroutine is called whenever a run gets into difficulty because overflow, or division by zero occur. The subroutine calls PDUMP to give a partial core dump.

This subroutine was included so as to allow for various possible requirements upon overflow and division by zero without having to change every command where the difficulty might occur.

IV. Description of Input Data

All data is input from tape 7. The input data tape is prepared from IBM cards which contain one piece of input data per card in either of the two following formats:

Note: Any floating point format which uses 15 columns or less and is acceptable to FORTRAN may be used in place of the above.
(1) The following identification data is input first:

| NUMRUN(1) |
| :--- |$:$ month, day

Note: The identification which consists of the five quantities NUMRUN(I), $I=1$ to 5 , is printed at the top left of every output sheet. NUMRUN(4) is advanced every time a new set of data is input, $\operatorname{NUMRUN}(5)$ is advanced every time a run is made with a new set of parameters.
(2) Then, for every set of run, i.e., for every set of input data:

(a) Controls

$$
\begin{array}{rlrl}
\operatorname{KTRL}(1) & =0 & & \\
& \text { Standard potential (possibly with generalized form factors) } \\
& =1 & & \\
& \text { Gaussian absorption } \\
& = & & \text { Square well } \\
& \\
\operatorname{KTRL}(2) & =0 & & \\
& \text { no } \chi^{2} \text { required } \\
& =1 & &
\end{array} \chi^{2} \text { required }
$$

[^7]```
\(\operatorname{KTRL}(3)=0 \quad: \quad\) same experimental values as in last set
 \(=1:\) new experimental values coming \({ }^{10}\)
KTRL(4) : not used in present program
\(\operatorname{KTRL}(5)=0 \quad: \quad\) same angles as in last set
 \(=1\) : new angles coming
\(\operatorname{KTRL}(6)=0 \quad\) : normal output
 \(=1\) : minimum output
\(\operatorname{KTRL}(7)=0 \quad: \quad \mathrm{UCR}-\) Standard form
 \(=1:\) UCR - form \(A\)
 \(=2 \quad: \quad\) UCR - form B
\(\operatorname{KTRL}(8)=0 \quad: \quad \mathrm{UCI}-\) Standard form
 \(=1: \mathrm{UCI}-\) form A
 \(=2 \quad: \quad \mathrm{UCI}-\) form B
\(\operatorname{KTRL}(9)=0 \quad: \quad\) USR - derivative standard form
 \(=1:\) USR - derivative form A
 \(=2 \quad\) : USR - form B
\(\operatorname{KTRL}(10)=0 \quad: \quad\) USI - derivative standard form
 \(=1\) : USI - derivative form A
 \(=2 \quad\) : USI - form B
\(\operatorname{KTRL}(11)=0 \quad: \quad\) do not include coulomb spin-orbit
 \(=1 \quad: \quad\) do include coulomb spin-orbit
\(\operatorname{KTRL}(12)=0 \quad: \quad\) do not print out form factors
 \(=1\) : do print out form factors
\(\operatorname{KTRL}(13)=1 \quad: \quad\) check \(\rho_{\max }\) and \(\ell_{\max }\)
 \(=2 \quad\) : check \(\rho_{\max }\) only
 \(=3 \quad\) : check \(\ell_{\max }\) only
 \(=4 \quad: \quad\) do not check \(\rho_{\text {max }}\) nor \(\ell_{\text {max }}\).
```


## (b) Basic data

FMI, FMB, ELAB, ZZ, RC, V, W, RO, A, VS, WS, RG, BG, DV, DW, DA, DVS, DWS, DBG, HA, PMA, FN1A, FN2A, HB, PMB, FN1B, FN2B, NVMAX, NWMAX, NAMAX, NVSMAX, NWSMAX, NBGMAX.
(c) Integration data

NMAX, RHOIN(I) for $\mathrm{I}=1$ to NMAX, $\operatorname{DRHOIN}(\mathrm{I})$ for $\mathrm{I}=1$ to NMAX -1 ,
(d) LMAXM
(e) Angles:
if $\operatorname{KTRL}(5)=1$ input: $\operatorname{JMAX}, \operatorname{THETAD}(\mathrm{I})$ for $\mathrm{I}=1$ to JMAX
(f) Experimental data:

[^8]if $\operatorname{KTRL}(2)=1$ and $\operatorname{KTRL}(3)=1$ input:
$\operatorname{SGMAEX}(\mathrm{I})$ for $\mathrm{I}=1$ to JMAX
DSGMEX(I) for $\mathrm{I}=1$ to JMAX
POLEX(I) for $\mathrm{I}=1$ to JMAX
DPOLEX(I) for $\mathrm{I}=1$ to JMAX
(3) Final card:
$\operatorname{KTRL}(1)=100$.

## V. Glossary and Description of Symbolic Variables Appearing in Common and Dimension Statements

| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| A | $a$ | Rounding parameter appearing in standard potential, see eq. (62) |
| $\begin{aligned} & \operatorname{AR}(\mathrm{I}), \operatorname{AI}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\operatorname{Re}\left\{a_{i}\right\}, \operatorname{Im}\left\{a_{i}\right\}$ | 1) Real and imaginary parts of the terms of the auxiliary series used to calculate asymptotically the coulomb functions, see eq. (116) |
|  | $\operatorname{Re}\left\{A\left(\theta_{i}\right)\right\}, \operatorname{Im}\left\{A\left(\theta_{i}\right)\right\}$ | 2) See eq. (60) for definition |
| BR(I) , BI(I) | $\operatorname{Re}\left\{b_{i}\right\}, \operatorname{Im}\left\{b_{i}\right\}$ | 1) Ibid, see eq. (116) |
| $\mathrm{I}=1$ to 75 | $\operatorname{Re}\left\{B\left(\theta_{i}\right)\right\}, \operatorname{Im}\left\{B\left(\theta_{i}\right)\right\}$ | 2) See eq. (60) for definition |
| BG | $b$ | Width parameter in Gaussian absorption see eq. (82) |
| $\begin{aligned} & \text { CHI2(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\chi^{2}\left(\theta_{i}\right)$ | $=\chi_{\sigma}^{2}\left(\theta_{i}\right)+\chi_{P}^{2}\left(\theta_{i}\right)$ |
| $\begin{aligned} & \text { CHI2P(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\chi_{P}^{2}\left(\theta_{i}\right)$ | See eq. (139) |
| CHI2PT | $\chi_{P}^{2}$ | See eq. (139) |
| CHI2S(I) | $\chi_{\sigma}^{2}\left(\theta_{i}\right)$ | See eq. (138) |
| $\mathrm{I}=1$ to 75 |  |  |
| CHI2ST | $\chi_{\sigma}^{2}$ | See eq. (138) |
| CHI2T | $\chi^{2}$ | $=\chi_{\sigma}^{2}+\chi_{P}^{2}$ |
| $\begin{aligned} & C R 1(L), C I 1(L) \\ & \text { for } \mathrm{L}=1 \text { to } 51 \end{aligned}$ | $\operatorname{Re}\left(C_{\ell}^{+}\right), \operatorname{Im}\left(C_{\ell}^{+}\right)$ | See eqs. (57) and (125) |
| CR2(L), CI2(L) | $\operatorname{Re}\left(C_{\ell}^{-}\right), \operatorname{Im}\left(C_{\ell}^{-}\right)$ | See eqs. (57) and (125) |
| DA, DV, DW, DVS, DWS, DBG |  | Amount by which $A, V, W, V S, W S$, $B G$ must be incremented for succeeding runs (these increments may be input as positive, zero or negative). |
| DPOLEX(I) <br> for $\mathrm{I}=1$ to 75 | $\Delta P^{\mathrm{ex}}\left(\theta_{i}\right)$ | Standard deviation in the experimental polarization (must never be input as 0 ) |
| DRHO(I) <br> for $\mathrm{I}=1$ to 250 | $\Delta \rho_{i}$ | Interval of numerical integration (see description of subroutine RHOTB) |
| DRHOL |  | Last interval to be used in the numerical integration |


| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { DRHOIN(I) } \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ |  | Interval of numerical integration specified by input for RHOIN(I) $<\rho \leq$ RHOIN(I +1 ) (See description of subroutine RHOTB) |
| $\begin{aligned} & \text { DSGMEX(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\Delta \sigma^{\operatorname{ex}}\left(\theta_{i}\right)$ | Standard deviation in the experimental differential elastic scattering cross section in square fermis/sterad, (must never be input as 0) |
| ECM | $E$ | Incident energy in center-of-mass system (MeV) |
| ELAB | $E_{\text {LAB }}$ | Incident energy in laboratory system (MeV) |
| EPS1, EPS2, EPS3 | $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ | Error thresholds appearing in various parts of the calculation of the coulomb functions. See eqs. (155) to (158) |
| EPS4 | $\epsilon_{4}$ | Error threshold used in POT1CH subroutine, see eqs. (144) to (150) |
| ETA | $\eta$ | See eq. (43) |
| ETA2 | $\eta^{2}$ |  |
| EXSGMR(L), <br> EXSGMI(L) <br> $\mathrm{L}=1$ to 51 | $\operatorname{Re}\left\{e^{2 i \sigma_{\ell}}\right\}, \operatorname{Im}\left\{e^{2 i \sigma_{\ell}}\right\}$ | See eq. (133) |
| $\mathrm{F}(\mathrm{L}), \mathrm{L}=1$ to 52 | $F_{\ell}$ | See eq. (114) and (122) |
| $\operatorname{FBAR}(\mathrm{L})$, $\mathrm{L}=1 \text { to } 91$ | $F_{\ell}^{(n)}$ | See eq. (120) |
| $\begin{aligned} & \mathrm{FCR}(\mathrm{I}), \mathrm{FCI}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\operatorname{Re}\left\{f_{c}\left(\theta_{i}\right)\right\}, \operatorname{Im}\left\{f_{c}\left(\theta_{i}\right)\right\}$ | See eq. (47) |
| $\operatorname{FFCR}(\mathrm{I})$, <br> FFCRM(I) $\mathrm{I}=1 \text { to } 250$ | $\begin{aligned} & f_{\mathrm{CR}}\left(\rho_{i}\right) \\ & f_{\mathrm{CR}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right) \end{aligned}$ | Form factors for the real central part of the potential at the beginning and middle of an integration interval (See eqs. (80), (84), (86), (87) and description of subroutine PGEN4) |
| $\begin{aligned} & \mathrm{FFCI}(\mathrm{I}), \mathrm{FFCIM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $\begin{aligned} & f_{\mathrm{CI}}\left(\rho_{i}\right) \\ & f_{\mathrm{CR}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right) \end{aligned}$ | As above for the imaginary central part of the potential (See eqs. (80), (82), (84), (86), (87), and description of subroutine PGEN4) |
| FFSR(I), <br> FFSRM(I) $\mathrm{I}=1 \text { to } 250$ | $f_{\mathrm{SR}}\left(\rho_{i}\right) f_{\mathrm{SR}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right)$ | As above for the real spin-orbit part of the potential (See eqs. (81), (85), (91), (94) and description of subroutine PGEN4) |


| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \operatorname{FFSI}(\mathrm{I}), \operatorname{FFSIM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $f_{\mathrm{SI}}\left(\rho_{i}\right) f_{\mathrm{SI}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right)$ | As above for the imaginary spin-orbit part of the potential (See eqs. (81), (85), (91), (94), and description of subroutine PGEN4) |
| FKAY | $k$ | See eq. (8) (inverse fermis) |
| FKAYA | ka |  |
| FKAYB | $k b$ |  |
| FMB | $m_{b}$ | Mass number of target nucleus (atomic units) |
| FMI | $m_{i}$ | Mass number of incident particle (atomic units) |
| FMU | $\mu$ | Reduced mass of incident particle (atomic units (see eq. (5)) |
| FN1A, FN2A | $n A_{1}, n A_{2}$ | See eq. (86) and following description |
| FN1B, FN2B | $n B_{1}, n B_{2}$ | See eq. (87) and following description |
| $\mathrm{FF}(\mathrm{L}), \mathrm{L}=1$ to 51 | $F_{\ell}^{\prime}$ | See eq. (123) |
| $\mathrm{G}(\mathrm{L}), \mathrm{L}=1$ to 52 | $G_{\ell}$ | See eq. (114) and (119) |
| $\operatorname{GP}(\mathrm{L}), \mathrm{L}=1$ to 51 | $G_{\ell}^{\prime}$ | See eq. (123) |
| HA, HB | $h_{0 A}, h_{0 B}$ | See eq. (88) |
| IDATA |  | Number of sets of data to be processed after making use of subroutine SAVE |
| IFIRST |  | Initial value of I, the subscript appearing in RHO(I) |
| ILAST |  | Final value of I, the subscript appearing in RHO(I) |
| $\operatorname{IIN}(\mathrm{L}), \mathrm{L}=1$ to 51 |  | Originally designed to allow input of any desired value of IFIRST for various L's in order to speed up the numerical integration. In the present program the $\operatorname{IIN}(\mathrm{L})$ are all set equal to 1 by subroutine INPT4 |
| ISPILL, JSPILL |  | Underflow and overflow indicators used in conjunction with subroutine SPILL |
| JMAX |  | Total number of angles input (JMAX $\leq 75$ ) |
| JMAXT |  | Temporary storage for JMAX used after calling subroutine SAVE |


| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { KTRL(I) } \\ & \mathrm{I}=1 \text { to } 13 \end{aligned}$ |  | Controls used throughout the program to specify the potential, input and output type (see description of input data) |
| $\begin{aligned} & \text { KTRLT(I) } \\ & \mathrm{I}=1 \text { to } 13 \end{aligned}$ |  | Temporary storage for KTRL(I) used after calling subroutine SAVE |
| L | $\ell+1$ |  |
| LMAX | $\ell_{\text {max }}+1$ |  |
| LMAXM | $\ell_{\text {max }}$ |  |
| NA, NV, NW, NVS, NWS, NBG |  | DO loop variables used in subroutine CTRL4 to specify the number of times the parameters have been incremented |
| NAMAX, NVMAX, <br> NWMAX, <br> NVSMAX, <br> NWSMAX, <br> NBGMAX |  | Total number of incrementations of the parameters specified as input data ( $\geq$ 1) |
| NINPUT |  | DO loop variable used after calling subroutine SAVE in order to count the number of sets of processed input data |
| NMAX |  | Total number of input values of RHOIN(I) specified in input |
| NMAXT |  | Temporary storage for NMAX used after calling subroutine SAVE |
| NMAXP |  | $=$ NMAX - 1 |
| NUMPRG |  | Program number (see description of input data) |
| $\begin{aligned} & \operatorname{NUMRUN(I)} \\ & \mathrm{I}=1 \text { to } 5 \end{aligned}$ |  | Identification (see description of input data) |
| $\begin{aligned} & \text { POLEX(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $P^{\text {ex }}\left(\theta_{i}\right)$ | Experimental value of the polarization |
| $\begin{aligned} & \text { POLTH(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $P^{\text {th }}\left(\theta_{i}\right)$ | Calculated value of the polarization See eq. (35) |
| $\begin{aligned} & \mathrm{P}(\mathrm{~L}, \mathrm{~J}) \mathrm{L}=1 \text { to } 51 \\ & \mathrm{~J}=1 \text { to } 75 \end{aligned}$ | $P_{\ell}\left(\theta_{j}\right)$ | Legendre polynomial, see eq. (134) |
| $\begin{aligned} & \mathrm{PP}(\mathrm{~L}, \mathrm{~J}) \\ & \mathrm{L}=1 \text { to } 50 \\ & \mathrm{~J}=1 \text { to } 75 \end{aligned}$ | $P_{\ell}^{(l)}\left(\theta_{j}\right)$ | Associated Legendre polynomial, see eq. (135) |
| PMA, PMB | $\rho_{m_{A}} / \rho_{N}^{-}$and $\rho_{m_{B}} / \rho_{N}^{-}$ | These are the quantities specified by the input as they are more convenient than RMA and RMB. |


| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| RO | $R_{\text {ON }}$ | Nuclear radius constant (fermis), see eq. (63) |
| RC | $R_{\text {OC }}$ | Charge radius constant (fermis) see eq. (66) |
| RG | $R_{\text {OG }}$ | Gaussian radius constant (fermis) see eq. (83) |
| RHOBC | $\bar{\rho}_{C}$ | Value of $\rho$ at which the uniform charge density ends, see eq. (74) |
| RHOBN | $\bar{\rho}_{N}$ | Value of $\rho$ at which the standard potential falls to half of its initial value, see eq. (73) |
| RHOBNG | $\bar{\rho}_{G}$ | Value of $\rho$ at which the Gaussian absorption is centered |
| $\begin{aligned} & \text { RHOIN(I) } \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ |  | Input values of $\rho$ for which the integration interval must change from DRHOIN(I-1) to DRHOIN(I). See description of subroutine RHOTB) |
| ROMAX |  | Final value of $\rho$ in the numerical integration |
| $\begin{aligned} & \mathrm{RHO}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $\rho_{i}$ | Value of $\rho$ at the $i$-th interval of integration, see eq. (14) |
| RMA, RMB | $\rho_{m_{A}}, \rho_{m_{B}}$ | Values of $\rho$ at which special form factors are matched to standard form factors, see eqs. (86) and (87) |
| $\begin{aligned} & \text { SGMAC(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\sigma_{c}\left(\theta_{i}\right)$ | See eq. (136) (square fermis/sterad) |
| $\begin{aligned} & \text { SGMAEX(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\sigma^{\operatorname{ex}}\left(\theta_{i}\right)$ | Experimental values of the differential elastic scattering cross section (square fermis/sterad) |
| SGMATH(I) $\mathrm{I}=1 \text { to } 75$ | $\sigma^{\text {th }}\left(\theta_{1}\right)$ | Calculated values of the differential elastic scattering cross section (square fermis/sterad), see eq. (34) |
| SGMRTH | $\sigma_{R}$ | Calculated value of the reaction cross section (square fermis) see eq. (132) |
| SIGMA0 | $\sigma_{0}$ | See eqs. (117) and (118) |
| SIGMA1 | $\sigma_{1}$ | See eq. (117) |
| $\begin{aligned} & \text { SRATIO(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\sigma\left(\theta_{i}\right) / \sigma_{c}\left(\theta_{i}\right)$ | Ratio of calculated to Rutherford cross section |
| TA, TV, TW, TVS, TWS, TBG, |  | Storage for initial values input for the parameters |


| FORTRAN Symbol | Math. Symbol | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { THETAD(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\theta_{i}$ | Scattering angle in center-of-mass system (degrees) |
| $\begin{aligned} & \text { THETA(I) } \\ & \mathrm{I}=1 \text { to } 75 \end{aligned}$ | $\theta_{i}$ | As above (radians) |
| $\begin{aligned} & \mathrm{UCRB}(\mathrm{I}), \mathrm{UCRM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $U_{\mathrm{CR}}\left(\rho_{i}\right) U_{\mathrm{CR}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right)$ | $L$-independent part of the real central potential at the beginning and in the middle of the $i$-th interval of integration, see eq. (98) |
| $\begin{aligned} & \mathrm{UCIB}(\mathrm{I}), \mathrm{UCIM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $U_{\mathrm{CI}}\left(\rho_{i}\right) U_{\mathrm{CI}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right)$ | As above for the imaginary central potential, see eq. (99) |
| $\begin{aligned} & \operatorname{USRB}(\mathrm{I}), \operatorname{USRM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $U_{\mathrm{SR}}\left(\rho_{i}\right) U_{\mathrm{SR}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right.$ | As above for the real spin-orbit potential, see eq. (100) |
| $\begin{aligned} & \operatorname{USIB}(\mathrm{I}), \operatorname{USIM}(\mathrm{I}) \\ & \mathrm{I}=1 \text { to } 250 \end{aligned}$ | $U_{\mathrm{SI}}\left(\rho_{i}\right) U_{\mathrm{SI}}\left(\rho_{i}+\frac{\Delta \rho_{i}}{2}\right)$ | As above for the imaginary spin-orbit potential, see eq. (101) |
| V | $V$ | Depth of real central potential ( MeV ) |
| W | W | Depth of imaginary central potential (MeV) |
| VS | $V_{S}$ | Real part of spin-orbit potential depth (MeV) |
| WS | $W_{S}$ | Imaginary part of spin-orbit potential depth (MeV) |
| XC1, XCP1 | $x_{\ell}^{+}(\rho)$ | Real part of the radial (unnormalized) wave function and its first derivative for the case $L+1 / 2$ |
| YC1, YCP1 | $y_{\ell}^{+}(\rho)$ | As above for the imaginary part and the case $L+1 / 2$ |
| XD1, XDP1 | $x_{\ell}^{-}$ | As above for the real part and the case L-1/2 |
| YD1, YDP1 | $y_{\ell}^{-}$ | As above for the imaginary part and the case $L-1 / 2$ |
| $\begin{aligned} & \mathrm{X} 1(\mathrm{~L}), \mathrm{X} 1 \mathrm{P}(\mathrm{~L}) \\ & \mathrm{L}=1 \text { to } 51 \end{aligned}$ | $x_{\ell}^{+}\left(\rho_{\max }\right), \dot{x}_{\ell}^{+}\left(\rho_{\max }\right)$ | Real part of the radial (unnormalized) wave function and its first derivative for the case $L+1 / 2$ at the end of a numerical integration |
| $\begin{aligned} & \mathrm{Y} 1(\mathrm{~L}), \mathrm{Y} 1 \mathrm{P}(\mathrm{~L}) \\ & \mathrm{L}=1 \text { to } 51 \end{aligned}$ | $y_{\ell}^{+}\left(\rho_{\max }\right), \dot{y}_{\ell}^{+}\left(\rho_{\max }\right)$ | As above for the imaginary part and the case $L+1 / 2$ |
| $\begin{aligned} & \mathrm{X} 2(\mathrm{~L}), \mathrm{X} 2 \mathrm{P}(\mathrm{~L}) \\ & \mathrm{L}=1 \text { to } 51 \end{aligned}$ | $x_{\ell}^{-}\left(\rho_{\max }\right), \dot{x}_{\ell}^{-}\left(\rho_{\max }\right)$ | As above for the real part and the case L-1/2 |
| $\begin{aligned} & \mathrm{Y} 2(\mathrm{~L}), \mathrm{Y} 2 \mathrm{P}(\mathrm{~L}) \\ & \mathrm{L}=1 \text { to } 51 \end{aligned}$ | $y_{\ell}^{-}\left(\rho_{\max }\right), \dot{y}_{\ell}^{-}\left(\rho_{\max }\right)$ | As above for the imaginary part and the case $L-1 / 2$ |


| FORTRAN Symbol | Math. Symbol | Description |
| :--- | :--- | :--- |
| ZZ | $Z Z^{\prime}$ | Product of the atomic numbers of the <br> target nucleus and the incident parti- <br> cle. |

## VI. Symbolic Listing of the Program

MAIN ROUTINE - SCAT 4
COMMON A, AR, AI,
1BR, BI ,BG,
2CHI2, CHI2P, CHI2PT, CHI2S, CHI2ST, CHI2T, CR1, CI1, CR2, CI2 , 3DPOLEX,DSGMEX,DRHO,DRHOIN,DRHOL,DV,DW,DA,DVS,DWS,DBG, 4ECM, ELAB , EPS1, EPS2 , EPS3 , EPS4, ETA, ETA2, EXSGMR, EXSGMI,
$5 \mathrm{~F}, \mathrm{FBAR}, \mathrm{FCR}, \mathrm{FCI}$, FFCR , FFCI , FFCRM, FFCIM, FFSR , FFSI , FFSRM, FFSIM , 6FKAY,FMB, FMI,FMU, FN1A, FN2A, FN1B, FN2B, FP ,FKAYA, FKAYB,
7G, GP,
8HA, HB,
9IDATA, IFIRST , IIN , ILAST , ISPILL
COMMON JMAX, JMAXT, JSPILL ,
1KTRL, KTRLT,
2L ,LMAX,LMAXM,
3NMAX,NMAXP,NMAXT, NINPUT,NUMRUN,NUMPRG,NVMAX,NWMAX,NAMAX,NVSMAX, 4NWSMAX,NV,NW,NA,NVS,NWS,NBGMAX,NBG,
5P , PP ,POLEX, POLTH,PMA,PMB,
6RC,RO,RHO,RHOBC,RHOBN, RHOIN,RHOMAX,RMA,RMB,RG,RHOBNG,
7SGMAC,SGMAEX,SGMATH, SGMRTH, SIGMA0, SIGMA1, SRATIO,
8THETA, THETAD, TV,TW, TA, TVS,TWS, TBG,
9UCRB, UCIB , UCRM, UCIM, USRB, USIB , USRM, USIM
COMMAN V, VS ,
1W,WS,
2X1, X2, X1P, X2P, XC1, XCP1, XD1, XDP1,
$3 \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 1 \mathrm{P}, \mathrm{Y} 2 \mathrm{P}, \mathrm{YC} 1, \mathrm{YCP} 1, \mathrm{YD} 1, \mathrm{YDP} 1$,
4ZZ
DIMENSION AR (75) , AI (75) ,
1BR (75) , BI (75) ,
2CHI2 (75) , CHI2P (75) , CHI2S (75) , CR1 (51) , CI1 (51) , CR2 (51) , CI2 (51) ,
3DPOLEX (75) , DSGMEX (75) , $\mathrm{DRHO}(250), \mathrm{DRHOIN}(250)$,
4EXSGMR (51), EXSGMI (51),
$5 \mathrm{~F}(52), \operatorname{FBAR}(91), \operatorname{FCR}(75), \mathrm{FCI}(75), \operatorname{FFCR}(250), \operatorname{FFCI}(250), \operatorname{FFCRM}(250)$,
$6 \operatorname{FFCIM}(250), \operatorname{FFSR}(250), \operatorname{FFSI}(250), \operatorname{FFSRM}(250), \operatorname{FFSIM}(250), \operatorname{FP}(51)$,
$7 \mathrm{G}(52), \mathrm{GP}(51)$,
8 IIN (51) ,
9KTRL(13) ,KTRLT(13)
DIMENSION NUMRUN(5),
$1 \mathrm{P}(51,75), \mathrm{PP}(50,75), \operatorname{POLEX}(75), \operatorname{POLTH}(75)$,
$2 \mathrm{RHO}(250), \mathrm{RHOIN}(250)$,
3SGMAC ( 75 ) , SGMAEX ( 75 ) , SGMATH ( 75 ) , $\operatorname{SRATIO~(75)~,~}$
4THETA ( 75 ) , THETAD ( 75 ),
$5 \operatorname{UCRB}(250), \operatorname{UCIB}(250), \operatorname{UCRM}(250), \operatorname{UCIM}(250), \operatorname{USRB}(250), \operatorname{USIB}(250)$,
6USRM (250), USIM (250),
7X1 (51) , X2 (51) , X1P (51) , X2P (51),
8Y1 (51) , Y2 (51) , Y1P (51) , Y2P (51)
CALL SPILL (JSPILL, ISPILL , 0. , 0.)
EPS1 $=0.00001$
EPS2 $=0.00001$
EPS3 $=0.00001$
EPS4 $=0.001$

READ INPUT TAPE 7,10 , (NUMRUN(I)) , $\mathrm{I}=1,5)$
READ INPUT TAPE 7,10 ,NUMPRG
10 FORMAT (I5 )
CALL CTRL4
GO

SUBROUTINE CTRL4
$3 \operatorname{NUMRUN}(4)=\operatorname{NUMRUN}(4)+1$
$\operatorname{NUMRUN}(5)=0$
CALL INPT4
CALL POT1CH
35 IF (KTRL(5)) $80,81,80$
80 CALL POP1
81 CALL SIGZRO
CALL FSUBC
CALL EXSGML
DO 20 NV=1,NVMAX
IF (NV-1) 102,101,102
101 V=TV
GO TO 103
$102 \mathrm{~V}=\mathrm{V}+\mathrm{DV}$
103 DO 20 NW=1 NWMAX
IF (NW-1) 105,104,105
104 W-1W
GO TO 109
105 W-WHW
109 DO 20 NA=1. NAMAX
IF (NA-1) 111,110,111
$110 \mathrm{~A}=\mathrm{TA}$
GO TO 112
$111 \mathrm{~A}=\mathrm{A}+\mathrm{DA}$
112 DO 20 NVS=1,NVSMAX
IF (NVS-1) 114,113,114
113 VS=TVS
GO TO 115
114 VS=VS + DVS
115 DO 20 NWS $=1$,NWSMAX
IF (NWS-1) 117,116,117
116 WS-TWS
GO TO 118
117 WS-WS-DWS
118 DO 20 NBG=1,NBGMAX
IF (NBG-1) $120,119,120$
119 BG-TBG
GO TO 121
120 BG-BG-DBG
121 IF (SENSE SWITCH 1) 26,27
26 REWIND 7
CALL SAVE (8)
READ INPUT TAPE 7,50 ,(LGAR, $\mathrm{I}=1,6$ )
DATA= NUMRUN (4)
DO 66 NINPUT $=1$, IDATA
READ INPUT TAPE $7,50,(\operatorname{KTRLT}(\mathrm{I}), \mathrm{I}=1,13)$
50 FORMAT (I5)
51 FORMAT (E15.9)
READ INPUT TAPE $7,51,($ GAR, $\mathrm{I}=1,27)$
READ INPUT TAPE 7,50 , (LGAR, $\mathrm{I}=1,6$ ), NMAXT
NT $=2 *$ NMAXT -1
READ INPUT TAPE 7,51 , (GAR, $\mathrm{I}=1, \mathrm{NT})$
READ INPUT TAPE 7,51,LGAR

```
 IF (KTRLT(5)) 71,70,71
 71 READ INPUT TAPE 7,50, JMAXT
 READ INPUT TAPE 7,51,(GAR, I=1,JMAXT)
70 IF (KTRLT(2)) 61,66,61
61 IF (KTRLT(3)) 63,66,63
 6 3 ~ N T = 4 * J M A X T ~
 READ INPUT TAPE 7,51,(GAR, I=1,NT)
66 OONTINUE
27 NUMRUN(5)= NUMRUN(5)+1
 CALL RHOTB
 CALL COULFN
 CALL RMXINC
 CALL PGEN4
 CALL INTCTR
 CALL CSUBL
 CALL AB
 CALL SGSGCP
 CALL SIGMAR
 IF (KTRL(2)) 33,100,33
 33 CALL CHISQ
 100 CALL OUTPT4
 20 OONTINUE
 GO TO 3
```

```
 SUBROUTINE INPT4
 IF DIVIDE CHECK 100,110
 100 WRITE OUTPUT TAPE 6,101
 101 FORMAT(59H DIVIDE CHECK TRIGGER FOUND ON AT START OF INPT4 SUBROUT
 1INE)
 CALL LEAVE
 STOP
110 ISPILL=0
 JSPILL=0
 READ INPUT TAPE 7,10,KTRL(1)
 IF (KTRL(1) - 100) 150,151,151
 151 CALL EXIT
 STOP
 150 READ INPUT TAPE 7,10,(KTRL(I), I=2,13)
10 FORMAT (I5)
 READ INPUT TAPE 7,12,FMI,FMB,ELAB,ZZ,RC,V,W,RO,A,VS,WS,RG,BG,
 1DV,DW,DA,DVS,DWS,DBG
 READ INPUT TAPE 7,12,HA,PMA,FN1A,FN2A,HB,PMB,FN1B,FN2B
 READ INPUT TAPE 7,10,NVMAX,NWMAX,NAMAX,NVSMAX,NWSMAX,NBGMAX
 FORMAT (E15.9)
 TV= V
 TW=W
 TA=A
 TVS=VS
 TWS-WS
 TBG-BG
 READ INPUT TAPE 7,10,NMAX
 NMAXP-NMAX-1
 READ INPUT TAPE 7,12,(RHOIN(I), I=1,NMAX),(DRHOIN(I), I=1,NMAXP)
 CO2=FMI +FMB
 FMU=(FMI*FMB) / CO2
 ECM-ELAB*(FMB/CO2)
 FKAY= .2195376*SQRTF(FMU*ECM)
 T FKAY*(FMB**.333333333)
 RHOBN= T*RO
 RHOBNG=T*RG
 RMA PMA*RHOBN
 RMB PMB*RHOBN
 RHOBC= T *RC
 ETA=.15805086*ZZ*SQRTF(FMI/ELAB)
 IF DIVIDE CHECK 200,47
200 WRITE OUTPUT TAPE 6,201
201 FORMAT(43H INPUT DIVISOR WAS ZERO IN INPT4 SUBROUTINE)
 CALL LEAVE
 STOP
47 READ INPUT TAPE 7,10,LMAXM
 LMAX LMAXM +1
 DO 147 J=1,LMAX
147 IIN (J)=1
 IF (KTRL(5)) 48,50,48
48 READ INPUT TAPE 7,10,JMAX
 READ INPUT TAPE 7,12,(THETAD(I) , I =1,JMAX)
 DO 49 I=1,JMAX
49 THETA(I)= 0.01745329252*THETAD(I)
```

$50 \quad \mathbf{I F}(\operatorname{KTRL}(2)) \quad 51,207,51$
$51 \quad$ IF (KTRL (3)) $53,207,53$
53 READ INPUT TAPE 7,12,(SGMAEX(I) , I = 1,JMAX), (DSGMEX( I ), I=1,JMAX), 1 (POLEX ( I ) , I = $1, \mathrm{JMAX}),($ DPOLEX ( I ) , I = $=1, \mathrm{JMAX})$
207 IF (ISPILL ) 202, 204, 202
202 WRITE OUTPUT TAPE 6,203,ISPILL
203 FORMAT( 23 H UNDERFLOW OCCURRED AT I5 , 20 H IN INPT4 SUBROUTINE)
204 IF (JSPILL) $205,210,205$
205 WRITE OUTPUT TAPE 6,206, JSPILL
206 FORMAT( 22 H OVERFLOW OCCURRED AT I5, 20 H IN INPT4 SUBROUTINE) CALL LEAVE STOP
210 REIURN

SUBROUTINE POT1CH
IF DIVIDE CHECK 30,31
30 WRITE OUTPUT TAPE 6,130
130 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF POT1CH SUBRO 1UTINE)
CALL LEAVE
STOP
31 ISPILL=0
JSPILL=0
$\operatorname{IKTRL}=\operatorname{KTRL}(13)$
NMAX=NMAX
NMAXP = NMAX-1
AMAX-NAMAX-1
$\operatorname{TTA}=\operatorname{MAX1F}(\mathrm{A},((\mathrm{AMAX} * \mathrm{DA})+\mathrm{A}))$
VMAX-NVMAX-1
$\operatorname{TTV}=\operatorname{MAX1F}(\mathrm{V},((\mathrm{VMAX} * \mathrm{DV})+\mathrm{V}))$
WMAX NWMAX - 1
TTW=MAX1F (W, ( (WMAX*DW) +W) )
VSWAX =NVSMAX-1
TTVS-MAX1F (VS , ( (VSMAX $*$ DVS $)+$ VS $) ~)$
WSMAX NWWSMAX - 1
TIWS-MAX1F (WS, ( (WSMAX $*$ DWS $)+$ WS $)$ )
BGMAX =NBGMAX-1
TTBG $=\mathrm{MAX1F}(\mathrm{BG},((\mathrm{BGMAX} * \mathrm{DBG})+\mathrm{BG}))$
FKAYA-FKAY*TTA
FKAYB FKAY*TTBG
T2 $=\operatorname{SQRTF}(\mathrm{TTV} * * 2+\mathrm{TIW} * * 2) / \mathrm{ECM}$
$\mathrm{T} 7=\mathrm{TTV} / \mathrm{ECM}$
T8=TIW/ECM
IF DIVIDE CHECK 60,61
60 WRITE OUTPUT TAPE 6,160
160 FORMAT(26H ECM IS ZERO IN POT1CH SUB)
CALL LEAVE
STOP
61 GO TO $(3,3,111,15)$, IKTRL
$3 \quad \mathbf{I F}(\operatorname{KTRL}(1)-2) \quad 24,25,24$
25 IF (RHOIN(NMAX)-RHOBN) $10,10,8$
$24 \mathrm{~T} 1=1 . /(1 .+\operatorname{EXPF}((\mathrm{RHOIN}(\mathrm{NMAX})-\mathrm{RHOBN}) /$ FKAYA $))$
IF DIVIDE CHECK 50,28
50 WRITE OUTPUT TAPE 6,150
150 FORMAT( 28 H FKAYA IS ZERO IN POT1CH SUB)
CALL LEAVE
STOP
$28 \operatorname{IF}(\operatorname{KTRL}(1)-1) \quad 40,41,40$
$40 \mathrm{~T} 3=\mathrm{T} 2 * \mathrm{~T} 1$
GO TO 43
$41 \mathrm{~T} 3=\mathrm{T} 7 * \mathrm{~T} 1$
43 IF (T3-EPS4) $42,42,10$
10 WRITE OUTPUT TAPE 6,100 , RHOIN(NMAX) ,DRHOIN(NMAXP)
100 FORMAT(13H RHOIN(NMAX) $=\mathrm{E} 16.9,2 \mathrm{H}+\mathrm{E} 16.9,46 \mathrm{H}$ RHOIN(NMAX) IS TOO SMAL 1L IN NUCLEAR POTENTIAL)
RHOIN (NMAX) $=$ RHOIN (NMAX) + DRHOIN (NMAXP)
GO TO 3
$42 \quad \mathbf{I F}(\operatorname{KTRL}(1)-1) \quad 8,6,8$

```
6 T11= EXPF (-((RHOIN (NMAX) -RHOBNG)}/\textrm{FKAYB})**2
 IF ((T8*T11)-EPS4) 8,8,7
7 WRITE OUTPUT TAPE 6,103,RHOIN(NMAX) ,DRHOIN(MMAXP)
103 FORMAT(13H RHONN(NMAX)=E16.9,2H+ E16.9,46H RHOIN(NMAX) IS TOO SMAL
 1L IN NUCLEAR POTENTIAL)
 RHOIN(NMAX) = RHOIN(NMAX) +DRHOIN(NMAXP)
 GO TO 6
8 GO TO}(111,15),IKTR
111 FLMAX=LMAXM
 IF (KTRL(1) - 2) 29,300,29
300 IF (FLMAX-(RHOBN+3.)) 12,12,15
29 T4=1./(1.+EXPF ((FLMAX-RHOBN)/FKAYA))
 IF (KTRL(1) - 1) 33,32,33
33 T5= T2*T4
 GO TO 310
32 T5=T}7*\textrm{T}
310 IF (T5-EPS4)13,13,12
 12 WRITE OUTPUT TAPE 6,101,LMAXM
 101 FORMAT (7H LMAXM=I5, 3H +1,45H LMAXM TOO SMALL BECAUSE OF CENTRAL P
 1OTENTIAL)
 LMAX = LMAX + }
 LMAXM= LMAXM +1
 IIN }(\mathrm{ LMAX })=
 GO TO 111
13 IF (KTRL(1) - 1) 17,19,17
19 T4-EXPF(- ((FLMAX-RHOBNG)/FKAYB) **2)
 IF ((T8*T4)-EPS4) 17,17,20
20 WRITE OUTPUT TAPE 6,200 ,LMAXM
200 FORMAT (7H LMAXM=I5,3H +1,45H LMAXM TOO SMALL BECAUSE OF CENTRAL P
 1OTENTIAL)
 LMAX LMAX + 1
 LMAXMHMMAXM +1
 IIN (LMAX) =1
 GO TO 19
 17 T2=SQRTF(TTVS**2+TTWS **2)/ECM
18 FLMAX=LMAXM
 T4 =1./(1.+EXPF ((FLMAX-RHOBN) /FKAYA))
38 T}6=2.*\textrm{T}2*\textrm{T}4*(\textrm{FKAYW}**2
 IF(T6-EPS4) 15,15,14
 14 WRITE OUTPUT TAPE 6,102, LMAXM
 102 FORMAT (7H LMAXM=I5,3H +1,48H LMAXM TOO SMALL BECAUSE OF SPIN ORB
 1IT POTENTIAL)
 LMAX= LMAX +1
 LMAXM= LMAXM +1
 IIN (LMAX)=1
 GO TO 18
 15 IF (ISPILL) 202,204,202
 202 WRITE OUTPUT TAPE 6,203,ISPILL
 203 FORMAT(23H UNDERFLOW OCCURRED AT I5 ,14H IN POT1CH SUB)
204 IF (JSPILL) 205,210,205
205 WRITE OUTPUT TAPE 6,206,JSPILL
 206 FORMAT(22H OVERFLOW OCCURRED AT I5 ,14H IN POT1CH SUB)
 CALL LEAVE
 STOP
```

```
 SUBROUTINE POP1
 IF DIVIDE CHECK 1,2
 1 WRITE OUTPUT TAPE 6,101
101 FORMAT (58H DIVIDE CHECK TRIGGER FOUND ON AT START OF POP1 SUBROUT
 1INE)
 CALL LEAVE
 STOP
 2 ISPILL=0
 JSPILL=0
 LMAXP-LWAX+1
 DO 20 J=1,JMAX
 SI2 = 1./ SINF (THETA(J))
 IF DIVIDE CHECK 3,4
 3 WRITE OUTPUT TAPE 6,103, J
103 FORMAT (71H DIVISOR SINF THETA IS ZERO IN FIRST DIVISION OF POP1 S
 1UBROUTINE FOR J=I3)
 CALL LEAVE
 STOP
 CO=COSF(THETA(J))
 P}(1,\textrm{J})=1.
 P}(2,J)=C
 PP}(1,J)=0.
 TWOLP1=3.
 FL=1.
 DO 20 L=1,LMAXP
 TL}=\textrm{FL}+1
 P}(\textrm{L}+2,\textrm{J})=(\textrm{TWOLP1}*\textrm{CO}*\textrm{P}(\textrm{L}+1,\textrm{J})-\textrm{FL}*\textrm{P}(\textrm{L},\textrm{J}))/\textrm{TL
 PP}(\textrm{L}+1,\textrm{J})=\textrm{TL}*\textrm{SI}2*(\textrm{CO}*\textrm{P}(\textrm{L}+1,\textrm{J})-\textrm{P}(\textrm{L}+2,\textrm{J})
 TWOLP1=TWOLP1+2.
 FL=TL
 IF (ISPILL) 30,31,30
 WRITE OUTPUT TAPE 6,130, ISPILL
 130 FORMAT(23H UNDERFLOW OCCURRED AT I6,19H IN POP1 SUBROUTINE)
 31 IF (JSPILL) 32,33,32
 32 WRITE OUTPUT TAPE 6,132, JSPILL
 132 FORMAT (22H OVERFLOW OCCURRED AT I6,19H IN POP1 SUBROUTINE)
 CALL LEAVE
 STOP
 33 REIURN
```

```
SUBROUTINE SIGZRO
IF DIVIDE CHECK 5,6
5 WRITE OUTPUT TAPE 6,105
105 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF SIGZRO SUBRO
 1UTINE)
 CALL LEAVE
 STOP
6 ISPILL = 0
 JSPILL = 0
 SIGMA0}=-(\textrm{ETA}/(12.*(\textrm{ETA}**2+16.)))*(1.+(ETA **2 - 48.)/(30.*((ETA **2+1
 1.)**2))+(ETA **4-160.*(ETA **2) +1280.)/(((16.+ETA **2)**4)*105.))
 SIGMA0=SIGMA0-ETA +(ETA / 2.)*LOGF(ETA **2 + 16.) +((7./ 2.)*ATANF(ETA / 4.)
 1) - (ATANF (ETA) + ATANF(ETA/2.) + ATANF(ETA / 3.))
 SIGMA1=SIGMA0+ATANF(ETA)
15 IF (ISPILL) 30,31,30
 30 WRITE OUTPUT TAPE 6,130,ISPILL
130 FORMAT (23H UNDERFLOW OCCURRED AT I6,21H IN SIGZRO SUBROUTINE)
31 IF (JSPILL) 32,11,32
32 WRITE OUTPUT TAPE 6,132,JSPILL
132 FORMAT (22H OVERFLOW OCCURRED AT I6 ,21H IN SIGZRO SUBROUTINE)
 CALL LEAVE
 STOP
11 RETURN
```

```
 SUBROUTINE FSUBC
 IF DIVIDE CHECK 20,21
 20 WRITE OUTPUT TAPE 6,120
120 FORMAT (53H DIVIDE TRIGGER FOUND ON AT START OF FSUBC SUBROUTINE)
 CALL LEAVE
 STOP
 21 ISPILL=0
 JSPILL=0
 DO 10 J=1,JMAX
 SN=(SINF (THETA(J) / 2.0)) **2
 FLN=ETA * (LOGF}(\textrm{SN}))-2.0*SIGMA
 FNO-ETA/ (2.0*FKAY*(SN))
 IF DIVIDE CHECK 22,23
 22 WRITE OUTPUT TAPE 6,122,J
122 FORMAT (23H DIVISOR IS ZERO FOR J=I3,20H IN FSUBC SUBROUTINE)
 CALL LEAVE
 STOP
 23 FCR (J)=(-FNO*COSF}(\textrm{FLN})
 10 FCI (J)=(FNO *SINF (FLN))
 IF (ISPILL) 24,25,24
 24 WRITE OUTPUT TAPE 6,124, ISPILL
 124 FORMAT (23H UNDERFLOW OCCURRED AT I6 ,20H IN FSUBC SUBROUTINE)
 IF (JSPILL) 26,27,26
 WRITE OUTPUT TAPE 6,126, JSPILL
 FORMAT (22H OVERFLOW OCCURRED AT I6 ,20H IN FSUBC SUBROUTINE)
 CALL LEAVE
 STOP
 27 REIURN
```

SUBROUTINE EXSGML
IF DIVIDE CHECK 10,11
10 WRITE OUTPUT TAPE 6,110
110 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF EXSGML SUBRO
1UTINE)
CALL LEAVE
STOP
11 ISPILL=0
JSPILL=0
1 FL=O.
$\operatorname{EXSGMR}(1)=\operatorname{COSF}(2.0 * \operatorname{SIGMA} 0)$
$\operatorname{EXSGMI}(1)=\operatorname{SINF}(2.0 * \operatorname{SIGMA} 0)$
ETA2-ETA $* * 2$
ETA2A $=2.0 * E T A$
DO $20 \mathrm{~L}=2$,LMAX
$\mathrm{FL}=\mathrm{FL}+1.0$
TER0 $=\mathrm{FL} * * 2$
TER1=TER0+ETA2

TER3 $=($ ETA $2 A *$ FL $) /$ TER1
IF DIVIDE CHECK 12,13
12 WRITE OUTPUT TAPE 6,112 ,L
112 FORMAT (44H DIVISOR IS ZERO IN EXSGML SUBROUTINE FOR L=I3)
CALL LEAVE
STOP
$13 \operatorname{EXSGMR}(\mathrm{~L})=(\mathrm{TER} 2 * \operatorname{EXSGMR}(\mathrm{~L}-1))-(\operatorname{TER} 3 * \operatorname{EXSGMI}(\mathrm{~L}-1))$
$20 \operatorname{EXSGMI}(\mathrm{~L})=($ TER2 $* \operatorname{EXSGMI}(\mathrm{~L}-1))+(\operatorname{TER} 3 * \operatorname{EXSGMR}(\mathrm{~L}-1))$
IF (ISPILL) $14,15,14$
14 WRITE OUTPUT TAPE 6,114 , ISPILL
114 FORMAT( 23 H UNDERFLOW OCCURRED AT I6 ,21H IN EXSGML SUBROUTINE)
15 IF (JSPILL) $16,17,16$
16 WRITE OUTPUT TAPE 6,116 ,JSPILL
116 FORMAT (22H OVERFLOW OCCURRED AT I6 , 21H IN EXSGML SUBROUTINE)
CALL LEAVE
STOP
17 REIURN

```
 SUBROUTINE RHOTB
 DRHO(1)=DRHOIN (1)
 RHO(1)=RHOIN (1)
 N=1
 I=1
 20 RHO}(\textrm{I}+1)=\textrm{RHO}(\textrm{I})+\textrm{DRHOIN}(\textrm{N}
 IF (RHO(I +1)-RHOIN(NMAX)) 30,50,70
30 IF (ABSF}(\operatorname{RHO}(\textrm{I}+1)-\textrm{RHOIN}(\textrm{N}+1))-.5*\operatorname{DRHOIN}(\textrm{N})) 35,35,4
 N=XMINOF(N+1,NMAX-1)
 40 DRHO}(\textrm{I}+1)=\textrm{DRHOIN}(\textrm{N}
 I}=\textrm{I}+
 GO TO 20
 50 ILAST }=\textrm{I}+
60 RHO(ILAST)=RHOIN (NMAX)
 DRHO}(\mathrm{ ILAST - 1) =RHO(ILAST) -RHO(ILAST - 1)
 RHOMAX = RHOIN(NMAX)
 DRHOL DRHOIN(NMAX-1)
 IF(ISPILL) 80,81,80
 80 WRITE OUTPUT TAPE 6,180,ISPILL
180 FORMAT(23H UNDERFLOW OCCURRED AT I6 , 21H IN RHOTB SUBROUTINE)
81 IF (JSPILL) 82, 83, 82
 82 WRITE OUTPUT TAPE 6,182,JSPILL
182 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN RHOTB SUBROUTINE)
 CALL LEAVE
 STOP
 83 REIURN
 70 IF ((RHO(I +1)-RHOIN(NMAX)) -.5*DRHOIN(N)) 50,50,75
 75 ILAST=I
 GO TO 60
```


## SUBROUTINE COULFN

IF DIVIDE CHECK 50,51
50 WRITE OUTPUT TAPE 6,150
150 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF COULFN SUBRO 1UTINE)
CALL LEAVE
STOP
51 ISPILL=0
JSPILL=0
IKTRL-KTRL (13)
LMAX LMAXM +1
ETA2-ETA**2
$\mathrm{SQ}=\operatorname{SQRTF}(1 .+$ ETA2 $)$
$1 \quad \mathrm{IJ}=1$
$\mathrm{AR}(1)=-\mathrm{ETA}$
$\operatorname{AI}(1)=0$.
$\mathrm{AR}(2)=-.5 * \mathrm{ETA} 2$
$\mathrm{AI}(2)=.5 * \mathrm{ETA}$
$2 \quad \mathrm{SI}=0$.
$\mathrm{SR}=0$.
$\mathrm{PR}=\mathrm{RHOMAX}$
DO $10 \mathrm{~K}=2,49$
$\mathrm{T}=\mathrm{PR} * \operatorname{FLOATF}(1-\mathrm{K})$
$\mathrm{TR}=\mathrm{AR}(\mathrm{K}) / \mathrm{T}$
$\mathrm{TI}=\mathrm{AI}(\mathrm{K}) / \mathrm{T}$
IF DIVIDE CHECK 52,53
52 WRITE OUTPUT TAPE 6,152
152 FORMAT(57H DIVISOR T IS ZERO IN FIRST DIVISION OF COULFN SUBROUTIN 1E)
CALL LEAVE
STOP
$53 \mathrm{SQN}=\mathrm{TR} * * 2+\mathrm{TI} * * 2$
IF (K-2) $4,4,3$
3 IF (SQN-SQO) $4,4,11$
4 TR=SR +TR
$\mathrm{TI}=\mathrm{SI}+\mathrm{TI}$
IF (TR-SR) $6,5,6$
5 IF (TI-SI) 6,13,6
$6 \quad \mathrm{SR}=\mathrm{TR}$
$\mathrm{SI}=\mathrm{TI}$
$\mathrm{AR}(\mathrm{K}+1)=0$.
$\mathrm{AI}(\mathrm{K}+1)=0$.
KP-K/2
DO $7 \mathrm{M}=1, \mathrm{KP}$
$\mathrm{KM}-\mathrm{K}+1-\mathrm{M}$
$\mathrm{AR}(\mathrm{K}+1)=\mathrm{AR}(\mathrm{K}+1)-\mathrm{AR}(\mathrm{M}) * \mathrm{AR}(\mathrm{KM})+\mathrm{AI}(\mathrm{W}) * \mathrm{AI}(\mathrm{KM})$
$\mathrm{AI}(\mathrm{K}+1)=\mathrm{AI}(\mathrm{K}+1)-\mathrm{AI}(\mathrm{KM}) * \mathrm{AR}(\mathrm{M})-\mathrm{AI}(\mathrm{M}) * \mathrm{AR}(\mathrm{KM})$
$\mathbf{I F}(\mathrm{K}-2 * \mathrm{KP}) \quad 8,9,8$
$\mathrm{AR}(\mathrm{K}+1)=\mathrm{AR}(\mathrm{K}+1)-.5 *(\mathrm{AR}(\mathrm{KP}+1) * * 2-\mathrm{AI}(\mathrm{KP}+1) * * 2)$
$\mathrm{AI}(\mathrm{K}+1)=\mathrm{AI}(\mathrm{K}+1)-\mathrm{AR}(\mathrm{KP}+1) * \mathrm{AI}(\mathrm{KP}+1)$
$9 \quad \mathrm{FK}=.5 * \operatorname{FLOATF}(\mathrm{~K})$
$\mathrm{AI}(\mathrm{K}+1)=\mathrm{AI}(\mathrm{K}+1)-\mathrm{FK} * \mathrm{AR}(\mathrm{K})$
$\mathrm{AR}(\mathrm{K}+1)=\mathrm{AR}(\mathrm{K}+1)+\mathrm{FK} * \mathrm{AI}(\mathrm{K})$
$\mathrm{PR}=\mathrm{PR} *$ RHOMAX

```
10 SQO=SQN
 GO TO 101
 11 T=SR}**2+SI**
 IF(T) 105,105,12
 12 IF (ABSF(SQO/T)-EPS3) 13,13,106
 13 GO TO (14,15), IJ
 14 PAR RHOMAX-ETA *LOGF (2 . *RHOMAX)
 PHIOR PAR +SIGMA0+SR
 PHIOI=SI
 AR(2)=-1.+AR(2)
 IJ=2
 GO TO 2
 15 PHI1R }=\mathrm{ PAR }+\mathrm{ SIGMA1 - 1.570796325 +SR
 PHI1I=SI
 25 T1=EXPF(-PHI0I)
 T2 = EXPF(-PHI1I)
 G(1)=T1*COSF (PHIOR)
 G(2)=T2*COSF(PHI1R)
 F1=T1*SINF (PHIOR)
 F2=T2*SINF (PHI1R)
 IF (ABSF}(\textrm{F}1*\textrm{G}(2)-\textrm{F}2*\textrm{G}(1)-1./\textrm{SQ})-\textrm{EPS}1) 31,31,10
 31 IDEC=11
 32 I=LMAX+IDEC
 FBAR(I) =.1
 FBAR (I +1)=0.
 LIMIT-LMAXM +IDEC
 FL-LMAX+11
 T1=SQRTF}((\textrm{FL}+1.)**2+ETA2
 IF (JSPILL) 139,133,139
139 WRITE OUTPUT TAPE 6,1390,JSPILL
1390 FORMAT(23H OVERFLOW2 OCCURRED AT I6,21H IN COULFN SUBROUTINE)
 CALL LEAVE
 STOP
133 DO 33 I=1,LIMIT
 L-LMAX+IDEC-I
 FL=L
 T2=SQRTF(FL**2+ETA2)
 FBAR}(\textrm{L})=((2.*\textrm{FL}+1.)*(\textrm{ETA}+\textrm{FL}*(\textrm{FL}+1.)/\textrm{RHOMAX})*\textrm{FBAR}(\textrm{L}+\textrm{l})-\textrm{FL}*\textrm{T}1*\textrm{FBAR}(\textrm{L
 1+2))/((FL+1.)*T2)
 IF DIVIDE CHECK 54,600
 54 WRITE OUTPUT TAPE 6,154
 154 FORMAT(56H DIVISOR IS ZERO IN SECOND DIVISION OF COULFN SUBROUTINE
 1)
 CALL LEAVE
 STOP
600 IF (JSPILL) 601,33,601
601 WRITE OUTPUT TAPE 6,1601,JSPILL
1601 FORMAT(22H OVERFLOW OCCURRED AT I6 ,21H IN COULFN SUBROUTINE, 24H MU
 1LTIPLY FBAR(I) BY 0.1)
 K=LMAX+IDEC
 FBAR(K)=FBAR(K)*0.1
 JSPILL=0
 GO TO 133
33 T1=T2
```

$\mathrm{ALPHA}=1 . /((\operatorname{FBAR}(1) * \mathrm{G}(2)-\operatorname{FBAR}(2) * \mathrm{G}(1)) * \mathrm{SQ})$
IF DIVIDE CHECK 55,43
55 WRITE OUTPUT TAPE 6,155
155 FORMAT (55H DIVISOR IS ZERO IN THIRD DIVISION OF COULFN SUBROUTINE
1)

CALL LEAVE
STOP
43 LMAXP-LMAX + 1
DO $34 \mathrm{I}=1$,LMAXP
$34 \quad \operatorname{FBAR}(\mathrm{I})=\mathrm{ALPHA} * \operatorname{FBAR}(\mathrm{I})$
IF (IDEC-11) $371,35,371$
371 IF ( $\operatorname{ABSF}(\mathrm{F} 1 / \operatorname{FBAR}(1)-1)-.\mathrm{EPS} 2) 37,37,35$
35 DO $36 \mathrm{I}=1$,LMAXP
$36 \quad \mathrm{~F}(\mathrm{I})=\mathrm{FBAR}(\mathrm{I})$
$\mathrm{IDEC}=\mathrm{IDEC}+5$
IF (IDEC-40) $32,32,103$
37 DO $38 \mathrm{I}=1$,LMAXP
IF ( $\operatorname{ABSF}(\mathrm{F}(\mathrm{I}) / \operatorname{FBAR}(\mathrm{I})-1)-.\mathrm{EPS} 2) 44,44,35$
44 IF DIVIDE CHECK 56,38
56 WRITE OUTPUT TAPE $6,156, \mathrm{~L}, \mathrm{I}$
156 FORMAT (74H DIVISOR FBAR(I) - 1. IS ZERO IN FOURTH DIVISION OF COULFN
1 SUBROUTINE FOR $\mathrm{L}=\mathrm{I} 3,7 \mathrm{H}$ AND $\mathrm{I}=\mathrm{I} 3$ )
CALL LEAVE
STOP
38 OONTINUE
DO $381 \mathrm{I}=1, \mathrm{MAXP}$
$381 \quad \mathrm{~F}(\mathrm{I})=\mathrm{FBAR}(\mathrm{I})$
382 T1 $=$ SQ
DO $40 \mathrm{~L}=1$,LMAX
$\mathrm{FL}=\mathrm{L}$
$\mathrm{T} 2=\operatorname{SQRTF}((\mathrm{FL}+1) * * 2+.\mathrm{ETA} 2)$
$\mathrm{G}(\mathrm{L}+2)=((2 . * \mathrm{FL}+1) *.(\mathrm{ETA}+\mathrm{FL} *(\mathrm{FL}+1) / \mathrm{RHOWAX}) * .\mathrm{G}(\mathrm{L}+1)-(\mathrm{FL}+1) * \mathrm{~T} 1 * .\mathrm{G}(\mathrm{L}))$
$1 /(\mathrm{FL} * \mathrm{~T} 2)$
TS=FL/T1
IF DIVIDE CHECK 57,45
57 WRITE OUTPUT TAPE 6,157
157 FORMAT(58H DIVISOR T1 IS ZERO IN FIFTH DIVISION OF COULFN SUBROUTI
1NE)
CALL LEAVE
STOP
$45 \quad \mathbf{I F}(\operatorname{ABSF}(\mathrm{~F}(\mathrm{~L}) * \mathrm{G}(\mathrm{L}+1)-\mathrm{F}(\mathrm{L}+1) * \mathrm{G}(\mathrm{L})-\mathrm{TS})-\mathrm{EPS} 1) 40,40,104$
40 T1=T2
41 DO 42 L=1,LMAX
$\mathrm{FL}=\mathrm{L}$
$\mathrm{T}=\mathrm{FL} * * 2$
T1 $=$ T/RHOMAX + ETA
IF DIVIDE CHECK 58,46
58 WRITE OUTPUT TAPE 6,158
158 FORMAT ( 62 H DIVISOR RHOMAX IS ZERO IN SIXTH DIVISION OF COULFN SUB 1ROUTINE)
CALL LEAVE
STOP
46 T2 $=$ SQRTF (T+ETA2)
$\mathrm{FP}(\mathrm{L})=(\mathrm{T} 1 * \mathrm{~F}(\mathrm{~L})-\mathrm{T} 2 * \mathrm{~F}(\mathrm{~L}+1)) / \mathrm{FL}$

```
42 GP(L) =(T1*G(L)-T2*G(L+1))/FL
 IF DIVIDE CHECK 59,47
59 WRITE OUTPUT TAPE 6,159
159 FORMAT(60H DIVISOR FL IS ZERO IN SEVENTH DIVISION OF COULFN SUBROU
 1TINE)
 CALL LEAVE
 STOP
47 IF (ISPILL) 60,61,60
60 WRITE OUTPUT TAPE 6,160,ISPILL
160 FORMAT(23H UNDERFLOW OCCURRED AT I6 , 21H IN COULFN SUBROUTINE)
 61 IF (JSPILL) 62,63,62
 62 WRITE OUTPUT TAPE 6,162,JSPILL
 162 FORMAT(22H OVERFLOW OOCURRED AT I6 ,21H IN COULFN SUBROUTINE)
 CALL LEAVE
 STOP
 6 3 ~ R E I U R N
 101 WRITE OUTPUT TAPE 6,121,RHOMAX,DRHOL
 GO TO (110,110,109,109),IKTRL
109 WRITE OUTPUT TAPE 6,114
 GO TO 13
 102 WRITE OUTPUT TAPE 6,122,RHOMAX,DRHOL
 GO TO(110,110,111,111),IKTRL
111 WRITE OUTPUT TAPE 6,114
 GO TO 31
 103 WRITE OUTPUT TAPE 6,123,RHOMAX,DRHOL
 GO TO (110,110,112,112),IKTRL
112 WRITE OUTPUT TAPE 6,114
 GO TO 382
 104 WRITE OUTPUT TAPE 6,124,RHOMAX,DRHOL ,L
 GO TO (110, 110, 113,113),IKTRL
113 WRITE OUTPUT TAPE 6,114
 GO TO 40
 105 WRITE OUTPUT TAPE 6,125,RHOMAX,DRHOL
 GO TO (110, 110, 115,115),IKTRL
115 WRITE OUTPUT TAPE 6,114
 GO TO 12
106 WRITE OUTPUT TAPE 6,126,RHOMAX,DRHOL
 GO TO (110,110,116,116),IKTRL
116 WRITE OUTPUT TAPE 6,114
 GO TO 13
 110 RHOMAX RHOMAX+DRHOL
 GO TO 1
121 FORMAT(18H INCREASE RHO MAX=E11.4,2H+ E11.4,35H A OR B SERIES CONV
 1ERGES TOO SLOWLY)
 122 FORMAT(18H INCREASE RHO MAX=E11.4,2H+ E11.4,22H BAD INITIAL WRONSK
 1IAN)
123 FORMAT(18H INCREASE RHO MAX=E11.4,2H+ E11.4,24H L TOO LARGE IN FBA
 1R (L))
124 FORMAT(18H INCREASE RHO MAX=E11.4,2H+ E11.4,21H BAD WRONSKIAN FOR
 1L=I3)
125 FORMAT(67H SERIES IN PHI0 OR PHI1 IS ZERO, CHECK DATA, IF OK INCRE
 1ASE RHOMAX=E11.4,2H+ E11.4)
126 FORMAT(52H A OR B SERIES DIVERGES TOO QUICKLY INCREASE RHOMAX=E11.
 14,2H+ E11.4)
```

114 FORMAT(42H RHOMAX INCREASE NOT PERMITTED BY KTRL(13))

SUBROUTINE RMXINC
3 IF (RHOMAX $\mathrm{RHO}(\operatorname{ILAST})) 1,2,1$
$1 \quad$ ILAST $=$ ILAST +1
$\mathrm{RHO}($ ILAST $)=$ RHO $($ ILAST -1$)+$ DRHOL
DRHO (ILAST-1) $=$ DRHOL
GO TO 3
2 REIURN

```
 SUBROUTINE PGEN4
 IF DIVIDE CHECK 60,61
 60 WRITE OUTPUT TAPE 6,160
 160 FORMAT (59H DIVIDE CHECK TRIGGER FOUND ON AT START OF PGEN4 SUBROU
 1TINE)
 CALL LEAVE
 STOP
 6 1 ~ I S P I L L = 0
 JSPILL=0
 IF(KTRL(1)) 3,4,3
3 KTRL(7)=0
 KTRL(8)=0
 KTRL(9)=0
 KTRL(10)=0
4 T1=V/ECM
 T2-W/ECM
 T10=VS/ECM
 T11=WS/ECM
 T12=FKAY*BG
 T3=2.*FKAY/A
 IF DIVIDE CHECK 62,65
 62 WRITE OUTPUT TAPE 6,162
 162 FORMAT (65H DIVISORS ECM OR A WERE WRONGLY INPUT AS ZERO IN PGEN4
 1SUBROUTINE)
 CALL LEAVE
 STOP
 65 T4=T10*T3
 T5=T11*T3
 T6=FKAY*A
 T7=ETA/RHOBC
 IF DIVIDE CHECK 63,64
 63 WRITE OUTPUT TAPE 6,163
 163 FORMAT(61H DIVISOR RHOBC IS ZERO IN SECOND DIVISION OF PGEN4 SUBRO
 1UTINE)
 CALL LEAVE
 STOP
 64 T8 =RHOBC**2
 T9-ETA*2 .
 I=1
 40 EX = EXPF ((RHO(I)-RHOBN)/T6)
 IF DIVIDE CHECK 80,66
 80 WRITE OUTPUT TAPE 6,165
165 FORMAT (58H QUANTITY T6 IS ZERO IN THIRD DIVISION OF PGEN4 SUBROUT
 1INE)
 CALL LEAVE
 STOP
 66 K=1
 41 IF (I - 1) 42,43,42
 42 IF (DRHO(I)-DRHO(I - 1)) 43,44,43
 4 3 ~ H D R H O - D R H O (I ~) ~ * . 5 ~
 DEX = EXPF (HDRHO/T6)
44 IF (KTRL(1) - 2) 53,52,53
52 IF (RHO(I)-RHOBN) 54,55,55
54 S1=1.0
```

```
 GO TO 68
55 S1=0.0
 GO TO 68
53 S1=1./(1.+EX)
 IF DIVIDE CHECK 67,68
 67 WRITE OUTPUT TAPE 6,167
167 FORMAT(60H DIVISOR 1.+EX IS ZERO IN FOURTH DIVISION OF PGEN4 SUBRO
 1UTINE)
 CALL LEAVE
 STOP
 6 8 ~ S 2 = E X * (S 1 * * 2)
 S4=S2/RHO(I)
 IF DIVIDE CHECK 69,70
 69 WRITE OUTPUT TAPE 6,169,I
169 FORMAT(58H DIVISOR RHO IS ZERO IN FIFTH DIVISION OF PGEN4 SUBROUTI
 1NE)
 CALL LEAVE
 STOP
 70 IF (RHO(I)-RHOBC) 9,9,10
 9 S}3=\textrm{T}7*(3.-(\textrm{RHO}(\textrm{I})**2)/\textrm{T}8
 GO TO 11
 1 0 ~ S 3 = T 9 / R H O (I ~) ~
11 IF (KTRL(7)) 350,300,350
 300 UCRB(I)=-1. -T1*S1+S3
 FFCR(I)=S1
 301 IF (KTRL(8)) 355,302,355
302 IF (KTRL(1) - 1) 309,308,309
308 S1=EXPF(- ((RHO(I)-RHOBNG)/T12) **2)
 IF DIVIDE CHECK 82,309
82 WRITE OUTPUT TAPE 6,182
182 FORMAT(22H BG IS ZERO IN PGEN SR)
 CALL LEAVE
 STOP
309 UCIB (I) =-T2*S1
 FFCI(I)=S1
 303 IF (KTRL(9)) 360,304,360
 304 USRB(I)=T4*S4
 FFSR(I)=S4
 305 IF (KTRL(11)) 501,500,501
 500 IF (KTRL(10))365,306,365
 306 USIB (I)=T5*S4
 FFSI(I)=S4
 307 IF (I-ILAST) 50,200,200
 350 ITT=1
 GO TO 340
 355 ITT=2
 GO TO 340
 340 ITQ=1
 IF(ITT-1) 380,380,381
 380 IF (KTRL(7) - 1) 352,351,352
 351 TW-HA
 TRM RMA
 TN1=FN1A
 TN2=FN2A
```

GO TO 400
352 TH HB
TRM RMB
TN1=FN1B
TN2-FN2B
GO TO 400
381 IF (KTRL ( 8 ) - 1 ) $352,351,352$
400 IF (RHO(I)-RHOBN) 410,410,411
410 TTN-TN1
GO TO 412
411 TTN=TN2
412 T20-RHO(I)/RHOBN
IF (TTN*LOGF (T20) - 80.) 403,403,409
$403 \mathrm{TQ}=(\mathrm{T} 20 * * \mathrm{TTN}-1) * \mathrm{RHOBN} /.(\mathrm{TTN} * \mathrm{FKAY} * \mathrm{~A})$
IF DIVIDE CHECK 405,406
$405 \mathrm{TG}=\mathrm{T} 20 * *(\mathrm{RHOBN} /(\mathrm{FKAY} * \mathrm{~A}))$
GO TO 407
406 IF (TQ-80.) $408,408,409$
408 TG-EXPF (TQ)
GO TO 407
$409 \mathrm{TF}=0$.
GO TO 422
$407 \mathrm{TFN}=1 . /(1 .+\mathrm{TG})$
IF (RHO(I)-TRM) $420,420,419$
419 TF-TFN
GO TO 418
420 T21 $\mathrm{RHO}(\mathrm{I}) / \mathrm{TRM}$
THH $-\mathrm{TH} *(1 .+(2 . * \mathrm{~T} 21)) *((1 .-\mathrm{T} 21) * * 2)$
$\mathrm{TF}=\mathrm{TFN} *(1 .+\mathrm{THH})$
418 TFF=TF
421 GO TO $(422,423)$,ITQ
422 GO TO $(425,426,427,428)$, ITT
$425 \mathrm{FFCR}(\mathrm{I})=\mathrm{TF}$
$\operatorname{UCRB}(\mathrm{I})=-1 .-\mathrm{T} 1 * \operatorname{FFCR}(\mathrm{I})+\mathrm{S} 3$
GO TO 301
$426 \mathrm{FFCI}(\mathrm{I})=\mathrm{TF}$
$\operatorname{UCIB}(\mathrm{I})=-\mathrm{T} 2 * \mathrm{FFCI}(\mathrm{I})$
GO TO 303
$427 \quad \operatorname{FFSR}(\mathrm{I})=\mathrm{TF}$
IF (ITQ-1) $470,470,471$
$471 \operatorname{USRB}(\mathrm{I})=\mathrm{FKAY} * \mathrm{~A} * \mathrm{~T} 4 * \operatorname{FFSR}(\mathrm{I})$
GO TO 305
$470 \operatorname{USRB}(\mathrm{I})=(\mathrm{T} 4 / 2). * \operatorname{FFSR}(\mathrm{I})$
GO TO 305
$428 \operatorname{FFSI}(\mathrm{I})=\mathrm{TF}$
IF (ITQ-1) $472,472,473$
$473 \operatorname{USIB}(\mathrm{I})=\mathrm{FKAY} * \mathrm{~A} * \mathrm{~T} 5 * \operatorname{FFSI}(\mathrm{I})$
GO TO 307
360 ITT=3
IF (KTRL(9) - 1) 431,431,430
430 ITQ=1
GO TO 352
365 ITT=4
IF (KTRL (10) - 1) $431,431,430$

```
472 USIB (I) =(T5/2.)*FFSI (I)
 GO TO 307
431 ITQ=2
 GO TO 351
 4 2 3 \mathrm { T } 2 3 = (\mathrm { RHOBN } / (\mathrm { FKAY } * \mathrm { A })) * (\mathrm { T } 2 0 * * \mathrm { TTN }) * \mathrm { TG } * ((\mathrm { TFN } / \mathrm { RHO } (\mathrm { I })) * * 2)
 T}25=\textrm{T}2
 IF (RHO(I)-TRM) 460,460,461
4 6 0 ~ \mathrm { T } 2 4 = 6 . * \mathrm { TH } * (1 . - \mathrm { T } 2 1) / (\mathrm { TRM } * * 2)
 T25=(T24*TFN)+((1.+THH)*T23)
461 TF=T25
 IF(ITT-3) 427,427,428
501 T30=0.004927*ETA*ECM
 IF (RHO(I)-RHOBC) 502,502,503
 502 SOCOUL=T30 / (RHOBC**3)
 GO TO 504
 5 0 3 \text { SOCOUL=T30 / (RHO(I) **3)}
 504 USRB (I)=USRB (I)+SOCOUL
 GO TO 500
 50 I=I +1
 EX=EX*DEX
 RHOM RHO(I - 1)+HDRHO
 IF (KTRL(1) - 2) 153,152,153
152 IF (RHOM-RHOBN) 34,35,35
34 S1=1.0
 GO TO 72
35 S1=0.0
 GO TO 72
153 S1=1./(1.+EX)
 IF DIVIDE CHECK 71,72
 71 WRITE OUTPUT TAPE 6,171
171 FORMAT(54H DIVISOR 15 ZERO IN SIXTH DIVISION OF PGEN4 SUBROUTINE)
 CALL LEAVE
 STOP
 72 S2=EX*(S1**2)
 S4=S2/RHOM
 IF DIVIDE CHECK 73,74
 73 WRITE OUTPUT TAPE 6,173
 173 FORMAT (62H QUANTITY RHOM IS ZERO IN SEVENTH DIVISION OF PGEN4 SUB
 1ROUTINE)
 CALL LEAVE
 STOP
 74 IF (RHOM-RHOBC) 21,21,22
 21 S}3=\textrm{T}7*(3.-(\textrm{RHOM}**2)/\textrm{T}8
 GO TO 23
 22 S3=T9/RHOM
 23 IF (KTRL(7))1350,1300,1350
1300 UCRM(I-1)=-1.-T1*S1+S3
 FFCRM(I-1)=51
1301 IF (KTRL(8)) 1355,1302,1355
1302 IF (KTRL(1) - 1) 1309,1308,1309
1308 S1=EXPF(- ((RHOM-RHOBNG)/T12)**2)
1309 UCIM(I-1)=-T2*S1
 FFCIM(I-1)=S1
1303 IF (KTRL(9)) 1360,1304,1360
```

```
1304 USRM(I-1)=T4*S4
 FFSRM(I-1)=S4
1305 IF (KTRL(I1)) 1501,1500,1501
1500 IF (KTRL(I0))1365,1306,1365
1306 USIM(I-1)=T5*S4
 FFSIM(I-1)=S4
1307 IF (K-10) 24,40,40
1350 ITT=1
 GO TO 1340
1355 ITT=2
 GO TO 1340
1340 ITQ=1
 IF (ITT - 1)1380, 1380,1381
1380 IF (KTRL(7) - 1) 1352,1351,1352
1 3 5 1 ~ Т Н ~ Н А ~
 TRM=RMA
 TN1=FN1A
 TN2=FN2A
 GO TO 1400
1352 TH-HB
 TRM RMB
 TN1=FN1B
 TN2=FN2B
 GO TO 1400
1381 IF (KTRL(8) - 1) 1352,1351,1352
1400 IF (RHOM-RHOBN) 1410,1410,1411
1410 TTN=TN1
 GO TO 1412
1411 TTN=TN2
1 4 1 2 ~ T 2 0 = R H O M / R H O B N
 IF (TTN*LOGF(T20) - 80.) 1403,1403,1409
1403 TQ = (T20 **TTN-1.) *RHOBN/ (TTN*FKAY *A)
 IF DIVIDE CHECK 1405,1406
1405 TG=T20**(RHOBN/ (FKAY *A))
 GO TO 1407
1406 IF (TQ-80.) 1408,1408,1409
1408 TG=EXPF(TQ)
 GO TO 1407
1409 TF=0.
 GO TO 1422
1407 TFN=1./(1.+TG)
 IF (RHOM-TRM) 1420,1420,1419
1419 TF=TFN
 GO TO 1418
1420 T21=RHOM/TRM
 TRH=TH}*(1.+(2.*T21))*((1.-T21)**2
 TF}=\textrm{TFN}*(1.+\textrm{THH}
1418 TFF=TF
1421 GO TO (1422,1423),ITQ
1422 GO TO (1425,1426,1427,1428),ITT
1425 FFCRM(I -1)=TF
 UCRM(I - 1)=-1. -T1 *FFCRM(I - 1)+S3
 GO TO 1301
1426 FFCIM(I -1)=TF
```

```
 UCIM}(\textrm{I}-1)=-\textrm{T}2*\operatorname{FFCIM}(\textrm{I}-1
 GO TO 1303
1427 FFSRM(I -1)=TF
 IF (ITQ-1) 1470,1470,1471
1471 USRM(I -1)=FKAY*A*T4*FFSRM(I - 1)
 GO TO 1305
1470 USRM(I - 1)=(T4 / 2.)*FFSRM(I - 1)
 GO TO 1305
1428 FFSIM (I - 1)=TF
 IF (ITQ-1) 1472,1472,1473
1473 USIM(I - 1) =FKAY*A *T5*FFSIM (I - 1)
 GO TO 1307
1360 ITT=3
 IF (KTRL(9) - 1) 1431,1431,1430
1430 ITQ=1
 GO TO 1352
1365 IIT=4
 IF (KTRL(10) - 1) 1431,1431,1430
1472 USIM(I-1)=(T5 / 2.)*FFSIM(I-1)
 GO TO 1307
1431 ITQ=2
 GO TO 1351
1423 T23=(RHOBN/(FKAY*A))*(T20**TTN)*TG*((TFN/RHOM)**2)
 T25=T23
 IF (RHOM-TRM) 1460,1460,1461
1460 T24=6.*TH*(1. - T21)/(TRM **2)
 T}25=(\textrm{T}24*\textrm{TFN})+((1.+\textrm{THH})*\textrm{T}23
1461 TF=T25
 IF (ITT-3) 1427,1427,1428
1501 T30=0.004927*ETA*ECM
 IF (RHOM-RHOBC) 1502,1502,1503
1502 SOCOUL=T30 / (RHOBC **3)
 GO TO 1504
1503 SOCOUL=T30 / (RHOM**3)
1504 USRM(I - 1)=USRM(I - 1)+SOCOUL
 GO TO 1500
 24 K=K+1
 EX=EX*DEX
 GO TO 42
 200 IF (ISPILL) 75,76,75
 75 WRITE OUTPUT TAPE 6,175,ISPILL
 175 FORMAT(23H UNDERFLOW OCCURRED AT I6 ,20H IN PGEN4 SUBROUTINE)
 76 IF (JSPILL) 77,51,77
 77 WRITE OUTPUT TAPE 6,177, JSPILL
 177 FORMAT(22H OVERFLOW OCCURRED AT I6 ,20H IN PGEN4 SUBROUTINE)
 CALL LEAVE
 STOP
 51 REIURN
```

```
SUBROUTINE INTCTR
 DO1 L=1,LMAX
 IFIRST=IIN (L)
 T RHO(IFIRST) **(L-1)
 XC1=T*RHO(IFIRST)
 XD1=XC1
 FL=L
 XCP1=FL*T
 XDP1=XCP1
 YC1=0.
 YD1=0.
 YCP1=0.
 YDP1=0.
 CALL RKINT
 X1(L)=XC1
 X2(L)=XD1
 Y1(L)=YC1
 Y2(L)=YD1
 X1P}(\textrm{L})=\textrm{XCP}
 X2P(L) = XDP1
 Y1P}(\textrm{L})=\textrm{YCP
1 Y2P(L)=YDP1
 REIURN
```

SUBROUTINE RKINT
IF DIVIDE CHECK 10,11
10 WRITE OUTPUT TAPE 6,110 ,L, I
110 FORMAT (66H DIVIDE CHECK TRIGGER FOUND ON AT START OF RKINT SUBROUT 1INE FOR $\mathrm{L}=\mathrm{I} 3,7 \mathrm{H}$ AND $\mathrm{I}=\mathrm{I} 3$ )
CALL LEAVE
STOP
11 ISPILL=0
JSPILL=0
1 FL=L-1
F2L=-1.-FL
F3L $=\mathrm{FL} *(\mathrm{FL}+1$.
TB $-\operatorname{UCRB}(\operatorname{IFIRST})+\mathrm{F} 3 \mathrm{~L} /(\mathrm{RHO}(\operatorname{IFIRST}) * * 2)$
IF DIVIDE CHECK 12,13
12 WRITE OUTPUT TAPE 6,112 , L, I
112 FORMAT(76H DIVISOR RHO(IFIRST) $* * 2$ IS ZERO IN FIRST DIVISION OF RKI 1NT SUBROUTINE FOR L=I3 , 7H AND I=I3 )
CALL LEAVE
STOP
13 PCB $=$ TB + USRB ( (FIRST ) $*$ FL
PDB $=$ TB + USRB $($ IFIRST $) *$ F2L
QCB $=$ UCIB (IFIRST) + USIB (IFIRST) $*$ FL
$\mathrm{QDB}=\mathrm{UCIB}($ IFIRST $)+\mathrm{USIB}($ IFIRST $) * \mathrm{~F} 2 \mathrm{~L}$
IK=ILAST-1
DO 6 I=IFIRST, IK
$2 \mathrm{HDRHO}=.5 * \mathrm{DRHO}(\mathrm{I})$
DRHO2 $=(\mathrm{DRHO}(\mathrm{I}) * * 2) * .5$
RHOM RHO ( I ) +HDRHO
TM $\operatorname{UCRM}(\mathrm{I})+\mathrm{F} 3 \mathrm{~L} /(\mathrm{RHOM} * * 2)$
IF DIVIDE CHECK 14,15
14 WRITE OUTPUT TAPE $6,114, \mathrm{~L}, \mathrm{I}$
114 FORMAT (70H DIVISOR RHOM $* * 2$ IS ZERO IN SECOND DIVISION OF RKINT SUB 1ROUTINE FOR $\mathrm{L}=\mathrm{I} 3,7 \mathrm{H}$ AND $\mathrm{I}=\mathrm{I} 3$ )
CALL LEAVE
STOP
15 PCM $=\operatorname{TM}-\operatorname{USRM}(\mathrm{I}) * \mathrm{FL}$
PDM-TM 4 USRM ( I$) *$ F2L
QCM $-\operatorname{UCIM}(\mathrm{I})+\mathrm{USIM}(\mathrm{I}) * F L$
QDM $-\operatorname{UCIM}(\mathrm{I})+\operatorname{USIM}(\mathrm{I}) *$ F2L
XCPP1-PCB $* \mathrm{XC} 1-\mathrm{QCB} * \mathrm{YC1}$
$\mathrm{YCPP} 1=\mathrm{QCB} * \mathrm{XC} 1+\mathrm{PCB} * \mathrm{YC} 1$
XDPP1 $=\mathrm{PDB} * \mathrm{XD} 1-\mathrm{QDB} * \mathrm{YD} 1$
$\mathrm{YDPP} 1=\mathrm{QDB} * \mathrm{XD} 1+\mathrm{PDB} * \mathrm{YD} 1$
$\mathrm{XC} 2=\mathrm{XC} 1+\mathrm{XCP} 1 * \mathrm{HDRHO}$
$\mathrm{YC} 2=\mathrm{YC1}+\mathrm{YCP} 1 * \mathrm{HDRHO}$
XD2 $=\mathrm{XD} 1+\mathrm{XDP} 1 * \mathrm{HDRHO}$
YD2-YD1+YDP1*HDRHO
$\mathrm{XCPP} 2-\mathrm{PCM} * \mathrm{XC} 2-\mathrm{QCM} * \mathrm{YC} 2$
YCPP2-QCM*XC2 $+\mathrm{PCM} * \mathrm{YC} 2$
XDPP2-PDM*XD2-QDM*YD2
YDPP2-QDM*XD2 4 PDM $*$ YD2
DRHO4 $=.5 *$ DRHO2
SDRHO $=.33333333 * \mathrm{HDRHO}$
$\mathrm{XC} 3=\mathrm{XC} 2+\mathrm{XCPP} 1 * \mathrm{DRHO} 4$

```
 YC3=YC2+YCPP1*DRHO4
 XD3=XD2+XDPP1*DRHO4
 YD3=YD2+YDPP1*DRHO4
 XCPP3-PCM*XC3-QCW*YC3
 YCPP3-QCM*XC3 PCM * YC3
 XDPP3-PDM*XD3-QDM*YD3
 YDPP3-QDM*XD3 PDDW*YD3
 XC}4=\textrm{XC}2+\textrm{XCPP}2*\textrm{DRHO}2+\textrm{XCP}1*\textrm{HDRHO
 YC}4=\textrm{YC}2+\textrm{YCPP}2*\textrm{DRHO}2+\textrm{YCP}1*HDRHO
 XD}4=\textrm{XD}2+\textrm{XDPP}2*\textrm{DRHO}2+\textrm{XDP}1*\textrm{HDRHO
 YD4-YD2+YDPP2*DRHO2+YDP1 }*\textrm{HDRHO
 TB}=\operatorname{UCRB}(\textrm{I}+1)+\textrm{F}3\textrm{L}/(\textrm{RHO}(\textrm{I}+1)**2
 IF DIVIDE CHECK 16,17
16 WRITE OUTPUT TAPE 6,116,L,I
116 FORMAT(74H DIVISOR RHO(I+1)**2 IS ZERO IN THIRD DIVISION FOR RKINT
 1 SUBROUTINE FOR L=I3,7H AND I=I3)
 CALL LEAVE
 STOP
17 PCB=TB+USRB}(\textrm{I}+1)*\textrm{FL
 PDB}=\textrm{TB}+\operatorname{USRB}(\textrm{I}+1)*\textrm{F}2\textrm{L
 QCB}=\operatorname{UCIB}(\textrm{I}+1)+\textrm{USIB}(\textrm{I}+1)*\textrm{FL
 QDB}=\textrm{UCI}8(\textrm{I}+1)+\textrm{USIB}(\textrm{I}+1)*\textrm{F}2\textrm{L
 XCPP4-PCB*XC4-QCB}*YC
 YCPP4-QCB}*\textrm{XC}4+\textrm{PCB}*\textrm{YC}
 XDPP4-PDB*XD4-QDB*YD4
 YDPP4
 SXC=XCPP2+XCPP3
 SYC=YCPP2+YCPP3
 SXD=XDPP2+XDPP3
 SYD=YDPP2+YDPP3
 TXC-SXC+XCPP1
 TYC=SYC+YCPP1
 TXD=SXD +XDPP1
 TYD=SYD}+YDPP
 TXC1=XC1 +DRHO(I) *(XCP1+SDRHO*TXC}
 TYC1=YC1 +DRHO(I) *(YCP1+SDRHO*TYC)
 TXD1=XD1 +DRHO(I) *(XDP1+SDRHO*TXD)
 TYD1=YD1 +DRWO(I) *(YDP1+SDRHO*TYD)
 TXCP1 =XCP1+SDRHO * (TXC+SXC+XCPP4)
 TYCP1 =YCP1 +SDRHO * (TYC +SYC +YCPP4)
 TXDP1 =XDP1+SDRHO * (TXD +SXD+XDPP4)
 TYDP1 =YDP1 +SDRHO * (TYD +SYD +YDPP4)
 IF (JSPILL) 20,21,20
20 RENORM=MAX1F(ABSF(XC1),ABSF(YC1) ,ABSF (XCP1) ,ABSF (YCP1),ABSF (XD1),
 1ABSF(YD1) ,ABSF (XDP1) ,ABSF (YDP1))
 XC1=XC1/RENORM
 YC1=YC1/RENORM
 XCP1=XCP1/RENORM
 YCP1=YCP1/RENORM
 XD1=XD1/RENORM
 YD1=YD1/RENORM
 XDP1=XDP1/RENORM
 YDP1=YDP1/RENORM
 WRITE OUTPUT TAPE 6,200,RENORM,L,RHO(I)
```

200 FORMAT (24H RENORMALIZATION FACTOR=E16.9,22H IN RKINT FOR CODED L=I $13,9 \mathrm{H}$ AND $\mathrm{RHO}=\mathrm{E} 16.9$ ) JSPILL=0
GO TO2
$21 \mathrm{XC1}=\mathrm{TXC} 1$
$\mathrm{YC1}=\mathrm{TYC1}$
XD1=TXD1
YD1=TYD1
$\mathrm{XCP} 1=\mathrm{TXCP} 1$
$\mathrm{YCP} 1=\mathrm{TYCP} 1$
$\mathrm{XDP} 1=\mathrm{TXDP} 1$ YDP1=TYDP1
6 OONTINUE
IF (ISPILL) $30,31,30$
30 WRITE OUTPUT TAPE 6,130, ISPILL ,L, I
130 FORMAT(23H UNDERFLOW OCCURRED AT I6,27H IN RKINT SUBROUTINE FOR L= 1 I 3.7 H AND $\mathrm{I}=\mathrm{I} 3$ )
31 IF (JSPILL) $32,4,32$
32 WRITE OUTPUT TAPE 6, 132, JSPILL, L, I
132 FORMAT (22H OVERFLOW OCCURRED AT I6, 27 H IN RKINT SUBROUTINE FOR L=I $13,7 \mathrm{H}$ AND $\mathrm{I}=\mathrm{I} 3$ )
CALL LEAVE
STOP
4 REIURN

SUBROUTINE CSUBL
IF DIVIDE CHECK 50,51
50 WRITE OUTPUT TAPE 6,150
150 FORMAT (59H DIVIDE CHECK TRIGGER FOUND ON AT START OF CSUBL SUBROU
1TINE)
CALL LEAVE
STOP
51 ISPILL=0
JSPILL=0
DO $40 \mathrm{~L}=1$,LMAX
XNORM1-MAX1F $(\operatorname{ABSF}(\mathrm{X} 1(\mathrm{~L})) * \operatorname{ABSF}(\mathrm{Y} 1(\mathrm{~L})), \operatorname{ABSF}(\mathrm{X} 1 \mathrm{P}(\mathrm{L})), \operatorname{ABSF}(\mathrm{Y} 1 \mathrm{P}(\mathrm{L})))$
TX1L=N1 (L) /XNORM1
TY1L=Y1 (L) /XNORM1
TX1PL=N1P (L) /XNORM1
TY1PL=Y1P (L) /XNORM1
FNORM=MAX1F (F (L) , G(L) , FP(L) , GP(L) )
TFL $=\mathrm{F}(\mathrm{L}) /$ FNORM
TGL-G(L)/FNORM
TFPL $=\mathrm{FP}(\mathrm{L}) /$ FNORM
TGPL=GP(L) /FNORM
$\mathrm{CO}=\mathrm{TFL} * \mathrm{TY} 1 \mathrm{PL}-\mathrm{TFPL} * \mathrm{TY} 1 \mathrm{~L}$
CO2=TFPL*TX1L-TFL*TX1PL
CO3=TY1L*TGPL-TY1PL*TGL+TX1L*TFPL-TX1PL*TFL
CO4=TX1PL*TGL-TX1L*TGPL+TY1L*TFPL-TY1PL*TFL
$\mathrm{CO} 7=1.0 /(\mathrm{CO} 3 * * 2+\mathrm{CO} 4 * * 2)$
IF DIVIDE CHECK 52,53
52 WRITE OUTPUT TAPE 6,152
152 FORMAT(54H DIVISOR IS ZERO IN FIRST DIVISION OF CSUBL SUBROUTINE)
CALL LEAVE
STOP
$53 \mathrm{CR} 1(\mathrm{~L})=(\mathrm{CO} 1 * \mathrm{CO} 3+\mathrm{CO} 2 * \mathrm{CO} 4) * \mathrm{CO} 7$
$\mathrm{CI} 1(\mathrm{~L})=(\mathrm{CO} 2 * \mathrm{CO} 3-\mathrm{CO} 1 * \mathrm{CO} 4) * \mathrm{CO} 7$
XNORM2-MAX1F (ABSF (X2 (L) ) $, \operatorname{ABSF}(\mathrm{Y} 2(\mathrm{~L})), \operatorname{ABSF}(\mathrm{X} 2 \mathrm{P}(\mathrm{L})), \operatorname{ABSF}(\mathrm{Y} 2 \mathrm{P}(\mathrm{L})))$
TX2L=N2 (L) /XNORM2
TY2L=Y2(L)/XNORM2
TX2PL=N2P (L) /XNORM2
TY2PL=Y2P (L) /XNORM2
CO1=TFL*TY2PL-TFPL*TY2L
CO2-TFPL*TX2L-TFL*TX2PL
CO3=TY2L*TGPL-TY2PL*TGL+TX2L*TFPL-TX2PL*TFL
CO4 $=$ TX2PL*TGL-TX2L*TGPL + TY2L*TFPL-TY2PL*TFL
$\mathrm{CO} 7=1.0 /(\mathrm{CO} 3 * * 2+\mathrm{CO} 4 * * 2)$
IF DIVIDE CHECK 54,55
54 WRITE OUTPUT TAPE 6,154
154 FORMAT (55H DIVISOR IS ZERO IN SECOND DIVISION OF CSUBL SUBROUTINE 1)

CALL LEAVE
STOP
$55 \mathrm{CR} 2(\mathrm{~L})=(\mathrm{CO} 1 * \mathrm{CO} 3+\mathrm{CO} 2 * \mathrm{CO} 4) * \mathrm{CO} 7$
$40 \mathrm{CI} 2(\mathrm{~L})=(\mathrm{CO} 2 * \mathrm{CO} 3-\mathrm{CO} 1 * \mathrm{CO} 4) * \mathrm{CO} 7$
IF (ISPILL) $56,57,56$
56 WRITE OUTPUT TAPE 6,156 , ISPILL ,L
156 FORMAT ( 23 H UNDERFLOW OCCURRED AT I6, 27 H IN CSUBL SUBROUTINE FOR L $1=\mathrm{I} 3$ )

57 IF (JSPILL) $58,59,58$
58 WRITE OUTPUT TAPE 6,158, JSPILL, L
158 FORMAT (22H OVERFLOW OCCURRED AT I6, 27 H IN CSUBL SUBROUTINE FOR L= 1I3) CALL LEAVE STOP
59 REIURN

SUBROUTINE AB
IF DIVIDE CHECK 1,2
1 WRITE OUTPUT TAPE 6,101
101 FORMAT (56H DIVIDE CHECK TRIGGER FOUND ON AT START OF AB SUBROUTIN 1E)
CALL LEAVE
STOP
2 ISPILL=0
JSPILL=0
FKAYD $=1 . /$ FKAY
IF DIVIDE CHECK 3,4
3 WRITE OUTPUT TAPE 6,103
103 FORMAT(38H DIVISOR FKAY IS ZERO IN AB SUBROUTINE)
CALL LEAVE
STOP
4 DO $20 \mathrm{~J}=1$,JMAX
$\mathrm{ASUMR}=0$.
$\mathrm{ASUMI}=0$.
$B S U M R=0$.
$\mathrm{BSUMI}=0$.
DO $10 \mathrm{~L}=1$, LMAX
$\mathrm{FL}=\mathrm{L}$
$\mathrm{ATR} 1=\mathrm{FL} * \mathrm{CR} 1(\mathrm{~L})+(\mathrm{FL}-1) * .\mathrm{CR} 2(\mathrm{~L})$
ATI1 $=\mathrm{FL} * \mathrm{CI} 1(\mathrm{~L})+(\mathrm{FL}-1) * .\mathrm{CI} 2(\mathrm{~L})$
BTR1 $=$ CR1 $(\mathrm{L})-\mathrm{CR} 2(\mathrm{~L})$
BTI1 $=$ CI1 (L) - CI2 (L)
ATR2=ATR1*EXSGMR(L) $-($ ATI1 $* \operatorname{EXSGMI}(\mathrm{~L}))$
ATI2 $=$ ATR1 $* \operatorname{EXSGMI}(\mathrm{~L})+($ ATI1 $* \operatorname{EXSGMR}(\mathrm{~L}))$
BTR2-BTR1*EXSGMR(L) - (BTI1 * EXSGMI (L ) )
BTI2 $=\mathrm{BTR} 1 * \operatorname{EXSGMI}(\mathrm{~L})+(\mathrm{BTI} 1 * \operatorname{EXSGMR}(\mathrm{~L}))$
ASUMR $=\mathrm{ASUMR}+(\operatorname{ATR} 2 * \mathrm{P}(\mathrm{L}, \mathrm{J}))$
ASUMI=ASUMI $+($ ATI $2 * \mathrm{P}(\mathrm{L}, \mathrm{J}))$
BSUMR $-\mathrm{BSUMR}+(\mathrm{BTR} 2 * \mathrm{PP}(\mathrm{L}, \mathrm{J}))$
$10 \quad \mathrm{BSUMI}=\mathrm{BSUMI}+(\mathrm{BTI} 2 * \operatorname{PP}(\mathrm{~L}, \mathrm{~J}))$
$\operatorname{AR}(\mathrm{J})=\mathrm{FCR}(\mathrm{J})+(\mathrm{FKAYD} * \operatorname{ASUMR})$
$\operatorname{AI}(J)=\mathrm{FCI}(\mathrm{J})+(\mathrm{FKAYD} *$ ASUMI $)$
$\mathrm{BR}(\mathrm{J})=\mathrm{FKAYD} * \mathrm{BSUMI}$
$\mathrm{BI}(\mathrm{J})=-$ FKAYD $* \mathrm{BSUMR}$
IF (ISPILL) $30,31,30$
30 WRITE OUTPUT TAPE 6,130 , ISPILL
130 FORMAT( 23 H UNDERFLOW OCCURRED AT I6, 17 H IN AB SUBROUTINE)
31 IF (JSPILL) 32,33,32
32 WRITE OUTPUT TAPE 6,132 ,JSPILL
132 FORMAT (22H OVERFLOW OCCURRED AT I6,17H IN AB SUBROUTINE)
CALL LEAVE
STOP
33 REIURN

```
 SUBROUTINE SGSGCP
 IF DIVIDE CHECK 10,11
 10 WRITE OUTPUT TAPE 6,110
110 FORMAT (60H DIVIDE CHECK TRIGGER FOUND ON AT START OF SGSGCP SUBRO
1UTINE)
 CALL LEAVE
 STOP
 11 ISPILL=0
 JSPILL=0
 DO 5 J=1,JMAX
 SGMATH}(\textrm{J})=\operatorname{AR}(\textrm{J})**2.+\operatorname{AI}(\textrm{J})**2.+\operatorname{BR}(\textrm{J})**2.+\textrm{BI}(\textrm{J})**2
 POLTH}(\textrm{J})=(2.*(\operatorname{AR}(\textrm{J})*\textrm{BR}(\textrm{J})+\textrm{AI}(\textrm{J})*\textrm{BI}(\textrm{J})))/\operatorname{SGMATH}(\textrm{J}
 IF DIVIDE CHECK 12,13
 12 WRITE OUTPUT TAPE 6,112,J
112 FORMAT(30H DIVISOR SGMATH IS ZERO FOR J=13,21H IN SGSGCP SUBROUTIN
 1E)
 CALL LEAVE
 STOP
 13 SGMAC(J)=FCR(J) **2.+FCI (J) **2 .
 IF (ETA) 7,7,8
 8 SRATIO (J)=SGMATH(J)/SGMAC(J)
 IF DIVIDE CHECK 14,15
 14 WRITE OUTPUT TAPE 6,114,J
 114 FORMAT(29H DIVISOR SGMAC IS ZERO FOR J=13,21H IN SGSGCP SUBROUTINE
 1)
 CALL LEAVE
 STOP
 15 GO TO 5
 7 SRATIO (J) = 0.
 5 OONTINUE
 IF (ISPILL) 16,17,16
 WRITE OUTPUT TAPE 6,116,ISPILL
 FORMAT (23H UNDERFLOW OCCURRED AT 16,21H IN SGSGCP SUBROUTINE)
 IF (JSPILL) 18,19,18
 WRITE OUTPUT TAPE 6,118,JSPILL
 FORMAT(22H OVERFLOW OCCURRED AT 16,21H IN SGSGCP SUBROUTINE)
 CALL LEAVE
 STOP
 19 REIURN
```

```
SUBROUTINE SIGMAR
ISPILL=0
JSPILL=0
\(\mathrm{FL}=0\).
\(\mathrm{SGMRTH}=0\).
\(\mathrm{CPI}=(12.56637060) /(\mathrm{FKAY} * * 2)\)
DO 20 L=I ,LMAX
SGMRTH SGMRTH + FL \(*(\mathrm{C} 12(\mathrm{~L})-(\mathrm{C} 12(\mathrm{~L})) * * 2-(\mathrm{CR} 2(\mathrm{~L})) * * 2)\)
\(\mathrm{FL}=\mathrm{FL}+1.0\)
20 SGMRTH SGMRTH \(+\mathrm{FL} *(\mathrm{CI} 1(\mathrm{~L})-(\mathrm{CI} 1(\mathrm{~L})) * * 2-(\mathrm{CR} 1(\mathrm{~L})) * * 2)\)
 SGMRTH \(=\mathrm{CPI} *\) SGMRTH
 IF (ISPILL) \(10,11,10\)
10 WRITE OUTPUT TAPE 6,110 , ISPILL
110 FORMAT(23 H UNDERFLOW OCCURRED AT \(16,21 \mathrm{H}\) IN SIGMAR SUBROUTINE)
11 IF (JSPILL) \(12,13,12\)
12 WRITE OUTPUT TAPE 6,112 , JSPILL
112 FORMAT(22 H OVERFLOW OCCURRED AT \(16,21 \mathrm{H}\) IN SIGMAR SUBROUTINE)
 CALL LEAVE
 STOP
13 REIURN
```

```
 SUBROUTINE CHISQ
 IF DIVIDE CHECK 10,11
 10 WRITE OUTPUT TAPE 6,110
 110 FORMAT(59H DIVIDE CHECK TRIGGER FOUND ON AT START OF CHISQ SUBROUT
 1INE)
 CALL LEAVE
 STOP
 11 ISPILL=0
 JSPILL=0
 CHI2ST=0
 CHI2PT=0
 DO 20 J=1,JMAX
 CHI2S (J)=((SGMATH(J)-SGMAEX(J))/DSGMEX(J))**2 .
 CHI2P}(\textrm{J})=((\operatorname{POLTH}(\textrm{J})-\operatorname{POLEX}(\textrm{J}))/\operatorname{DPOLEX}(\textrm{J}))**2
 IF DIVIDE CHECK 14,15
 14 WRITE OUTPUT TAPE 6,114,J
 114 FORMAT(40H DIVISOR DSGMEX OR DPOLEX IS ZERO FOR J=13,20H IN CHISQ
 1SUBROUTINE)
 CALL LEAVE
 STOP
 15 CHI2ST=CHI2ST + CHI2S (J)
 CHI2 (J)=CHI25 (J) + CHI2P (J)
 20 CHI2PT=CHI2PT + CHI2P (J)
 CHI2T}=\textrm{CHI}2\textrm{ST}+\textrm{CHI}2\textrm{PT
 IF (ISPILL) 16,17,16
 16 WRITE OUTPUT TAPE 6,116, ISPILL
 116 FORMAT(23H UNDERFLOW OCCURRED AT 16,20H IN CHISQ SUBROUTINE)
 17 IF(ISPILL) 18,19,18
 18 WRITE OUTPUT TAPE 6,118,JSPILL
 118 FORMAT(22H OVERFLOW OCCURRED AT 16,20H IN CHISQ SUBROUTINE)
 CALL LEAVE
 STOP
19 REIURN
```

```
 SUBROUTINE OUTPT4
 NPGS=0
 CALL SKIP (K,NPGS,NUMRUN)
 WRITE OUTPUT TAPE 6,245,NUMPRG
 245 FORMAT (16HOPROGRAM NUMBHR I5)
 DO }8\textrm{I}=1,1
 WRITE OUTPUT TAPE 6,250,I,(KTRL(I))
 250 FORMAT (6H KTRL(I2,2H)=I2)
 8 OONTINUE
 WRITE OUTPUT TAPE 6,12
 12 FORMAT (11H0BASIC DATA)
 FKAYA FKAY*A
 FKAYB FKAY*BG
 WRITE OUTPUT TAPE 6,14,FMI,FMB,ELAB,ZZ,V,W,A,RO,VS,WS,RC,BG,RG,
FORMAT(7H0MSUBI=E16.9,10H MSUBB=E16.9,10H ELAB=E16.9,10H
 1 ZZP=E16.9/7H0 V=E16.9,10H W=E16.9,10H A=E16.9,
 210H RO=E16.9/7H0 VS=E16.9,10H WS=E16.9,36H
 3
 4
 WRITE OUTPUT TAPE 6,16,RHOBN,RHOBC,RHOBNG,ECM,ETA,FKAY,FKAYA,FKAYB
FORMAT(7H0RHOBN=E16.9,10H RHOBC=E16.9,10H RHOBNG=E16.9,10H
 1 ECM=E16.9/7H0 ETA=E16.9,10H K=E16.9/10H KA=E16.9,
 210H KB=E16.9)
 KT = KTRL(7) +KTRL(8) +KTRL(9)+KTRL(10)
 IF (KT) 13,1818,13
13 WRITE OUTPUT TAPE 6,150,HA,RMA,FN1A,FN2A,PMA,HB,RMB, FN1B,FN2B,PMB
FORMAT(7H0 HA=E16.9,7H RMA=E16.9,7H N1A=E16.9,7H N2A=E16.9
 1,7H PMA=E16.9/7H HB=E16.9,7H RMB=E16.9,7H}\quadN1B=E16.9,7
 2N2B=E16.9,7H PMB=E16.9)
1818 WRITE OUTPUT TAPE 6,18,RHOMAX,LMAXM
 18 FORMAT (17HOINTEGRATION DATA/8H0RHOMAX=E16.9,10H LMAXM=I5)
 WRITE OUTPUT TAPE 6,220,NMAX
220 FORMAT (6H0NMAX=I5)
 WRITE OUTPUT TAPE 6,24
 24 FORMAT (6H0RHOIN)
 NOLINE=50
 K=20
 DO 40 I=1,NMAX, 6
 IF (K-NOLINE) 30,29,29
 29 CALL SKIP (K,NPGS,NUMRUN)
 30 M=XMINOF(I +5 ,NMAX)
 K=K+1
 WRITE OUTPUT TAPE 6,32,(RHOIN(J), J=I ,M)
 32 FORMAT(1H E19.9,5 E20.9)
 40 OONTINUE
 WRITE OUTPUT TAPE 6,41
 41 FORMAT (7H0DRHOIN)
 DO }60 I=1,NMAX, 6
 IF (K-NOLINE) 45,43,43
 43 CALL SKIP (K,NPGS,NUMRUN)
 45 M =XMINOF(I +5,NMAX-1)
 K=K+1
 WRITE OUTPUT TAPE 6,32,(DRHOIN(J),J=I ,M)
60 OONTINUE
```

WRITE OUTPUT TAPE 6,118 ,SGMRTH
$118 \operatorname{FORMAT}(12 \operatorname{HoSIGMAR}(\mathrm{TH})=\mathrm{E} 16.9)$
15 IF (KTRL(2)-1) $1900,20,1900$
20 WRITE OUTPUT TAPE 6,119 , CHI2ST, CHI2PT, CHI2T
119 FORMAT (25HOSUM OF CHI SQUARE SIGMA=E16.9/23HOSUM OF CHI SQUARE PO
1L=E16.9/25HOSUM OF CHI SQUARE TOTAL=E16.9)
21 CALL SKIP (K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6,200
200 FORMAT (113H THETA
1 POL TH SIGMA EX
DO 90 I=1,JMAX
IF (K-NOLINE) $75,70,70$
70 CALL SKIP (K,NPGS,NUMRUN)
75 K K K +1
WRITE OUTPUT TAPE $6,32, \mathrm{THETAD}(\mathrm{I}), \mathrm{SGMATH}(\mathrm{I}), \mathrm{SRATIO}(\mathrm{I}), \mathrm{POLTH}(\mathrm{I})$,
1SGMAEX (I) , POLEX(I)
90 OONTINUE
GO TO 299
1900 CALL SKIP (K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6,1905
1905 FORMAT (120H
1

THETA
SIG-SIGC

SIGMATH
POL TH
2)

DO 1920 I =1,JMAX
IF (K-NOLINE) 1910,1908,1908
1908 CALL SKIP (K,NPGS,NUMRUN)
1910 K K K + 1
WRITE OUTPUT TAPE $6,1919, \operatorname{THETAD}(\mathrm{I}), \mathrm{SGMATH}(\mathrm{I}), \mathrm{SRATIO}(\mathrm{I}), \mathrm{POLTH}(\mathrm{I})$
1919 FORMAT (1H E20.9,3E30.9)
1920 OONTINUE
299 IF (KTRL (6) - 1 ) $300,121,300$
300 IF (KTRL(12)-1) $25,1700,25$
1700 CALL SKIP (K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6,1701
1701 FORMAT $(92 \mathrm{H} \quad \mathrm{RHO}(\mathrm{I}) \quad$ FFCR $\quad$ FFCI
1 FFSR FFSI)
DO $1709 \mathrm{I}=1$,ILAST
IF (K-NOLINE) $1703,1702,1702$
1702 CALL SKIP (K,NPGS,NUMRUN)
1703 WRITE OUTPUT TAPE $6,158, \mathrm{RHO}(\mathrm{I}), \mathrm{FFCR}(\mathrm{I}), \mathrm{FFCI}(\mathrm{I}), \mathrm{FFSR}(\mathrm{I}), \mathrm{FFSI}(\mathrm{I})$
158 FORMAT(1H 5E20.9)
1709 OONTINUE
25 IF (KTRL (2) - 1 ) $23,22,23$
22 CALL SKIP (K,NPGS,NUMRUN)
WRITE OUTPUT TAPE 6,95
95 FORMAT (120H THETA DSIGMA EX DPOL EX
1 CHI SQUARE SIGMA CHI SQUARE POL CHI SQUARE TOTAL )
DO $120 \mathrm{~J}=1$,JMAX
IF (K-NOLINE) $97,96,96$
96 CALL SKIP (K,NPGS,NUMRUN)
97 K-K+1
WRITE OUTPUT TAPE 6,32 , THETAD( J$), \operatorname{DSGMEX}(\mathrm{J}), \operatorname{DPOLEX}(\mathrm{J}) * \mathrm{CHI} 2 \mathrm{~S}(\mathrm{~J})$, 1CHI2P (J)) CHI2 (J)
120 OONTINUE

23 CALL SKIP (K,NPGS,NUMRUN)
1623 WRITE OUTPUT TAPE 6,1150
1150 FORMAT (120H L
1G C(L+1/2) REAL C(L-1/2)
2)

DO $160 \mathrm{~L}=1$,LMAX
IF (K-NOLINE) $155,153,153$
153 CALL SKIP (K,NPGS,NUMRUN)
$155 \mathrm{~K}=\mathrm{K}+1$
$\mathrm{L} 1=\mathrm{L}-1$
WRITE OUTPUT TAPE 6,1156, L1, CR1 (L) , CI1 (L) , CR2(L) , CI2 (L)
1156 FORMAT (1H I11, E30.9,3E25.9)
160 OONTINUE
121 REIURN

SUBROUTINE SKIP (K,NPGS,NUMRUN)
NPGS-NPGS + 1
WRITE OUTPUT TAPE 6,1510 , (NUMRUN(I) , I = 1,5) ,NPGS
1510 FORMAT(12H1RUN NUMBER=I2, $1 \mathrm{H}-\mathrm{I} 2,1 \mathrm{H}-\mathrm{I} 4,3 \mathrm{H} \quad-\mathrm{I} 3,3 \mathrm{H} \quad-\mathrm{I} 3,79 \mathrm{H}$
1
PA
2GE 15/)
$\mathrm{K}=0$
REIURN

SUBROUTINE LEAVE
CALL PDUMP (A, ZZ )
CALL CTRL4
REIURN

| $\begin{aligned} & * \\ & * \end{aligned}$ | CARDS | COLUMN |  |
| :---: | :---: | :---: | :---: |
|  | FAP |  |  |
|  | COUNT | 43 |  |
| *SPILL SUBROUTINE |  |  |  |
|  | ENIRY | SPILL |  |
| SPILL | STZ* | 1,4 | STORE ZERO IN JSPILL |
|  | STZ* | 2,4 | STORE ZERO IN ISPILL |
|  | STZ | 0 | STORE ZERO IN LOCATION 00000 |
|  | CAL | 1,4 |  |
|  | STA | AA41 | SET ADDRESS AA41, |
|  | STA | AA36 | AA36 TO JSPILL |
|  | CAL | 2,4 | SET ADDRESS AA31 |
|  | STA | AA31 | TO ISPILL |
|  | CLA* | 3,4 | SET COMMON STORAGE |
|  | STO | AA45 |  |
|  | CLA* | 4,4 | SET COMMON STORAGE |
|  | STO | AA46 |  |
|  | CAL | AA47 | PLACE TRANSFER |
|  | SLW | 8 | INSTRUCTION IN LOCATION 8 |
|  | TRA | 5,4 | EXIT TO MAIN PROGRAM |
| AA16 | LDI | 0 | ENIRY IN CASE OF OVER-OR UNDERFLOW |
|  | LFT | 4 | TEST FOR OVERFLOW |
|  | TRA | AA36 | TRANSFER IN CASE OF OVERFLOW |
|  | LFT | 16 |  |
|  | TRA | AA24 | TRANSFER IN CASE OF UNDERFLOW |
|  | TRA* | 0 | TRANSFER TO MAIN PROGRAM NO UFLOW |
| AA24 | LNT | 1 | TEST FOR UNDERFLOW |
|  | TRA* | 0 | UNDERFLOW IN AC ONLY |
|  | CAL | 0 | PLACE LOCATION AT WHICH |
|  | SUB | AA35 | UNDERFLOW OCCURRED IN AC |
|  | LLS | 18 | SHIFT LEFT 18 |
| AA31 | STD | AA31 | STORE IN ISPILL |
|  | CLA | AA46 | SET AC, MQ WITH |
|  | LDQ | AA46 | SPECIFIED CONSTANTS |
|  | TRA* | 0 | EXIT TO MAIN PROGRAM |
| AA35 | HTR | 1 | CONSTANT |
| AA36 | CLA | AA36 | TEST IF JSPILL ZERO |
|  | TNZ | AA42 | TRANSFER IN CASE JSPILL NON-ZERO |
|  | CAL | 0 | PLACE LOCATION AT WHICH OVERFLOW OCCURRED |
|  | SUB | AA35 | IN AC |
|  | LLS | 18 | SHIFT LEFT 18 |
| AA41 | STD | AA41 | STORE IN JSPILL |
| AA42 | CLA | AA45 | SET AC,MQ WITH SPECIFIED CONSTANTS |
|  | LDQ | AA45 |  |
|  | TRA* | 0 | EXIT TO MAIN PROGRAM |
| AA45 | HTR | 0 | COMMON STORAGE |
| AA46 | HTR | 0 | COMMON STORAGE |
| AA47 | TRA | AA16 | INSTRUCTION TO BE INSERTED AT LOC. 8 |
|  | END |  |  |

## VII. Typical Input and Output

## A. Input Data for Protons against Copper at 9.75 MeV

| 3 |  | $+0.62500000$ | -01 |
| :---: | :---: | :---: | :---: |
| 22 |  | $+0.25000000$ | +00 |
| 1960 |  | 10 |  |
| 0 |  | 32 |  |
| 0 |  | $+0.15200000$ | +02 |
| 4 |  | +0.20300000 | +02 |
| 0 |  | $+0.25400000$ | +02 |
| 1 |  | $+0.28000000$ | +02 |
| 1 |  | +0.30400000 | +02 |
| 0 |  | +0.33000000 | +02 |
| 1 |  | $+0.35500000$ | +02 |
| 0 |  | $+0.39000000$ | +02 |
| 0 |  | +0.40600000 | +02 |
| 0 |  | $+0.43000000$ | +02 |
| 0 |  | $+0.45600000$ | +02 |
| 0 |  | $+0.47000000$ | +02 |
| 0 |  | +0.507000000 | +02 |
| 0 |  | $+0.51500000$ | +02 |
| 1 |  | +0.54000000 | +02 |
| +0.10000000 | +01 | +0.55700000 | +02 |
| +0.64000000 | +02 | +0.57000000 | +02 |
| +0.97500000 | +01 | +0.60000000 | +02 |
| $+0.29000000$ | $+02$ | +0.60800000 | +02 |
| $+0.12000000$ | +01 | $+0.65500000$ | +02 |
| $+0.62000000$ | $+02$ | +0.65800000 | +02 |
| $+0.85000000$ | +01 | +0.69000000 | +02 |
| $+0.12000000$ | +01 | +0.70800000 | +02 |
| $+0.52000000$ | $+00$ | +0.75500000 | +02 |
| -0.40000000 | +01 | +0.75900000 | +02 |
| +0.00000000 | $+00$ | +0.80900000 | +02 |
| $+0.00000000$ | $+00$ | +0.85900000 | +02 |
| +0.00000000 | $+00$ | +0.86000000 | +02 |
| +0.00000000 | $+00$ | +0.90900000 | +02 |
| $+0.00000000$ | $+00$ | +0.95500000 | +02 |
| $+0.00000000$ | $+00$ | +0.95900000 | +02 |
| $+0.00000000$ | $+00$ | +0.10000000 | +03 |
| $+0.00000000$ | $+00$ | +0.38650000 | +04 |
| $+0.00000000$ | $+00$ | +0.97340000 | +03 |
| $+0.00000000$ | $+00$ | +0.42470000 | +03 |
| +0.00000000 | $+00$ | +0.00000000 | +00 |
| $+0.00000000$ | $+00$ | $+0.22690000$ | +03 |
| $+0.00000000$ | $+00$ | +0.00000000 | +00 |
| $+0.00000000$ | $+00$ | +0.13460000 | +03 |
| $+0.00000000$ | $+00$ | +0.00000000 | +00 |
| +0.00000000 | $+00$ | +0.82920000 | +02 |
| +0.00000000 | $+00$ | +0.00000000 | +00 |
| 1 |  | +0.47660000 | +02 |
| 1 |  | +0.00000000 | $+00$ |
| 1 |  | +0.22870000 | +02 |
| 1 |  | +0.00000000 | +00 |
| 1 |  | $+0.00000000$ | $+00$ |
| 1 |  | $+0.12410000$ | +02 |
| 3 |  | +0.00000000 | +00 |
| +0.62500000 | -01 | +0.00000000 | $+00$ |
| $+0.50000000$ | +00 | +0.64560000 | +01 |
| $+0.10000000$ | $+02$ | +0.00000000 | +00 |


| $+0.40750000$ | +01 | $+0.00000000$ | $+00$ |
| :---: | :---: | :---: | :---: |
| $+0.00000000$ | $+00$ | -0.16000000 | $+00$ |
| $+0.33390000$ | +01 | -0.20000000 | $+00$ |
| +0.00000000 | $+00$ | $+0.00000000$ | $+00$ |
| +0.33560000 | +01 | -0.17000000 | +00 |
| +0.37570000 | +01 | -0.17000000 | $+00$ |
| +0.38570000 | +01 | $+0.00000000$ | $+00$ |
| $+0.00000000$ | $+00$ | -0.10000000 | +00 |
| $+0.38460000$ | $+01$ | $+0.00000000$ | $+00$ |
| +0.00000000 | $+00$ | $+0.10000000$ | -01 |
| +0.37570000 | +01 | $+0.00000000$ | $+00$ |
| +0.00000000 | $+00$ | $+0.20000000$ | +00 |
| +0.39800000 | +03 | $+0.00000000$ | $+00$ |
| +0.35500000 | $+02$ | $+0.00000000$ | $+00$ |
| $+0.16700000$ | +02 | $+0.00000000$ | $+00$ |
| $+0.10000000$ | $+30$ | +0.13000000 | $+00$ |
| $+0.90800000$ | +01 | $+0.00000000$ | +00 |
| +0.10000000 | $+30$ | $+0.70000000$ | -01 |
| $+0.53800000$ | +01 | $+0.00000000$ | +00 |
| +0.10000000 | $+30$ | -0.20000000 | -01 |
| +0.37300000 | +01 | +0.10000000 | +30 |
| $+0.10000000$ | $+30$ | $+0.10000000$ | +30 |
| +0.19100000 | +01 | +0.10000000 | $+30$ |
| $+0.10000000$ | $+30$ | $+0.30000000$ | -01 |
| +0.91500000 | $+00$ | $+0.10000000$ | +30 |
| $+0.10000000$ | $+30$ | $+0.40000000$ | -01 |
| +0.10000000 | +30 | +0.10000000 | +30 |
| +0.49600000 | $+00$ | $+0.30000000$ | -01 |
| $+0.10000000$ | $+30$ | $+0.10000000$ | $+30$ |
| $+0.10000000$ | $+30$ | $+0.30000000$ | -01 |
| $+0.25800000$ | $+00$ | $+0.10000000$ | +30 |
| +0.10000000 | $+30$ | $+0.30000000$ | -01 |
| +0.16300000 | $+00$ | $+0.10000000$ | +30 |
| +0.10000000 | $+30$ | +0.40000000 | -01 |
| +0.13400000 | $+00$ | $+0.40000000$ | -01 |
| $+0.10000000$ | $+30$ | $+0.10000000$ | +30 |
| $+0.13400000$ | $+00$ | $+0.40000000$ | -01 |
| $+0.15000000$ | $+00$ | $+0.30000000$ | -01 |
| +0.15400000 | $+00$ | $+0.10000000$ | +30 |
| $+0.10000000$ | $+30$ | $+0.50000000$ | -01 |
| +0.15400000 | $+00$ | $+0.10000000$ | +30 |
| $+0.10000000$ | $+30$ | $+0.40000000$ | -01 |
| $+0.15000000$ | $+00$ | $+0.10000000$ | +30 |
| $+0.10000000$ | $+30$ | $+0.60000000$ | -01 |
| $+0.00000000$ | $+00$ | $+0.10000000$ | +30 |
| $+0.00000000$ | $+00$ | $+0.10000000$ | +30 |
| +0.00000000 | $+00$ | $+0.10000000$ | +30 |
| -0.20000000 | -01 | +0.60000000 | -01 |
| +0.00000000 | $+00$ | $+0.10000000$ | +30 |
| $+0.10000000$ | -01 | $+0.50000000$ | -01 |
| $+0.00000000$ | $+00$ | $+0.10000000$ | +30 |
| -0.30000000 | -01 | $+0.60000000$ | -01 |
| +0.00000000 | $+00$ | 100 |  |

## B. Output Listing

RUN NUMBER $=2-40-1961-1-1$
PAGE 1
PROGRAM NUMBER 4
$\operatorname{KTRL}(1)=0$
$\operatorname{KTRL}(2)=1$
$\operatorname{KTRL}(3)=1$
$\operatorname{KTRL}(4)=0$
$\operatorname{KTRL}(5)=1$
$\operatorname{KTRL}(6)=0$
$\operatorname{KTRL}(7)=0$
$\operatorname{KTRL}(8)=0$
$\operatorname{KTRL}(9)=0$
$\operatorname{KTRL}(10)=0$
$\operatorname{KTRL}(11)=0$
$\operatorname{KTRL}(12)=0$
$\operatorname{KTRL}(13)=1$
BASIC DATA
$\mathrm{MSUB} 1=0.099999994 \mathrm{E} 01 \quad \mathrm{MSUBB}=0.639999993 \mathrm{E} 02 \quad \mathrm{ELAB}=0.974999994 \mathrm{E} 01$
$\mathrm{V}=0.619999997 \mathrm{E} 02 \quad \mathrm{~W}=0.849999994 \mathrm{E} 01$
$\mathrm{VS}=-0.399999999 \mathrm{E} 01 \quad \mathrm{WS}=0$.
$\mathrm{A}=0.519999996 \mathrm{E} 00$
$B G=0$.

RHOBN $=0.393980615 \mathrm{E} 01$
$\mathrm{ETA}=0.146788672 \mathrm{E} 01$

RHOBC $=0.323980615 \mathrm{E} 01 \quad$ RHOBNG $=0$.
$\mathrm{KA}=0.350979023 \mathrm{E}-00$
$\mathrm{ZZP}=0.289999999 \mathrm{E} 02$ $\mathrm{RO}=0.119999997 \mathrm{E} 01$ $\mathrm{RC}=0.119999997 \mathrm{E} 01$ $R G=0$.
$\mathrm{ECM}=0.959999986 \mathrm{E} 01$ $\mathrm{KB}=0$.

INTEGRATION DATA
RHOMAX $=0.099999994 \mathrm{E} 02$
LMAXM $=10$

NMAX $=3$
RHOIN
$0.625000000 \mathrm{E}-01$
0.500000000 E 00
0.099999994 E 02

DRHOIN

$$
0.625000000 \mathrm{E}-01 \quad 0.250000000 \mathrm{E}-00
$$

$\operatorname{SIGMAR}(T H)=0.668857820 \mathrm{E} 02$
SUM OF CHI SQUARE SIGMA $=0.587550342 \mathrm{E} 02$
SUM OF CHI SQUARE POL= 0.999665476 E 02
SUM OF CHI SQUARE TOTAL= 0.158721581 E 03
~ N



88888888888888888888888888888887


寝家 10
$\infty$
$\infty$
$\infty$
$\infty$
0
0
0
0
0
0



| CHI SQUARE SIGMA |  |
| :---: | :---: |
| $0.247771524 \mathrm{E}-00$ |  |
| 0.833843596 E 01 |  |
| 0.612634748 E 00 |  |
| 0 . |  |
| $0.151578002 \mathrm{E}-00$ |  |
| 0. |  |
|  | 0.328498974 E 01 |
| 0 . |  |
| 0.878443092 E 01 |  |
| 0. |  |
| 0.110886693 E 02 |  |
| 0. |  |
| $0.123029307 \mathrm{E}-01$ |  |
| 0 . |  |
| 0 . |  |
| $0.232838377 \mathrm{E}-04$ |  |
| 0 . |  |
| 0 . |  |
| 0.256912217 E 01 |  |
| 0 . |  |
| 0.495124198 E 01 |  |
| 0 . |  |
| 0.575213231 E 01 |  |
| 0 . |  |
| 0.562634163 E 01 |  |
| 0.129713513 E 01 |  |
| 0.282009937 E 01 |  |
| 0 . |  |
| 0.275396556 E 01 |  |
| 0. |  |
| $0.464161523 \mathrm{E}-00$ |  |
|  | 0 . |

DPOL EX
$0.099999994 \mathrm{E} \quad 30$
$0.099999994 \mathrm{E} \quad 30$
$0.099999994 \mathrm{E} \quad 30$
$0.299999997 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.399999991 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.299999997 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.299999997 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.299999997 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.399999991 \mathrm{E}-01$
$0.399999991 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.399999991 \mathrm{E}-01$
$0.299999997 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.499999993 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.399999991 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.599999994 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.099999994 \mathrm{E} \quad 30$
$0.099999994 \mathrm{E} \quad 30$
$0.599999994 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.499999993 \mathrm{E}-01$
$0.099999994 \mathrm{E} \quad 30$
$0.599999994 \mathrm{E}-01$







|  |
| :---: |

ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

$$
0
$$

$8-80$
1
1
1

[^9]
## VIII. Further Subroutines and Programs in Preparation

The following subroutines are presently being prepared at UCLA:

## Subroutine TV

This subroutine is designed to output on CRT and on film various required curves such as $\sigma(\theta)$ vs $\theta, \sigma(\theta) / \sigma_{c}(\theta)$ vs $\theta, P(\theta)$ vs $\theta$.

## Subroutine RHOBEG

This subroutine will make use of the quantities $\operatorname{IIN}(\mathrm{L})$ to allow the numerical integrations to start at different values of $\rho$ depending upon $\ell$ in order to speed up the numerical integration.

## Subroutine FLUX

This subroutine will if desired compute the normalized total wave functions, the scattered flux $\vec{j}$, the divergence and the curl of $\vec{j}$ at specified values of $\rho$ and $\theta$.

All the above subroutines will of course require some modification of the basic program.
The following programs are presently being prepared at UCLA:
Program SCAT 3
This program will be similar to program SCAT 4 except that it will treat incident and target particles of zero spin, thus speeding up the calculation for that case.
Program SCAT 5
This is a modified version of program SCAT 4 offering a simplified input and using only as many $\ell$ 's as may be significant in the $C_{\ell}$ 's calculations.
Program SCAT K
This is a modified version of program SCAT 4 designed to analyze the scattering of K-mesons against complex nuclei, including the use of an approximate Klein-Gordon equation, relativistic kinematic corrections, and averaging of the cross sections over angles, energies, and representative nuclei.
Program SCAT 6
This is a modified version of program SCAT 4 designed to calculate cross sections and polarization of spin 1 particles scattered by 0 spin targets.

## Program SEEK 4

This is a program designed to search automatically the parameter space so as to minimize $\chi^{2}$.

## BIBLIOGRAPHY OF DIFFUSE SURFACE OPTICAL MODEL ANALYSES BY MACHINE CALCULATIONS

R. D. Albert, $(p, n)$ Cross Sections and Proton Optical-Model Parameters in 4 - to $5.5-\mathrm{MeV}$ Energy Region, UCRL-5488 (1959).
H. J. Amster, Optical Model Evidence for Surface Absorption of Neutrons, Phys. Rev. 113, 911 (1959).
H. J. Amster and L. M. Culpepper, Surface Modified Nuclear Optical Model: Description of the SUMNUM Code for the NORC Computer, WAPD-TM-87, Bettis Plant of the AEC, Pittsburgh, Pa.
Baker, Byfield, and Rainwater, Theoretical Calculations of the Scattering of $\pi$-Mesons by Complex Nuclei, Phys. Rev. 112, 1773 (1958).
H. R. Beyster, Predictions of Fast Neutrons Scattering Data with a Diffuse Surface Potential Well, LA-2099 (1956).
Beyster, Walt and Salmi, Interaction of $1.0-$, $2.5-$, $3.25-$, and $7.0-\mathrm{MeV}$ Neutrons with Nuclei Phys. Rev. 104, 1319 (1956).
Bjorklund, Blandford and Fernbach, Analysis of Elastic Scattering and Polarization of 300-MeV Protons, Phys. Rev. 108, 795 (1957).
F. Bjorklund and S. Fernbach, Elastic Scattering of 7-MeV Neutrons (Theoretical Curves), UCRL-4927-T (1957).
F. Bjorklund and S. Fernbach, Optical-Model Analysis of Scattering of 4.1-, 7-, and 14MeV Neutrons by Complex Nuclei, Phys. Rev. 109. 1295 (1958).
F. Bjorklund and S. Fernbach, Exact Phase-Shift Calculation for Nucleon-Nuclear Scattering, UCRL-5028 (1958).
Bjorklund, Fernbach and Sherman, Optical Model of Nucleus with Absorbing Surface, Phys. Rev. 101, 1832 (1956).
W. B. Cheston and A. E. Glassgold, Elastic Scattering of Alpha-Particles with the Optical Model, Phys. Rev. 106, 1215 (1957).
Culler, Fernbach and Sherman, Optical Model Analysis of Scattering of $14-\mathrm{MeV}$ Neutrons, Phys. Rev. 101, 1047 (1956).
Eisberg, Gugelot and Porter, Conference on the Statistical Aspects of the Nucleus, Brookhaven National Laboratory (1955).
W. S. Emmerich, Cross Section Calculations for Fast Neutron Scattering, Westinghouse Research Report 60-94511-6-R17 (1957).
W. S. Emmerich, Optical Model Theory of Neutron Scattering and Reactions, Westinghouse Research Report 6-94511-6-R20 (1958).
Franklin, Margolis and Oberthal, Scattering of $\mu$-Mesons by Nuclei, Phys. Rev. 111, 296 (1958).

Glassgold, Cheston, Stein, Schuld and Erickson, Analysis of Proton-Nucleus Scattering at 9.8 MeV , Phys. Rev. 106, 1207 (1958).
A. E. Glassgold, Interaction of Antiprotons with Complex Nuclei, Phys. Rev. 110, 220 (1958).
A. E. Glassgold and P. J. Kellogg, Proton-Nucleus Scattering at 17 MeV , Phys. Rev. 107, 1372 (1957).
A. E. Glassgold and P. J. Kellogg, Nuclear Scattering of 40- and 95-MeV Protons, Phys. Rev. 109, 1291 (1958).
Green, Porter and Saxon, Proceedings of the International Conference on the Nuclear Optical Model, Florida State University, Tallahassee (1959).
G. Igo, Optical-Model Analysis of the Elastic Scattering of Alpha Particles, Phys. Rev. 106, 126 (1957).
G. Igo, Optical Model Potential at the Nuclear Surface for the Elastic Scattering of Alpha Particles, Phys. Rev. Let. 1, 72 (1958).
G. Igo, Optical Model Analysis of the Scattering of Alpha Particles from Helium (in press).
G. Igo, Optical-Model Analysis of Excitation Function Data and Theoretical Reaction Cross Sections for Alpha Particles, Phys. Rev. 115, 1665 (1959).
Igo, Ravenhall, Tiemann, Chupp, Goldhaber, Goldhaber, Lanutti and Thaler, The Scattering of $K^{+}$-Mesons in Emulsion, Phys. Rev. 109, 2133 (1958).
R. Jastrow and I. Harris, Nuclear Cross Sections for the Scattering of Neutrons and Protons, Proceedings of the ONR Decennial Symposium (1957).

Lukyanov, Orlov and Turovstev, Optical Model of the Interaction between Intermediate Energy Neutrons and Nuclei, Nucl. Phys. 8, 325 (1958).
I. E. McCarthy, Flux of Particles in the Optical Model, Nucl. Phys. 10, 583 (1959).

Melkanoff, Moszkowski, Nodvik and Saxon, Energy Dependence of the Optical Model Parameters, Phys. Rev. 101, 507 (1956).
Melkanoff, Nodvik and Saxon, Diffuse-Surface Optical Model Analysis of Elastic Scattering of $17-$ and $31.5-\mathrm{MeV}$ Protons, Phys. Rev. 106, 793 (1957).
Melkanoff, Price, Stork and Ticho, Optical Model Analysis of Elastic Scattering of 125$\mathrm{MeV} K^{+}$-Mesons in Nuclear Emulsions, Phys. Rev. 113, 1303 (1959).

University of Minnesota Annual Progress Report 1956-1957, 1957-1958, 1958, University of Minnesota Linear Accelerator Laboratory, Minneapolis, Minn.
J. S. Nodvik and D. S. Saxon, Analysis of Elastic Cross Sections and Polarization of 10 MeV Protons (in press).
C. E. Porter, Nitrogen-Nitrogen Elastic Scattering, Phys. Rev. 112, 1722 (1958).
H. M. Shey, Scattering of Neutrons by Non-spherical Nuclei, Phys. Rev. 113, 900 (1959).
R. D. Woods and D. S. Saxon, Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev. 95, 577 (1954).

End of the Project Gutenberg EBook of A Fortran Program for Elastic Scattering Analyses with the Nuclear Optical Model, by Michel A. Melkanoff and David S. Saxon and John S. Nodvik and David G. Cantor
*** END OF THIS PROJECT GUTENBERG EBOOK ELASTIC SCATTERING ANALYSES ***
***** This file should be named 29784-pdf.pdf or 29784-pdf.zip ${ }^{* * * * *}$ This and all associated files of various formats will be found in: http://www.gutenberg.org/2/9/7/8/29784/

Produced by David Starner, Andrew D. Hwang, and the Online Distributed Proofreading Team at http://www.pgdp.net

Updated editions will replace the previous one--the old editions will be renamed.

Creating the works from public domain print editions means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING with public domain eBooks. Redistribution is subject to the trademark license, especially commercial redistribution.
*** START: FULL LICENSE ***
THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg-tm License (available with this file or online at http://gutenberg.org/license).

Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works
1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is in the public domain in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States.

## 1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org
1.E.2. If an individual Project Gutenberg-tm electronic work is derived from the public domain (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E. 8 or
1.E.9.
1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E. 1 through 1.E. 7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm.
1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E. 1 with active links or immediate access to the full terms of the Project Gutenberg-tm License.
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that

- You pay a royalty fee of $20 \%$ of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation."
- You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works.

[^10]money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

- You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and Michael Hart, the owner of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread public domain works in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages.

If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg-tm
Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need, are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation web page at http://www.pglaf.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Its 501(c)(3) letter is posted at http://pglaf.org/fundraising. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws.

The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email business@pglaf.org. Email contact links and up to date contact information can be found at the Foundation's web site and official page at http://pglaf.org

For additional contact information:
Dr. Gregory B. Newby
Chief Executive and Director
gbnewby@pglaf.org

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide spread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations (\$1 to $\$ 5,000$ ) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit http://pglaf.org

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: http://pglaf.org/donate

Section 5. General Information About Project Gutenberg-tm electronic works.

Professor Michael S. Hart is the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For thirty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support.

Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as Public Domain in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our Web site which has the main PG search facility:
http://www.gutenberg.org
This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.


[^0]:    ${ }^{1}$ See J. Lepore, Phys. Rev. 79, 137 (1950).

[^1]:    ${ }^{2}$ L. Rosen, Proceedings of the International Conference on the Nuclear Optical Model, Florida State University, Tallahassee, 1959, pp. 72-90.

[^2]:    ${ }^{3}$ W. Heckrotte, Phys. Rev. 101, 1406 (1956).

[^3]:    ${ }^{4}$ J.S. Nodvik, Proceedings of the International Conference on the Nuclear Model, Florida State University, Tallahassee, 1959, pp. 16-23.

[^4]:    ${ }^{5}$ Tables of Coulomb Wave Functions, Vol. I, National Bureau of Standards, Applied Mathematics Series 17, Washington, 1952, p. XV.
    ${ }^{6}$ C. E. Fröberg, Rev. Mod. Phys. 27, 399 (1955).

[^5]:    ${ }^{7}$ Stegun and Abramowitz, Phys. Rev. 98, 1851 (1955).

[^6]:    ${ }^{8}$ FFCR refers to the symbolic variables $\mathrm{FFCR}(\mathrm{I})$ and $\mathrm{FFCRM}(\mathrm{I})$ appearing in the program (see glossary of symbols), similarly for FFCI, FFSR, and FFSI.

[^7]:    ${ }^{9}$ The quantity $A$ is eventually discarded but it must still be input as $1 / 2$ to avoid overflow in the early part of the program.

[^8]:    ${ }^{10} \operatorname{KTRL}(3)=1$ also requires $\operatorname{KTRL}(2)=1$ for proper operation.

[^9]:    -8
    0
    1
    1
    $\vdots$
    1
    0
    

[^10]:    - You provide, in accordance with paragraph 1.F.3, a full refund of any

