
A Forward Scan based Plane Sweep Algorithm
for Parallel Interval Joins

Panagiotis Bouros∗

Department of Computer Science
Aarhus University, Denmark

pbour@cs.au.dk

Nikos Mamoulis†

Dept. of Computer Science & Engineering
University of Ioannina, Greece

nikos@cs.uoi.gr

ABSTRACT

The interval join is a basic operation that finds application in tem-

poral, spatial, and uncertain databases. Although a number of cen-

tralized and distributed algorithms have been proposed for the ef-

ficient evaluation of interval joins, classic plane sweep approaches

have not been considered at their full potential. A recent piece of

related work proposes an optimized approach based on plane sweep

(PS) for modern hardware, showing that it greatly outperforms pre-

vious work. However, this approach depends on the development

of a complex data structure and its parallelization has not been ad-

equately studied. In this paper, we explore the applicability of a

largely ignored forward scan (FS) based plane sweep algorithm,

which is extremely simple to implement. We propose two opti-

mizations of FS that greatly reduce its cost, making it competitive

to the state-of-the-art single-threaded PS algorithm while achieving

a lower memory footprint. In addition, we show the drawbacks of a

previously proposed hash-based partitioning approach for parallel

join processing and suggest a domain-based partitioning approach

that does not produce duplicate results. Within our approach we

propose a novel breakdown of the partition join jobs into a small

number of independent mini-join jobs with varying cost and man-

age to avoid redundant comparisons. Finally, we show how these

mini-joins can be scheduled in multiple CPU cores and propose an

adaptive domain partitioning, aiming at load balancing. We include

an experimental study that demonstrates the efficiency of our opti-

mized FS and the scalability of our parallelization framework.

1. INTRODUCTION
Given a 1D discrete or continuous space, an interval is defined by

a start and an end point in this space. For example, given the space

of all non-negative integers N, and two integers start, end ∈ N,

with start ≤ end, we define an interval i = [start, end] as the

∗Funded by Innovation Fund Denmark as part of the Future Crop-
ping project (J. nr. 5107-00002B).
†Funded from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 657347.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 21508097/17/07.

subset of N, which includes all integers x with start ≤ x ≤ end.1

Let R, S be two collections of intervals. The interval join R ✶ S
is defined by all pairs of intervals r ∈ R, s ∈ S that intersect, i.e.,

r.start ≤ s.start ≤ r.end or s.start ≤ r.start ≤ s.end.

The interval join is one of the most widely used operators in tem-

poral databases [9]. Generally speaking, temporal databases store

relations of explicit attributes that conform to a schema and each tu-

ple carries a validity interval. In this context, an interval join would

find pairs of tuples from two relations which have intersecting va-

lidity. For instance, assume that the employees of a company may

be employed at different departments during different time periods.

Given the employees who have worked in departments A and B,

the interval join would identify pairs of employees, whose periods

of work in A and B, respectively, interest.

Interval joins apply in other domains as well. In multidimen-

sional spaces, an object can be represented as a set of intervals in

a space-filling curve. The intervals correspond to the subsequences

of points on the curve that are included in the object. Spatial joins

can then be reduced to interval joins in the space-filling curve rep-

resentation [14]. The filter-step of spatial joins between sets of ob-

jects approximated by minimum bounding rectangles (MBRs) can

also be processed by finding intersecting pairs in one dimension

(i.e., an interval join) and verifying the intersection in the other di-

mension on-the-fly [1, 3]. Another application is uncertain data

management. Uncertain values are represented as intervals (which

can be paired with confidence values). Thus, equi-joins on the un-

certain attributes of two relations translate to interval joins [6].

Due to its wide applicability, there has been quite a number of

studies on the efficient evaluation of the interval join. Surprisingly,

the use of the classic plane sweep (PS) algorithms [20] has not

been considered as a competitive approach in most of the previous

work.2 A recent paper [18] implemented and optimized a version

of PS (taken from [1]), called Endpoint-Based Interval (EBI) Join.

EBI sorts the endpoints of all intervals (from both R and S) and

then sweeps a line which stops at each of the sorted endpoints. As

the line sweeps, the algorithm maintains the active sets of intervals

from R and S which intersect with the current stop point of the line.

When the line is at a start point (e.g., from R) the current interval

is added to the corresponding active set (e.g., AR) and the active set

of the other relation (e.g., AS of S) is scanned to form join pairs

with the current interval. When the line is at an end point (e.g.,

1Note that the intervals in this paper are closed. Yet, our techniques
and discussions are applicable with minor changes for generic in-
tervals where the begin and end sides are either open or closed.
2We believe the main reason is that previous work mostly focused
on centralized evaluation on hard-disk, which becomes less rele-
vant in today’s in-memory data management and the wide avail-
ability of parallel and distributed platforms and models.

1346

from R), the corresponding interval is removed from the respective

active set (e.g., AR).

The work of [18] focuses on minimizing the random memory

accesses due to the updates and scans of the active sets. However,

random accesses can be overall avoided by another implementation

of PS, presented in [3] in the context of MBR (i.e., spatial) joins.

We call this version forward scan (FS) based PS. In a nutshell, FS

sweeps all intervals in increasing order of their start points. For

each interval encountered (e.g., r ∈ R), FS scans forward the list

of intervals from the other set (e.g., S). All such intervals having

start point before the end point of r form join results with r. It can

be easily shown that the cost of FS (excluding sorting) is O(|R| +
|S|+K), where K is the number of join results.

The contribution of this paper is twofold. In Section 4, we present

two novel optimizations for FS, which greatly reduce the number of

comparisons during the join computation. In particular, optimized

FS produces multiple join tuples in batch at the cost of a single

comparison. Hence, we achieve (i) competitive performance to the

state-of-the-art PS algorithm (EBI [18]), without using any special

hardware optimizations and (ii) a much lower memory footprint.

Our second contribution (Section 5) is an optimized framework

for processing plane sweep based algorithms in parallel. We first

show that the hash-based partitioning framework suggested in [18]

does not take full advantage of parallelism. Our framework, ap-

plies a domain-based partitioning instead. We first show that al-

though intervals should be replicated in the domain partitions to

ensure correctness, duplicate results can be avoided, therefore the

partition join jobs can become completely independent. Then, we

show how to break down each partition join into five independent

mini-join jobs which have varying costs. More importantly, only

one of these mini-joins has the complexity of the original join prob-

lem, while the others have a significantly lower cost. We show how

to schedule these mini-joins to a smaller number of CPU cores.

In addition, we suggest an adaptive splitting approach for the data

domain that results in an improved cost balancing between the par-

titions and consequently an improved load balancing for the mini-

joins. We conduct experiments which show that our domain-based

partitioning framework achieves ideal speedup with the number

of CPU cores, greatly outperforming the hash-based partitioning

framework of [18]. Although our framework is independent of the

algorithm used for the mini-joins, we show that our optimized ver-

sion of FS takes better advantage of it compared to EBI.

The rest of the paper is organized as follows. Section 2 discusses

related work while Section 3 reviews in more detail plane sweep

methods; EBI [18] and original FS from [3]. In Section 4, we pro-

pose two novel optimizations for FS that greatly reduce the com-

putational cost of the algorithm in practice. Section 5 presents our

domain-based partitioning framework for parallel interval joins. Sec-

tion 6 includes our experimental evaluation which demonstrates the

effect of our optimizations to FS and the efficiency of our parallel

interval join framework. Finally, Section 7 concludes the paper.

2. RELATED WORK
In this section, we review related work on interval joins. We

classify the algorithms of previous work based on the data struc-

tures they use and based on the underlying architecture.

Nested loops and merge join. Early work on interval joins [11,

21] studied a temporal join problem, where two relations are equi-

joined on a non-temporal attribute and the temporal overlaps of

joined tuple pairs should also be identified. Techniques based on

nested-loops (for unordered inputs) and on sort-merge join (for or-

dered inputs) were proposed, as well as specialized data structures

for append-only databases. Similar to plane sweep, merge join al-

gorithms require the two input collections to be sorted, however,

join computation is sub-optimal compared to FS, which guarantees

at most |R|+ |S| endpoint comparisons that do not produce results.

Index-based algorithms. Enderle et al. [8] propose interval join

algorithms, which operate on two RI-trees [15] that index the input

collections. Zhang et al. [24] focus on finding pairs of records in

a temporal database that intersect in the (key, time) space (i.e., a

problem similar to that studied in [11, 21]), proposing an extension

of the multi-version B-tree [2].

Partitioning-based algorithms. A partitioning-based approach for

interval joins was proposed in [23]. The domain is split into disjoint

ranges. Each interval is assigned to the partition corresponding to

the last domain range it overlaps. The domain ranges are processed

sequentially from last to first; after the last pair of partitions are

processed, the intervals which overlap the previous domain range

are migrated to the next join. This way data replication is avoided.

Histogram-based techniques for defining good partition boundaries

were proposed in [22]. A more sophisticated partitioning approach,

called Overlap Interval Partitioning (OIP) Join [7], divides the do-

main into equal-sized granules and consecutive granules define the

ranges of the partitions. Each interval is assigned to the partition

corresponding to the smallest sequence of granules that contains it.

In the join phase, partitions of one collection are joined with their

overlapping partitions from the other collection. OIP was shown

to be superior compared to index-based approaches [8] and sort-

merge join. These results are consistent with the comparative study

of [9], which shows that partitioning-based methods are superior to

nested loops and merge join approaches.

Disjoint Interval Partitioning (DIP) [4] was recently proposed for

temporal joins and other sort-based operations on interval data (e.g,

temporal aggregation). The main idea behind DIP is to divide each

of the two input relations into partitions, such that each partition

contains only disjoint intervals. Every partition of one input is then

joined with all of the other. Since intervals in the same partition do

not overlap, sort-merge computations are performed without back-

tracking. Prior to this work, temporal aggregation was studied in

[17]. Given a large collection of intervals (possibly associated with

values), the objective is to compute an aggregate (e.g., count the

valid intervals) at all points in time. An algorithm was proposed

in [17] which divides the domain into partitions (buckets), assigns

the intervals to the first and last bucket they overlap and maintains

a meta-array structure for the aggregates of buckets that are en-

tirely covered by intervals. The aggregation can then be processed

independently for each bucket (e.g., using a sort-merge based ap-

proach) and the algorithm can be parallelized in a shared-nothing

architecture. We also propose a domain-partitioning approach for

parallel processing (Section 5), however, the details differ due to

the different natures of temporal join and aggregation.

Methods based on plane sweep. The Endpoint-Based Interval

(EBI) Join (reviewed in detail in Section 3.1) and its lazy version

LEBI were shown to significantly outperform OIP [7] and to also be

superior to another plane sweep implementation [1]. An approach

similar to EBI is used in SAP HANA [13]. To our knowledge, no

previous work was compared to FS [3] (detailed in Section 3.2). In

Section 4, we propose two novel optimizations for FS that greatly

improve its performance, making it competitive to LEBI.

Parallel algorithms. A domain-based partitioning strategy for in-

terval joins on multi-processor machines was proposed in [16].

Each partition is assigned to a processor and intervals are replicated

to the partitions they overlap, in order to ensure that join results can

be produced independently at each processor. However, a merge

1347

ALGORITHM 1: Endpoint-Based Interval (EBI) Join

Input : collections of intervals R and S
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

Variables : endpoint indices EIR and EIS , active interval sets AR and AS

1 J ← ∅, AR ← ∅, AS ← ∅;

2 build EIR and EIS ;

3 sort EIR and EIS first by endpoint then by type;

4 eR ← first index tuple in EIR;

5 eS ← first index tuple in EIS ;

6 while EIR and EIS not depleted do

7 if eR < eS then

8 if eR.type = START then

9 r ← interval in R with identifier eR.id;

10 add r to AR; ⊲ r is open

11 foreach s ∈ AS do

12 J ← J
⋃
{(r, s)}; ⊲ update results

13 else

14 remove r from AR; ⊲ r no longer open

15 eR ← next index tuple in EIR;

16 else

17 if eS .type = START then

18 s← interval in S with identifier eS .id;

19 add s to AS ; ⊲ s is open

20 foreach r ∈ AR do

21 J ← J
⋃
{(r, s)}; ⊲ update results

22 else

23 remove s from AS ; ⊲ s no longer open

24 eS ← next index tuple in EIS ;

25 return J

phase with duplicate elimination is required because the same join

result can be produced by different processors. Our parallel join

processing approach (Section 5) also applies a domain-based parti-

tioning but does not produce duplicates. In addition, we propose a

breakdown of each partition join to a set of mini-join jobs, which

has never been considered in previous work.

Distributed algorithms. Distributed interval join evaluation was

studied in [14]. The goal is to compute joins between sets of in-

tervals located at different clients. The clients iteratively exchange

statistics with the server, which help the latter to compute a coarse-

level approximate join; exact results are refined by on-demand com-

munication with the clients. Chawda et al. [5] implement the parti-

tioning algorithm of [16] in the MapReduce framework and extend

it to operate for other (non-overlap) join predicates. The main goal

of distributed algorithms is to minimize the communication cost

between the machines that hold the data and compute the join.

3. PLANE SWEEP FOR INTERVAL JOINS
This section presents the necessary background on plane sweep

based computation of interval joins. First, we detail the EBI al-

gorithm [18]. Then, we review the forward scan based algorithm

from [3], which has been overlooked by previous work. Both meth-

ods take as input two interval collections R and S and compute all

(r, s) pairs (r ∈ R, s ∈ S), which intersect. We denote by r.start
(r.end) the starting (ending) point of an interval r.

3.1 EndpointBased Interval Join
EBI [18] is based on the internal-memory plane sweep tech-

nique of [20] and tailored to modern hardware. Algorithm 1 illus-

trates the pseudo-code of EBI. EBI represents each input interval,

e.g., r ∈ R, by two tuples in the form of 〈endpoint, type, id〉,

where endpoint equals either r.start or r.end, type flags whether

endpoint is a starting or an ending endpoint, and id is the identifier

of r. These tuples are stored inside the endpoint indices EIR and

EIS , sorted primarily by their endpoint and secondarily by type.

To compute the join, EBI concurrently scans the endpoint indices,

accessing their tuples in increasing global order of their sorting key,

simulating a “sweep line” that stops at each endpoint from either R
or S. At each position of the sweep line, EBI keeps track of the

intervals that have started but not finished, i.e., the index tuples

that are start endpoints, for which the index tuple having the cor-

responding end endpoint has not been accessed yet. Such intervals

are called active and they are stored inside sets AR and AS ; EBI

updates these active sets depending on the type entry of current in-

dex tuple (Lines 10 and 14 for collection R and Lines 19 and 23 for

S). Finally, for a current index tuple (e.g., eR) of type START ,

the algorithm iterates through the active intervals of the opposite in-

put collection (e.g., AS on Lines 11–12) to produce the next bunch

of results (e.g., the intervals of S that join with eR.id).

By recording the active intervals from each collection, EBI can

directly report the join results without any endpoint comparisons.

To achieve this, the algorithm needs to store and scan the endpoint

indices which contain twice the amount of entries compared to the

input collections. Hence excluding the sorting cost for EIR and

EIS , EBI conducts 2·(|R|+ |S|) endpoint comparisons to advance

the sweep line, in total. However, the critical overhead of EBI is

the maintenance and scanning of the active sets at each loop; i.e.,

Lines 10 and 19 (add), Lines 11–12 and 20–21 (scan), Lines 14 and

23 (remove). This overhead can be quite high; for example, typical

hash map data structures support efficient O(1) updates but scan-

ning their contents is slow. To deal with this issue, Piatov et al. de-

signed a special hash table termed the gapless hash map which ef-

ficiently supports all three insert, remove and getNext oper-

ations. Finally, the authors further optimized the join computation

by proposing a lazy evaluation technique which buffers consecu-

tive index tuples of type START (and hence, their corresponding

intervals) as long as they originate from the same input (e.g., R).

When producing the join results, a single scan over the active set of

the opposite collection (e.g., AS) is performed for the entire buffer.

This idea is captured by the Lazy Endpoint-Based Interval (LEBI)

Join algorithm. By keeping the buffer size small enough to fit in the

L1 cache or even in the cache registers, LEBI greatly reduces main

memory cache misses and hence, outperforms EBI even more.

3.2 Forward Scan based Plane Sweep
The experiments in [18] showed that LEBI outperforms not only

EBI, but also the plane sweep algorithm of [1], which directly scans

the inputs ordered by start endpoint and keeps track of the active

intervals in a linked list. Intuitively, both approaches perform a

backward scan, i.e., a scan of already encountered intervals, orga-

nized by a data structure that supports scans and updates. In prac-

tice however, the need to implement a special structure may limit

the applicability and the adoption of these evaluation approaches

while also increasing the memory space requirements.

In [3], Brinkhoff et al. presented a different implementation of

plane sweep, which performs a forward scan directly on the input

collections and hence, (i) there is no need to keep track of active

sets in a special data structure and (ii) data scans are conducted se-

quentially.3 Algorithm 2 illustrates the pseudo-code of this method,

denoted by FS. First, both input collections are sorted by the start

endpoint of each interval. Then, FS sweeps a line, which stops at

the start endpoint of all intervals of R and S in order. For each

3The algorithm was originally proposed for the intersection join of
2D rectangles, but it is straightforward to apply for interval joins.

1348

ALGORITHM 2: Forward Scan based Plane Sweep (FS)

Input : collections of intervals R and S
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

1 J ← ∅;
2 sort R and S by start endpoint;

3 r ← first interval in R;

4 s← first interval in S;

5 while R and S not depleted do

6 if r.start < s.start then

7 s′ ← s;

8 while s′ 6= null and r.end ≥ s′.start do

9 J ← J
⋃
{(r, s′)}; ⊲ add result

10 s′ ← next interval in S; ⊲ scan forward

11 r ← next interval in R;

12 else

13 r′ ← r;

14 while r′ 6= null and s.end ≥ r′.start do

15 J ← J
⋃
{(r′, s)}; ⊲ add result

16 r′ ← next interval in R; ⊲ scan forward

17 s← next interval in S;

18 return J

position of the sweep line, corresponding to the start of an inter-

val, say r ∈ R, the algorithm produces join results by combin-

ing r with all intervals from the opposite collection, that start (i)

after the sweep line and (ii) before r.end, i.e., all s′ ∈ S with

r.start ≤ s′.start ≤ r.end (internal while-loops on Lines 7–10

and 13–16). Excluding the cost of sorting R and S, FS conducts

|R|+ |S|+ |R ⊲⊳ S| endpoint comparisons, in total. Specifically,

each interval r ∈ R (the case for S is symmetric) is compared to

just one s′ ∈ S which does not intersect r in the loop at Lines 8–10.

4. OPTIMIZING FS
In this section, we propose two optimization techniques for FS

that can greatly enhance its performance, making it competitive to

LEBI [18]. Note that the cost of FS cannot be asymptotically re-

duced as |R|+ |S| endpoint comparisons is the unavoidable cost of

advancing the sweep line. Still, it is possible to reduce the number

of |R⊲⊳ S| comparisons required to produce the join results.

4.1 Grouping
The intuition behind our first optimization is to group consecu-

tively sweeped intervals from the same collection and produce join

results for them in batch, avoiding redundant comparisons. We ex-

emplify this idea using Figure 1, which depicts intervals {r1, r2} ∈
R and {s1, s2, s3, s4, s5} ∈ S sorted by start endpoint. Assume

that FS has already examined s1; since r1.start < s2.start, the next

interval where the sweep line stops is r1. Algorithm 2 (Lines 7–10)

then forward scans through the shaded area in Figure 1(a) from

s2.start until it reaches s4.start > r1.end, producing result pairs

{(r1, s2), (r1, s3)}. The next stop of the sweep line is r2.start,
since r2.start < s2.start. FS scans through the shaded area in

Figure 1(b) producing results {(r2, s2), (r2, s3), (r2, s4)}. We ob-

serve that the scanned areas of r1 and r2 are not disjoint which in

practice means that FS performed redundant endpoint comparisons.

Indeed, this is the case for s2.start and s3.start which were com-

pared to both r1.end and r2.end. However, since r2.end > r1.end
holds, r1.end > s2.start automatically implies that r2.end >
s2.start; therefore, pairs (r1, s2) and (r2, s2) could have been re-

ported by comparing only r1.end to s2.start. Hence, processing

consecutively sweeped intervals from the same collection (e.g., r1
and r2) as a group allows us to scan their common areas only once.

ALGORITHM 3: FS with grouping (gFS)

Input : collections of intervals R and S
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

1 sort R and S by start endpoint;

2 r ← first interval in R;

3 s← first interval in S;

4 J ← ∅;
5 while R and S not depleted do

6 if r.start < s.start then

7 GR ← next group from R w.r.t. r, s;

8 sort GR by end endpoint;

9 s′ ← s;

10 foreach ri ∈ GR in order do

11 while s′ 6= null and s′.start ≤ ri.end do

12 foreach rj ∈ GR, j ≥ i do

13 J ← J
⋃
{(rj , s

′)}; ⊲ update results

14 s′ ← next interval in S; ⊲ scan forward

15 r ← first interval in R after GR;

16 else

17 GS ← next group from S w.r.t. s, r;

18 sort GS by end endpoint;

19 r′ ← r;

20 foreach si ∈ GS in order do

21 while r′ 6= null and r′.start ≤ si.end do

22 foreach sj ∈ GS , j ≥ i do

23 J ← J
⋃
{(r′, sj)}; ⊲ update results

24 r′ ← next interval in R; ⊲ scan forward

25 s← first interval in S after GS ;

26 return J

Algorithm 3 illustrates the pseudo-code of gFS, which enhances

FS with the grouping optimization. Instead of processing one inter-

val at a time, gFS considers a group of consecutive intervals from

the same collection at a time. Specifically, assume that at the cur-

rent loop r.start < s.start (the other case is symmetric). gFS,

starting from r, accesses all r′ ∈ R such that r′.start < s.start
(Line 7) and puts them in a group GR. Next, the contents of GR

are reordered by increasing end endpoint (Line 8). Then, gFS ini-

tiates a forward scan to S starting from s′ = s (Lines 9–14), but

unlike FS the scan is done only once for all intervals in GR. For

each ri ∈ GR in the new order, if s′.start ≤ ri.end, then s′ inter-

sects not only with ri but also with all intervals in GR after ri (due

to the sorting of GR by end). If s′.start > ri.end, then s′ does not

join with ri but may join with succeeding intervals in GR, so the

for loop proceeds to the next ri ∈ GR.

Figures 1(c) and (d) exemplify gFS for intervals r1 and r2 grouped

under GR; as r1.end < r2.end, r1 is considered first. When the

shaded area in Figure 1(c) from s2.start until s4.start is scanned,

gFS produces results that pair both r1 and r2 with covered inter-

vals s2 and s3 from S, by comparing s2.start and s3.start only

to r1.end. Intuitively, avoiding redundant endpoint comparisons

corresponds to removing the overlap between the scanned areas of

consecutive intervals (compare r2’s scanned area by gFS in Fig-

ure 1(d) to the area in Figure 1(b) by FS after removing the overlap

with r1’s area).

Discussion and implementation details. The grouping technique

of gFS differs from the buffering employed by LEBI. First, LEBI

groups consecutive start endpoints in a sort order that includes 4

sets of endpoints, whereas in gFS there are only 2 sets of end-

points (i.e., only start endpoints of the two collections). As a re-

sult, the groups in gFS have higher probability to be larger than

LEBI’s buffer (and larger groups make gFS more efficient). Second,

the buffer in LEBI is solely employed for outputting results while

1349

domain	

r
1
’s	scanned	area	

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

s
5	 domain	

r
2
’s	scanned	area	

s
5	

r
2	

s
1	

s
3	

s
4	

r
1	

s
2	

(a) Results: {(r1, s2), (r1, s3)} (b) Results:{(r2,s2),(r2,s3),(r2,s4)}

FS

domain	

r
1
’s	scanned	area	

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

s
5	

GR

	

domain	

r
2
’s	scanned	area	

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

s
5	

GR

	

(c) Results: {(r1, s2), (r2, s2), (d) Results: {(r2, s4)}

(r1, s3), (r2, s3)}

gFS

domain	

r
1
’s	scanned	area	

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

s
5	

GR

	

B	

domain	

r
2
’s	scanned	area	

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

s
5	

GR

	

B	

(e) Results: {(r1, s2), (r2, s2), (f) Results: {(r2, s4)}

(r1, s3), (r2, s3)}

bgFS

Figure 1: Scanned areas by FS, gFS and bgFS for intervals r1
and r2. Underlined result pairs are produced without any end-

point comparisons.

domain	

BIS	

r2	

s2	
s1	

s3	
s4	

r1	

{r1,r2}	 BIR	

{s1}	 {s2,s3}	

s5	
{s4,s5}	

Figure 2: Domain tiles and BIR, BIS bucket indices for the

intervals of Figure 1.

groups in gFS also facilitate the avoidance of redundant endpoint

comparisons due to the reordering of groups by end endpoint. Re-

garding the implementation of grouping in gFS, we experimented

with two different approaches. In the first approach, each group is

copied to and managed in a dedicated array in memory. The sec-

ond approach retains pointers to the begin and end index of each

group in the corresponding collection; the segment of the collec-

tion corresponding to the group is re-sorted (note that correctness

is not affected by this). Our tests showed that the first approach

is always faster, due to the reduction of cache misses during the

multiple scans of the group (i.e., Lines 12-13 and Lines 22-23).

4.2 Bucket Indexing
Our second optimization extends gFS to avoid more endpoint

comparisons during the computation of join results. The idea is

as follows. First, we split the domain into a predefined number

of equally-sized disjoint tiles; all intervals from R (resp. S) that

start within a particular tile are stored inside a dedicated bucket

of the BIR (resp. BIS) bucket index. Figure 2 exemplifies the

domain tiles and the bucket indices for the interval collections of

ALGORITHM 4: FS with grouping and bucket indexing

(bgFS)

Input : collections of intervals R and S
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

Variables : bucket indices BIR and BIS

1 J ← ∅;
2 sort R and S by start endpoint;

3 build BIR and BIS ;

4 r ← first interval in R;

5 s← first interval in S;

6 while R and S not depleted do

7 if r.start < s.start then

8 GR ← next group from R w.r.t. r, s;

9 sort GR by end endpoint;

10 s′ ← s;

11 foreach ri ∈ GR do

12 B ← bucket in BIS : B.start ≤ ri.end < B.end;

13 while s′ is before B do ⊲ no comparisons

14 foreach rj ∈ GR, j ≥ i do

15 J ← J
⋃
{(rj , s

′)}; ⊲ update results

16 s′ ← next interval in S; ⊲ scan forward

17 while s′ 6= null and s′.start ≤ ri.end do

18 foreach rj ∈ GR, j ≥ i do

19 J ← J
⋃
{(rj , s

′)}; ⊲ update results

20 s′ ← next interval in S; ⊲ scan forward

21 r ← first interval in R after GR;

22 else

23 GS ← next group from S w.r.t. s, r;

24 sort GS by end endpoint;

25 r′ ← r;

26 foreach si ∈ GS do

27 B ← bucket in BIR: B.start ≤ si.end < B.end;

28 while r′ is before B do ⊲ no comparisons

29 foreach sj ∈ GS , j ≥ i do

30 J ← J
⋃
{(sj , r

′)}; ⊲ update results

31 r′ ← next interval in R; ⊲ scan forward

32 while r′ 6= null and r′.start ≤ si.end do

33 foreach sj ∈ GS , j ≥ i do

34 J ← J
⋃
{(sj , r

′)}; ⊲ update results

35 r′ ← next interval in R; ⊲ scan forward

36 s← first interval in S after GS ;

37 return J

Figure 1.4 With the bucket indices, the area scanned by gFS for

an interval is entirely covered by a range of tiles. Consider Fig-

ures 1(c) and 1(e); r1’s scanned area lies inside three tiles which

means that the involved intervals from S start between the BIS

bucket covering s2.start and the BIS bucket covering r1.end. In

this spirit, area scanning resembles a range query over the bucket

indices. Hence, every interval si from a bucket completely inside

r1’s scanned area or lying after s2 in the first bucket, can be paired

to r1 as join result without any endpoint comparisons; by definition

of the tiles/buckets, for such intervals si.start ≤ r1.end. Hence,

we only need to conduct endpoint comparisons for the si intervals

originating from the bucket that covers r1.end. This distinction is

graphically shown in Figures 1(e) and (f) where solid gray areas are

used to directly produce join results with no endpoint comparisons.

Observe that, for this example, all four join results produced when

gFS performs a forward scan for r1 are directly reported by bgFS.

4A bucket may in fact be empty; however, we can control the ratio
of empty buckets by properly setting the total number of tiles while
in practice, empty buckets mostly occur for very skewed distribu-
tions of the start endpoints.

1350

PARADIGM 1: Hash-based Partitioning

Input : collections of intervals R and S, number of partitions k, hash

function h
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

1 J ← ∅;
2 foreach interval r ∈ R do ⊲ partition R
3 v ← h(r); ⊲ apply hash function

4 add r to partition Rv ;

5 foreach interval s ∈ S do ⊲ partition S
6 v ← h(s); ⊲ apply hash function

7 add s to partition Sv ;

8 foreach partition Ri of R do

9 foreach partition Sj of S do

10 J ← J
⋃
{Ri ⊲⊳ Sj}; ⊲ using LEBI,FS,gFS,bgFS

11 return J

Algorithm 4 illustrates the pseudo-code of bgFS which enhances

gFS with bucket indexing. Essentially, bgFS operates similar to

gFS. Their main difference lies in the forward scan for every in-

terval inside the current group. Lines 12–20 implement the range

query discussed in the previous paragraph. The algorithm first iden-

tifies bucket B ∈ BIS which covers ri.end. Then, it iterates

through the s′ ∈ S intervals after current s, originating from all

buckets before B to directly produce join results on Lines 13–16

without any endpoint comparison, while finally on Lines 17–20,

the intervals of B are scanned and compared as in gFS.

Discussion and implementation details. In our implementation,

we choose not to materialize the index buckets, i.e., no intervals are

copied to dedicated data structures. In contrast, we store for each

bucket a pointer to the last interval in it; this allows bgFS to effi-

ciently perform the forward scans. With this design, we guarantee

a small main memory footprint for our method as there is no need

to practically store a second copy of the data.

5. PARALLEL PROCESSING
We now shift our focus to the parallel execution of interval joins

that benefits from the existence of multiple CPU cores in a system.

We first revisit and critique the hash-based partitioning approach

suggested in [18], and then, discuss our domain-based partitioning.

5.1 Hashbased Partitioning
In [18], Piatov et al. primarily focused on optimizing EBI for

minimizing the memory access cost in modern hardware. How-

ever, the authors also described how EBI (and its lazy LEBI ver-

sion) can be parallelized. In this spirit, a hash-based partitioning

paradigm was proposed, described by Paradigm 1. The evaluation

of the join involves two phases. First, the input collections are split

into k disjoint partitions using a hash function h. During the sec-

ond phase, a pairwise join is performed between all {R1, . . . , Rk}
partitions of collection R and all {S1, . . . , Sk} of S; in practice,

any single-threaded interval join algorithm can be employed to join

two partitions. Since the partitions are disjoint, the pairwise joins

run independently to each other and hence, results are produced

without the need of a duplicate elimination (i.e., merging) step.

In [18], the intervals in the input collections are sorted by their

start endpoint before partitioning, and then assigned to partitions

in a round-robin fashion, i.e., the i-th interval is assigned to parti-

tion h(i) = (i mod k). This causes the active tuple sets AR, AS

at each instance of the EBI join to become small, because neighbor-

ing intervals are assigned to different partitions. As the cardinality

of AR, AS impacts the run time of EBI, each join at Line 10 is

cheap. On the other hand, the intervals in each partition span the

PARADIGM 2: Domain-based Partitioning

Input : collections of intervals R and S, number of partitions k
Output : set J of all intersecting interval pairs (r, s) ∈ R× S

1 J ← ∅;
2 split domain into k tiles;

3 foreach interval r ∈ R do ⊲ partition R
4 tstart ← domain tile covering r.start;
5 tend ← domain tile covering r.end;

6 add r to partition Rstart;

7 foreach tile tj inside (tstart, tend] do

8 replicate r to partition Rj ;

9 foreach interval s ∈ S do ⊲ partition S
10 tstart ← domain tile covering s.start;
11 tend ← domain tile covering s.end;

12 add s to partition Sstart;

13 foreach tile tj inside (tstart, tend] do

14 replicate s to partition Sj ;

15 foreach domain tile tj do

16 J ← J
⋃
{Rj ⊲⊳ Sj}; ⊲ using LEBI,FS,gFS,bgFS

17 return J

entire domain, meaning that the data in each partition are much

sparser compared to the entire dataset. This causes Paradigm 1

to have an increased total number of comparisons compared to a

single-threaded algorithm, as k increases. In particular, recall that

the basic cost of FS and EBI is the sweeping of the whole space,

incurring |R|+ |S| and 2|R|+2|S| comparisons, respectively. Un-

der hash-based partitioning, k2 joins are executed in parallel, and

each partition carries |R|/k + |S|/k intervals. Hence, the total ba-

sic cost becomes k(|R|+ |S|) and 2k(|R|+ |S|), respectively (i.e.,

an increase by a factor of k).

In addition, despite the even distribution of the load, the hash-

based partitioning paradigm does not take full advantage of the

available hardware. In order to fully take advantage of parallelism,

each of the k2 joins should be computed by a separate thread run-

ning on a dedicated processor (i.e., core). Hence, if there is a lim-

ited number n of CPU cores, we should set k =
√
n to achieve

this, i.e., the number of partitions is much smaller than the number

of cores. In the next section, we present a domain-based partition-

ing paradigm, which creates n partitions for each input collection

by splitting the intervals domain, being able to achieve a higher

level of parallelism compared to the hash-based paradigm, inde-

pendently of the underlying join algorithm.

5.2 Domainbased Partitioning
Similar to Paradigm 1, our domain-based partitioning paradigm

for parallel interval joins (Paradigm 2) involves two phases. The

first phase (Lines 2–14) splits the domain uniformly into k non-

overlapping tiles; a partition Rj (resp. Sj) is created for each do-

main tile tj . Let tstart, tend denote the tiles that cover r.start, r.end
of an interval r ∈ R, respectively. Interval r is first assigned to par-

tition Rstart created for tile tstart. Then, r is replicated across tiles

tstart+1. . . tend. The replicas of r carry a special flag (e.g., r̂). Dur-

ing the second phase (Lines 15–16), the domain-based paradigm

computes Rj ⊲⊳ Sj for every domain tile tj , independently. To

avoid producing duplicate results, a join result (r, s) is reported if

at least one of the involved intervals is original (i.e., its replica flag

is not set). We can easily prove that if for both r and s the start end-

point is not in tj , then r and s should also intersect in the previous

tile tj−1, therefore (r, s) will be reported by another partition-join.

We illustrate the difference between the two paradigms using the

intervals in Figure 1; without loss of generality, assume there are 4

CPU cores available to compute R ⊲⊳ S. The hash-based paradigm

will first create
√
4 = 2 partitions for each input, i.e., R1 = {r1},

1351

r
2	

s
2	

s
1	

s
3	

s
4	

r
1	

domain	

t
1	

t
2	

t
3	

t
4	

s
5	

Figure 3: Domain-based partitioning of the intervals in Fig-

ure 1; the case of 4 available CPU cores.

R2 = {r2} for collection R and S1 = {s1, s3, s5}, S2 = {s2, s4}
for S, and then evaluate pairwise joins R1 ⊲⊳ S1, R1 ⊲⊳ S2, R2 ⊲⊳
S1 and R2 ⊲⊳ S2. In contrast, the domain-based paradigm will first

split the domain into the 4 disjoint tiles pictured in Figure 3, and

then assign and replicate (if needed) the intervals into 4 partitions

for each collection; R1 = {r1}, R2 = {r̂1, r2}, R3 = {r̂1, r̂2},

R4 = {r̂2} for R and S1 = {s1}, S2 = {s2, s3}, S3 = {ŝ3},

S4 = {ŝ3, s4, s5} for S, where r̂j (resp. ŝj) denotes the replica of

an interval ri ∈ R (resp. si ∈ S) inside tile tj . Last, the paradigm

will compute partition-joins R1 ⊲⊳ S1, R2 ⊲⊳ S2, R3 ⊲⊳ S3 and

R4 ⊲⊳ S4. Note that R3 ⊲⊳ S3 will produce no results because

all contents of R3 and S3 are replicas, while R4 ⊲⊳ S4 will only

produce (r2, s4) but not (r2, s4) which will be found in R2 ⊲⊳ S2.

Our domain-based partitioning paradigm achieves a higher level

of parallelism compared to Paradigm 1, because for the same num-

ber of partitions it requires quadratically fewer joins. Also, as op-

posed to previous work that also applies domain-based partitioning

(e.g., [5, 16]), we avoid the production and elimination of dupli-

cate join results. On the other hand, long lived intervals that span

a large number of tiles and skewed distributions of start endpoints

create joins of imbalanced costs. In what follows, we propose two

orthogonal techniques that deal with load balancing.

5.2.1 Minijoins and Greedy Scheduling

Our first optimization of Paradigm 2 is based on decomposing

the partition-join Rj ⊲⊳ Sj for a domain tile tj into a number of

mini-joins. The mini-joins can be executed independently (i.e., by

a different thread) and bear different costs. Hence, they form tasks

that can be greedily scheduled based on their cost estimates, in or-

der to achieve load balancing.

Specifically, consider tile tj and let tj .start and tj .end be its

endpoints. We distinguish between the following cases for an in-

terval r ∈ R (resp. s ∈ S) which is in partition Rj (resp. Sj):

(i) r starts inside tj , i.e., tj .start ≤ r.start < tj .end,

(ii) r starts inside a previous tile but ends inside tj , i.e., r.start <
tj .start and r.end < tj .end, or

(iii) r starts inside a previous tile and ends after tj , i.e., r.start <
tj .start and r.end ≥ tj .end.

Note that in cases (ii) and (iii), r is assigned to partition Rj by

replication (Lines 7–8 and 13–14 of Paradigm 2). We use R
(i)
j ,

R
(ii)
j , and R

(iii)
j (resp. S

(i)
j , S

(ii)
j , and S

(iii)
j) to denote the mini-

partitions of Rj (resp. Sj) that correspond to the 3 cases above.

Under this, we can break partition-join Rj ⊲⊳ Sj down to 9 dis-

tinct mini-joins; only 5 of these 9 need to be evaluated while the

evaluation for 4 out of these 5 mini-joins is simplified. Specifically:

• R
(i)
j ⊲⊳ S

(i)
j is evaluated as normal; i.e, as discussed in Sec-

tions 3 and 4.

• For R
(i)
j ⊲⊳ S

(ii)
j and R

(ii)
j ⊲⊳ S

(i)
j , join algorithms only visit

end endpoints in S
(ii)
j and R

(ii)
j , respectively; S

(ii)
j and R

(ii)
j

only contain replicated intervals from previous tiles which are

properly flagged to precede all intervals starting inside tj , and

so, they form the sole group from S
(ii)
j and R

(ii)
j at gFS / bgFS.

• R
(i)
j ⊲⊳ S

(iii)
j and R

(iii)
j ⊲⊳ S

(i)
j reduce to cross-products, be-

cause replicas inside mini-partitions S
(iii)
j and R

(iii)
j span the

entire tile tj ; hence, all interval pairs are directly output as re-

sults without any endpoint comparisons.

• R
(ii)
j ⊲⊳ S

(ii)
j , R

(iii)
j ⊲⊳ S

(ii)
j , R

(iii)
j ⊲⊳ S

(ii)
j , R

(iii)
j ⊲⊳ S

(iii)
j

are not executed at all as intervals from both inputs start in a pre-

vious tile, so the results of these mini-joins would be duplicates.

Given a fixed number n of available CPU cores, i.e., partitioning

of the domain into k = n tiles, our goal is to assign each of the

1 + 5 · (k− 1) in total mini-joins5 to a core, in order to evenly dis-

tribute the load among all cores, or else to minimize the maximum

load per core. This is a well known NP-hard problem, which we opt

to solve using a classic (4/3 − 1/3n)-approximate algorithm [10]

that has very good performance in practice. The algorithm greedily

assigns to the CPU core with the currently least current load the

next largest job. In details, we first estimate the cost of each mini-

join; a straightforward approach for this is to consider the product

of the cardinalities of the involved mini-partitions. Next, for each

available core p, we define its bag bp that contains the mini-joins to

be executed and its load ℓp by adding up the estimated cost of the

mini-joins in bp; initially, bp is empty and ℓp = 0. We organize the

bags in a min-priority queue Q based on their load. Last, we exam-

ine all mini-joins in descending order of their estimated cost. For

each mini-join say R
(i)
j ⊲⊳ S

(i)
j , we remove bag bp at the top of Q

corresponding to core p with the least load, we append R
(i)
j ⊲⊳ S

(i)
j

to bp and re-insert the bag to Q. This greedy scheduling algorithm

terminates after all mini-joins are appended to a bag.

Discussion and implementation details. In practice, the greedy

scheduling algorithm replaces an atomic assignment approach

(Lines 15–16 of Paradigm 2) that would schedule each partition-

join as a whole to the same core. The breakdown of each partition-

join task into mini-joins that can be executed at different CPU cores

greatly improves load balancing in the case where the original tasks

have big cost differences.

5.2.2 Adaptive Partitioning

Our second adaptive partitioning technique for load balancing

re-positions the endpoints of the {t1, . . . , tk} tiles, aiming at mak-

ing the costs of all partition-joins on Line 16 in Paradigm 2 sim-

ilar. Assuming a 1-1 assignment of partition-joins to cores, load

balancing can be achieved by finding the optimal k partitions that

minimize the maximum partition-join cost. This can be modeled

as the problem of defining a k-bins histogram with the minimum

maximum error at each bin.6 This problem can be solved exactly in

PTIME with respect to the domain size, with the help of dynamic

programming [12]; however, in our case the domain of the inter-

vals is huge, so we resort to a heuristic that gives a good solution

very fast. The time taken for partitioning should not dominate the

cost of the join (otherwise, the purpose of a good partitioning is

defeated). Our heuristic is reminiscent to local search heuristics for

5The only possible mini-join for the first tile is R
(i)
j ⊲⊳ S

(i)
j , as it

is not possible for it to contain any replicas.
6We assume that there is a function that can compute/update the
cost of each partition-join in constant time; this function should be
monotonic with respect to the sub-domain covered by the corre-
sponding tile, which holds in our case.

1352

creating histograms in large domains that do not have quality guar-

antees but compute a good solution in practice within short time

[19]. Note that, in practice, the overall execution time is dominated

by the most expensive partition-join. Hence, given as input an ini-

tial set of tiles and partitions (more details in the next paragraph),

we perform the following steps. First, the CPU core or equiva-

lently the tile tj that carries the highest load is identified. Then,

we reduce tj’s load (denoted as ℓj) by moving consecutive inter-

vals from Rj and Sj to the corresponding partitions of its neighbor

tile with the highest load, i.e., either tj−1 or tj+1, until ℓj−1 > ℓj
or ℓj+1 > ℓj holds, respectively. Intuitively, this procedure cor-

responds to advancing endpoint tj .start or retreating tj .end. Last,

we continuously examine the core with the highest load until no

further moving of the load is possible.

The implementation of this heuristic raises two important chal-

lenges; (a) how we can quickly estimate the load on each of the

n = k available CPU cores and (b) what is the smallest unit of load

(in other words, the smallest number of intervals) to be moved in

between cores/tiles. To deal with both issues we build histogram

statistics HR and HS for the input collections online, without ex-

tra scanning costs. In particular, we create a much finer partitioning

of the domain by splitting it to a predefined number ξ of granules

with ξ being a large multiple of k, i.e., ξ = c · k, where c >> 1.

For each granule g, we count the number of intervals HR[g] and

HS [g] from R and S respectively that start in g. We define every

initial tile tj as a set of consecutive c granules; in practice, this par-

titions the input collections into tiles of equal widths as our original

framework. Further, we select a granule as the smallest unit (num-

ber of intervals) to be moved between tiles. The load on each core

depends on the cost of the corresponding partition-join. This cost is

optimized if we break it down into mini-joins, as described in Sec-

tion 5.2.1, because numerous comparisons are saved. Empirically,

we observed that the cost of the entire bundle of the 5 mini-joins

that correspond to a tile tj is dominated by the first mini-join, i.e.,

R
(i)
j ⊲⊳ S

(i)
j , the cost of which can be estimated by |R(i)

j | · |S(i)
j |.

Hence, in order to calculate |R(i)
j | (resp. |S(i)

j |), we can simply

accumulate the counts HR[g] (resp. HS [g]) of all granules g ∈ tj .

As the heuristic changes the boundaries of a tile tj by moving gran-

ules to/from tj , cardinalities |R(i)
j |, |S(i)

j | and the join cost estimate

for tj can be incrementally updated very fast.

Finally, we implement the process of reducing the load of a tile tj
by moving consecutive granules located either exactly after tj .start
or exactly before tj .end. Moving the endpoints of a tile does not

involve any physical operations, since we only bookkeep the seg-

ments of the initial partitions that should be assigned to other par-

titions; this is possible since HR (HS) retains the exact number of

intervals inside each moved granule.

Discussion. We can easily combine adaptive partitioning with dy-

namic scheduling as the two techniques improve different parts of

Paradigm 2, i.e., its first and second phase, respectively.

6. EXPERIMENTAL ANALYSIS
We finally present our experimental analysis on interval joins

under both single-threaded and parallel processing environments.

6.1 Setup
Our analysis was conducted on a machine with 128 GBs of RAM

and a dual 10-core Intel(R) Xeon(R) CPU E5-2687W v3 clocked at

3.10 GHz running Linux; with hyper-threading, we were able to run

up to 40 threads. All methods were implemented in C++, optimized

by forcing loop-unrolling and compiled using gcc (v5.2.1) with

flags -O3, -mavx and -march=native. For multi-threading,

we used OpenMP. We imported the implementations of EBI/LEBI

[18], OIP [7] and DIP [4], kindly provided by the authors of the cor-

responding papers, to our source code. The setup of our benchmark

is similar to that of [18], i.e., every interval contains two 64-bit end-

point attributes while the workload accumulates the sum of an XOR

between the start endpoints on every result pair. Note that all data

(input collections, index structures etc.) reside in main memory.

Regarding bgFS we set the number of buckets equal to 1000 on

each test, after tuning. Finally, for parallel join evaluation, we as-

sume a fixed number of n available CPU cores each running a sin-

gle thread (as in [18]). Following the discussion in Section 5, both

hash-based and domain-based paradigms fully employ the available

cores by creating
√
n and n partitions, respectively.

Datasets. We experimented with two real-world datasets (WE-

BKIT and BOOKS) and a number of synthetic ones. WEBKIT

records the file history from 2001 to 2016 in the git repository of

the Webkit project (https://webkit.org), at a granularity of millisec-

onds; valid times indicate the periods when a file did not change.

BOOKS records the transactions in 2013 at Aarhus public libraries

at a granularity of days (https://www.odaa.dk/); valid times indicate

the periods when a book is lent out. Table 1 summarizes the char-

acteristics of WEBKIT and BOOKS while Figure 4 shows their

temporal distributions, i.e., a histogram summarizing the durations

of the intervals and the number of open (i.e., valid) intervals at each

timestamp; the latter is an indicator for the selectivity of an inter-

val join. Note that the durations follow an exponential distribution.

While the intervals may start at random domain points, there are

also times in the domain where there is a burst in the concentration

of intervals; we call these time points peaks. Based on this observa-

tion, for our synthetic datasets, we generate a fraction of intervals

having uniformly distributed start endpoints, while the remaining

ones are generated following a normal distribution around a num-

ber of random peaks, with a deviation equal to 10% of the domain.

The duration of all generated intervals follow an exponential dis-

tribution. Table 2 summarizes the characteristics of the synthetic

datasets. We generated the collections varying their cardinality, the

domain size, the average interval duration as a fraction of the do-

main size, the ratio of distinct timestamps over the domain size, the

number of involved peaks and the peak cardinality ratio (i.e., the

percentage of intervals generated around peaks).

Tests. We ran two types of tests on the real-world datasets: (1)

an interval join using a uniformly sampled subset of each dataset

as the outer input R and the entire dataset as the inner S (ratio

|R|/|S| varies inside {0.25, 0.5, 0.75, 1})7, and (2) a parallel self-

join (i.e., with |R| = |S|) varying the number of available CPU

cores (and threads) from 4 to 36. Regarding the synthetic datasets,

we perform a series of only non-self joins; on each test, we vary

one of the parameters in Table 2 while fixing the rest to their de-

fault value. In addition, we also run a parallel non-self join, again

varying the number of available CPU cores from 4 to 36. To assess

the performance of the methods, we measure their total execution

time which includes sorting, indexing and partitioning costs, and

the total number of endpoint comparisons; for FS, gFS, bgFS this

covers both advancing the sweep line and forward scanning, but

for LEBI it only covers advancing the sweep line. Note that each of

partitioning, sorting and indexing is fully parallelized; their costs

are negligible compared to the cost of sweeping and scanning to

produce the results, which dominates the overall execution time.

Regarding the adaptive partitioning, we conducted a series of tests

to define multiplicative factor c. To avoid significantly increasing

7We also experimented with disjoint subsets observing similar be-
havior; the results are omitted due to lack of space.

1353

Table 1: Characteristics of real-world datasets
WEBKIT BOOKS

Cardinality 2, 347, 346 2, 312, 602
Domain duration (secs) 461, 829, 284 31, 507, 200
Shortest interval (secs) 1 1
Longest interval (secs) 461, 815, 512 31, 406, 400
Avg. interval duration (secs) 33, 206, 300 2, 201, 320
Distinct timestamps/endpoints 174, 471 5, 330

Table 2: Characteristics of synthetic datasets
value range default value

Cardinality 1M, 5M, 10M, 50M, 100M 10M
Domain size 10K, 50K, 100K, 500K, 1M 100K
Avg. interval duration ratio [%] 0.1, 0.5, 1, 5, 10 1
Distinct endpoints ratio [%] 1, 5, 10, 50, 100 100
Number of peaks 1, 2, 3, 4, 5 3

Peak cardinality ratio [%] 0, 25, 50, 75, 100 50

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 20 40 60 80 100

#
 o

f
in

te
rv

a
ls

 [
%

]

 0

 5

 10

 15

 20

 25

Aug 24, 2001 Apr 12, 2016

#
 o

f
o
p
en

 i
n
te

rv
al

s
[%

]

(a) Duration [%] (b) Time

WEBKIT

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 20 40 60 80 100

#
 o

f
in

te
rv

a
ls

 [
%

]

 0

 1

 2

 3

 4

 5

 6

 7

 8

Jan 1, 2013 Dec 31, 2013

#
 o

f
o
p
en

 i
n
te

rv
al

s
[%

]

(c) Duration [%] (d) Time

BOOKS

Figure 4: Temporal statistics of datasets

the partitioning cost, we ended up setting c = 1000 when the num-

ber of CPU cores is less than 16 and 4 or 9, and c = 100 otherwise.

We indicate the activation of hyper-threading by 25HT and 36HT .

6.2 Optimizing FS
We first investigate the effectiveness of grouping and bucket in-

dexing; these optimizations are orthogonal to the parallel process-

ing of interval joins and so, we focus only on a single-threaded

processing environment. Figure 5 reports the execution time and

the ratio of conducted endpoint comparisons over the number of

results for FS, gFS, bgFS on WEBKIT and BOOKS. The figures

clearly demonstrate the effectiveness of grouping; gFS and bgFS

both outperform FS on all tests; in fact, their advantage over FS

becomes greater as we increase |R|/|S|, i.e., as the join becomes

computationally harder and the result set larger. A larger |R|/|S|
implies in practice a small increase to the number of distinct end-

points in outer collection R; however, this is insignificant compared

to the increase of collection’s cardinality. As a result, both gFS and

bgFS manage to create larger groups which allows them to further

reduce the number of forward scans and avoid even more redundant

endpoint comparisons; hence, the increasing performance gain over

FS. Grouping is more beneficial in BOOKS due to a larger increase

of the average group size compared to WEBKIT. Bucket indexing

manages to further decrease the number of conducted comparisons,

however, as Figures 5(a) and (c) show, bgFS cannot fully capitalize

on this reduction. This is due to the overhead of producing the join

result, which dominates the total execution time. Hence, bgFS out-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

FS
gFS

bgFS

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

FS
gFS

bgFS

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

WEBKIT

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

FS
gFS

bgFS

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

FS
gFS

bgFS

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

BOOKS

Figure 5: Optimizing FS

performs gFS by a small margin on WEBKIT while on BOOKS the

methods exhibit similar performance. For the rest of this analysis,

bgFS is our default forward scan based plane sweep method.

6.3 Comparisons: Singlethreaded Processing
After optimizing FS, we compare bgFS against partition-based

methods DIP, OIP and state-of-the-art plane sweep method LEBI.

Figure 6 reports the execution times on ours WEBKIT, BOOKS

and datasets INFECTIOUS, GREEND from [4]; INFECTIOUS,

GREEND both contain very short intervals (of average duration

330K and 18M times smaller than their domain sizes, respectively).

As expected, the execution time of all methods rises as we increase

the |R|/|S| ratio. At least one of LEBI, bgFS always outperforms

their partition-based competitors; the results also align with in [18],

where LEBI (and plane sweep based algorithms in general) were

shown to outperform OIP. Finally, we also observe that LEBI out-

performs bgFS by a small margin 10-20% in two out of the four

datasets; recall that LEBI performs no endpoint comparisons to pro-

duce the results but for this purpose it relies on the gapless hash

map. Nevertheless, bgFS stands as a decent competitor to LEBI in

these two datasets, while it significantly outperforms LEBI on the

other two.

6.4 Optimizing Domainbased Partitioning
Next, we study the impact of our optimization techniques for the

domain-based partitioning paradigm. Due to lack of space, we only

show the results for bgFS on WEBKIT; the same conclusions can

be drawn from bgFS on BOOKS and from LEBI on both datasets.

Besides the overall execution time of each join, we also measured

the load balancing among the participating CPU cores. Let set L =
{ℓ1 . . . ℓn} be the measured time spent by each of the available n
cores; we define the average idle time as:

1

n

n∑

j=1

{max(L)− ℓj}

A high average idle time means that the cores are under-utilized in

general, whereas a low average idle time indicates that the load

is balanced. We experimented by activating or deactivating the

mini-joins optimization denoted by mj (Section 5.2.1), the greedy

scheduling technique denoted by greedy (Section 5.2.1), and adap-

tive partitioning denoted by adaptive (Section 5.2.2). We also use

the term atomic to denote the assignment of each partition-join or

1354

DIP bgFS
LEBI
OIP

bgFS
LEBIbgFS LEBI

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

WEBKIT BOOKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

INFECTIOUS [4] GREEND [4]

Figure 6: Comparisons for single-threaded processing

the bundle of its corresponding 5 mini-joins to the same core, and

uniform to denote the (non-adaptive) uniform initial partitioning of

the domain. We tested the following setups:8

(1) atomic/uniform is the baseline domain-based partitioning of

Section 5.2 with all optimizations deactivated;

(2) mj+atomic/uniform splits each partition-join of the baseline

domain-based paradigm into 5 mini-joins which are all exe-

cuted on the same CPU core;

(3) atomic/adaptive employs only adaptive partitioning;

(4) mj+greedy/uniform splits each partition-join of the baseline do-

main-based paradigm into 5 mini-joins which are greedily dis-

tributed to the available CPU cores;

(5) mj+greedy/adaptive employs all proposed optimizations.

Figures 7(a) and (b) report the total execution time of bgFS for each

optimization combination (1)–(5) while Figures 7(c) and (d) report

the ratio of the average idle time over the total execution time.

We observe the following. First, setups (2)–(5) all manage to en-

hance the parallel computation of the join. Their execution time is

lower than the time of baseline atomic/uniform; an exception arises

for mj+atomic/uniform under 4 available cores. The most efficient

setups always include the mj+greedy combination regardless of ac-

tivating adaptive partitioning or not. In practice, splitting every

partition-join into 5 mini-joins creates mini-jobs of varying costs

(2 of them are cross-products and other 2 are also quite cheap),

which facilitates the even partitioning of the total join cost to pro-

cessors. For example, if one partition is heavier overall compared

to the others, one core would be dedicated to its most expensive

mini-join and the other mini-joins would be handled by less loaded

CPU cores. Also, notice that the mj optimization is beneficial even

when the 5 defined mini-joins are all executed on the same CPU

core (i.e., mj+atomic/uniform). This is because breaking down a

partition-join into 5 mini-joins greatly reduces the overall cost of

the partition-join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning seems to have a smaller impact compared

to the other two optimizations. Among the setups that do not em-

ploy the greedy scheduling, atomic/adaptive ranks first (both in

8Based on our assumption in Section 6.1, greedy/uniform or
greedy/adaptive setups are meaningless since the number of par-
titions equals the number of available CPU cores.

atomic/uniform mj+atomic/uniform atomic/adaptive

mj+greedy/uniform mj+greedy/adaptive

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(a) |R|/|S| [16 cores] (b) # cores [|R| = |S|]

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

(c) |R|/|S| [16 cores] (d) # cores [|R| = |S|]

Figure 7: Optimizing the domain-based partitioning: bgFS on

WEBKIT

terms of the execution time the average idle time ratio) but when

activated on top of the mj+greedy/uniform setup, adaptive parti-

tioning enhances the join evaluation when the number of cores is

low, e.g., 4 or 9; notice how faster is the mj+greedy/adaptive setup

compared to mj+greedy/uniform in case of 4 available CPU cores.

Overall, (i) the mj optimization greatly reduces the cost of a parti-

tion join and adds flexibility in load balancing, (ii) the

mj+greedy/uniform and mj+greedy/adaptive schemes peform very

well in terms of load balancing, by reducing the average idle time

of any core to less than 20% of the total execution time in almost

all cases (|R|/|S| = 0.25 is the only exception). To take full ad-

vantage of all proposed optimizations, we setup the domain-based

paradigm as mj+greedy/adaptive for the remaining of this analysis.

6.5 Comparisons: Parallel Processing
In this section, we first compare the domain-based partitioning

against the hash-based proposed in [18]; this study is independent

of the join algorithm we may use to compute partition- or mini-

joins. Further, we compare our proposed implementation of FS

with all optimizations (i.e., bgFS) to the state-of-the-art (as shown

in Section 6.3) LEBI for parallel computation of interval joins.

Hence, we implemented the domain-based and the hash-based

paradigms of Section 5 coupled with both LEBI and our best method

bgFS, denoted by h-LEBI, d-LEBI and h-bgFS, d-bgFS; note that

the mj+greedy/adaptive optimizations evaluated in the previous sec-

tion are all activated on the LEBI powered implementation of the

domain-based paradigm. As discussed in Section 5.1, [18] sorts

each input collection prior to partitioning. We experimented also

with a variant of the hash-based paradigm, which does not perform

this pre-sorting step and proved to be always faster. Thus, for the

rest of this subsection we run our variant of the hash-based parti-

tioning. Figures 8(a)–(d) and Figures 9(a)–(d) report on this first

comparison for both WEBKIT and BOOKS datasets; we show the

speedup achieved by each parallel paradigm over the single-core

evaluation (either with LEBI or bgFS) and the number of conducted

endpoint comparisons. To better prove our points, we also include

a third paradigm denoted as theoretical which exhibits a linear to

the number of available cores, speedup and reduction of the con-

ducted comparisons. We observe that our domain-based paradigm

1355

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p

ee
d

u
p

 [
x

]
theoretical

h-LEBI
d-LEBI

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p

ee
d

u
p

 [
x

]

theoretical
h-bgFS
d-bgFS

(a) # cores [|R| = |S|] (b) # cores [|R| = |S|]

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

1 4 9 16 25HT 36HT

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

theoretical
h-LEBI
d-LEBI

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 4 9 16 25HT 36HT

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

theoretical
h-bgFS
d-bgFS

(c) # cores [|R| = |S|] (d) # cores [|R| = |S|]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

 0

 2

 4

 6

 8

 10

 12

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

(e) # cores [|R| = |S|] (f) |R|/|S| [16 cores]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 4 9 16 25HT 36HT

A
v
g
 m

em
o
ry

 f
o
o
tp

ri
n
t

[M
B

s]

d-LEBI
d-bgFS

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

A
v
g
 m

em
o
ry

 f
o
o
tp

ri
n
t

[M
B

s]

d-LEBI
d-bgFS

(g) # cores [|R| = |S|] (h) |R|/|S| [16 cores]

Figure 8: Comparisons for parallel processing on WEBKIT

is more efficient than the hash-based, being able to achieve a greater

speedup; in fact, on WEBKIT up to 16 cores, d-LEBI and d-bgFS

take full advantage of parallelism, having the theoretically best pos-

sible speedup (for more than 16 cores, both paradigms are affected

by hyper-threading, although they still scale well for 25 cores).

The benefits of the domain-based parallel processing are more

apparent on WEBKIT; in fact, d-LEBI and h-LEBI exhibit the same

speedup on BOOKS while d-bgFS always beats h-bgFS on either

dataset. In practice, the interval joins on WEBKIT are more ex-

pensive than on BOOKS, producing a larger number of results as

we can deduce from the open intervals distribution in Figure 4(b),

(d). In this spirit, WEBKIT benefits more from the ability of the

domain-based paradigm to significantly reduce the number of con-

ducted endpoint comparisons as shown in Figures 8(c), (d) and Fig-

ures 9(c), (d). In fact, these figures experimentally prove our anal-

ysis at the end of Section 5.1 that employing hash-based paradigm

increases the total number of comparisons compared even to a single-

threaded algorithm, as the number of available CPU cores goes up.

In addition, note that the number of comparisons for d-LEBI in-

creases with the number of cores in contrast to d-bgFS. This is an

expected behavior. Recall that LEBI and hence, also d-LEBI, com-

pare the endpoint of intervals only to advance the sweep line; as the

number of partitions increases, so does the number of replicated

intervals which reflects on the total number of endpoint compar-

isons. Partially, this is also the case for d-bgFS. However, the total

number of endpoint comparisons on FS-based methods is domi-

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p

ee
d

u
p

 [
x

]

theoretical
h-LEBI
d-LEBI

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p

ee
d

u
p

 [
x

]

theoretical
h-bgFS
d-bgFS

(a) # cores [|R| = |S|] (b) # cores [|R| = |S|]

 0

 0.002

 0.004

 0.006

 0.008

 0.01

1 4 9 16 25HT 36HT

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

theoretical
h-LEBI
d-LEBI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 9 16 25HT 36HT

E
n
d
p
o
in

t
co

m
p
ar

is
o
n
s

[%
]

theoretical
h-bgFS
d-bgFS

(c) # cores [|R| = |S|] (d) # cores [|R| = |S|]

 0

 10

 20

 30

 40

 50

 60

 70

1 4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

 0

 1

 2

 3

 4

 5

 6

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

(e) # cores [|R| = |S|] (f) |R|/|S| [16 cores]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 4 9 16 25HT 36HT

M
em

o
ry

 f
o
o
tp

ri
n
t

[M
B

s] d-LEBI
d-bgFS

 0

 5

 10

 15

 20

 25

0.25 0.5 0.75 1

M
em

o
ry

 f
o
o
tp

ri
n
t

[M
B

s] d-LEBI
d-bgFS

(g) # cores [|R| = |S|] (h) |R|/|S| [16 cores]

Figure 9: Comparisons for parallel processing on BOOKS

nated by the comparisons performed to produce the join results;

the domain-based paradigm allows d-bgFS to significantly prune

redundant comparisons during this step.

Figures 8(e), 8(f) (WEBKIT) and Figures 9(e), 9(f) (BOOKS)

compare the relative performance of bgFS and LEBI under multi-

core processing environments. Compared to Figure 6, we observe

that LEBI is no longer the most efficient method; in some cases,

d-bgFS actually outperforms d-LEBI, but generally speaking their

execution time is very similar. The reason for the relative improve-

ment of bgFS over LEBI in parallel processing is the breakdown of

partition-joins into mini-joins, which greatly reduces the total cost

for comparisons by d-bgFS at each partition (while it does not af-

fect the cost of d-LEBI that much). Besides the fact that d-bgFS is

much simpler compared to d-LEBI in terms of the required data

structures, it also has much lower space requirements per core,

as shown in Figures 8(g), 8(h) (WEBKIT) and Figures 9(g), 9(h)

(BOOKS). This is due to the fact that LEBI/d-LEBI has to build

an endpoint index for each collection (partition), which contains

double the amount of entries present in the input.

Finally, we report on the synthetic datasets; due to lack of space

we do not show comparisons between hash-based and domain-based

partitioning; the results are similar to the case of the real-world

datasets showing the advantage of our domain-based paradigm. Fig-

ure 10 compares d-bgFS with d-LEBI as a function of input cardi-

nality, average interval duration, domain size, number of distinct

endpoints, number of peaks, and peak cardinality ratio. In general,

1356

 0.01

 0.1

 1

 10

 100

 1000

 10000

1M 5M 10M 50M 100M

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]
d-LEBI
d-bgFS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.1 0.5 1 5 10

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

(a) Input cardinality (b) Avg interval duration ratio [%]

(over domain size)

 0

 20

 40

 60

 80

 100

 120

 140

 160

10K 50K 100K 500K 1M

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

 0

 5

 10

 15

 20

 25

 30

 35

1 5 10 50 100

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

(c) Domain size (d) Distinct endpoints ratio [%]

(over domain size)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 25 50 75 100

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

(e) # peaks (f) Peak cardinality ratio [%]

(over input cardinality)

Figure 10: Parallel processing on synthetic data [16 cores]

d-LEBI and d-bgFS exhibit similar performance; however, there

exist setups which benefit more either of the methods.

Consider first Figures 10(a), (b) and (f). The execution time of

both methods increases with the input cardinality, the average in-

terval duration and peak cardinality ratio as the result set becomes

larger and the join more expensive. Nevertheless, we observe that

d-bgFS scales better in all three cases. With the domain size and the

number of distinct endpoints fixed, bgFS creates increasingly larger

groups (the number of groups remains practically the same) which

benefits the grouping optimization. In contrast, the size of d-LEBI’s

buffer remains fixed (to fit in the L1 cache). Figure 10(c) shows that

d-LEBI scales better with the increase of the domain size. With the

ratio of distinct endpoints fixed to its default value (100%), bgFS

creates an increasingly larger number of groups which, however,

contain fewer records; so, the effect of the grouping deteriorates.

Last in Figure 10(d), we observe that increasing the number of dis-

tinct endpoints under a fixed domain size has very little effect in

the time of both methods. In practice, d-bgFS creates increasingly

more groups of fewer intervals but compared to varying the domain

size, these groups are large enough to enhance grouping. Very large

groups do not offer additional advantage to d-bgFS due to the in-

crease of L1 cache misses when scanning them to produce results.

7. CONCLUSIONS
In this paper, we studied FS, a simple and efficient algorithm

for interval joins based on plane sweep that does not rely on any

special data structures. We proposed two novel optimizations for

FS that greatly reduce the number of incurred comparisons making

it competitive to the state-of-the-art. We also studied the problem

of parallel interval joins, by proposing a domain-based partition-

ing framework. We showed that each partition-join can be broken

down to five independent mini-joins, out of which, the four that in-

volve replicated intervals have significantly lower cost than a stan-

dard interval join problem. We showed how to assign the threads

that implement the mini-joins to a (smaller) number of CPU cores

and how to improve the domain partitioning by the help of statis-

tics. Our experimental evaluation suggests that (i) our optimized

version of FS is significantly faster than the simple algorithm, and

(ii) our domain-based partitioning framework for parallel joins sig-

nificantly outperforms the hash-based framework suggested in [18]

and scales well with the number of CPU cores.

8. REFERENCES
[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S.

Vitter. Scalable sweeping-based spatial join. In VLDB, 1998.
[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer. An asymptotically optimal multiversion b-tree.
VLDB J., 5(4):264–275, 1996.

[3] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing
of spatial joins using r-trees. In SIGMOD, 1993.

[4] F. Cafagna and M. H. Böhlen. Disjoint interval partitioning.
VLDB J., 26(3):447–466, 2017.

[5] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V.
Subramaniam, and M. K. Mohania. Processing interval joins
on map-reduce. In EDBT, 2014.

[6] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and
Y. Xia. Efficient join processing over uncertain data. In
CIKM, 2006.

[7] A. Dignös, M. H. Böhlen, and J. Gamper. Overlap interval
partition join. In SIGMOD, 2014.

[8] J. Enderle, M. Hampel, and T. Seidl. Joining interval data in
relational databases. In SIGMOD, 2004.

[9] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join
operations in temporal databases. VLDB J., 14(1):2–29,
2005.

[10] R. L. Graham. Bounds for multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17:416–429, 1969.

[11] H. Gunadhi and A. Segev. Query processing algorithms for
temporal intersection joins. In ICDE, 1991.

[12] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In VLDB, 1998.

[13] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer,
D. Kossmann, F. Färber, and N. May. Timeline index: a
unified data structure for processing queries on temporal data
in SAP HANA. In SIGMOD, 2013.

[14] H. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Distributed
intersection join of complex interval sequences. In DASFAA,
2005.

[15] H. Kriegel, M. Pötke, and T. Seidl. Managing intervals
efficiently in object-relational databases. In VLDB, 2000.

[16] T. Y. C. Leung and R. R. Muntz. Temporal query processing
and optimization in multiprocessor database machines. In
VLDB, 1992.

[17] B. Moon, I. F. V. López, and V. Immanuel. Efficient
algorithms for large-scale temporal aggregation. TKDE,
15(3):744–759, 2003.

[18] D. Piatov, S. Helmer, and A. Dignös. An interval join
optimized for modern hardware. In ICDE, 2016.

[19] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD, 1996.

[20] F. P. Preparata and M. I. Shamos. Computational Geometry -
An Introduction. Texts and Monographs in Computer
Science. Springer, 1985.

[21] A. Segev and H. Gunadhi. Event-join optimization in
temporal relational databases. In VLDB, 1989.

[22] I. Sitzmann and P. J. Stuckey. Improving temporal joins
using histograms. In DEXA, 2000.

[23] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient
evaluation of the valid-time natural join. In ICDE, 1994.

[24] D. Zhang, V. J. Tsotras, and B. Seeger. Efficient temporal
join processing using indices. In ICDE, 2002.

1357

