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Abstract

We present an actor language which is an extension of a simple functional language, and

provide an operational semantics for this extension. Actor configurations represent open

distributed systems, by which we mean that the specification of an actor system explicitly

takes into account the interface with external components. We study the composability of

such systems. We define and study various notions of testing equivalence on actor expressions

and configurations. The model we develop provides fairness. An important result is that the

three forms of equivalence, namely, convex, must, and may equivalences, collapse to two in

the presence of fairness. We further develop methods for proving laws of equivalence and

provide example proofs to illustrate our methodology.

Capsule Review

Actor languages broaden the scope of functional programming to applications involving

concurrency. An actor is a functional program fragment that communicates with the outside

world as a process. These languages are of increasing relevance in distributed applications

because they enforce the property that data are immutable, which allows powerful optimiza-

tions based on caching. However, actor languages lacked so far a calculus foundation like the

lambda-calculus for pure functional programming or the pi-calculus for pure interaction.

To provide this foundation is the focus of the paper by Agha, Mason, Smith and Talcott.

The contributions of the paper include: a definition of a simple reference actor language; a

definition of observational equivalence for this language; and an investigation of techniques

to prove observational equivalence. As is to be expected of a hybrid languages, both the

definitions and the techniques are quite a bit more complex than in pure lambda- or pi-

calculus. Nevertheless, the authors succeed to give a satisfying unified treatment of both the

computation and the interaction aspects of actor computation.
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1 Introduction

The modern computing environment is becoming increasingly open and distributed.

Research on semantics to support reasoning about components and configurations

in open distributed systems is in its early stages. The main characteristics of an open

distributed system are that such systems allow the addition of new components,

the replacement of existing components, and changes in interconnections between

components, largely without disturbing the functioning of the system. Open dis-

tributed systems require a discipline in which a component may not have any direct

control over other components with which it is connected. Instead, the behavior of

a component is locally determined by its initial state and the history of its interac-

tions with the environment. Moreover, interactions between components may occur

only through their interfaces. Thus, the internal state of a component must only be

accessible through operations provided by the interface.

The actor model of computation has a built-in notion of local component and

interface, and thus it is a natural model to use as a basis for a theory of open

distributed computation. Specifically, we view actors as a model of coordination

between autonomous interacting components. The local computation carried out by

the components may be specified in any sequential language. However, we carry out

the development of an actor semantics in a framework where local computation is

specified using a functional language. We extend a functional programming language

with actor coordination primitives to model open distributed systems. Our semantic

theory uses techniques first developed in a functional setting. The transition system

operational semantics extends the reduction system semantics of the functional

language. The notion of observational equivalence studied generalizes the now

standard notion of operational equivalence for functional languages. The resulting

equational theory embodies that of the computational lambda calculus and preserves

many of the advantages provided by functional programming for reasoning about

programs and program transformations. The actor language we study provides an

alternative approach to concurrent extensions of functional languages that is object

based rather than channel/process based. Our components are reactive in contrast to

the active processes more common in other models of concurrency. Active processes

correspond to a thread of control that disappears when execution of the thread is

complete; unlike reactive computational objects, activity in processes is not initiated

by the receipt of a message. Note that receiving a message is analogous to a function

being invoked.

1.1 Overview

In this paper we present a study of a particular actor language. Our actor language

is an extension of a simple call-by-value functional language (lambda calculus

plus arithmetic and branching primitives and structure constructors, recognizers,

and destructors) by including primitives for creating and manipulating actors. Our

approach is motivated by a desire to bridge the gap between theory and practice.

The semantic theory we develop is intended to be useful for justifying program
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transformations for real languages, and for formalizing intuitive arguments and

properties used by programmers.

In our model we make explicit the notion of open system component through

the notion of an actor configuration. An actor configuration is a collection of

individually named concurrently executing actors, a collection of messages en route,

a set of receptionist names, and a set of external actor names. Receptionists are

the externally visible actors of the configuration, and names of external actors are

references to actors outside the configuration. The receptionist and external actor

names explicitly define the interface to the environment.

A common criticism of the actor model of computation is that actors do not

compose. However, actor configurations do compose. As a first step towards an

algebra of operations on actor configurations, we define a composition operator.

Composition on configurations is associative, commutative, and has a unit. This

allows large complex configurations to be studied in parts and composed to form

larger systems. Unlike most notions of modularity and composability, which are

static, the notions we define are fundamentally dynamic ones that allow for the

interface between components to evolve over time.

Following the tradition of (Morris, 1968; Plotkin, 1975; Mason and Talcott, 1991;

Felleisen and Hieb, 1992; Felleisen and Wright, 1991) we develop the semantics in

two stages. The first stage consists in giving an operational semantics for actor con-

figurations. In the second stage various notions of equivalence are investigated, both

of expressions and of configurations. The operational semantics extends that of the

embedded functional language in such a way that the equational theory of the func-

tional language is preserved. In particular the equational laws of the computational

lambda calculus (Moggi, 1988) as well as the usual laws for pairing and arithmetic

hold. This provides a basis for a rich set of equational reasoning principles. There

are also numerous equational laws that relate to actor computations, for instance

allowing two adjacent message sending operations to be permuted.

The operational semantics of actor configurations is defined by a transition

relation on configurations. An important aspect of the actor model is the fairness

requirement: message delivery is guaranteed, and individual actor computations are

guaranteed to progress. We make the fairness requirement explicit in our semantics

by requiring infinite sequences of transitions on actor configurations to be fair.

We include fairness in our semantic model because we are developing a semantic

theory of actors, and fairness is a feature of actor computation. Although fairness

makes some aspects of reasoning more complicated, it simplifies others, and is

essential in some cases. Certain classes of intuitively obvious equations fail to hold

without the fairness requirement. For example two expressions should be considered

equal if they differ only in that one of them creates an actor which has an infinite

computation but never sends any messages: the additional actor created will have

no observable effect. This equivalence fails to hold in the absence of a fairness

requirement.

More generally, note that collection of active garbage does not preserve semantics

without a fairness assumption. Although we only consider equational reasoning in

this paper, this work is intended as starting point for a semantic theory that supports
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both equational reasoning and reasoning about safety and liveness properties of

system components. The assumption of fairness allows equational specification of

some liveness properties, and it is particularly important for modular reasoning about

liveness properties. Without fairness, specifications fail to compose – a process may

behave correctly in isolation, but fail to do so in the presence of other processes.

Consider for instance a collection of independently operating server actors with

identical functionality (we ignore the details of what service is provided). The

specification of a single server may require that the server always service requests in

a finite amount of time. Composing two servers with this property should compose

the specifications, meaning both servers will make progress. But without fairness,

one server could starve out the other and composition of the specifications will

fail.

Our equational theory is based on the notion of observational equivalence. Two

expressions/configurations are said to be observationally equivalent if they give rise

to the same observations, suitably defined, inside all observing contexts. This notion is

closely related to testing equivalence (de Nicola and Hennessy, 1984). We prove that

in the presence of fairness, the three standard notions of observational equivalence

collapse to two. Observational equivalence provides a semantic basis for developing

sound transformation rules for expressions. In this paper we study the semantics of

our actor language, focusing on the equational theory and methods for establishing

equivalence. Results of this study will be useful in the development of a sound

proof calculus, but the development of a proof calculus is outside the scope of this

paper. The language we define is not a full blown programming language, however

our intent was to include enough features to bring out the technical problems that

might arise, so that something like this langauge could serve as a kernel for a real

implementation.

We emphasize that this paper is not about the actor model per se, but about

a concurrent extension of a simple functional language with concurrency prim-

itives based on the actor model. The point is not to study an actor calculus

analogous to the π-calculus, but to define the semantics of a higher level lan-

guage and study its theory of program equivalence. Thus we have sacrificed some

of the elegance and generality of a π-calculus-like approach for something more

specific and closer to programming practice in order to study these laws more

directly.

There are many possible approaches for such a task. One possibility would be to

give the higher level language a translational semantics based on a primitive actor

calculus. The lack of a well-developed primitive actor calculus makes this approach

less appealing, as we would first have to develop the primitive calculus and its

equational theory. An alternative might be translation to the π-calculus, but here

the mismatch in the choice of primitives makes this problematic for our objective

of studying program equivalence. Also, with a transalational semantics, much work

would still remain to develop the directly induced equational theory and it is likely

that many desirable equations would be lost in the translation. Thus we have chosen

to begin by directly defining an operational semantics for our language and studying

forms of observational equivalence.
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1.2 Outline

The remainder of this paper is organized as follows. The rest of this section describes

previous work on Actors and related models of concurrent computation. Section 2

gives an informal introduction to our actor language. Section 3 gives the syntax and

operational semantics of our actor language, and describes a composability result.

In section 4 we study the notion of observational equivalence for actor expressions

and prove that in the presence of fairness two of the standard notions collapse to

one. In section 5 we state a variety of basic equational laws along with an intuitive

explanation of how these laws are established. The use of the laws is illustrated

by establishing several properties of the programs given in section 2. In section 6

we develop methods for establishing expression equivalence, and use these methods

to prove the laws of section 5. This section contains many technical details and

can be read at various levels of detail (including zero) without greatly effecting the

understanding of the remainder of the paper. The section begins with a local reading

guide. Section 7 summarizes the highlights of this paper, and discusses future work.

1.3 Related work

We discuss related work in actors, process algebras and concurrent functional

languages.

1.3.1 Research on actors

We may briefly summarize the principles underlying the actor model of computation

that we use as follows. Actors are self-contained, concurrently interacting entities of

a computing system. They communicate via message passing which is asynchronous

and fair. Actors can be dynamically created and the topology of actor systems

can change dynamically. The actor model is a primitive model of computation

which nonetheless easily expresses a wide range of computation paradigms. It

directly supports encapsulation and sharing, and provides a natural extension of

both functional programming and object style data abstraction to concurrent open

systems. See Agha (1986, 1990) and Agha et al. (1993a) for more discussion of the

actor model, and for many examples of programming with actors.

The actor model was originally proposed by Hewitt and the meaning of the term

has evolved over time in the work of Hewitt and associates. We briefly describe the

history of actor research, necessarily omitting some of the significant work.

In his early work on planner, Hewitt (1971) used the term actor to describe active

entities which, unlike functions, went around looking for patterns to match in order

to trigger activity. This concept was later developed into the scientific community

metaphor where sprites examined facts and added to them in a monotonically

growing knowledge base (Kornfeld and Hewitt, 1981). In Hewitt et al. (1973), the

notion of actors was closer to that of an agent in Distributed Artificial Intelligence:

actors have intentions, resources, contain message monitors and a scheduler. Irene

Greif (1975) developed an abstract model of actors in terms of event diagrams which

recorded local events at each actor and the causal relations between events.
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Baker and Hewitt (1977) then formalized a set of axioms for concurrent compu-

tation which stated properties that events in actor systems must obey in order to

prevent causality violations. The work in Hewitt (1977) contains the insight that the

usual control structures could be represented as patterns of message passing between

simple actors which had a conditional construct but no local state. It demonstrated

the use of continuation passing style in actor programs, which was carried over into

Scheme (Steele and Sussman, 1975; Abelson and Sussman, 1985).

In Hewitt and Atkinson (1979), the concept of serializer is described: a serializer

localizes conditions for resumption of waiting processes and thus improves on

monitors which require explicit signaling of dormant processes. A related notion,

namely, that of guardians, was defined in Attardi and Hewitt (1978). A guardian

regulates the use of shared resources, scheduling their access and providing protection

and ‘recovery’ boundaries. Guardians thus explicitly incorporated the notion of

state. Lieberman implemented an actor language, Act1, incorporating guardians,

serializers, and ‘rock bottom’ actors which is best described in Lieberman (1987).

Will Clinger (1981) developed a semantics of actor systems, showing the con-

sistency of axioms proposed in Baker and Hewitt (1977). A key accomplishment

of Clinger’s work was to show that a powerdomain semantics could be developed

despite the fact that the underlying domain is incomplete due to fairness. The work

did not develop a theory of actor systems – specifically, no notion of equivalence of

actor systems was defined.

The semantic model of our actor language builds on that of Agha (1986) which

defined a simple transition system for actors, and developed a notion of config-

urations, receptionists and external actors. This model was implemented by Carl

Manning at MIT in the Acore programming language (Manning, 1987) and by

Tomlinson and others at the Microelectronics and Computer Technology Consor-

tium in the Rosette programming language (Tomlinson et al., 1989, 1993). It has also

provided a basis for dozens of other projects (Agha et al., 1989, 1991, 1993b). Some

of the more recent research on actors has focused on coordination structures and

meta-architectures (Agha et al., 1993a). Yonezawa (1990) has developed the ABCL

family of actor languages. The actor model has also been used as a foundation in

designing a number of other concurrent object-oriented languages (c.f. Yonezawa

(1990) and Agha et al. (1989)).

1.3.2 Process algebras

Much existing research giving rigorous semantics to concurrent languages falls into

what could loosely be called the process algebra school. The most well-known pro-

cess algebras are Milner’s Calculus for Communicating Systems (CCS) (Milner,

1983), Hoare’s CSP (Hoare, 1985) and Milner’s π-calculus (Milner et al., 1989).

Process algebra research focuses on understanding elementary communications be-

tween processes, abstracting away other programming language issues. Three points

of contrast between the basic actor model and process calculi are: the choice

of communication model, the choice of communicable values, and the issue of

fairness.
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Process algebras typcially take synchronous communication as primitive instead

of asynchronous communication (Honda and Tokoro (1991) define a variant of the

π-calculus with asynchronous communication). Synchronous communication can

be simulated with asynchronous primitives (Amadio, 1994) and vice versa, and it is

probably the case that both will be required in any realistic concurrent programming

language. In standard process algebra theory, processes can be dynamically created,

but they are not first class entities that can be directly manipulated. One process

can communicate with another only if they happen to share a communication

channel. In general any number of different processes can send or receive on a

given channel, thus processes have the potential to inadvertantly interfere with one

another. The π-calculus extends CCS in that it allows channels to be treated as

first class entities that can be dynamically created and communicated as values. In

contrast, in actor and other object based models, the communication medium is not

explicitly represented. Actors/objects are first class, history sensitive entities whose

identity can be communicated and used for communication with the identified object.

Again, to some degree each choice of primitives can simulate the other. Further work

is needed to clarify precisely the relative expressive powers of the two approaches.

A realistic programming language could very well need both as primitive notions.

An important distinction between actor and process algebra semantics is that

actor semantics presupposes a fairness assumption while process algebra semantics

does not.

The main contribution made by the process algebra school is in the realm

of semantics. A wide variety of equivalence relations for process algrebras have

been defined and studied. These include bisimulation (Milner, 1983, 1989), which

defines a back-and-forth simulation relation between two processes, and trace-based

equivalence (Brookes et al., 1984). A detailed comparison of the various equivalence

relations is given in van Glabbeek (1990). Numerous logics have been developed for

process algebras, including Hoare (1985), Milner (1989), Bergstra and Klop (1986)

and Abramsky (1991).

1.3.3 Concurrent functional languages

Both process algebras and primitive actor systems are too simple to be consid-

ered programming languages, however. There have been a number of languages

developed using the approach we follow in this paper – combining concurrency

primitives with a functional language. These languages include Amber (Cardelli,

1986), Facile (Giacalone et al., 1989; Prasad et al., 1990; Thomsen et al., 1992),

CML (Reppy, 1991), Erlang (Armstrong et al., 1993), Obliq (Cardelli, 1994) and

Pict (Pierce and Turner, 1994). Erlang and Obliq are object based languages (Erlang

is essentially an actor language) while Facile, CML and Pict have process algebra

concurrency primitives. Of these only CML and Erlang require fairness. Except for

Facile, and to a small extent Obliq, these efforts have focused on language design,

and type systems, with less attention given to semantics and equivalences. A struc-

tured operational semantics and type inference system for a small kernel language

contained in CML is described in Reppy (1991) and a type safety theorem is proved.
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An equational calculus is given for a sequential core of Obliq (Abadi and Cardelli,

1994). The semantics of Pict is given by expansion into the pi-calculus core, but no

effort has been made so far to develop the induced equational theory. In this paper

we focus on developing equational laws for our basic actor language and leave to

future work the study of richer actor language features; see Agha et al. (1993) for

an extensive repertoire of communication and protocol primitives for actors.

The Facile project is perhaps the closest in spirit to our overall effort. Facile differs

from our approach in that it uses the typed lambda calculus as the functional com-

ponent and uses concurrency primitives inspired by process algebras. In Prasad et al.

(1990) an algebraic semantics for Facile is given based on an operational semantics.

The central notion here is bisimulation relations. Bisimulations are indexed by sets

of channels called windows. This explicitly accounts for the interface of a system to

its environment in much the same way as receptionists do for actor systems. Basic

process algebra equations, along with a few simple functional laws, are established

using bisimulations. The authors point out that establishing expression equivalence

using bisimulations is much more complicated than establishing process algebra

equations. An early version of the actor semantics presented in this paper appeared

in Agha et al. (1992). There we defined a notion of operational bisimulation that

incorporated fairness. Operational bisimulations were intended to serve as tools

for establishing observational equivalence, not as equivalence relations per se. We

also found that operational bisimulations were not an effective tool for establishing

expression equivalence, since it was difficult to find suitable bisimulations. This led

us to develop the alternative methods presented in this paper.

2 Our actor language

Our actor language is an extension of a simple functional language which provides

primitives for coordinating components which carry out local computation. An

individual actor represents the smallest unit of coordination in the model. Our

language provides a mechanism for specifying the creation and manipulation of

actors. An actor’s behavior is described by a lambda abstraction which embodies

the code to be executed when a message is received. The actor primitives are send,

become and letactor:

• send is for sending messages; send(a , v ) creates a new message with receiver

a and contents v and puts the message into the message delivery system.

• letactor is for actor creation. letactor{x := b}e creates an actor with initial

behavior b, making the new address the value of the variable x. The expression

e is evaluated in the extended environment. The variable x is also bound in

the expressions b, thus allowing an actor to refer to itself if so desired. Like

the Scheme letrec construct, multiple actors can be created, each possibly

knowing the other. For example, if f and g are ternary lambda expressions,

then letactor{x := λm.f(x, y, m), y := λm.g(x, y, m)}send(x, z) creates two

actors, referred to locally as x, and y, and sends x a message containing the

address of an already created actor referred to as z. (When our intent is clear
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from the context, we simply say x to mean the actor referred to locally as x).

x can send messages to itself and to y, and actor y can send messages to itself

and to x. Moreover, x will be able to send messages to z as well, once the

message is received.

• become is for changing behavior; become(b) creates an anonymous actor to

carry out the rest of the current computation, alters the behavior of the actor

executing the become to be b, and frees that actor to accept another message.

This provides additional parallelism. The anonymous actor may send messages

or create new actors in the process of completing its computation, but will

never receive any messages as its address can never be known.

Note that in open distributed systems, the order of arrival of messages from

different external sources is nondeterministic. The become primitive is necessary to

provide the history-sensitive behavior necessary to model asynchronous access to

shared resources in such systems. A canonical example of the use of become is

in modelling a shared bank account accessible by a two or more automatic teller

machines. Here become is used to model the effects of asynchronous deposits and

withdrawals. The letactor primitive cannot be used to model these effects as it

would destroy the possibility of indeterminate shared access. On the other hand,

observe that the current behavior of an actor always remains a deterministic function

of the sequence of messages that the actor has thus far received.

2.1 Trivial examples

A simple actor behavior b that expects its message to be an actor address, sends the

message 5 to that address, and becomes the same behavior, may be expressed as

follows.

b5 = rec(λy.λx.seq(send(x, 5), become(y)))

where seq is syntactic sugar for expressing sequential composition, and rec is a

definable (in the pure λ fragment) call-by-value fixed-point combinator (cf. Mason

and Talcott, 1991). An equivalent expression of this behavior is:

b5′ = rec(λy.λx.seq(become(y), send(x, 5)))

since the order of executing the become and the send cannot be observed. An

expression that would create an actor with behavior b5 and send it another actor

address a is

e = letactor{z := b5}send(z, a).

The behavior of a sink, an actor that ignores its messages and becomes this same

behavior, is defined by

sink = rec(λb.λm.become(b)).
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2.2 Actor cells

It is easy to represent objects with local state in our language. As an example of

this we describe an actor akin to an ML reference cell. The actor responds to two

sorts of messages. The first sort of message is a get message, recognized by the get?

operation. A get message contains the address (customer) to which the response

(i.e. the current contents of the cell) should be sent. This address is accessed via

the cust operation. A mkget(a) constructs a get message with customer a. The

second message is a set message, recognized by the set? operation. A set message

should contain the desired new contents of the cell-actor. This value is accessed via

the contents operation. A mkset(c) constructs a set message with new contents c.

Using these operations, the behavior of a cell is given by:

Bcell = rec(λb.λc.λm.

if(get?(m),

seq(become(b(c)), send(cust(m), c))

if(set?(m),

become(b(contents(m))),

become(b(c)))))

Evaluating

letactor{a := Bcell(0)}e where

e = seq(send(a , mkset(3)), send(a , mkset(4)), send(a , mkget(a)))

will result in the actor a receiving a message containing either 0, 3 or 4, depending

on the arrival order. A cell is one of the simplest kinds of history sensitive object.

The become primitive is the key to expressing history sensitivity by allowing new

behaviors to be installed in response to messages. Accumulators, counters and

new-symbol generators are easily constructed in a similar manner.

2.3 Join continuations

Simple forms of recursion are often amenable to concurrent execution. A typical

example is tree recursion. Consider the problem of determining the product of

the leaves of a tree (whose leaves are numbers). The problem can be recursively

subdivided into the problem of computing the result for the two subtrees, and

multiplying the results. The product is then returned.

treeprod = rec(λf.λtree.

if(isnat(tree),

tree,

f(left(tree)) ∗ f(right(tree))))

In the above code, a tree is passed to treeprod which tests to see if the tree is a

number (i.e. a leaf). If so it returns the tree, otherwise it subdivides the problem into

two recursive calls. The functions left and right pick off the left and right branches
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of the tree. It is clear that the arguments to ∗ may be evaluated concurrently. It is

also clear that if a zero is encountered then the computation can terminate. In this

example we only deal with the former optimization. The latter optimization, made

using continuations, is treated in detail in Talcott (1993a, 1985) and Agha (1990).

Such concurrency can be implemented by using a join continuation which synchro-

nizes the evaluation of the different arguments. For example, the treeprod program

given above can be expressed in terms of actor primitives as:

Btreeprod =

rec(λb.λself .λm.

seq(become(b(self )),

if(isnat(tree(m)),

send(cust(m), tree(m)),

letactor{newcust := Bjoincont(cust(m), 0, nil)}
seq(send(self , pr(left(tree(m)), newcust)),

send(self , pr(right(tree(m)), newcust))))))

Bjoincont = rec(λb.λcust .λnargs .λfirstnum .λnum

if(eq(nargs , 0),

become(b(cust , 1, num)),

seq(become(sink),

send(cust , firstnum ∗ num))))

When a tree product actor (with behavior Btreeprod) receives a tree of numbers

that is not a leaf it creates a customer, called a join continuation, and sends two

messages to itself to evaluate the two halves of the tree. These messages have the join

continuation as customer. The join continuation (with behavior Bjoincont) expects to

receive two numbers representing the computation of the products of each of the two

subtrees. When both numbers have arrived, the join continuation multiplies them

and sends the result to its customer. Figure 1 shows some stages in the computation

of a tree production. The join continuation’s customer can be the original requester

(root of the tree), or the join continuation of a higher branch point. Note that

after receiving the first number, the join continuation must modify its behavior to

remember that result while waiting for the second number. This is an example of

where it is essential to use become to modify the existing actors behavior rather than

simply creating a new actor with the desired behavior. Because multiplication is

commutative, we need not be concerned about matching the responses to the order

of the parameters. If we were dealing with an operator which was not commutative,

we would need to tag the message corresponding to each argument and this tag

would be returned with the response from the corresponding subcomputation. The

replacement behavior of the join continuation would then depend on the order in

which the evaluation of arguments was completed.

An advantage of explicit join continuations is that they provide considerable flexi-

bility – they can be used to control the evaluation order, to do partial computations,
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Cust

f(tree, Cust) JC JC

JC
Cust
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f(left(tree), JC) f(right(tree), JC)

JC
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f(left(tree), JC)
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(c) (d)

(e) (f)
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firstnum Cust

firstnum * num

JC
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JC’JC’

JC’
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firstnum

f(left(tree), JC)

Fig. 1. The leaves of tree, contain numbers to be multiplied and Cust is the actor to which

the product is to be sent. (b) the tree is subdivided and two asynchronous messages are sent

to compute the product on the two halves (concurrently). JC represents a newly created actor

to which the two results should be sent. Each subtree will be recursively subdivided and new

join-continuations will be successively created. (c) When the product of one of the subtrees

has been computed, the value is sent to JC. (d) JC does a become to store the first number it

receives. (e) The second product sends a value to JC. (f) JC multiplies the second number it

receives with the number it had stored earlier and sends the result to Cust.
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and to handle special cases or errors. For example, if the number 0 is encountered,

the join continuation can immediately return a 0 – in some cases without waiting

for the results of evaluating the other subtree.

The above program may not be optimal in other respects. For example sends may

be quite expensive. Consequently it may be prudent to check that the subcomputation

is worth dispatching. This observation together with the fact, proved in section 5,

that sends of values commute leads to the possibly faster version:

B1
treeprod =

rec(λb.λself .λm.

seq(become(b),

if(isnat(tree(m)),

send(cust(m), tree(m)),

let{l := left(tree(m)), r := right(tree(m))}
letactor{newcust := Bjoincont(cust(m), 0, nil)}

if(or(isnat(l), isnat(r)),

send(cust(m), treeprod(l) ∗ treeprod(r)),

seq(send(self , pr(l, newcust)),

send(self , pr(r, newcust)))))))

By observing that join continuation is only used in one of the if branches we can

transform B1
treeprod to a slightly more frugal version B2

treeprod.

B2
treeprod =

rec(λb.λself .λm.

seq(become(b),

if(isnat(tree(m)),

send(cust(m), tree(m)),

let{l := left(tree(m)), r := right(tree(m))}
if(or(isnat(l), isnat(r)),

send(cust(m), treeprod(l) ∗ treeprod(r)),

letactor{newcust := Bjoincont(cust(m), 0, nil)}
seq(send(self , pr(l, newcust)),

send(self , pr(r, newcust)))))))

Simple transformations such as this one are justified by the properties of the

underlying actor primitives. We return to this example in section 5.



14 G. A. Agha et al.

2.4 Notation

We use the usual notation for set membership and function application. Let Y , Y0, Y1

be sets. We specify meta-variable conventions in the form: let y range over Y , which

should be read as: the meta-variable y and decorated variants such as y′, y0, . . . ,

range over the set Y . Y n is the set of sequences of elements of Y of length n. Y ∗ is

the set of finite sequences of elements of Y . ȳ = [y1, . . . , yn] is the sequence of length

Len(ȳ) = n with ith element yi. (Thus [ ] is the empty sequence.) u ∗ v denotes the

concatenation of the sequences u and v. If u is a non-empty sequence, then Last(u)

is the last element of u. Pω[Y ] is the set of finite subsets of Y . Mω[Y ] is the set of

(finite) multi-sets with elements in Y . Y0
f→ Y1 is the set of finite maps from Y0 to

Y1. [Y0 → Y1] is the set of total functions, f, with domain Y0 and range contained

in Y1. We write Dom(f) for the domain of a function and Rng(f) for its range. For

any function f: f{y := y′} is the function f′ such that Dom(f′) = Dom(f) ∪ {y},
f′(y) = y′, and f′(z) = f(z) for z 6= y, z ∈ Dom(f); and fcY is the restriction of f

to the set Y .

3 A simple lambda-based actor language

In this section we give the syntax and operational semantics of our actor language.

In the core language, we replace the letactor construct for actor creation by two

primitives: newadr and initbeh. This obeys the principle that λ is the only binding

construct, and also permits simpler basic reduction rules. We treat letactor as an

abbreviation along with let and others. newadr() creates a new (uninitialized) actor

and returns its address. initbeh(a , b) initializes the behavior of a newly created

actor with address a to be b. The allocation of a new address and initialization of

the actor’s behavior are separated to allow an actor to learn its own address upon

initialization. An uninitialized actor can only be initialized by the actor which created

it. Without this restriction composability of actor configurations is problematic, as

it would permit an external actor to initialize an internally created actor.

3.1 Syntax

We take as given countable sets X (variables) and At (atoms). In addition we assume

given a (possibly empty) set of n-ary operations, Gn on At for each n ∈ N. Fn is

the set of primitive operations of arity n, which includes Gn, and F =
⋃
n∈N Fn. We

assume At contains t, nil for booleans, as well as constants for natural numbers, N.

F contains arithmetic operations, recognizers isatom for atoms, isnat for numbers,

and ispr for pairs (arities 1, 1, 1), branching br (arity 3), pairing pr, 1st, 2nd (arities

2, 1, 1), and actor primitives newadr, initbeh, send, and become (arities 0, 2, 2,

1). The sets of expressions, E, value expressions (or just values), V, and contexts

(expressions with holes), C, are defined inductively as follows:

Definition (E V C)

V = At ∪ X ∪ λX.E ∪ pr(V,V)
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E = At ∪ X ∪ λX.E ∪ app(E,E) ∪ Fn(En)

C = At ∪ X ∪ λX.C ∪ app(C,C) ∪ Fn(Cn) ∪ {•}

We let x, y, z range over X, v range over V, e range over E, and C range over C.

Since we are working with a syntactic reduction semantics, there is no distinction

between a value expression and the value it denotes. Hence we use the terms value

and value expression interchangeably. λx.e binds the variable x in the expression e.

Two expressions are considered equal if they are the same up to α renaming (that

is, renaming of bound variables). We say that a variable is fresh with respect to a

context of use if it does not occur free or bound in any syntactic entity. We write

FV(e) for the set of free variables of e. We write e[x := e′] to denote the expression

obtained from e by replacing all free occurrences of x by e′, avoiding the capture of

free variables in e′. Contexts are expressions with holes. We use • to denote a hole.

C[e] denotes the result of replacing any holes in C by e. Free variables of e may

become bound in this process.

br is a strict conditional, and the usual conditional construct if can be considered

an abbreviation following Landin (Landin, 1964). let and seq are the usual syntactic

sugar, seq being a sequencing primitive.

if(e0, e1, e2) abbreviates app(br(e0, λz.e1, λz.e2), nil) for z fresh

let{x := e0}e1 abbreviates app(λx.e1, e0)

seq(e0, e1) abbreviates app(app(λz.λx.x, e0), e1)

letactor is defined it terms of newadr and initbeh as follows:

letactor{x1 := e1, . . . , xn := en}e abbreviates

let{x1 := newadr()} . . . let{xn := newadr()}
seq(initbeh(x1, e1), . . . , initbeh(xn, en), e)

Note that free occurrences of the xi in ei and in e are bound in the letactor

construct (to newly created actors). We will sometimes use the convention that

letactor{x̄ := ē}e abbreviates letactor{x1 := e1, . . . , xn := en}e

3.2 Reduction semantics for actor configurations

The operational semantics for actor systems is given by a transition relation on

configurations. A configuration can be thought of as representing a global snapshot

of an actor system with respect to some idealized observer (Agha, 1986). It contains

a collection of actors, messages, external actor names, and receptionist names. The

sets of receptionists and external actors are the interface of an actor configuration

to its environment. They specify what actors are visible and what actor connections

must be provided for the configuration to function. Both the set of receptionists and

the set of external actors may grow as the configuration evolves.

The state of the actors in a configuration is given by an actor map. An actor map

is a finite map from actor addresses to actor states. Each actor state is one of
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• (?a) uninitialized, having been newly created by an actor named a;

• (b) ready to accept a message, where b is its behavior, a lambda abstraction;

or

• [e] busy executing e, here e represents the actor’s current (local) processing

state.

A message m contains the address of the actor to whom it is sent and the message

contents, <a ⇐ v>. We restrict the contents v to be any value constructed from atoms

and actor addresses using the pairing constructor. We call these values communicable

values . Lambda abstractions and structures containing lambda abstractions are not

allowed to be communicated in messages. There are two reasons for this restriction.

Firstly, allowing lambda abstractions to be communicated in values violates the

actor principle that only an actor can change its own behavior, because a become

in a lambda message may change the receiving actor behavior. Secondly, if lambda

abstractions are communicated to external actors, there is no precise way to establish

what actor addresses are actually exported. This has unpleasant consequences in

reasoning about equivalence, amongst other things. This restriction is not a serious

limitation since the address of an actor whose behavior is the desired lambda

abstraction can be passed in a message. The π-calculus has a similar restriction

on values that can be communicated, in that it does not allow processes to be

communicated.

The transition relation determines the set of possible future configurations. We

classify actor configuration transitions as internal or external to the configuration.

The internal transitions are:

• rcv: receipt of a message by an actor not currently busy computing; and

• exec: an actor executing a step of its current computation.

The internal transitions involve a single active actor, which we call the focus

actor for the transition. exec transitions may be purely local (a λ-transition), or a

message may be sent, or a new actor may be created, or a newly created actor may

be initialized. rcv transitions consume a message, putting the focus actor in a busy

state.

In addition to the internal transitions of a configuration, there are i/o transitions

that correspond to interactions with external agents:

• in: arrival of a message to a receptionist from the outside; and

• out: passing a message out to an external actor.

3.2.1 Actor configurations

We assume that we are given a countable set Ad of actor addresses. To simplify

notation, we identify Ad with X and call variables used in this way actor names.

This pun is useful for two reasons: it allows us to use expressions to describe actor

states and message contents; and it allows us to avoid problems of choice of names

for newly created actors by appealing to an extended form of alpha conversion.
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(See Mason and Talcott (1991) and Felleisen and Hieb (1992) for use of this pun to

represent reference cells.)

Definition (cV As M)

The set of communicable values, cV, the set of actor states, As, and the set of messages,

M, are defined as follows:

cV = At ∪ X ∪ pr(cV, cV) As = (?X) ∪ (V) ∪ [E] M = <V⇐ V>

We let cv range over cV and m range over M. Note that actor behaviors are not

syntactically restricted to be lambda abstractions, nor are messages syntactically

restricted to be of the form <Ad ⇐ cV>. The reduction system will prevent use of

any ill-formed behavior or message. This is in keeping with the untyped nature of

our language.

Definition (Actor configurations (K))

An actor configuration with actor map, α, multi-set of messages, µ, receptionists, ρ,

and external actors, χ, is written 〈〈
α µ

〉〉ρ
χ

where ρ, χ ∈ Pω[X], α ∈ X f→ As, and µ ∈Mω[M]. Further, it is required that, letting

A = Dom(α), the following constraints are satisfied:

• (0) ρ ⊆ A and A ∩ χ = ∅,
• (1) if α(a) = (?a ′), then a ′ ∈ A,

• (2) if a ∈ A, then FV(α(a)) ⊆ A∪ χ, and if <v0 ⇐ v1> ∈ µ, then FV(vi) ⊆ A∪ χ
for i < 2.

We let K denote the set of actor configurations and let κ range over K. The

receptionists ρ are names of actors within the configuration that are externally

visible; all other actors in the (actor) configuration are local and thus inaccessible

from the outside. The external actors χ are names of actors that are outside this

configuration but to which messages may be directed. A configuration in which both

the receptionist and external actor sets are empty is said to be closed. For closed

configurations we may omit explicit mention of the empty ρ and χ sets. The actor

map portion of a configuration is presented as a list of actor states each subscripted

by the actor address which is mapped to this state. If α′(a) = (b), and α is α′ with a

omitted from its domain, we write α′ as (α, (b)a ) to focus attention on a . We follow

a similar convention for other states subscripted with addresses.

The set of possible computations of an actor configuration is defined in terms of

the labelled transition relation 7→ on configurations. Although this is, on the surface

an interleaving semantics, it is easy to modify our transition system to obtain

a truly concurrent semantics either by forming a labelled transition system with

independence (Sassone et al., 1993), or by using concurrent rewriting (Meseguer,

1992).
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3.2.2 Decomposition and reduction

To describe the internal transitions other than message receipt, a non-value expres-

sion is decomposed uniquely into a reduction context filled with a redex. Reduction

contexts identify the subexpression of an expression that is to be evaluated next,

they correspond to the standard reduction strategy (left-first, call-by-value) of Plotkin

(1975) and were first introduced in Felleisen and Friedman (1986). For further dis-

cussion of this method of defining reduction relations see Honsell et al. (1995). To

distinguish holes used for different purposes, we use the sign for the hole occurring

in a reduction context, and call such holes redex holes (although they may in fact

be filled with non-redex expressions).

Definition (Erdx R)

The set of redexes, Erdx, and the set of reduction contexts, R, are defined by

Erdx = app(V,V) ∪ (Fn(Vn)− pr(V,V))

R = { } ∪ app(R,E) ∪ app(V,R) ∪ Fn+m+1(Vn,R,Em)

We let R range over R and r range over Erdx.

An expression e is either a value or it can be decomposed uniquely into a reduction

context filled with a redex. Thus, local actor computation is deterministic.

Lemma (Unique decomposition)

(0) e ∈ V, or

(1) (∃!R, r)(e = R[r])

Proof

An easy induction on the structure of e.

Redexes can be split into two classes, purely functional and actor redexes. The

actor redexes are newadr(), initbeh(v0, v1), become(v ), and send(v0, v1). Reduction

rules for the purely functional case is given by a relation
λ7→X on expressions. X is a

finite collection of variables indicating the currently defined actor addresses, which

hence are not atoms, pairs, or functions.

Definition (
λ7→X)

Assume that X ⊂ X is a finite set of variables.

(beta-v) R[app(λx.e, v )]
λ7→X R[e[x := v ]]

(delta) R[δ(v1, . . . , vn)]
λ7→X R[v ′]

where δ ∈ Gn, v1, . . . , vn ∈ Atn, and δ(v1, . . . , vn) = v ′.

(br) R[br(v , v1, v2)]
λ7→X

{
R[v1] if v ∈ V− ((X−X) ∪ {nil})
R[v2] if v = nil

(ispr) R[ispr(v )]
λ7→X

{
R[t] if v ∈ pr(V,V)

R[nil] if v ∈ V− ((X−X) ∪ pr(V,V))
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(fst) R[1st(pr(v0, v1))]
λ7→X R[v0]

(snd) R[2nd(pr(v0, v1))]
λ7→X R[v1]

(eq) R[eq(v0, v1)]
λ7→X

{
R[t] if v0 = v1 ∈ At

R[nil] if v0, v1 ∈ At and v0 6= v1

The rules for isatom and isnat are analogous to that for ispr, in particular

elements of X are not atoms and not numbers. If the set X is empty we write
λ7→

rather than
λ7→∅. The single-step transition relation 7→ on actor configurations is

generated by the following rules:

Definition (7→)

<fun : a>

e
λ7→X e

′ ⇒
〈〈
α, [e]a µ

〉〉ρ
χ
7→
〈〈
α, [e′]a µ

〉〉ρ
χ

where X = Dom(α) ∪ {a} ∪ χ

<new : a , a ′>〈〈
α, [R[newadr()]]a µ

〉〉ρ
χ
7→
〈〈
α, [R[a ′]]a , (?a)a ′ µ

〉〉ρ
χ

a ′ fresh

<init : a , a ′>〈〈
α, [R[initbeh(a ′, v )]]a , (?a)a ′ µ

〉〉ρ
χ
7→
〈〈
α, [R[nil]]a , (v)a ′ µ

〉〉ρ
χ

<bec : a , a ′>〈〈
α, [R[become(v )]]a µ

〉〉ρ
χ
7→
〈〈
α, [R[nil]]a ′ , (v)a µ

〉〉ρ
χ

a ′ fresh

<send : a ,m>〈〈
α, [R[send(v0, v1)]]a µ

〉〉ρ
χ
7→
〈〈
α, [R[nil]]a µ,m

〉〉ρ
χ

m = <v0 ⇐ v1>

<rcv : a , cv>〈〈
α, (v)a <a ⇐ cv>, µ

〉〉ρ
χ
7→
〈〈
α, [app(v , cv )]a µ

〉〉ρ
χ

<out : m>〈〈
α µ,m

〉〉ρ
χ
7→
〈〈
α µ

〉〉ρ′
χ

if m = <a ⇐ cv>, a ∈ χ, and ρ′ = ρ ∪ (FV(cv ) ∩Dom(α))

<in : m>〈〈
α µ

〉〉ρ
χ
7→
〈〈
α µ,m

〉〉ρ
χ∪(FV(cv )−Dom(α))

if m = <a ⇐ cv>, a ∈ ρ and FV(cv ) ∩Dom(α) ⊆ ρ
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In the lambda reduction rule, expressions are reduced under the assumption that

Dom(α) ∪ {a} ∪ χ are in fact actor addresses. In the rules for newadr and become,

a ′ fresh abbreviates a ′ 6∈ Dom(α) ∪ {a} ∪ χ. Each rule is given a label l consisting

of a tag indicating the primitive instruction, and additional parameters. We write

κ0
l−→ κ1 if κ0 7→ κ1 according to the rule labelled by l . We call this triple a labelled

transition.

i/o transitions are transitions with tags in or out. In all cases other than i/o

transitions the first parameter names the focus actor of the transition. rcv transitions

are transitions with tag rcv. The remaining transitions are called exec transitions.

The exec transitions correspond to the execution of functional or actor redexes.

The transitions are labelled to allow us to reason about sequences of transitions

in terms of the rules applied, and to allow for alternative representation of com-

putations, including: sequences of configurations; sequences of labelled transitions;

and sequences of labels. Note that we have chosen the labels to include sufficient

information that κ′ is uniquely determined by κ and l .

Definition (Enabled(κ, l ))

A transition l is said to be enabled in the configuration κ, written Enabled(κ, l ), iff

there is a configuration κ′ such that κ
l−→ κ′. The transition is said to be disabled

iff it is not enabled. Formally

Enabled(κ, l ) ⇔ (∃κ′ ∈ K)(κ
l−→ κ′)

Note that of the eight particular forms of configuration transitions, only the

<in : m> transition is always enabled (provided the message is of the correct form).

As mentioned above, we allow ill-formed messages to be created, but such messages

can never be delivered. The last three rules assure this by restricting the form of

the message: the target must be an actor and the contents must be a communicable

value. In the case of input, the actor is further restricted to be a receptionist.

We could easily prevent the formation of ill-formed messages and actor states if so

desired. We chose not to, in order to have a consistently lazy dynamic error checking

policy.

A clone produced to carry on after a become is not allowed to initialize an actor

created by its cloner. Of course it can initialize any actor that it created. This is

a technical simplification. With some additional bookkeeping we could keep track

of cloners and allow clones to initialize. Alternatively, this technical detail would

disappear if we used the letactor construct for actor creation.

These choices affect the details of expression equivalence, but not the basic

properties. Such choices will become more important if we want to model an

implemented language and consider matters such as signaling of exceptions.

3.2.3 Computation sequences and paths

Definition (Computation trees)

If κ is a configuration, then we define the computation tree for κ, T(κ), to be the

set of all finite sequences of labelled transitions of the form [κi
li−→ κi+1 i < n] for
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some n ∈ N, with κ = κ0. We call such sequences computation sequences and let ν

range over them.

Lemma (Anonymity)

If κ
<bec : a , a ′>
−→ κ′ and ν is any computation sequence in the computation tree,

T(κ′), then ν contains no transitions with label of the form <send : a ′, v>.

Definition (Computation paths π ∈ T∞(κ))

The sequences of a computation tree are partially ordered by the initial segment

relation. An infinite computation path from κ is a maximal linearly ordered set of

computation sequences in the computation tree, T(κ). A finite computation path

from κ is a linearly ordered set of computation sequences in the computation tree,

T(κ), which is maximal with respect to transitions other than in. The reason for

this minor distinction is that, as noted before, in transitions are always enabled

and unconditional maximality would eliminate the possibility of finite computation

paths. Note that a path can also be regarded as a (possibly infinite) sequence of

labelled transitions. We use T∞(κ) to denote the set of all paths from κ, and let

π range over computation paths. When thinking of a path as a possibly infinite

sequence we write [κi
li−→ κi+1 i < ./] where ./ ∈ N ∪ {ω} is the length of the

sequence.

Since the result of a transition is uniquely determined by the starting configuration

and the transition label, computation sequences and paths can be equally represented

by their initial configuration and the sequence of transition labels. The sequence of

configurations can be computed by induction on the index of occurrence.

Definition (Cfig)

Let κ be a configuration and let L = [li i < ./] be a sequence of labels

corresponding to a computation from κ. The ith configuration of the computation

from κ determined by L, Cfig(κ, L, i), is defined by induction on i as follows:

• (0) Cfig(κ, L, 0) = κ

• (1) Cfig(κ, L ∗ [li], i+ 1) = κ′ where Cfig(κ, L, i)
li−→ κ′.

Thus, the path π determined by κ, L is the sequence

[Cfig(κ, L, i)
li−→ Cfig(κ, L, i+ 1) i < ./]

This notation has the advantage that when an initial starting configuration is

fixed, either implicitly or explicitly, computation sequences in the computation tree

can be identified with sequences of labels. When the sequence L is finite we let

Cfig(κ, L) denote the final configuration: Cfig(κ, L) = Cfig(κ, L,Len(L)). Note that

label sequences are related to CSP-like traces, but differ in that they are possibly

infinite, and that our labels include more information than simply communication.

Definition (multi-step transition)

Let L = [lj j < n] be a finite sequence of transition labels (possibly empty). L is a

multi-step transition κ
L−→ κ′ just if Cfig(κ, L) = κ′. Or in other words, we can find

a [κj j ≤ n] such that κ = κ0, κ′ = κn, and [κj
lj−→ κj+1 j < n].
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3.2.4 Fairness

We do not consider all paths admissible. We rule out those computations that are

unfair, i.e. those in which there is some transition that should eventually happen but

does not. We begin by making the notion of fairness more formal.

Definition (Fair(π))

A path π = [κi
li−→ κi+1 i < ./] in the computation tree T∞(κ) is fair, written

Fair(π) if each enabled transition (other than in transitions) eventually happens or

becomes permanently disabled.

Fair(π) ⇔ (∀i < ./)(∃l )((Enabled(κi, l ) ∧ ¬(∃m ∈M)(l = <in : m>)) ⇒

((∃j ≥ i)(κj
l−→ κj+1) ∨ (∃j > i)(∀k > j)(¬Enabled(κk, l ))))

The transition system has the property that if l is enabled in

Definition (F(κ))

For a configuration κ we define F(κ) to be the subset of T∞(κ) that are fair.

F(κ) = {π ∈ T∞(κ) Fair(π)}

Note that finite computation paths are fair, since by maximality all of the enabled

transitions must have happened.

Lemma (Fairness)

A finite path is fair.

Proof

If π = [κi
li−→ κi+1 i < M − 1], then by maximality we must have that

(∀l 6= <in : m>)¬Enabled(κM, l ). Consequently the path is fair, since all enabled

transitions have either occurred or become disabled.

3.3 Composition of actor configurations

Actor configurations can be composed to form new actor configurations. This

composition operation is commutative, associative, and has the empty configuration

as unit. This is made precise by the following definitions and lemmas:

Definition (Composable)

Two configurations κi =
〈〈
αi µi

〉〉ρi
χi

, i < 2 are composable if Dom(α0)∩Dom(α1) = ∅,
χ0 ∩Dom(α1) ⊆ ρ1, and χ1 ∩Dom(α0) ⊆ ρ0.
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Definition (Composition, decomposition)

The composition κ0 ‖ κ1 of composable configurations κi =
〈〈
αi µi

〉〉ρi
χi

, i < 2 is

defined by

κ0 ‖ κ1 =
〈〈
α0 ∪ α1 µ0 ∪ µ1

〉〉ρ0∪ρ1

(χ0∪χ1)−(ρ0∪ρ1)

(κ0, κ1) is a decomposition of κ if κi, i < 2 are composable configurations, and

κ = κ0 ‖ κ1.

Lemma (AC)

Let κi =
〈〈
αi µi

〉〉ρi
χi

, i < 3 be pairwise composable configurations, and let

κ∅ =
〈〈
∅ ∅

〉〉
be the empty configuration. Then

κ0 ‖ κ1 = κ1 ‖ κ0

κ0 ‖ κ∅ = κ0

(κ0 ‖ κ1) ‖ κ2 = κ0 ‖ (κ1 ‖ κ2)

Proof

Using the AC properties of set union, the only thing to check is the equality of

external actors for the two associations. It is easy to see that

(((χ0 ∪ χ1)− (ρ0 ∪ ρ1)) ∪ χ2)− (ρ0 ∪ ρ1 ∪ ρ2)

= (χ0 ∪ χ1 ∪ χ2)− (ρ0 ∪ ρ1 ∪ ρ2)

= (χ0 ∪ ((χ1 ∪ χ2)− (ρ1 ∪ ρ2)))− (ρ0 ∪ ρ1 ∪ ρ2)

Furthermore, it is possible to independently define composition operations on sets

P of computation sequences or paths

P0 ‖ P1

such that

1. The computation tree of the composition of actor configurations is the com-

position of the computation trees of the components.

T(κ0 ‖ κ1) =T(κ0) ‖ T(κ1)

2. The set of fair computation paths of the composition of actor configurations

is the composition of the fair computation paths of the components.

F(κ0 ‖ κ1) =F(κ0) ‖ F(κ1)

Details of this construction are omitted for space considerations.

4 Equivalence of expressions

In this section we study the equivalence of expressions of our actor language. Our

notion of equivalence is a combination of the now classic operational equivalence
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of Plotkin (1975) and testing equivalence of Denicola and Hennessy (1984). For the

deterministic functional languages of the sort Plotkin studied, this equivalence is

defined as follows. Two program expressions are said to be equivalent if they behave

the same when placed in any observing context. An observing context is some

complete program with a hole, such that all of the free variables in the expressions

being observed are captured when the expressions are placed in the hole. The notion

of ‘behave the same’ is (for deterministic functional languages) typically that either

both converge or both diverge.

4.1 Events

The first step is to find proper notions of ‘observing context’ and ‘behave the

same’ in an actor setting. The analogue of an observing context is an observing

actor configuration: a configuration that contains an actor state with a hole. Since

termination is not relevant for actor configurations, we instead introduce an observer

primitive, event and observe whether or not in a given computation, event is

executed. Our approach is similar in spirit to that used in defining testing equivalence

for CCS (de Nicola and Hennessy, 1984).

Definition (event)

Formally, the language of observing contexts is obtained by introducing a new

0-ary primitive operator, event. We extend the reduction relation 7→ by adding the

following rule.

<e : a>
〈〈
α, [R[event()]]a µ

〉〉ρ
χ
7→
〈〈
α, [R[nil]]a µ

〉〉ρ
χ

Definition (O)

The observing configurations are configurations over the extended language of the

form
〈〈
α, [C]a µ

〉〉
. We use O to denote the set of observing configurations, and

let O range over O. Placing an expression in an observing configuration is just filling

the holes of the context with that expression. Thus, if O is an observing configuration

as above, then O[e] =
〈〈
α, [C[e]]a µ

〉〉
. For an given expression e, the observing

configurations for e are those O ∈ O such that O[e] a closed configuration.

In our definition of observing configuration, the holes appear in the current state

of an single executing actor. It is not hard to see that allowing holes in any actor

state does not change the resulting notion of equivalence. A generalization of this

fact, (ocx) is proved in section 6.

Since the language is nondeterministic, three different outcomes are possible in

place of the two in the deterministic case: either event occurs for all possible

computation paths, it occurs in some computation paths but not others, or it never

occurs. We observe event transitions in the fair paths. We say that a computation

path succeeds, s, if an event transition occurs in it. This is the basic unit of

observation; on top of this derived notions can be defined. We say a computation

path is observed to fail, f , if it is not observed to succeed. obs(π) is s if π succeeds,
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and f otherwise, and Obs(κ) encodes the set of observations possible for all paths

of a closed actor configuration.

Definition (observations)

Let κ be a configuration of the extended language, and let π = [κi
li−→ κi+1 i < ./]

be a fair path, i.e. π ∈ F(κ). Define

obs(π) =
{

s if (∃i < ./, a)(li = <e : a>)

f otherwise

Obs(κ) =


s if (∀π ∈ F(κ))(obs(π) = s)

sf if (∃π ∈ F(κ))(obs(π) = s) and (∃π ∈ F(κ))(obs(π) = f )

f if (∀π ∈ F(κ))(obs(π) = f )

4.2 Three equivalences

The natural notion of observational equivalence is that equal observations are

made in all closing configuration contexts. However, it is possible in some cases to

use a weaker equivalence. An sf observation may be considered as good as an s

observation, and a new equivalence arises if these observations are equated. Similarly,

an sf observation may be as bad as an f observation. We define the following three

equivalences.

Definition (∼=1,2,3)

1. (testing or convex or Plotkin or Egli-Milner)

e0
∼=1 e1 iff Obs(O[e0]) = Obs(O[e1]) for all observing contexts O ∈ O

2. (must or upper or Smyth)

e0
∼=2 e1 iff Obs(O[e0]) = s ⇔ Obs(O[e1]) = s for all observing contexts

O ∈ O
3. (may or lower or Hoare)

e0
∼=3 e1 iff Obs(O[e0]) = f ⇔ Obs(O[e1]) = f for all observing contexts

O ∈ O

By construction each of these equivalence relations is a congruence.

Theorem (congruence)

e0
∼=j e1 ⇒ C[e0] ∼=j C[e1] for j ∈ {1, 2, 3}

4.3 Partial collapse

Note that may-equivalence (∼=3) is determined by computation trees (that is by quan-

tification over finite sequences rather than paths), since all events are observed after

some finite amount of time. Consequently this relation is independent of whether or

not fairness is required. Since fairness sometimes makes proving equivalences more

difficult, it is useful that may-equivalence can always be proved ignoring the fairness

assumption. The other two equivalences are sensitive to choice of paths admitted

as computations. In particular when fairness is required, as in our model, ∼=2 is in
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fact the same as ∼=1. In models without the fairness requirement, they are distinct.

In either case, ∼=3 is distinct from ∼=1 and ∼=2.

Theorem (partial collapse)

• (1 = 2) e0
∼=2 e1 iff e0

∼=1 e1

• (1 ⇒ 3) e0
∼=1 e1 implies e0

∼=3 e1

• (3 6⇒ 1) e0
∼=3 e1 does not imply e0

∼=1 e1

To demonstrate (1 = 2) we consider a fixed pair of expressions e0, e1 and categorize

their closing configuration contexts O according to what observations are made by

O[e0] and O[e1]. We say O is labelled o : o′ for o, o′ ∈ {s, sf , f} just if Obs(O[e0]) = o

and Obs(O[e1]) = o′. This partitions the observing configuration contexts of e0 and

e1 into nine sets labeled o : o′ for o, o′ ∈ {s, sf , f}.
Lemma (sets) characterizes the various possibilities for equivalence in terms of

which sets must be empty.

Lemma (sets)

• e0
∼=1 e1 iff at most the sets labeled s : s, sf : sf , and f : f are non-empty.

• e0
∼=2 e1 iff the sets labeled s : sf , sf : s, s : f , f : s are all empty.

• e0
∼=3 e1 iff the sets labeled s : f , f : s, sf : f , f : sf are all empty.

This characterization is summarized in the picture below. Here × indicates that the

set must be empty, and
√

indicates that the set might be non-empty. The two ∗’d
cases in ∼=2 are cases in which sets are allowed to be non-empty by the definition,

but lemma (f.sf) below shows they are in fact always empty.

∼=1

e1

s sf f

s
√
× ×

e0 sf ×
√
×

f × ×
√

∼=2

e1

s sf f

s
√
× ×

e0 sf ×
√
∗

f × ∗
√

∼=3

e1

s sf f

s
√ √

×
e0 sf

√ √
×

f × ×
√

The key to collapsing ∼=2 into ∼=1 is the observation that if Obs(O[e0]) = f and

Obs(O[e1]) = sf it is always possible to construct a O∗ such that Obs(O∗[e0]) = s,

and Obs(O∗[e1]) = sf .

Lemma (f.sf)

For some e0, e1, if the set labeled f : sf is non-empty then the set labeled s : sf is

non-empty. Symmetrically, if the set labeled sf : f is non-empty then the set labeled

sf : s is non-empty.

Proof (f.sf)

Let O ∈ f : sf . Form O ′ by replacing all occurrences of event() in O by send(a, nil)

for some fresh variable a. Let O∗ be obtained by adding to O ′ a message <a ⇐ t>

and an actor a where a has the following behavior: If a receives the message t,

it executes event() and becomes a sink, and if a receives the message nil, it just
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becomes a sink. Recall that a sink is an actor that ignores its message and becomes a

sink. We claim O∗ ∈ s : sf . If O[e0] never executes event(), then in any fair complete

computation, the t message will be received by a, so O∗[e0] will always execute

event(). If O[e1] executes event() in some computation, then in the corresponding

computations for O∗[e1], sometimes nil will be received by a before t is received

and sometimes it won’t, hence O∗[e1] will execute event() in some computations,

but not in all.

Proof (partial collapse)

1 = 2 Assume e0
∼=2 e1. Then by (sets) the sets labeled s : sf , sf : s, s : f , f : s are

all empty. By (f.sf) f : sf and sf : f must also be empty. Hence by (sets), e0
∼=1 e1.

1 = 2
1 ⇒ 3 By (sets) 1 ⇒ 3
3 6 ⇒ 1 We construct expressions e0, e1 such that e0

∼=3 e1, but ¬(e0
∼=2 e1). Let e0

create an actor that sends a message (say nil) to an external actor a and becomes

a sink, and let e1 create an actor that may or may not send a message nil to a

depending on a coin flip (there are numerous methods of constructing coin flipping

actors), and also then becomes a sink. Let O be an observing configuration context

that with an actor a that executes event just if nil is received. Then Obs(O[e0]) = s

but Obs(O[e1]) = sf , so ¬(e0
∼=2 e1). To show that e0

∼=3 e1, show for arbitrary O

that some path in the computation of O[e0] contains an event iff some path in

the computation of O[e1] contains an event. This is easy, because when e1’s coin

flip indicates nil is sent, the computation proceeds identically to e0’s computation.

3 6 ⇒ 1

Hereafter, ∼= (observational equivalence) will be used as shorthand for either ∼=1

or ∼=2.

The fairness requirement is critical in the proof of (1 = 2). For example in

CCS, where fairness is not assumed, no such collapse of ∼=2 to ∼=1 occurs. If

we omitted the fairness requirement we could make more ∼=-distinctions between

actors. For example, let a0 be a sink. Let a1 be an actor that also ignores its messages

and becomes the same behavior, but it continues executing an infinite loop. The

infinite looping actor could prevent the rest of the configuration’s computation

from progressing. In the presence of fairness this could not happen, so the two are

equivalent. Thus fairness allows modular reasoning about liveness properties: one

can reason about the behavior of individual actors without worrying about whether

composition with another would cause such failures.

4.4 Equivalence of configurations

Now we extend the notion of observational equivalence to configurations.

Definition (Observing configurations)

The observing configurations for an actor configuration, κ =
〈〈
α µ

〉〉ρ
χ
, are

configurations over the extended language of the form κ′ =
〈〈
α′ µ′

〉〉χ
ρ
. Note that
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if κ′ is an observing configuration for κ, then κ’ is composable (in the sense of

section 3.3) with κ.

We are interested in observing internal event transitions rather than interac-

tions with the environment. Thus we define an operation Hide(κ) hiding all the

receptionists of a configuration.

Definition (Hide(κ))

Hide

(〈〈
α µ

〉〉ρ
χ

)
=
〈〈
α µ

〉〉∅
χ

Definition (κ0
∼= κ1)

For κ0 =
〈〈
α0 µ0

〉〉ρ
χ

and κ1 =
〈〈
α1 µ1

〉〉ρ
χ
, κ0
∼= κ1 iff Obs(Hide(κ0 ‖ κ′)) =

Obs(Hide(κ1 ‖ κ′)) for all observing configurations κ′ for κj , j < 2.

We observe that no two closed configurations can be distinguished by an external

observer.

We can extend the property of congruence with respect to expression construction

to congruence with respect to configuration construction. Namely, replacing an

expression occurring in a configuration by an observationally equivalent one yields

an equivalent configuration.

Theorem (exp-cfig)

If e0
∼= e1 then

(i) κ0 =
〈〈
α, [C[e0]]a µ

〉〉ρ
χ

∼=
〈〈
α, [C[e1]]a µ

〉〉ρ
χ

= κ1

(ii) κ′0 =
〈〈
α, (λx.C[e0])a µ

〉〉ρ
χ

∼=
〈〈
α, (λx.C[e1])a µ

〉〉ρ
χ

= κ′1

Proof

(i) We need to show that Obs(Hide(κ0 ‖ κ′)) = Obs(Hide(κ1 ‖ κ′)) for any observing

κ′. Note however that Hide(κ0 ‖ κ′) = O[e0] and Hide(κ1 ‖ κ′) = O[e1]) for some

O ∈ O, so the result follows directly from the definition of ∼=.

(ii) We need to show that Obs(Hide(κ′0 ‖ κ′)) = Obs(Hide(κ′1 ‖ κ′)) for any observing

κ′. Pick any π0 ∈ F(Hide(κ′0 ‖ κ′)), then we must find π1 ∈ F(Hide(κ′1 ‖ κ′)) such

that obs(π0) = obs(π1). There are two cases to consider. Either actor a never becomes

active, or it becomes active first after k steps of computation. In the first case, the ei
are never touched, so both computations proceed uniformly, thus their observation

and fairness behavior both correspond. In the second case, consider the step where

a receives its first message:〈〈
α′, (λx.C[e0])a µ, <a ⇐ cv>

〉〉
<rcv : a , cv>
−→

〈〈
α′, [app(λx.C[e0], cv )]a µ

〉〉
= O[e0]

Factor π0 = ν[e0] ∗ π′0, where π′0 ∈ F(O[e0]) and ν[ ] denotes a sequence where

each configuration in the sequence contains a hole that computes uniformly in the

hole. Thus, Obs(O[e0]) = Obs(O[e1]) because e0
∼= e1 and O is a configuration

context. This means by the definition of Obs there is a path π′1 ∈ F(O[e1]), such



Actor computation 29

that obs(π′0) = obs(π′1). Let π1 = ν[e1] ∗ π′1. Then, π1 ∈ F(Hide(κ1 ‖ κ′)), since by

construction it is a computation for (Hide(κ1 ‖ κ′)), and because π is fair implies ν∗π
is fair for any ν such that ν ∗ π is a computation path. Moreover, obs(π0) = obs(π1)

because any event transitions in ν[e0] also occur in ν[e1], and obs(π′0) = obs(π′1) by

hypothesis.

5 Laws of expression equivalence

With a notion of equivalence on actor expressions defined, a library of useful

equivalences can be established. The first part of this section contains a collection

of purely functional laws that continue to hold in the actor setting. The second

part contains a collection of laws for manipulating expressions that involve actor

primitives. These laws are established in section 6. These laws are not intended as a

proof system for reasoning about actor systems, but as illustrations of the laws that

can be established using the methods of section 6. Much work remains to develop a

usable proof system. We conclude the section by establishing properties of some of

the examples given in section 2.

5.1 Functional laws

Since our reduction rules preserve the evaluation semantics of the embedded func-

tional language, many of the equational laws for this language (cf. Talcott, 1993a)

continue to hold in the full actor language. A first simple observation is that two

communicable values are observationally equivalent iff they are the same value

expression.

Lemma (cv)

cv 0
∼= cv 1 ⇔ cv 0 = cv 1

Proof

The if direction is trivial. The only-if direction is proved by exhibiting an observing

context that distinguishes expressions that are not equal. Clearly both must be

atoms, or variables, or pairs, otherwise they can be distinguished using eq and ispr.

For example,

O =
〈〈
[if(eq(cv0, •), event(), nil)]a

〉〉
distinguishes the atom cv 0 from any non-atom (and any other atom). Similarly,

O =
〈〈
[let{x := 0}let{y := 1}if(eq(x, •), event(), nil)]a

〉〉
distinguishes the variables x, y. Similarly, if both are pairs, we can construct contexts

to distinguish differences in the components.

The laws of the untyped computational lambda calculus (Moggi, 1988), and the

laws for conditional and pairing continue to hold in the actor setting. The following

theorem is a sample of such laws.
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Theorem (functional laws)

(beta-v) app(λx.e, v ) ∼= e[x := v ]

(ift) if(v , e1, e2) ∼= e1 if v ∈ (At− {nil}) ∪ L ∪ pr(V,V)

(ifn) if(nil, e1, e2) ∼= e2

(ifelim) if(v , e, e) ∼= e

(iflam) λx.if(v , e1, e2) ∼= if(v , λx.e1, λx.e2) x 6∈ FV(v )

(isprt) ispr(pr(v0, v1)) ∼= t,

(isprn) ispr(v ) ∼= nil v ∈ At ∪ L

(fst) 1st(pr(v0, v1)) ∼= v0

(snd) 2nd(pr(v0, v1)) ∼= v1

Each of these laws (except for (iflam)) is a consequence of the following operational

law, established in section 6.2.6.

Theorem (red-exp)

e0
λ7→ e1 ⇒ e0

∼= e1

The law (iflam) is established in section 6.3.3. The theorem (rcx) is a special case

of a theorem proved in Talcott (1989).

Theorem (rcx)

If R is a reduction context and x 6∈ FV(R), then

(letx) let{x := e}R[x] ∼= R[e]

(if.dist) R[if(e, e1, e2)] ∼= if(e,R[e1],R[e2])

In fact (rcx) can be derived from (beta-v), the if laws and the following special

instances:

(app) e0(e1) ∼= (λf.f(e1))(e0)

(cmps) f(g(e)) ∼= (λx.f(g(x)))(e)

(id) app(λx.x, e) ∼= e

Some useful corollaries of (rcx) are the following:

Corollary (uni-rcx)

(let.dist) R[let{x := e}e0] ∼= let{x := e}R[e0]

(let.arg) v (let{x := e0}e1) ∼= let{x := e0}v (e1)

(if.if) if(if(e0, e1, e2), ea, eb) ∼= if(e0, if(e1, ea, eb), if(e2, ea, eb))
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The above laws are really about equivalence of reduction contexts. They are

instances of the operational law (red-rcx), established in section 6.4.4. Two reduction

contexts are considered equivalent if placing an arbitrary expression in the redex

hole results in equivalent expressions. The law (red-rcx) says that if two reduction

contexts have a common λ-reduct when the redex hole is filled with a fresh variable

(standing for an arbitrary value expression), then they are equivalent.

Theorem (red-rcx)

If there is some e ′ such that R0[x]
λ7→ e′ and R1[x]

λ7→ e′ where x is a fresh variable,

then R0[e] ∼= R1[e] for any e.

We also note that any expressions that hang (reduce in a finite number of lambda

steps to a stuck state) or have infinite lambda computations are observationally

equivalent. Note that if the reductions involve non-lambda steps the result clearly

fails, since they could have different effects such as the sending of messages that other

actors in the configuration may detect. We let stuck ∈ Hang be a prototypical stuck

expression, for example app(0, 0), and let bot ∈ Infin be a prototypical expression

with infinite computation, for example app(λx.app(x, x), λx.app(x, x)).

To make these ideas more precise we define Hang and Infin as follows:

Definition (Hang)

Let Hang be the set of non-value expressions such that every closed instance lambda

reduces (i.e.
λ7→ in possibly 0 steps) to a stuck state – an expression e′ that decomposes

as R[r] where r is a functional redex (i.e any non-actor redex) that does not reduce.

Definition (Infin)

Let Infin the set of (non-value) expressions e such that every closed instance has an

infinite lambda reduction sequence. Thus e ∈ Infin just if we can find ej for j ∈ N
such that e0 = e and ej

λ7→ ej+1.

The following theorem is established in section 6.2.7:

Theorem (hang-infin)

If e0, e1 ∈ Hang ∪ Infin , then e0
∼= e1.

5.2 Basic laws for actor primitives

Now we consider the equational properties of the actor primitives, send, letactor,

become, newadr, and initbeh. These laws are established in sections 6.2.8 and 6.2.9.

As is the case for a language with operations that modify state, seq(e, e) ∼= e fails to

hold because the evaluation of e can have effects such as message sends. A stronger

analogy exists between the actor primitives and the reference primitives {mk, get, set}
(see Mason and Talcott (1991) and Honsell et al. (1995)). The construct letactor

(that is, newadr combined with initbeh) is an allocation primitive analogous to mk.

The primitive become updates state analogously to set. The effect of send depends

on the state in a way analogous to get. There are limits to this analogy, for example
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send does not return anything of interest. Since send, become, and initbeh all

return nil as values we have the following law:

(triv) ϑ(x̄) ∼= seq(ϑ(x̄), nil) for ϑ ∈ {send, become, initbeh}

That letactor is an allocation primitive analogous to mk manifests itself in the

following (delay) and (gc) laws:

(delay) let{y := e0}letactor{x̄ := v̄}e ∼= letactor{x̄ := v̄}let{y := e0}e

(gc) letactor{x̄ := v̄}e ∼= e

where in (delay) no xi is free in e0, and y is not free in x̄, v̄ , and in (gc) no xi is

free in e. Note that, because we have not allowed clones to initialize newly spawned

actors, the analogous property for newadr alone fails to hold. Namely,

(non-delay)

let{y := e0}let{x := newadr()}e1 6∼= let{x := newadr()}let{y := e0}e1

where x is not free in e0. Since, if evaluation of e0 executes a become and e1 is of

the form initbeh(x, v ), then the left-hand side evaluation of e1 will succeed, while

the right-hand side evaluation of e1 will suspend.

A letactor law analogous to (if.dist) is the following

(if.letact) letactor{x̄ := v̄}if(e0, e1, e2) ∼= if(e0,

letactor{x̄ := v̄}e1,

letactor{x̄ := v̄}e2)

if no xi is free in e0. As a simple application of the laws already presented we

show how (if.letact) follows from a slightly simpler version (if.letact.z) where the test

expression of the if is assumed to be a variable:

(if.letact.z) letactor{x̄ := v̄}if(z, e1, e2) ∼= if(z,

letactor{x̄ := v̄}e1,

letactor{x̄ := v̄}e2)

Proof (if.letact)

letactor{x̄ := v̄}if(e0, e1, e2)

∼= letactor{x̄ := v̄}let{z := e0}if(z, e1, e2)

by (rcx.letx) and (congruence)

∼= let{z := e0}letactor{x̄ := v̄}if(z, e1, e2) by (delay)

∼= let{z := e0}if(z, letactor{x̄ := v̄}e1, letactor{x̄ := v̄}e2)

by (if.letact.z) and (congruence)

∼= if(e0, letactor{x̄ := v̄}e1, letactor{x̄ := v̄}e2) by (rcx.letx)

if.letact
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Some other simple properties of letactor are (perm) and (split):

(perm) letactor{x1 := v1, . . . , xn := vn}e
∼=

letactor{xp(1) := vp(1), . . . , xp(n) := vp(n)}e

if p is a permutation of {1, . . . , n}

(split) letactor{x1 := v1, . . . , xn+k := vn+k}e
∼=

letactor{x1 := v1, . . . , xk := vk}
letactor{xk+1 := vk+1, . . . , xn+k := vn+k}e

if {xk+1, . . . , xn+k} ∩ FV(v1, . . . , vk) = ∅

An immediate consequence of (perm) and (split) is

(perm-split) letactor{xk+1 := vk+1, . . . , xn+k := vn+k}
letactor{x1 := v1, . . . , xk := vk}e
∼=

letactor{x1 := v1, . . . , xk := vk}
letactor{xk+1 := vk+1, . . . , xn+k := vn+k}e

if {xk+1, . . . , xn+k} ∩ FV(v1, . . . , vk) = ∅, and

{x1, . . . , xk} ∩ FV(vk+1, . . . , vn+k) = ∅.

Once allocated, an actor behavior is initialized by initbeh and updated by

become. In analogy with set both become and initbeh satisfy certain, slightly

different, cancellation laws:

(can-b) seq(become(v0), become(v1)) ∼= seq(become(v0), nil) ∼= become(v0)

(can-i) seq(initbeh(v , v0), initbeh(v , v1))∼= seq(initbeh(v , v0), stuck)

∼= seq(initbeh(v , v0), bot)

Note the difference between these two principles. In the case of become the second

call is equivalent to nil, while in the case of initbeh it is stuck (which is equivalent

to diverging).

5.2.1 Commuting operations

How the effects of the actor primitives interact with one another is of paramount

importance. We have seen some aspects of this interaction above. We now study the

interactions more systematically.

Definition (commutes)

We say two operations ϑ0 and ϑ1 commute if

let{x0 := ϑ0(ȳ)}let{x1 := ϑ1(z̄)}e ∼= let{x1 := ϑ1(z̄)}let{x0 := ϑ0(ȳ)}e
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for all e ∈ E, x0 6∈ z̄, x1 6∈ ȳ and x0 distinct from x1. Similarly we say two expresions

e0 and e1 commute iff

let{x0 := e0}let{x1 := e1}e ∼= let{x1 := e1}let{x0 := e0}e

provided that x0 6∈ FV(e1) and x1 6∈ FV(e0).

newadr commutes with every operation except become. For example the expres-

sions

e0 = let{y := newadr()}let{z := become(b)}initbeh(y, b ′)

e1 = let{z := become(b)}let{y := newadr()}initbeh(y, b ′)

are not equivalent, since the first will always fail to execute the initialization and the

second will always succeed. A distinguishing context is〈〈
(λx.event())a0

, [seq(•, send(a0, 0))]a ∅
〉〉

If we allowed clones to initialize, then newadr would also commute with become. On

the other hand, by (can-b) and (can-1) neither become nor initbeh commute with

themselves, since this amounts to equivalence of two becomes (or initializations)

with different behaviors. The remaining operation send, like newadr, does commute

with itself:

(com-ss) seq(send(v0, v1), send(v2, v3)) ∼= seq(send(v2, v3), send(v0, v1))

send also commutes with become

(com-sb) seq(send(a0, v0), become(v1)) ∼= seq(become(v1), send(a0, v0))

The question of whether or not two distinct operations commute is simplified

by the observation, captured in (partial), that a computation may have observable

effects even if a subcomputation diverges. This is in contrast to the sequential

case, where an effect of a subcomputation is only observable if the computation

completes. We say that a primitive ϑ is total if for any configuration of the form〈〈
α, [R[ϑ(v̄ )]]a µ

〉〉ρ
χ

there is a reduction step with a as the focus actor.

Lemma (partial)

If ϑ is not a total operation, then ϑ does not commute with send, become or

initbeh.

Proof (partial)

If ϑ(ȳ) diverges, then

let{x := ϑ(ȳ)}let{x1 := send(a , v )}e

will not execute the send, whereas

let{x1 := send(a , v )}let{x := ϑ(ȳ)}e

will execute the send. Consequently the two expressions are easily distinguished.

Similarly with the two operations become and initbeh.
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Since initbeh is partial, it does not commute with either send or become. For

example

e0 = seq(initbeh(a0, b0), send(a1, 0))

e1 = seq(send(a1, 0), initbeh(a0, b0))

are distinguished by

O0 =
〈〈
(λx.event())a1

, (?a1
)a0
, [•]a µ

〉〉
for a 6= a1, or by

O1 =
〈〈
(λx.event())a1

, (b)a0
, [•]a µ

〉〉
Also,

e0 = seq(initbeh(a0, b0), become(λx.send(a1, 0)))

e1 = seq(become(λx.send(a1, 0)), initbeh(a0, b0))

are distinguished by O0,O1 if µ contains <a ⇐ 0>.

(partial) emphasizes that the valid equations for actor primitives are sensitive to

the details of when we check for ill-formed redexes. For example if we restricted the

send redex to avoid ill-formed messages (com-ss,com-sb) would no longer hold.

We summarize these results in the following:

Lemma (commutes)

n s i b

n + + + -

s + + - +

i + - - -

b - + - -

(n) newadr commutes with send, newadr, and initbeh, but not with become.

(s) send commutes with send, become, and newadr, but not with initbeh.

(i) initbeh commutes with newadr, but not with send, become, and initbeh.

(b) become commutes with send, but not with initbeh, newadr, or become.

Note that the remaining operations in F (i.e. the arithmetic operations and other

elements of G, branching br, and the pairing operations ispr, pr, 1st, 2nd) are all

context insensitive, and thus those that are total commute with all other operations.

In the case of if it is perhaps worth pointing out the following law:

Lemma (commutes-if)

If ϑ commutes with e0 and e1, then it also commutes with if(z, e0, e1).

Proof

This follows from (if-lam,if-dist).
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Using these basic principles we can prove more complex properties, the following

theorem being the most obvious:

Theorem (commutes)

Suppose that e0 and e1 are built up from V using only the constructs, if and

let. Furthermore suppose every operation occurring in e0 commutes with every

operation occurring in e1. Then

let{x0 := e0}let{x1 := e1}e ∼= let{x1 := e1}let{x0 := e0}e

provided xj is not free in e1−j for j < 2,

Proof (commutes)

The proof is by induction on the complexity of e0. We sketch the induction step.

We may assume, without loss of generality, that e0 decomposes into R[ϑ(ȳ)] with R

being non-trivial. Then

let{x0 := e0}let{x1 := e1}e ∼=
∼= let{x0 := R[ϑ(ȳ)]}let{x1 := e1}e

by hypothesis

∼= let{x0 := let{z := ϑ(ȳ)}R[z]}let{x1 := e1}e

by (cong) and (letx)

∼= let{z := ϑ(ȳ)}let{x0 := R[z]}let{x1 := e1}e

by (let.dis)

∼= let{z := ϑ(ȳ)}let{x1 := e1}let{x0 := R[z]}e

by the induction hypothesis and (cong)

∼= let{x1 := e1}let{z := ϑ(ȳ)}let{x0 := R[z]}e

by the induction hypothesis and (cong)

∼= let{x1 := e1}let{x0 := let{z := ϑ(ȳ)}R[z]}e

by (let.dis)

∼= let{x1 := e1}let{x0 := e0}e

by (cong) and (letx)

Note that the theorem fails in the case when the expressions contain app and λ

due to the possibility of divergence.

5.3 Introductory examples revisited

To illustrate the application of the actor expression laws we establish some properties

of the actor behaviors introduced in section 2. First we show that the behaviors b5

and b5′ from section 2.1 are equivalent.
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Lemma (b5)

b5 ∼= b5′

where

b5 = rec(λy.λx.seq(send(x, 5), become(y)))

b5′ = rec(λy.λx.seq(become(y), send(x, 5)))

Proof

By (commutes) seq(send(x, 5), become(y))) ∼= seq(become(y), send(x, 5))). The result

follows using the congruence property of ∼=.

A generalization of the (gc) property of letactor is that allocation of an actor

with suitably restricted behavior followed by sending it a message and then forgetting

that actor is equivalent to the external effects of applying that behavior. A simple

example of this is the following property of cells. (Recall that the behavior of a cell,

Bcell, was defined in section 2.2.)

(cellb) letactor{a := Bcell(0)}send(a, mkget(c)) ∼= send(c, 0)

This property is proved in section 6.2.9.

Three actor behaviors, Btreeprod, B
1
treeprod, and B2

treeprod were defined in section

2.3 for computing the treeprod function (also defined in section 2.3). Note that

Btreeprod and B1
treeprod are not equivalent as lambda expressions. They are only

equivalent under the assumption that the self parameters are bound to the actor in

which the code is executing, or at least one of equivalent behavior. The statement

of equivalence has the form:

letactor{a := Btreeprod(a)}a ∼= letactor{a := B1
treeprod(a)}a

Proving this is beyond the scope of the methods developed this paper, as it requires

reasoning about interactions with the enviornment, not simply isolated local com-

putations. However, we can use the actor laws developed here to show that the third

variation, B2
treeprod, is equivalent to B1

treeprod.

Lemma (tp.1.2)

B1
treeprod

∼= B2
treeprod

Proof

This follows from the equivalence of

if(e0, e1, letactor{newcust := b}e2) ∼= letactor{newcust := b}if(e0, e1, e2)

where

e0 = or(isnat(l), isnat(r))

e1 = send(cust(m), treeprod(l) ∗ treeprod(r))

b = Bjoincont(cust(m), 0, nil)

e2 = seq(send(self , pr(l, newcust)), send(self , pr(r, newcust)))
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which in turn follows from (gc) and (if.letact).

6 Proving expression equivalence

In this section we develop methods for proving expressions observationally equiv-

alent. In the remainder of this initial part we discuss informally some of the

complications that arise to motivate our proof technique. In section 6.1 we given

an informal outline of the general method and briefly discuss the three special

cases developed here. This subsection concludes with some techical matters that

can be skipped by the reader who wants only to understand the intuitions and

not the technical details. In section 6.2 we treat the first special case – equivalence

by common reduct. The initial subsections develop the necessary technical details.

section 6.2.6 contains the main theorem for the case of finite reduction involving

no actor primitives. The statement and initial informal part of the proof can be

understood without digging into the technical details by just thinking of the meta

variables decorated with little circle superscripts as denoting syntactic entites with

holes in which expressions to be compared can be placed and observing the presence

of holes does not effect computation except when a hole is exposed (touched). In

the remainder of the subsection, we give some technical details for extensions of

the basic method for the common reduct case. Section 6.2.7 treats stuck and infinite

(functional) computations. Section 6.2.8 extends the proof of section 6.2.6 to prove

the delay theorem for letactor. Section 6.2.9 generalizes the basic method to treat

reductions involving actor primitives. The remaining two subsections give the tech-

nical details for applying the general method to two stage reduction and equivalence

of reduction contexts.

To illustrate the complications that can arise in attempting to establish equiva-

lences we consider a simple case: succ(0) ∼= 1. It is simple for two reasons: there

are no free variables occurring, and only one step of computation separates succ(0)

and 1. By the definition of ∼=, we need to establish

Obs(O[succ(0)]) = Obs(O[1])

for all observing contexts O . To establish this, we construct, for each computation

path π0 ∈ F(O[succ(0)]), a π1 ∈ F(O[1]) such that obs(π0) = obs(π1). Similarly for

each computation path π1 ∈ F(O[1]), we construct a π0 ∈ F(O[succ(0)]) such that

obs(π0) = obs(π1). We call such a construction a path correspondence. Informally,

the path correspondence is constructed as follows. First consider how from a path

π0 in F(O[succ(0)]) we obtain a path in F(O[1]). At each point in π0 where

the succ(0) is reduced to 1, we remove this step, giving path π1. Describing this

operation in detail requires care, for there could be other independent occurrences

of the reductions of succ(0) in π0 which are not to be removed. We then can show

that π1 is a computation for O[1], with the same observable outcome and same

fairness property as π0. The converse construction is similar, except steps computing

succ(0) are inserted into π0 each time the 1 first appears in a reduction context.

Again this must be done only for occurrences of 1 arising from placing 1 in the

holes of O .
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These two expressions differ by only one step of computation; in general they could

differ by more than one step, and could both reduce to a common reduct rather than

one reducing to the other, e.g. pred(succ(1)) ∼= succ(0). The complication arising

from this case is the two-step execution of pred(succ(1)) can be interleaved with

computations of other actors and thus a local replacement is not possible. To solve

this problem the computation path is put in an equivalent canonical form with both

steps adjacent. In general we may cluster together as many steps of an individual

actor as necessary.

A complication also arises in proving equations that may contain free variables, for

instance 1st(pr(x, 0)) ∼= x. Such expressions may be self-substituted: if 1st(pr(x, 0))

occurs in the local context app(λy.app(y, y), λx.•), upon computing the free x in

1st(pr(x, 0))) will be replaced with λx.1st(pr(x, 0))). This means the necessary re-

placements are not flat but may be nested. A notion of generalized hole is introduced

to account for this nesting.

In general we give methods for establishing three different varieties of expression

equivalence; the above informal description describes only the first variant. The

three variants are as follows:

1. The first variant treats equivalence of expressions that have a common reduct,

i.e. expressions that reduce in 0 or more steps to the same expression having the

same effects (sends, becomes, creation of new actors, initializing new actors).

This is called the common reduct case.

2. The second variant is an elaboration of the first, treating expressions that

reduce to lambda abstractions that are application equivalent, i.e. have a com-

mon reduct when applied to any value. This is called the two-stage reduction

case.

3. The third variant treats equivalence of reduction contexts. This is called the

equivalence of reduction contexts case.

We provide examples of the use of these techniques by using them to establish the

equational laws stated in section 5.

6.1 The general method

Each of these three methods is based on the idea of using configuration templates

to establish a correspondence between the fair computations of configurations

containing the entities to be proved equivalent. A configuration template is simply

a configuration with holes, i.e. schematic variables, that may be instantiated by

various sorts of syntactic entities. Observing contexts correspond to a special case

of configuration templates.

The first step then is to choose a class of configuration templates CT such that

e0
∼= e1 if Obs(ct[e0]) = Obs(ct[e1]) for all templates ct ∈ CT . To establish the

equality of observations, it is sufficient to construct a path correspondence. That is,

to provide for each π0 ∈ F(ct[e0]), a π1 ∈ F(ct[e1]) such that obs(π0) = obs(π1)

and conversely. The crucial fact concerning configuration templates is that one can
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compute symbolically with them in the sense that computation is parametric in the

holes. We call this form of computation uniform computation or uniform reduction.

A suitable class of configuration templates is obtained by extending each syntactic

class to allow holes and defining appropriate notions of hole filling. Decomposition

theorems and schematic reduction rules are then developed. In each of the three

methods the only essential difference is the type and number of holes needed:

1. For the common reduct case we define templates by adding a single hole, ◦,
for expressions. We call this hole an expression hole.

2. For the two stage reduction case we need not only a hole for expressions,

but also a countable family of holes for lambda abstractions. We call these

holes abstraction holes and they are denoted by .j for j ∈ N. Note that these

holes are filled by values, specifically by lambda abstractions, not simply by

expressions. Since the lambda abstractions may contain free variables, we need

a family of holes corresponding to the different enviroments in which they are

closed.

3. For the equivalence of reduction contexts we need an entirely new kind of

hole, �, for reduction contexts. We call it a reduction context hole. Note that

occurrences of holes will be filled by reduction contexts and are not to be

confused with redex holes. As far as we are aware the introduction of holes

that are filled by contexts is completely novel.

For each variant, syntactic classes X are annotated with the signs of the sorts of holes

they contain: ◦X for expression holes; ◦.X for expression and lambda abstraction

holes; and �X for reduction context holes. We prefix the names of these classes by

E-, LE- or R-, respectively. Thus E-expressions are expression templates with holes

for expressions, ◦E is the set of E-expressions, and we let ◦e range over ◦E. A similar

convention holds for the other syntactic classes and hole types.

The idea underlying the construction of a path correspondence to establish equiv-

alence is the same for each of the three cases. It relies on the ability to localize

differences in computations as multi-step transitions (section 3.2.3), and to use holes

to formalize the aspects of computation that are independent of the local differences.

Consider the case of proving expressions equivalent using templates with expression

holes. We consider fair computation paths starting from an E-configuration with

holes filled by one of the expressions, say e0. For each such path, π0, we show

how to obtain a sequence of E-configurations satisfying two conditions. The first

is that filling the holes in the sequence of E-configurations with e0 (and filling in

transition labels) yields π0. The second is that filling the holes in the sequence of

E-configurations with e1 (and expanding multi-step transitions) yields a fair com-

putation path with the same observation. The other two cases are simple variations

on this idea.

6.1.1 Some preliminary technical details

One of the keys requirements for uniform computation is to ensure that transitions

commute with hole filling; except of course when the hole is touched, i.e. information
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about the contents of the hole is required to carry out the step. Consider the

schematic redex app(λx.•, v ). We need a notation that allows us to carry out this

reduction in such a way that filling the hole and then reducing gives the same result

as reducing and then filling the hole. For this purpose we associate with each hole

a substitution to be applied when the hole is filled. The domain of the substitution

also determines the variables of an expression that are trapped at the hole. This

localizes trapping and allows renaming of lambda-variables even in the presence of

holes (which is not the case for traditional notions of expression context). A detailed

development of this notation and discussion of related ideas can be found in Talcott

(1991, 1993b). We use ◦[◦σ] to denote an expression hole with associated substitution
◦σ (which may in turn have expressions holes in its range), a similar notation holds

for the other classes of holes: .j[
◦.σ] for abstraction holes, and �[�σ] for reduction

context holes.

To simplify definitions of syntactic classes we treat app on a par with elements of

F2. We use Θn for syntactic operations of arity n, and Θe
n to indicate the operations

of the extended language (i.e. Θ0 extended to include event). Thus:

Definition (Θn Θe
n)

Θ2 = F2 ∪ {app} Θn = Fn for n 6= 2

Θe
0 = Θ0 ∪ {event} Θe

n = Θn for n 6= 0

As the last technical detail, we make precise the sense in which we are able to

localize differences in computations as multi-steps. We first define the notion of

thread segment, and then show that any family of disjoint thread segments in a

computation path can be regrouped as multi-steps without effecting the fairness or

observation made of the path.

A thread segment, I , at a in π is a finite subsequence of exec transitions of π

with focus actor a or a clone of a created by a become such that any gaps in the

sequence are transitions with some other focus, or at a after a new message receipt.

Definition (thread segment)

Let

• π = [κi
li−→ κi+1 i < ./], and π ∈ F(κ),

• I = [ij j < n] such that j < j ′ < n ⇒ ij < ij ′ ,

• L(I, π) = [lij j < n], the transition sequence corresponding to I in π.

Then I is a thread segment at a in π if

1. L(I, π) contains no rcv, in or out, and

2. L(I, π) is a computation for
〈〈
αi0c{a} ∅

〉〉{a}
FV(αi0 (a))

.

As a consequence li0 has focus a. Note that condition (2) makes explicit that a

thread segment is essentially running the focus actor in a configuration with only

itself. With no rcvs, ins, or outs only that actor or its become clones can execute.
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Theorem (infinite-macro-steps)

Let π = [κi
li−→ κi+1 i < ./] ∈ F(κ). Let Ij = [ij,0, . . . ij,nj ] for j < J ≤ ./ be a

(possibly infinite) family of thread segments in π such that

(a) if j < j ′ then ij,0 < ij ′ ,0, and
(b) if j 6= j ′ the Ij and Ij ′ have empty intersection.

Then there is a bijection, ξ, on ./ such that letting π′ = Cfig(κ0, [lξ(i) i < ./])

(recall the definition of Cfig from section 3.2.3)

1. π′ ∈ F(κ0)
2. ξ(ij,k+1) = ξ(ij,k) + 1 for j ∈ J , and 0 ≤ k < nj .

Part (2) says that in π′ the thread segments of π marked by Ij for j ∈ J occur as multi-

steps, that is, with no interleaved computation steps. Note that obs(π′) = obs(π).

Proof
ξ is constructed by induction on the index set, one permutes the exec steps of each

successive segment across interleaved steps in the obvious way. By the definition

of thread segment and the disjointness requirement, we see that permutations only

involve moving exec steps before steps with distinct focus. Hence the resulting

sequence of labels defines a computation. Also the enabledness is not effected by

such permutations (except possibly enabling a transition earlier). All transitions that

occur in π also occur in π′ this means that fairness is also preserved.

The notion of thread segment I at an actor in a path π can be generalized to

allow transitions of a subconfiguration – a group of actors and messages. The key

requirements are as before that L(I, π) is a computation for the subconfiguration,

and that none of the transitions involve interaction with exterior configuration, i.e.

no in or out transitions (receives of internal messages are allowed, but messages

from other parts of the configuration are not allowed to come in).

6.2 Common reduct case

We now treat the common reduct case in depth. The other two cases follow in the

same manner and we allow ourselves to be a little more terse.

6.2.1 E-syntax

As mentioned above, syntactic classes, X, with expression holes are indicated by the

mark ◦X. Metavariables ranging over these classes are indicated by the same mark,

and we prefix the names of these classes by E-. Thus we have E-expressions where
◦e ranges over ◦E, E-configurations where ◦κ ranges over ◦K, etc. We first define the

E- analogs of expression, value expression, and value substitution.

Definition (◦E ◦V ◦S)

◦V = At ∪ X ∪ λX.◦E ∪ pr(◦V, ◦V)

◦E = ◦V ∪Θe
n(
◦En) ∪ ◦[◦S]

◦S = X f→ ◦V
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As before, λ is the only binding operator, and free variables of E-expressions are

defined as follows:

Definition (FV(◦e) FV(◦σ))

FV(◦e) =


FV(◦σ) if ◦e = ◦[◦σ]

{◦e} if ◦e ∈ X
FV(◦e0)− {z} if ◦e = λz.◦e0

FV(◦e1) ∪ . . . ∪ FV(◦en) if ◦e = θ(◦e1, . . . ,
◦en) and θ ∈ Θe

n

FV(◦σ) =
⋃

x∈Dom(◦σ)

FV(◦σ(x))

The variables in the domain of occurrences of ◦σ are neither free or bound. In

particular, renaming of bound variables only applies to the range of a substitution

associated with a hole, not to its domain.

Definition (◦e[◦σ] ◦σ1 � ◦σ2)

Substitution is extended to E-expressions as follows:

◦e[◦σ] =


◦[◦σ � ◦σ′] if ◦e = ◦[◦σ′]
◦e if ◦e ∈ X−Dom(◦σ)
◦σ(◦e) if ◦e ∈ Dom(◦σ)

λz.◦e0[◦σc(Dom(◦σ)− {z})] if ◦e = λz.◦e0 and z 6∈ FV(◦σ)

θ(◦e0[◦σ], . . . , ◦en[
◦σ]) if ◦e = θ(◦e1, . . . ,

◦en) and θ ∈ Θe
n

◦σ1 � ◦σ2 = λx ∈ Dom(◦σ2).◦σ2(x)[◦σ1]

As defined here substitution is a partial operation. Using renaming substitutions

we can define α renaming in the usual way. We consider E-expressions (and entities

containing them) to be equivalent if they differ only by α renaming. Thus, for any

substitution we can always choose an α variant so that substitution is defined. Note

that such renaming is not possible in the case of traditional contexts where holes

have no associated substitution (c.f. Talcott, 1993b).

Expression hole filling is defined by induction on the structure of ◦e. We let
◦e[◦ := e] be the result of filling expression holes in ◦e with e. Like substitution, we

avoid capture of free variables in e by lambda binding. All capture is done at hole

occurrences by the associated substitution.

Definition (◦e[◦ := e])

◦e[◦ := e] =


e[◦σ[◦ := e]] if ◦e = ◦[◦σ]

θ(◦e1[◦ := e], . . . , ◦en[◦ := e]) if ◦e = θ(◦e1, . . . ,
◦en) and θ ∈ Θe

n
◦v if ◦e = ◦v ∈ At ∪ X
λx.◦e′[◦ := e] if ◦e = λx.◦e′ and x not free in e

◦σ[◦ := e] = λx ∈ Dom(◦σ).◦σ(x)[◦ := e]
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The following example illustrates hole filling and variable scoping. Let

◦v = λx.if(x, ◦[{y := 0}], z)
◦σ = {y := ◦v}
◦e = λz. ◦ [◦σ]

e = θ(x, y).

Then

◦v [◦ := e] = λw.if(w, ◦[{y := 0}][◦ := e], z) note the change in bound variable

= λw.if(w, e[{y := 0}], z)
= λw.if(w, θ(x, 0), z) = v

◦σ[◦ := e] = {y := ◦v [◦ := e]}
= {y := λw.if(w, θ(x, 0), z)}

◦e[◦ := e] = λz.(◦[◦σ][◦ := e])

= λz.(e[◦σ[◦ := e]])

= λz.θ(x, λw.if(w, θ(x, 0), z))

The following lemma is the key to developing a notion of uniform computation.

Lemma (fil-subst)

Hole filling and substitution commute.

◦e[◦σ][◦ := e′] = ◦e[◦ := e′][◦σ[◦ := e′]]

if Dom(◦σ) ∩ FV(e ′) = ∅.

Proof

By induction on the structure of ◦e. We assume the names of bound variables in
◦e have been chosen not to conflict with any free variables in e′, or the range of
◦σ, or the domain of ◦σ. As examples, we consider the cases where ◦e is a lambda

abstraction or a hole. If ◦e = λz.◦e0 then

◦e[◦σ][◦ := e′]

= (λz.◦e0[◦σ])[◦ := e′]

= λz.(◦e0[◦σ][◦ := e′]) by hygiene assumptions

= λz.(◦e0[◦ := e′][◦σ[◦ := e′]]) by the Induction Hypothesis

= (λz.◦e0[◦ := e′])[◦σ[◦ := e′]] by hygiene assumptions

= ◦e[◦ := e′][◦σ[◦ := e′]]

If ◦e = ◦[◦σ′] then

◦e[◦σ][◦ := e′]

= ◦[◦σ′][◦σ][◦ := e′]

= (◦[λz ∈ Dom(◦σ′).◦σ′(z)[◦σ]])[◦ := e′]
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= e ′[λz ∈ Dom(◦σ′).◦σ′(z)[◦σ][◦ := e′]]

= e′[λz ∈ Dom(◦σ′).◦σ′(z)[◦ := e′][◦σ[◦ := e′]]] by the Induction Hypothesis

= e′[◦σ′[◦ := e′]� ◦σ[◦ := e′]]

= ◦[◦σ′][◦ := e′][◦σ[◦ := e′]] by hygiene assumptions

= ◦e[◦ := e′][◦σ[◦ := e′]]

Next we define analogs of redex and reduction context.

Definition (◦R ◦Erdx)

◦R = { } ∪Θm+n+1(◦Vm, ◦R, ◦En)
◦Erdx = Θe

n(
◦Vn)

By our conventions ◦r range over ◦Erdx and ◦R range over ◦R. Note that E-

reduction contexts possess two types of holes, consequently we must disambiguate

the process of hole filling. Note that the unique occurrence of a redex hole is not

adorned with a substitution, consequently the process of filling the redex hole, ,

with the E-expression, ◦e, remains unchanged, and we denote it by ◦R[ := ◦e].

In the case of multiple hole filling we write ◦R[◦ := e0][ := e] for the result of

filling the expression holes with e0, and the redex hole with e.

Lemma (E-properties)

1. ◦R[◦ := e0][ := e] = ◦R[ := e][◦ := e0]

2. Filling an E-expression, E-reduction context, or E-redex with an expression

yields an expression, reduction context, or redex, respectively.

6.2.2 E-expression decomposition

We now give a decomposition lemma for E-expressions: An E-expression ◦e is either

an E-value (element of ◦V) or it can be decomposed uniquely into an E-reduction

context filled with either an E-redex or with an expression hole.

Lemma (E-expression decomposition)

(0) ◦e ∈ ◦V, or

(1) (∃!◦R, ◦r)(◦e = ◦R[ := ◦r]), or

(2) (∃!◦R, ◦σ)(◦e = ◦R[ := ◦[◦σ]])

Proof

An easy induction on the structure of ◦e. We consider two example cases. First,

suppose ◦e = ◦[◦σ]. Then we have case (2) with ◦R = . Second, suppose ◦e =

θ(◦e1, . . . ,
◦en). If ◦ei ∈ ◦V for 1 ≤ i ≤ n, then we have case (1) with ◦R = (and
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◦r = ◦e). If ◦ei 6∈ ◦V for some 1 ≤ i ≤ n, assume k to be the least such i. Then

by the induction hypothesis, ◦ek decomposes either as (i) ◦R′[ := ◦r], or as (ii)
◦R′[ := ◦[◦σ]]. Taking ◦R = θ(◦e1, . . . ,

◦ek−1,
◦R′, ◦ek+1, . . . ,

◦en) we obtain the desired

decomposition of ◦e.

6.2.3 E-configurations

An E-configuration, ◦κ, is formed in the same manner as a simple configuration,

using E-expressions and E-values instead of simple expressions and values.

Definition (◦K)

◦K =
〈〈
◦Ac ◦M

〉〉ρ
χ

where

◦Ac = Ad
f→ ◦As

◦As = (◦V) ∪ [◦E] ∪ {(?Ad)}
◦M = <◦V⇐ ◦V>

and the constraints specified in the definition of actor configurations in section 3

are satisfied.† We let ◦κ range over ◦K, and ◦α range over ◦Ac. Filling expression

holes of an E-configuration, E-actor map, E-actor state, E-multiset of messages,

and E-messages is defined in the obvious manner. Let ◦X stand generically for an

element of one of these E-syntactic classes, then we define ◦X[◦ := e] as follows:

Definition (◦X[◦ := e])

◦X[◦ := e] =



〈〈
◦α[◦ := e] ◦µ[◦ := e]

〉〉ρ
χ

if ◦X =
〈〈
◦α ◦µ

〉〉ρ
χ

λx ∈ Dom(◦α).◦α(x)[◦ := e] if ◦X = ◦α

((λx.◦e)[◦ := e]) if ◦X = (λx.◦e)

[◦e[◦ := e]] if ◦X = [◦e]

(?a) if ◦X = (?a)

{◦m[◦ := e] ◦m ∈ ◦µ} if ◦X = ◦µ

<◦v 0[◦ := e]⇐ ◦v 1[◦ := e]> if ◦X = <◦v 0 ⇐ ◦v 1>

An E-configuration, ◦κ, is closing for e if ◦κ[◦ := e] is a closed configuration.

Dually an expression e is a valid filling for an E-configuration, ◦κ, if ◦κ[◦ := e] is a

closed configuration. As for atoms and variables, the notion of communicable value

remains unchanged and we do not introduce new notation for these. In particular,

although messages may have holes, a message with a hole can effectively be ignored.

This is because holes in E-values must occur inside λ’s, and hence filling these

holes cannot yield communicable values or actor addresses. Thus a message with

† The only condition whose meaning is altered in this general setting is (2), where the free
variables of any hole occurrences (namely the free variables in the range of the associated
substitution) must be taken into consideration.
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a hole can never be processed. The next lemma expresses the fact that closing

E-configurations make just the same observations as simple observing contexts.

Lemma (ocx)

e0
∼= e1 iff Obs(◦κ[◦ := e0]) = Obs(◦κ[◦ := e1]) for all ◦κ that close e0, e1.

Proof

The backward implication is easy to see, since O is (with suitable translation to

account for trapping at holes rather than at lambdas) a subset of ◦K. The idea for

the proof of the forward implication is to define for each configuration context ◦κ, an

observing context O whose computations give rise to the same set of observations.

In fact O evolves to ◦κ in a finite number of steps. For an E-expression ◦e we define
◦e? to be the result of recursively replacing decorated holes ◦[◦σ] by applications

app(. . . app(λx1. . . . λxn.•, ◦σ(x1)?), . . . , ◦σ(xn)
?) where {x1, . . . , xn} = Dom(◦σ). Let ◦κ =〈〈

◦α µ
〉〉

, let A = [ai i < n] = Dom(◦α), and define O =
〈〈
[e◦κ]â ∅

〉〉
where

â 6∈ A, and e◦κ is constructed as follows. Let

E = {i < n (∃◦ei)(◦α(ai) = [◦ei])}, and let nE be the cardinality of E.

I = {i < n (∃◦v i)(◦α(ai) = (◦v i))}.
Bi(a0, . . . , an−1) = ◦v?i , if ◦α(ai) = (◦v i).

Bi(a0, . . . , an−1) = λa .seq(send(a , 0), ◦e?i ), if ◦α(ai) = [◦ei].

µ = {<zj ⇐ ◦v ′j> j < nM}

Define

W◦κ = rec(λb.λk.λm.if(eq(k, 0), seq(send(zj , (
◦v ′j)

?)j<nM ), become(b(k − 1))))

e◦κ = let{ai := newadr()}i<n
seq(initbeh(ai, Bi(a0, . . . , an−1))i∈I∪E,

send(ai, â)i∈E,

become(W◦κ(nE)))

Now, we claim that for any computation of ◦κ[◦ := e] there is a correspond-

ing computation (with same observations) of O[e] obtained by accepting all the

startup messages, sending and accepting the acknowledgments, and completing the

computation of the initializing actor (which can then be ignored). Conversely any

computation of O[e] has a corresponding computation of ◦κ[◦ := e] obtained by

ignoring the finite amount of initializing activity. A more detailed proof can be given

along the lines of the proof of the theorem (fun-red-eq) below.

6.2.4 E-reduction

The reduction relations
λ7→X and 7→ are extended to the generalized domains in the

obvious fashion, simply by liberally annotating metavariables with ◦’s, modulo the

extension of substitution to E-expressions. As examples, we give the (beta-v), (br),

and (eq) clauses of
λ7→ and the internal transitions for 7→ on closed E-configurations.
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Definition (
λ7→X)

(beta-v) ◦R[ := app(λx.◦e, ◦v )]
λ7→X

◦R[ := ◦e[x := ◦v ]]

(br) ◦R[ := br(◦v , ◦v 1,
◦v 2)]

λ7→X

{ ◦R[ := ◦v 1] if ◦v ∈ ◦V− ((X−X) ∪ {nil})
◦R[ := ◦v 2] if ◦v = nil

(eq) ◦R[ := eq(◦v 0,
◦v 1)]

λ7→X

{ ◦R[ := t] if ◦v 0 = ◦v 1 ∈ At
◦R[ := nil] if ◦v 0,

◦v 1 ∈ At and ◦v 0 6= ◦v 1

Definition (7→)

<fun : a> ◦e
λ7→Dom(◦α)∪{a}

◦e′ ⇒
〈〈
◦α, [◦e]a

◦µ
〉〉
7→
〈〈
◦α, [◦e′]a

◦µ
〉〉

<new : a , a ′>
〈〈
◦α, [◦R[ := newadr()]]a

◦µ
〉〉
7→〈〈

◦α, [◦R[ := a ′]]a , (?a)a ′
◦µ
〉〉

a ′ fresh

<init : a , a ′>
〈〈
◦α, [◦R[ := initbeh(a ′, ◦v )]]a , (?a)a ′

◦µ
〉〉
7→〈〈

◦α, [◦R[ := nil]]a , (
◦v)a ′

◦µ
〉〉

<bec : a , a ′>
〈〈
◦α, [◦R[ := become(◦v )]]a

◦µ
〉〉
7→〈〈

◦α, [◦R[ := nil]]a ′ , (
◦v)a

◦µ
〉〉

a ′ fresh

<send : a ,m>
〈〈
◦α, [◦R[ := send(◦v 0,

◦v 1)]]a
◦µ
〉〉
7→〈〈

◦α, [◦R[ := nil]]a
◦µ,m

〉〉
m = <◦v 0 ⇐ ◦v 1>

<rcv : a , cv>
〈〈
◦α, (◦v)a <a ⇐ cv>, ◦µ

〉〉
7→
〈〈
◦α, [app(◦v , cv )]a

◦µ
〉〉

6.2.5 E-uniform computation

The notion of E-uniform computation is made precise in the following definitions

and lemmas. The basic idea is that, given a decomposition of a configuration as an

E-configuration with holes filled by a given expression, any transition step leading

from that configuration is either independent of what appears in the holes, or it

explicitly uses information about the contents of some hole occurrence.

Definition (E-hole touching)

Let ◦κ =
〈〈
◦α ◦µ

〉〉
. We say that ◦κ touches a hole at a if ◦α(a) = [◦R[ := ◦[◦σ]]]

for some ◦R, ◦σ.

We say that a transition κ
l−→ κ′ touches a hole relative to a decomposition

κ = ◦κ[◦ := e] if l has focus a and ◦κ touches a hole at a .
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Lemma (E-uniform computation)

1. If ◦κ
l−→ ◦κ′, then ◦κ[◦ := e]

l−→ ◦κ′[◦ := e] for any valid filling expression e.

2. If ◦κ has no transition with focus a (and a is an actor of ◦κ), then either ◦κ

touches a hole at a or ◦κ[◦ := e] has no transition with focus a for any valid

filling expression e.

3. If κ
l−→ κ′ and κ = ◦κ[◦ := e], then either the transition touches a hole or we

can find ◦κ′ such that κ′ = ◦κ′[◦ := e] and ◦κ
l−→ ◦κ′.

Proof (1)

This is proved by considering cases on the transition rule applied. The only interesting

case is (beta-v). This follows from (fil-subst). 1

Proof (2)

Assume ◦κ =
〈〈
◦α ◦µ

〉〉
has no transition with focus a , and ◦κ does not touch a

hole at a . Then one of the following holds:

(i) ◦α(a) = (?a ′)

(ii) ◦α(a) = (◦v) and ◦µ contains no messages deliverable to a

(iii) ◦α(a) = [◦v]

(iv) ◦α(a) = [◦R[ := initbeh(◦v 0,
◦v 1)]] where ◦v 0 is not the address of an un-

initialized actor created by a

(v) ◦α(a) = [◦R[ := ◦r]] where ◦r is a non-actor redex that is stuck.

In each of these cases, it easy to see that there will be no transition with focus a

enabled when the expressions holes are filled. 2

Proof (3)

Assume κ =
〈〈
α µ

〉〉
l−→ κ′ =

〈〈
α′ µ′

〉〉
, κ = ◦κ[◦ := e], and the transition does

not touch the hole. Thus ◦κ =
〈〈
◦α ◦µ

〉〉
where α = ◦α[◦ := e] and µ = ◦µ[◦ := e].

We want to find ◦α′, ◦µ′ such that ◦κ
l−→ ◦κ′ =

〈〈
◦α′ ◦µ′

〉〉
, α′ = ◦α′[◦ := e], and

µ′ = ◦µ′[◦ := e]. Since we are considering closed configurations there are no i/o

transitions. Thus, we need to consider only two cases rcv transitions and exec

transitions. We split the exec transitions into functional and actor primitives.

Receive

l = <rcv : a , cv>, <a ⇐ cv> ∈ µ, and α(a) = (v). Thus ◦α(a) = (◦v) with v = ◦v [◦ :=

e]. Thus we let ◦α′ = ◦α{a := [app(◦v , cv )]}, and ◦µ = ◦µ′ ∪ {<a ⇐ cv>}.

Execution-lambda

l = <fun : a>, α(a) = [R[ := r]] and r
λ7→Dom(◦α)∪{a} e′. Thus ◦α(a) = [◦R[ := ◦r]]

with R = ◦R[◦ := e], and r = ◦r[◦ := e]. Thus we want to find ◦e′ such that
◦r

λ7→Dom(◦α)∪{a}
◦e′. Then ◦α′ = ◦α{a := [◦R[ := ◦e′]]} and ◦µ′ = ◦µ. If r = app(λz.e0, v )

(z chosen fresh), then e ′ = e0[z := v ], and ◦r = app(λz.◦e0,
◦v ) where e0 = ◦e0[◦ := e]

and v = ◦v [◦ := e]. Take ◦e′ = ◦e0[z := ◦v ] and use (fil-subst). If r = eq(v0, v1), then
◦r = eq(◦v 0,

◦v 1) where vj = ◦v j[◦ := e] for j < 2. e′ is t or nil and we may take
◦e′ = e′. The remaining cases are similar.
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Execution-actor

If l = <send : a>, then α(a) = [R[ := send(v0, v1)]] α′(a) = [R[ := nil]],

µ′ = µ ∪ {<v0 ⇐ v1>}. Also ◦α(a) = [◦R[ := send(◦v 0,
◦v 1)]] where R = ◦R[◦ := e],

and vj = ◦v j[◦ := e] for j < 2. Take ◦α′ = ◦α{a := [◦R[ := nil]]} and ◦µ′ =
◦µ ∪ {<◦v 0 ⇐ ◦v 1>}.

If l = <become : a , a ′>, then a ′ is fresh, α(a) = [R[ := become(v )]] α′(a) = (v),

α′(a ′) = [R[ := nil]], and µ′ = µ. Also ◦α(a) = [◦R[ := become(◦v )]] where

R = ◦R[◦ := e], and v = ◦v [◦ := e]. Take ◦α′ = ◦α{a := (◦v), a ′ := [◦R[ := nil]]}
and ◦µ′ = ◦µ.

If l = <new : a , a ′>, then a ′ is fresh, α(a) = [R[ := newadr()]] α′(a) = [R[ :=

nil]], α′(a ′) = (?a), and µ′ = µ. Also ◦α(a) = [◦R[ := newadr()]] where R =
◦R[◦ := e]. Take ◦α′ = ◦α{a := [◦R[ := nil]], a ′ := (?a)} and ◦µ′ = ◦µ.

If l = <init : a , a ′>, then α(a) = [R[ := initbeh(a ′, v )]], α(a ′) = (?a), α′(a) =

[R[ := nil]], α′(a ′) = (v), and µ′ = µ. Also ◦α(a) = [◦R[ := initbeh(a ′, ◦v )]],

where R = ◦R[◦ := e], and v = ◦v [◦ := e], and ◦α(a ′) = (?a). Take ◦α′ = ◦α{a :=

[◦R[ := nil]], a ′ := (◦v)} and ◦µ′ = ◦µ. 3

6.2.6 The common expression reduct theorem

Now we have enough notation and tools to describe the construction of path

correspondences for expressions with uniform common reducts. We first consider

the case of expressions that reduce via purely functional reductions. Then we show

how this construction can be modified to allow for reduction of actor primitives.

Theorem (fun-red-eq)

If for each ◦σ whose domain contains the free variables of e0, e1, either ej[
◦σ] hangs

for j < 2, or there is some ◦ec such that ej[
◦σ] reduces in 0 or more

λ7→FV(Rng(◦σ)) steps

to ◦ec uniformly, then e0
∼= e1.

Corollary (fun-red-eq)

The following laws are instances of (fun-red-eq): (red-exp), (beta-v), (ift), (ifn), (ifelim),

(isprt), (isprn), (fst) and (snd).

Proof

Assume that for each closing ◦σ there is ◦ec,j such that, letting X = FV(Rng(◦σ)),

ej[
◦σ]

λ7→X . . .
λ7→X

◦ec,j j < 2, uniformly, and either ◦ec,j is (uniformly) stuck for j < 2,

or ◦ec,0 = ◦ec,1. In either case we call ◦ec,j the common reduct. We want to show that

e0
∼= e1. By (ocx) it is sufficient to show that Obs(◦κ[◦ := e0]) = Obs(◦κ[◦ := e1]) for

any ◦κ that is a closing E-configuration for e0 and e1. To do this, we show that for

any π0 = [κi
li−→ κi+1 i ∈ ./] ∈ F(◦κ[◦ := e0]) we can find π1 ∈ F(◦κ[◦ := e1])

such that obs(π0) = obs(π1). (The case with 0 and 1 interchanged is symmetric.)

Informally, by the uniformity property of computations, we see that replacing

occurrences of e0 by e1 has no effect on a computation except where a hole is

touched. Using (infinite macro-steps) we can localize non-uniform steps so that when

a hole is touched, reduction to a common reduct occurs in a single multi-step (which
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involves no event transitions). Thus we may obtain a computation for ◦κ[◦ := e1]

by replacing occurrences of e0 by e1 and replacing multi-step transitions reducing

e0[◦σ] to its common reduct by multi-step transitions reducing e1[◦σ] to its common

reduct. To ensure completeness/fairness of the result, we need to take account of

the case where a hole ◦[◦σ] is exposed, but the multi-step for e0[◦σ] is trivial and

hence does not appear as a transition. We do this by inserting the corresponding

multi-step for e1[◦σ] at the point where the hole is first exposed. Such holes then

effectively disappear, since they are either filled with a stuck expression or with

the same expression. Now we make this informal argument more rigorous, by the

following steps (details to be filled in below):

1. We analyse the configurations occurring in π0 and record occurrences of e0 in

holes descending from ◦κ. This gives us decompositions ◦κi[◦ := e0] of κi. In

the cases where a hole is touched such that e0 is its common reduct, we fill

that hole with e0 giving a new E-configuration ◦κ′i with one less hole, such that
◦κ′i[◦ := e0] is κi. This process of filling holes with common reducts continues

until the transition li is either uniform or touches a hole in which e0 is not its

common reduct. We also record subsequences of transitions corresponding to

uniform reduction of such occurrences of e0 to its common reduct.

2. Using (infinite-macro-steps) we may assume that the path is expressed in terms

of multi-step transitions such that the recorded subsequences of transitions

corresponding to non-trivial reduction to a common reduct are single multi-

steps. We also insert copies of κi for each hole that is filled with a common

reduct, remembering the corresponding decomposition, and insert empty multi-

steps between these copies. We also insert a copy of κi and a connecting empty

multi-step for each hole that occurs in a reduction context that is not touched

– because the occurrence of e0 is stuck, or because it is a value and placing it

in the redex hole produces either a value or a stuck state.

3. Form π1 by filling the holes of ◦κi with e1 and replacing multi-steps for e0 by

corresponding multi-steps for e1. Note that empty multi-steps may expand to

non-trivial reductions of occurrences of e1 to its common reduct.

It is easy to see that π1 is a computation path. The argument that it is complete and

fair relies on the insertion of multi-steps, and uses the same case analysis that was

used in the uniform computation lemma. Now for the details.

Step 1.

We analyse and decompose π0 to obtain

(i) for each i < ./, an integer ni and a sequence of decompositions ◦κi,j for j ≤ ni
such that κi = ◦κi,j[◦ := e0] for j ≤ ni and such that ◦κi,ni

li−→ ◦κi+1,0 uniformly,

or the transition touches a hole in which e0 has non-trivial reduction to its

common reduct. We call this entering the hole. ni will be 0 except in the case

of a hole touched in which e0 is its own common reduct. Then we fill that hole

with the common reduct and redecompose.
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(ii) The set I of indices of transitions that enter holes

(iii) The map J from I to the sequence of indices of transitions corresponding

to the thread of computation that carries out the reduction to the common

reduct.

This is done incrementally by defining sequences In, Jn by induction on n and

taking I =
⋃
n<./ In, and J =

⋃
n<./ Jn. At stage (i, j) we have defined Ii, Ji, and ◦κi,j .

If j = ni, then the next stage is (i+ 1, 0) otherwise it is (i, j + 1).

Stage (0, 0)

I0 = ∅, and J0 is the empty map. ◦κ0,0 = ◦κ.

At stage (i, j): There are four cases to consider:

1. li is execution in a hole;

2. li is uniform with respect to ◦κi,j
3. li touches a hole and

(a) enters the hole

(b) does not enter the hole

Case 1 This case occurs if i is an element of M = Ji(m) for some m ∈ Ii. Thus ni = j

and li = <fun : a> for some a . We move to stage (i+ 1, 0) with Ii+1 = Ii, Ji+1 = Ji,
◦µi+1,0 = ◦µi,j , and ◦αi+1,0 = ◦αi,j{a := [◦R[ := ◦em,k+1]]} where ◦R, and ◦em,k+1 are

obtained as follows. Let k be the index of i in M. The hole is entered at stage (m, nm)

with ◦αm,nm(a) = [◦R[ := ◦[◦σ]]]. Let ◦em,0 = e0[◦σ], let n be the length of M, and let

[◦em,k
λ7→FV(Rng(◦σ))

◦em,k+1 k < n] be the thread of computation reducing e0[◦σ] to

its common reduct ◦em,n. Note that ◦αi,j(a) = [◦R[ := ◦em,k]].

Case 2 ni = j and we move to stage (i + 1, 0) with Ii+1 = Ii, Ji+1 = Ji,
◦κi+1,0 such

that ◦κi,j
li−→ ◦κi+1,0 uniformly according to the uniformity lemma.

Case 3.1 In this case li = <fun : a> for some a . ni = j and we move to stage (i+1, 0)

with Ii+1 = Ii ∪ {i}, Ji+1 = Ji{i := M}, ◦µi+1 = ◦µi, and ◦αi+1 = ◦αi{a := [◦R[ :=
◦ei,1]]} where M, ◦R, and ◦ei,1 are obtained as follows. Let ◦αi,j(a) = [◦R[ := ◦[◦σ]]],

let ◦ei,0 = e0[◦σ], and let [◦ei,k[
◦σ]

λ7→FV(Rng(◦σ))
◦ei,k+1 k < n + 1] be the thread of

computation reducing e0[◦σ] to its common reduct ◦ei,n+1. By fairness, there is a

sequence of indices M = [ik k < n + 1] with i0 = i, ik < ik+1 for k < n + 1 such

than M is the multi step corresponding to the above lambda reduction.

Case 3.2 We move to stage (i, j + 1) with Ii+1 = Ii, Ji+1 = Ji,
◦µi,j+1 = ◦µi,j , and

◦αi,j+1 = ◦αi,j{a := [◦R[ := e0[◦σ]]]} where a , ◦R, ◦σ are obtained as follows. a is the

focus of li, and ◦αi,j(a) = [◦R[ := ◦[◦σ]]], with e0[◦σ] equal to its common reduct.

Step 2.

The family J(i) for i ∈ I satisfies the conditions of (infinite-macro-step). Hence we

may assume that π0 has the form[
[◦κi,0[◦ := e0]

[ ]
−→ . . .

[ ]
−→ ◦κi,ni

Li−→ ◦κi+1,0[◦ := e0]] i < ./
]
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where each Li is either a single (uniform) transition, or a multi-step reduction of

an occurrence of e0 to its common reduct, and the E-configurations obtained by

the above decomposition method. For each i, if ◦αi,0(a) = [◦R[ := ◦[◦σ]]], and

and there are no transitions Lj for i ≤ j with focus a , and i is the least such

index, we insert before each transition leading from ◦αi,0 an an empty transition

◦κi,0[◦ := e0]
[ ]
−→ ◦κi,0[◦ := e0].

Step 3.

We let π1 be the path[
[◦κi,0[◦ := e1]

Li,0−→ . . .
Li,ni−1

−→ ◦κi,ni[◦ := e1]
L′
i−→ ◦κi+1,0[◦ := e1]] i < ./

]
where L′i is Li if Li is a single (uniform) transition; L′i is the corresponding macro-

step reduction of the occurrence of e1 to its common reduct, if Li is a macro-step

or an empty transition.

Clearly π1 is a complete computation path. Also the transitions are the same

except for points where holes are touched, but these differences are not observable.

Thus obs(π0) = obs(π1).

It remains to check that fairness has been preserved. Suppose some transition l is

enabled at stage i in π1. We have three cases:

Receive

Suppose l is receipt of <a ⇐ cv>. Then ◦αi(a) = (λx.◦e) and hence l is enabled in

π0 at stage i. If l fires in π0 at stage i′ ≥ i, then it also fires at this stage in π1.

Suppose l never fires in π0. Then by fairness, there is some i′ > i such that ◦αj(a) is

an executing state for j ≥ i′. By construction l is permanently disabled at i′ in π1 as

well.

Uniform execution

Suppose l is an execution step with focus a where ◦αi(a) = [◦R[ := ◦r]]. Then l is

enabled in π0 at i, it can not be disabled, and must occur in π0 at some stage i′ ≥ i
and hence will occur in π1 at that stage.

Hole touching

Suppose l is an execution step by a with ◦αi(a) = [◦e] where ◦e = ◦R[ := ◦[◦σ]].

First assume e1[◦σ] reduces. If ◦e[◦ := e0] does not reduce, then by construction,

the transition is taken in π1 as soon as it is enabled. If ◦e[◦ := e0] reduces, then

a transition will eventually be taken at a in π0, and the l will be taken at the

corresponding point in π1. Suppose e1[◦σ] does not reduce. Then it must be a

value, hence the common reduct. Hence, the reduction of e0 is enabled in π0 and

will eventually be taken. ◦R has the form ◦R0[ := θ(◦vm, ◦[◦σ], ◦en)]. If all the E-

expressions ◦en are E-values, then l must be reduction of the redex in ◦R0 and this

is also enabled now, in π0. Otherwise, consider decomposition of the first non-value

element of ◦en and repeat this argument. Since we are now looking at a smaller E-

expression, we eventually reach the point where the step enabled in π1 corresponds

to one in π0 and hence will occur eventually.
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6.2.7 Proof of the equivalence of hanging and lambda-divergence

We now prove (hang-infin) (see section 5.1), which says that any two expressions

that hang or have infinite computations are observationally equivalent.

Theorem (hang-infin)

If e0, e1 ∈ Hang ∪ Infin , then e0
∼= e1.

Proof (hang-infin)

Assume e0, e1 ∈ Hang ∪ Infin . We want to show that e0
∼= e1. Let ◦κ =

〈〈
◦α ◦µ

〉〉
be a closing E-configuration for e0 and e1. Assume π0 ∈ F(◦κ[◦ := e0]) = [κi

li−→
κi+1 i ∈ ./]. We want to find ◦αi,

◦µi, and Li, such that κi = ◦κi[◦ := e0] where

◦κi =
〈〈
◦αi

◦µi

〉〉
and, letting π1 = [◦κi[◦ := e1]

Li−→ ◦κi+1[◦ := e1] i ∈ ./], we have

π1 ∈ F(◦κ[◦ := e1]) and obs(π0) = obs(π1). (Actually, we let holes in πj be filled by

any expression of the same class as ej .) For the base case we have ◦α0 = ◦α. Assume

we have ◦αi. Suppose e0 ∈ Hang . Let a be the focus of li. We first consider each a ′

other than a such that ◦αi(a
′) = ◦R[ := ◦[◦σ]]. If e1 ∈ Hang then we just insert any

steps needed to reach the stuck state (we assume that they are already macroized

for π0). If e1 ∈ Infin , then insert the step to reach the next element of its infinite

sequence. Now we consider the transition label li. If it does not touch a hole, then
◦αi+1 is given by the uniform transition lemma. Suppose ◦αi(a) = ◦R[ := ◦[◦σ]]. Then
◦αi+1 has the same decomposition, just possibly different expressions (of the same

class) filling the holes.

6.2.8 Proof of the delay law

(delay) letactor{x̄ := v̄}let{y := e0}e ∼= let{y := e0}letactor{x̄ := v̄}e

where no xi in x̄ is free in e0, and y is not free in x̄, v̄ .

Proof (delay)

The argument is similar to that used in the (fun-red-eq). We outline the key steps in

constructing the path correspondence. Let

• el = letactor{x̄ := v̄}let{y := e0}e, and

• er = let{y := e0}letactor{x̄ := v̄}e.

Let ◦κ be a closing E-configuration for el and er . We want to show that for any

πl = [κi
li−→ κi+1 i ∈ ./] ∈ F(◦κ[◦ := el]) we can find πr ∈ F(◦κ[◦ := er]) such that

obs(πl) = obs(πr), and conversely. Let πl be as above. Using (infinite macro-steps),

we can assume that steps in the evaluation of letactor constructs of the form

letactor{x̄ := v̄} occur a single multi-step. We let <leta : a , ā> label a letactor

multi-step with focus a and new actors ā (ā and x̄ have the same length). Using

this assumption, we obtain a computation πr for ◦κ[◦ := er] roughly by replacing

occurrences of el by er and shifting the actor creation multi-step to the return from

evaluation of e0.

In more detail, we analyse the configurations occurring in πl and record occur-

rences of el in holes descending from ◦κ. This gives us decompositions ◦κli[◦ := el]
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of κi. Simultaneously, for each i, we define a corresponding E-configuration ◦κri , a

(multi-step) label Li, and a set of pairs Xi of indices such that, if (q, p) ∈ Xi this

means that q < i, lq enters a hole, and lp is the step that returns the value of the

occurrence of e0 in the hole. If the computation of e0 does not return a value, then

p is ∞.

Stage (0)
◦κl0 = ◦κr0 = ◦κ, and X0 = ∅.

Stage (i+ 1)

Assume that we have ◦κlj ,
◦κrj , and Xj , for j ≤ i, and Lj for j < i. ◦κlj and ◦κrj differ

in two ways. There may be actors in ◦κlj that are not in ◦κrj . These will be actors

created at hole entering steps whose exit has not yet be reached. There will be no

messages mentioning these actors in ◦κlj . In addition, for executing actors a whose

computation has entered one or more holes (it is possible that evaluation of e0[◦σ]

will touch a hole) and not yet exited, the actors state will have the form

(l) ◦el = ◦Rl
1[ := let{x := ◦el1}e[◦σ1]]

(r) ◦er = ◦Rr
1[ := let{x := ◦er1}e′[◦σ1]]

where e′ = letactor{x̄ := v̄}e, and ◦el1, ◦er1 are the same, or decompose similarly if

a hole has been entered inside the let argument. There are three cases to consider:

1. li enters a hole; and

2. li is uniform with respect to ◦κli

(2.1) li is a return step – (q, i) is in Xi for some q

(2.2) li is not a return step.

Case 1
◦κ
j
i has the form ◦κ

j
i,0 ‖

〈〈
[◦Rj[ := ◦[◦σ]]]a ∅

〉〉a

χ
for j ∈ {l, r}, and li has the

form <leta : a , ā>. Let p be the index of the step in πl that return the value of this

occurrence of e0, or ∞ if there is no such step. Then Li = [ ], Xi+1 = Xi ∪ {(i, p)},
◦κri+1 = ◦κri , and ◦κli+1 is such that

◦κ
j
i,0 ‖

〈〈
[◦Rj[ := el[

◦σ]]]a ∅
〉〉a

χ

<leta : a , ā>
−→ ◦κli+1.

Case 2.1

In this case, there is some q such that (q, i) ∈ Xi, li has the form <fun : a>, and lq
has the form <leta : a ′, ā>, (a is either a ′ or a clone resulting from execution of a

become). ◦κli has the form

◦κli,0 ‖
〈〈
[◦Rl[ := let{x := ◦v}e[◦σ]]]a ∅

〉〉a

χ

and ◦κri has the form

◦κri,0 ‖
〈〈
[◦Rr[ := let{x := ◦v}e′[◦σ]]]a ∅

〉〉a

χ
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where e′ = letactor{x̄ := v̄}e, and ◦αjq(a) = [◦Rj[ := ◦[◦σ]]]. Let

◦κ
j
i+1 = ◦κ

j
i,0 ‖

〈〈
[◦Rr[ := e[◦σ′]]]a , (vk[ := e[◦σ′]])ak1 ≤ k ≤ Len(v̄ ) ∅

〉〉a

χ

where ◦σ′ = ◦σ{x := ◦v , x̄ := ā}, and let Li = [li, <leta : a , ā>], and Xi+1 = Xi.

Case 2.2

In this case ◦κji
li−→ ◦κ

j
i+1 uniformly for j ∈ {l, r}, and we take Li = li, and Xi+1 = Xi.

It is now straightforward to show that

πr = [◦κri [◦ := er]
Li−→ ◦κri+1[◦ := er] i < ./] ∈ F(◦κ[◦ := er])

and that obs(πl) = obs(πr).

The converse direction is similar. Here, to ensure completeness/fairness of the

result, we need to take account of the case where a hole ◦[◦σ] is exposed, but there

is no transition for e0[◦σ]. As before we do this by inserting the letactor multi-step

for el at the point where the hole is first exposed.

6.2.9 Proofs of the remaining actor primitive laws

We show how to modify the construction for the purely functional case to establish

equivalence where reductions may involve actor primitives. The idea is to generalize

the notion of common reduct to allow for reduction of actor primitives, thus

producing not just an actor state, but a fragment of an E-configuration. To express

the generalized common reduct theorem, we first must say when we consider two

E-configurations to be essentially the same. The idea is that two E-configurations

are essentially the same if we ignore inactive actors not known to any other

actors, and we allow replacement of hanging expressions or expressions with infinite

computations by expressions of the same class.

Definition (essential sameness)

E-expressions, ◦ej for j < 2 are said to be essentially the same if they are the same

expression, or if both are in Hang ∪ Infin .

E-configurations, ◦κj for j < 2 are said to be essentially the same, for focus actor

af , if there are ◦αj ,
◦α
g
j ,
◦µ, and χ for j < 2 such that

1. ◦κj =
〈〈
◦αj ,

◦α
g
j

◦µ
〉〉∅
χ
,

2. af ∈ Dom(◦α0), Dom(◦α0) = Dom(◦α1) and ◦α0(a) is essentially the same as
◦α1(a) for a ∈ Dom(◦α1), and

3. Dom(◦αgj ) ∩ FV(◦αj ,
◦µ, χ) = ∅ and ◦κj does not touch a hole at a and a is not

enabled in ◦κj for any transitions, for a ∈ Dom(◦αgj ) and j < 2.

To state the general result we begin with a few convenient definitions. First, we

define an operation constructing an actor map whose range is unitialized actors

created by a given actor.

Definition (New (N, a))

Let N be a finite set of actor addresses, with a 6∈ N. Define New (N, a) to be the

actor map with domain N such that New (N, a)(a ′) = (?a) for a ′ ∈ N.
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Next we define the notion of a multi-step being initial for a configuration.

Definition (Initial multi-step)

A multi-step L is said to be initial for a configuration κ if for any path π ∈ F(κ),

there is a permutation equivalent path π′ ∈ F(κ) such that L is the initial sequence

of steps of π′. By permutation equivalent we mean that π′ is obtained from π by

permuting steps of π that are elements of L such that permuted pairs of steps have

different focus actors.

Definition (Common generalized reduct)

We call (N, a , χ, ◦σ) an instance for the pair (e0, e1) if N, {a}, χ are pairwise disjoint

finite sets of actor addresses, the domain of ◦σ contains the free variables of e0, e1,

and the free variables of the range of ◦σ are among N∪{a}∪χ. For such an instance

we call
◦κ
j
0 =

〈〈
New (N, a), [ej[

◦σ]]a ∅
〉〉a

χ

the initial E-configuration. Two expressions e0 and e1 have common generalized

reducts if for each instance (N, a , χ, ◦σ) there are E-configurations, ◦κj , and multi-

steps Lj containing no input/output transitions, such that

1. ◦κj0
Lj−→ ◦κj for j < 2,

2. ◦κj is essentially the same as ◦κ1, and

3. Lj is initial for any configuration ◦κj0 ‖ κ such that κ and ◦κj0 are composable.

We note that the notion of common generalized reduct can easily be further

generalized to allow for the case where the common reduct can be reached by more

than one sequence of steps. We omit the details.

Theorem (gen-red-eq)

If e0 and e1 have common generalized reducts, then e0
∼= e1.

Proof

The proof is almost the same as the proof of (fun-red-eq) (in section 6.2.6). We

adopt the strategy used in the proof of (hang-infin) to insert (useless) steps of

lambda-diverging computations to maintain fairness. The main changes are in the

construction stages (i, j) for the cases 1 – execution in a hole at a , and (3.1)

touching and entering a hole at a . To establish notation we consider case 3.1 first.

Let N is the set of addresses of unitialized actors in ◦κi,j with creator a , and let
◦αi,j(a) = [◦R[ := ◦[◦σ]]]. Pick χ so that (N, a , χ, ◦σ) is an instance for (e0, e1) and

let ◦κ0
0 be the initial configuration for this instance, modified by placing the state of

a in the context ◦R.

◦κ0
0 =

〈〈
New (N, a), [◦R[ := e0[◦σ]]]a ∅

〉〉a

χ

Thus ◦κi,j has the form ◦κ′i,j ‖ ◦κ0
0. We let L0 = [lq q < p] be the multi-step

selected from the collection given by the hypothesis to match the path under

consideration, and let ◦κ0
p be the given configuration. Thus there is a computation

sequence [◦κ0
q

lq−→ ◦κ0
q+1 q < p]. Let iq be the index in π0 of lq . Then we move
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to stage (i + 1, 0) as follows: nj = i, Ii+1 = Ii ∪ {i}, Ji+1 = Ji{i := [iq q < p],
◦κi+1,0 = ◦κ′i,j ‖ ◦κ0

1.

For the case 1, i is an element of Ji(m) for some m ∈ Ii. We move to stage (i+ 1, 0)

using the data of 3.1 with i replaced by m.

Note that the theorems (fun-red-eq) and (hang-infin) are special cases of (gen-red-

eq).

Corollary (gen-red-eq)

The following laws are instances of (gen-red-eq): (triv), (gc), (if.letact.v), (perm),

(split), (can-b), (can-i), (commutes) and (cellb).

We sketch the proofs for (gc), (if.letact.v), (can-i) and (cellb). The remaining cases

use similar arguments and are left to the reader. In each case we need to establish

that the pair of expressions to be shown equivalent have common generalized

reducts. For this we have to find (for each instance (N, a , χ, ◦σ)) the common reduct

configuration, and show that the set of multi-steps leading to this configuration is

initial.

(gc) e0 = letactor{x̄ := v̄}e ∼= e = e1 where x̄ not free in e.

Proof (gc)

Let (N, a , χ, ◦σ) be an instance for (gc) and let ◦κj0 be the corresponding initial

configurations for j < 2. Let L0 be the multi-step that creates and initializes the

actors specified by letactor{x̄ := v̄}. Let L1 be the empty multi-step. It is easy to

see that the Lj are initial. The end E-configurations are essentially the same since

the differ only in the choice of ◦αgj .

(if.letact.v) letactor{x̄ := v̄}if(z, e1, e2) ∼= if(z,

letactor{x̄ := v̄}e1,

letactor{x̄ := v̄}e2)

if z is not an element of x̄.

Proof (if.letact.v)

Let (N, a , χ, ◦σ) be an instance for (if.letact.v) and let ◦κj0 be the corresponding initial

configurations for j < 2. Let L0 be the multi-step that creates and initializes the

actors specified by letactor{x̄ := v̄}, and then branches according to ◦σ(z). Let L1

be the multi-step that branches according to ◦σ(z), and then creates and initializes

the actors specified by letactor{x̄ := v̄}, It is easy to see that the  Lj are initial.

The end E-configurations are in fact the same.

(can-i) seq(initbeh(v , v0), initbeh(v , v1))∼= seq(initbeh(v , v0), stuck)

∼= seq(initbeh(v , v0), bot)
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Proof (can-i)

The second equation follows from (hang-infin). For the first equation, let (N, a , χ, ◦σ)

be an instance for (can-i) and let ◦κj0 be the corresponding initial configurations for

j < 2. There are two cases to consider according to whether or not ◦σ(v ) is an actor

address in N or not. If ◦σ(v ) ∈ N, then let Lj be the multi-step that initializes ◦σ(v )

for j < 2. If ◦σ(v ) 6∈ N, then let Lj consist of the empty multi-step for j < 2. It is

easy to see that in either the Lj are initial. The end E-configurations are essentially

the same in either case because they differ only in replacing a hung expression by a

hung or lambda-infinite expression.

(cellb) letactor{b := Bcell(0)}send(b, mkget(v )) ∼= send(v , 0)

(Recall that the behavior of a cell, Bcell, was defined in section 2.2.)

Proof (cellb)

Let (N, a , χ, ◦σ) be an instance for (cellb) and let ◦κj0 be the corresponding initial

configurations for j < 2. Let L0 be the multi-step that creates the cell actor, sends

it the message mkget(v ), delivers the message, and executes the transitions with cell

actor focus, until the actor has no more enable transitions, i.e. until the become is

executed. Let L1 be the multi-step that does the send. The end configurations differ

only by the presence of an inaccessible, inactive actor – the cell actor, since after

the send to the cell actor, it is not known to any other actors. Clearly L1 is initial.

L0 is initial, because there can only be one message sent to the cell actor, and the

delivery and processing of that message can always be permuted ahead of any other

transitions.

6.3 Equivalence by two stage reduction

There is one remaining equivalence to establish using common reducts:

• (if.lam) λx.if(v , e1, e2) ∼= if(v , λx.e1, λx.e2) x 6∈ FV(v )

The intuitive reasoning behind this equivalence is that for any closing substitution

(allowing holes, and actor addresses in the range) the two expressions reduce to

equivalent lambda expressions. In fact these lambda expressions have the property

that when applied to any argument they reduce to a common expression.

The method developed so far requires reduction to a common local configuration

in one stage. Thus we must elaborate the notion of a template to provide for two

stages. Specifically, we add a family of holes for lambda-abstractions, which we

denote by .j for j ∈ J for some J ∈ N ∪ {ω}.

6.3.1 LE-syntax

Syntactic classes X with both expression and lambda holes are indicated by the mark
◦.X, and we prefix the names of these classes by LE-, thus we have LE-expressions,

LE-configurations, etc. The defining clauses are as before with two exceptions:

lambda holes are added to the clause generating values; and app(.j[
◦.σ], ◦.v ) is
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omitted from the class of LE-redexes. The latter exception is made to preserve the

property that redexes reduce uniformly.

Definition (◦.V, ◦.E, ◦.S, ◦.R, ◦.Erdx)

◦.V = At ∪ X ∪ λX.◦.E ∪ pr(◦.V, ◦.V) ∪ .N[◦.S]

◦.E = ◦.V ∪Θe
n(
◦.En) ∪ {◦[◦.S]}

◦.S = X f→ ◦.V
◦.R = { } ∪Θm+n+1(◦.Vm, ◦.R, ◦.En)
◦.Erdx = Θe

n(
◦.Vn)− app(.j[

◦.S], ◦.V)

Note that lambda holes can occur in the range of a value substitution, and as

arguments in redices, except in the function position of an application. Using the

double index convention, we write ◦.e[.j := ϕj] to indicate the simultaneous filling

of the holes .j with the corresponding lambdas ϕj from some previously specified

family {ϕj}j∈J of lambda abstractions. The definitions of substitution, free variables

and hole filling are entirely analogous to the expression hole case and we omit them.

The decomposition lemma is modified as follows. An LE-expression ◦.e is either

an LE-value expression (element of ◦.V), or it can be decomposed uniquely into

an LE-reduction context with the redex hole filled with either an LE-redex, an

LE-expression hole, or an application of a lambda hole (to an LE-value).

Lemma (LE-expression decomposition)

(0) ◦.e ∈ ◦.V, or

(1) (∃!◦.R, ◦.r)(◦.e = ◦.R[ := ◦.r]), or

(2) (∃!◦.R, ◦.σ)(◦.e = ◦.R[ := ◦[◦.σ]]), or

(3) (∃!◦.R, ◦.σ, ◦.v )(◦.e = ◦.R[ := app(.j[
◦.σ], ◦.v )])

6.3.2 LE-computation

The definition of LE-configurations and LE-reduction are the natural extensions

of E-configurations and E-reduction to the situation with lambda abstraction holes

added. The definition of hole touching and the uniform computation lemmas gen-

eralize easily to this situation.

Definition (◦.K)

◦.K =
〈〈
◦.Ac ◦.M

〉〉ρ
χ

where

◦.Ac = Ad
f→ ◦.As

◦.As = (◦.V) ∪ [◦.E] ∪ {(?Ad)}
◦.M = <◦.V⇐ ◦.V>
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and the constraints specified in the definition of actor configurations in section 3. are

satisfied. We let ◦.κ range over ◦.K, and ◦.α range over ◦.Ac. Filling expression and

abstraction holes of an LE-configuration, LE-actor map, LE-actor state, LE-multiset

of messages and LE-messages is defined in the obvious manner.

An LE-configuration, ◦κ, is closing for e and a family {ϕj}j∈J of lambda abstrac-

tions if (◦.κ[◦ := e])[.j := ϕj] is a closed configuration.

Definition (LE-Reduction)

The reduction relations
λ7→X and 7→ are extended to the generalized domains in the

obvious fashion, simply by liberally annotating metavariables with ◦.’s. We omit the

details.

Definition (LE-hole touching)

If ◦.κ =
〈〈
◦.α ◦.µ

〉〉
, then ◦.κ touches a hole at a if ◦.α(a) = [◦.e] and either

◦.e = ◦.R[ := ◦[◦.σ]] or ◦.e = ◦.R[ := app(.j[
◦.σ], ◦.v )]. A transition from ◦.κ[◦ :=

e][.j := ϕj] touches a hole at a if the focus actor of the transition is a and ◦.κ

touches a hole at a .

Note that since an abstraction hole must be filled with a value, they are not touched

in the same ways as arbitrary expression holes, in particular if the transition is a

<fun : a> execution step where ◦α(a) = [◦e] and ◦e = ◦.R[ := app(λx.◦e′, .j[
◦.σ])],

then this is not considered touching the hole, .j .

The E-uniform computation lemma generalizes to the situation with added abstrac-

tion holes.

Lemma (LE-uniform computation)

1. If ◦.κ
l−→ ◦.κ′, then ◦.κ[◦ := e][.j := ϕj]

l−→ ◦.κ′[◦ := e][.j := ϕj] for any

valid filling expression e and family of lambda abstractions ϕj .

2. If ◦.κ has no transition with focus a (and a is an actor of ◦.κ), then either ◦.κ

touches a hole at a or ◦.κ[◦ := e][.j := ϕj] has no transition with focus a for

any valid filling expression e and family of lambda abstractions ϕj .

3. If κ
l−→ κ′ and κ = ◦.κ[◦ := e][.j := ϕj], then either the transition touches a

hole or we can find ◦.κ′ such that κ′ = ◦.κ′[◦ := e][.j := ϕj] and ◦.κ
l−→ ◦.κ′.

Proof

Similar to the proof of E-uniform computation. Now there are two cases in which

a hole is touched in the decomposition of ◦.e, namely cases (2) and (3) of the

decomposition lemma.

6.3.3 LE-main theorem

Now we have developed sufficient notation and machinery to state and prove a

general result giving equivalence via two-stage reduction.

Theorem (eq-reduct)

Let e0, e1, ϕ0,j , ϕ1,j for j < J be such that for each closing ◦.σ we can find j ∈ J
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such that ei[
◦.σ] reduces uniformly via

λ7→FV(Rng(◦.σ)) steps to ϕi,j[
◦.σ] for i < 2, and

that for each ◦.σ, ◦.v , and j ∈ J we can find ◦.ec such that app(ϕi,j[
◦.σ], ◦.v ) reduces

uniformly via
λ7→FV(Rng(◦.σ)) steps to ◦.ec for i < 2. Then e0

∼= e1.

Corollary (eq-reduct)

(if.lam) is an example. Here we take

e0 = λx.if(v , ea, eb)

e1 = if(v , λx.ea, λx.eb) where x 6∈ FV(v )

J = {a, b}

ϕ0,j = λx.if(v , ea, eb)

ϕ1,j = λx.ej for j ∈ J

Proof

Let ◦.κ =
〈〈
◦.α ◦.µ

〉〉
be a closing LE-configuration for e0, e1, ϕ0,j , ϕ1,j for j ∈ J .

Assume π0 ∈ F(◦.κ[◦ := e0][.j := ϕ0,j]) = [κi
li−→ κi+1 i ∈ ./]. We want to

find ◦.κi, and Li, such that κi = ◦.κi[◦ := e0] and, letting π1 = [◦.κi[◦ := e1][.j :=

ϕ1,j]
Li−→ ◦.κi+1[◦ := e1][.j := ϕ1,j] i ∈ ./], we have π1 ∈ F(◦.κ[◦ := e1])

and obs(π0) = obs(π1). At each stage i we first consider dangling steps. Suppose
◦.αi(a) = [◦.R[ := ◦[◦.σ]]] and the reduction of e0 is trivial, i.e. e0[◦.σ] = ϕ0,j[

◦.σ]

for some j. Then we prefix Li with the transitions for e1[◦.σ]
λ7→FV(Rng(◦.σ)) ϕ1,j[

◦.σ]

and convert the E-hole to .j . This is done for each a ∈ Dom(◦αi) meeting the

condition.

Now we consider the decomposition of the configuration at stage i+ 1 in the case

li touches a hole. Suppose li is an execution by a with ◦.αi(a) = [◦.R[ := ◦[◦.σ]]]. By

the elimination of ‘dangling steps’ we may assume that e0 is not a value expression

and hence the execution occurs at the hole. Suppose also that ei[
◦.σ]

λ7→FV(Rng(◦.σ))

ϕi,j[
◦.σ]. Define ◦.αi+1 = ◦.αi{a := [◦.R[ := .j[

◦.σ]]]}.
Suppose li is an execution by a with ◦.αi(a) = [◦.R[ := app(.j[

◦.σ], ◦.v )]]. Suppose

also that ϕi,j[
◦.σ] reduces to ec[

◦.σ] by
λ7→FV(Rng(◦.σ)) steps. Define ◦.αi+1 = ◦.αi{a :=

[◦.R[ := ec[
◦.σ]]]}.

It is easy to check (as in the proof of (fun-red-eq)) that fairness is preserved.

6.4 Equivalence of reduction contexts

To establish the equivalence of reduction contexts, we define templates for syntactic

entities – expressions, reduction contexts, redexes, configurations – with holes to be

filled by a reduction context. We then proceed as before to show how configurations

can be suitably decomposed to define the desired path correspondences.
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6.4.1 R-syntax

We use � for reduction context holes and signify the corresponding syntactic entities

with a mark �. We prefix names of templates for syntactic classes by R-, thus

expression templates are called R-expressions, etc.

Definition (�E �V)

�V = At ∪ X ∪ λX.�E ∪ pr(�V, �V)

�E = �V ∪Θe
n(
�En) ∪ ��S[ := �E]

�S = X f→ �V
�e[� := R] is the result of filling R-holes in �e with R. We give only the clause for

the hole case in the recursive definition of filling.

Definition (�e[� := R])

(��σ[ := �e])[� := R] = R[σ][ := �e[� := R]]

where σ = �σ[� := R] = λx ∈ Dom(�σ).�σ(x)[� := R]

Definition (�R �Erdx)

�R = { } ∪Θm+n+1(�Vm, �R, �En) ∪ ��S[ := �R]

�Erdx = Θe
n(
�Vn)

The clauses directly involving holes in the definitions of hole filling for R-reduction

contexts are:

[� := R] =

[ := �e] = �e

(��σ[ := �R])[� := R] = Rσ[ := �R[� := R]]

where σ = �σ[� := R] = λx ∈ Dom(�σ).�σ(x)[� := R]

(��σ[ := �R])[ := �e] = ��σ[ := �R[ := �e]]

Note that filling R-holes in R-expressions, R-reduction contexts, or R-redexes with

a reduction context yields an expression, a reduction context, or redex, respectively.

An R-expression �e is either an R-value (element of �V) or it can be decomposed

uniquely into an R-reduction context filled with either an R-redex or an R-hole.

Lemma (R-expression decomposition)

(0) �e ∈ �V, or

(1) (∃!�R, �r)(�e = �R[ := �r]), or

(2) (∃!�R, �σ, �v )(�e = �R[ := ��σ[ := �v ]])

Proof

An easy induction on the structure of �e.
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6.4.2 R-configurations

Definition (�K)

An R-configuration for reduction contexts �κ is formed like a configuration, but

using R-expressions instead of simple expressions.

�K =
〈〈
�Ac �M

〉〉ρ
χ

�Ac = Ad
f→ �As

�As = (�V) ∪ [�E] ∪ {(?Ad)}
�M = <�V⇐ �V>

We let �κ range over �K, and �α range over �Ac. Filling holes of an R-configuration

is analogous to filling holes of an E-configuration. An R-configuration �κ is closing

for R if �κ[� := R] is a closed configuration.

6.4.3 R-uniform computation

Definition (touching R-holes)

A transition l from �κ[� := R] touches an R-hole at a if l is an execution transition

with focus a and execution state of �κ at a decomposes according to case (2) of the

decomposition lemma.

Lemma (Uniform computation)

An R-redex reduces or hangs uniformly (for a given enabling occurrence in a

configuration). Hence transitions not touching an R-hole are uniform. More precisely,

if �κi[� := R]
li−→ κi+1, with focus a , that does not touch an R-hole at a , then li is

either a receive or an execution transition in which the execution state of �κi at a

decomposes according to case (1) of the decomposition lemma. Let �κi =
〈〈
�αi

�µi

〉〉
.

Then the decomposition of κi+1 =
〈〈
�αi+1

�µi+1

〉〉
is defined as follows.

Receive

In the receive case we must have that �αi(a) = (λx.�e). Thus �αi+1 = �αi{a :=

[app(λx.�e, cv )], and �µi = �µi+1 + <a ⇐ cv>.

Uniform execution

In the uniform execution case �αi(a) = [�e]. where �e has the form �R[ := �r]. In

this case the step is independent of what fills the holes. Thus we can find �κi+1 such

that �κi
li−→ �κi+1 uniformly.

6.4.4 R-main theorem

Now we show how to establish equivalence of expressions of the form Rj[ := e]

for j < 2 where the Rj[ := v ] have a common reduct for any value expression.
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Theorem (eq-r)

If for z fresh, there is some e such that Rj[ := z] reduces uniformly via 0 or more
λ7→ steps to e for j < 2, then R0[ := e] ∼= R1[ := e] for any e.

Corollary (eq-r)

(app), (cmps), (id), (letx), (let.dist), (if.dist) are instances of (eq-r).

In fact we prove a slightly more general result, since we use a weaker assumption

on the reduction contexts: for each �σ, �v , we can find �ec such that R
�σ
j [ := �v ]

reduces uniformly via 0 or more
λ7→FV(Rng(�σ)) steps to �ec for j < 2.

Proof (eq-r)

Suppose R0, R1 are reduction contexts that we wish to establish the observational

equivalence of. That is, we want to show R0[ := e] ∼= R1[ := e] for all expressions

e. Let �κ =
〈〈
�α �µ

〉〉
be a closing R-configuration for R0,R1. Assume π0 ∈

F(�κ[� := R0]) = [κi
li−→ κi+1 i ∈ ./]. We want to find �κi, and Li, such that

κi = �κi[� := R0] and, letting π1 = [�κi[� := R1]
Li−→ �κi+1[� := R1] i ∈ ./], we

have π1 ∈ F(�κ[� := R1]) and obs(π0) = obs(π1). As in the expression context case,

we can focus our attention on the construction of the actor configuration part, since

here also deliverable messages cannot have holes. Assume we have �αi and consider

cases on the transition label li. we have three cases to consider. For the base case

we have �α0 = �α. At stage i suppose �αi(a
′) = �R[ := ��σ[ := �v ]]. If R

�σ
0 [ := �v ]

is the common form (i.e. the reduction is trivial), then we prefix Li with steps for

reduction of R
�σ
1 [ := �v ] to common form and remove this hole. This is carried out

for each a ′ in the domain of �αi.

Now, suppose li is an execution with focus a that touches a hole. Thus �αi(a) =

[�e] where �e has the form �R[ := ��σ[ := �v ]]. Suppose also that R
�σ
j [ :=

�v ]
λ7→FV(Rng(�σ))

�ec for j < 2. Then we define �αi+1 = �αi{a := [�R[ := �ec]].

Let π1 = [�κi[� := R1]
Li−→ �κi+1[� := R1] i < ./] be the constructed computation

path. Note that the transitions are the same except for the points where holes are

touched, but these differences are not observable. Clearly, under the assumptions on

Rj , π1 is a computation path. It remains to show that the construction preserves

fairness.

Suppose some transition l is enabled at stage i in π1. If l is a receive or uniform

execution, then l is also enabled in π0 at stage i and will eventually occur, uniformly.

Suppose l is an execution step by a with �αi(a) = [�R[ := ��σ[ := �v ]]]. Either

R
�σ
0 [ := �v ] is in common form and the transition occurs as soon as it is enabled in

π1, or a transition is enabled at this hole in π0. This transition will eventually occur.

If R
�σ
1 [ := �v ] is not in common form, l will happen in π1 at the same stage. If

R
�σ
1 [ := �v ] is in common form, then we must consider whether l occurs at the hole

– i.e. whether or not the common form is an R-value expression. If l occurs at the

hole, then the same transition is now enabled in π0 and will eventually occur in both

paths. Otherwise, consider the decomposition after the transition in π0. As shown
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before, this reduces to considering a proper subexpression of �R[ := ��σ[ := �v ]]

and the process will eventually terminate with a uniform execution.

7 Discussion

In this paper we have presented an operational semantics of actor computation. The

actor language is an extension of a call-by-value functional language by primitives

for creating and manipulating actors. Central to the theory is the concept of an

actor configuration that makes explicit the notion of an open system component. A

composition operation on actor configurations is defined. It is associative, commu-

tative, has a unit, and is thus a first step towards an algebra of configurations. The

operational semantics is defined by a labelled transition relation on configurations,

and we incorporate fairness into the semantics by restricting the set of admissible

computation paths. This operational semantics is used to define a notion of ob-

servational equivalence of expressions based on traditional operational and testing

equivalence. An interesting consequence of fairness is that the classic three testing

equivalences collapse into two. Methods for establishing equivalence of expressions

are developed and a plethora of laws of expression equivalence that incorporates

the equational theory of the embedded functional language are presented. We ex-

pect that these methods will be useful in developing equational theories for other

concurrent extensions of functional languages such as CML or FACILE.

The theory presented is perhaps best viewed as a starting point for further re-

search rather than a final product. There are several directions for further research.

Work is needed to develop an algebra of operations on configurations. Treating con-

figurations as objects would allow us to abstract over specific linguistic constructs.

A set of laws and proof principles adequate for reasoning about actor programs is

needed. These would include structural induction as well as principles analogous to

the simulation (co-) induction principles we developed for reasoning about streams,

mutable data and objects (Talcott, 1993a; Mason and Talcott, 1991; Mason and

Talcott, 1994). Third, developing a logic for specifying components as actor config-

urations which would provide methods for verifying that programs implementing

components meet their specifications as well as methods for refining specifications

into implementations.

Finally, in Mason and Talcott (1991) and Honsell et al. (1995), a variant of Milner’s

context lemma (Milner, 1977), called the (ciu) theorem, is proved. This reduces the

number of contexts that must be considered to establish an observational equivalence

law and greatly simplifies the proofs. It is an open question as to whether such a

reduction can be made in the case of actor systems.
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Notation

Symbol Description Section

N The natural numbers, i, j, . . . , n ∈ N 2.4

Y n Sequences from Y of length n, ȳ = [y1, . . . , yn] ∈ Y n 2.4

Y ∗ Finite sequences from Y 2.4

[] The empty sequence 2.4

Len(ȳ) The length of the sequence ȳ 2.4

u ∗ v The concatenation of the sequences u and v 2.4

Last(u) The last element of the sequence u 2.4

Pω[Y ] Finite subsets of Y 2.4

Mω[Y ] Finite multi-sets with elements in Y 2.4

Y0
f→ Y1 Finite maps from Y0 to Y1 2.4

Y0 → Y1 Total functions from Y0 to Y1 2.4

Dom(f) The domain of the function f 2.4

Rng(f) The range of the function f 2.4

f{y := y′} An extension to, or alteration of, the function f 2.4

fcY The restriction of f to the set Y 2.4

X A countably infinite set of variables, x, y, z ∈ X 3.1

At Atoms 3.1

t, nil Atoms playing the role of booleans 3.1

Gn n-ary algebraic operations 3.1

F Operations, δ ∈ F 3.1

Fn n-ary operation symbols 3.1

F0 Zero-ary operation symbols ⊇ {newadr} 3.1

F1 Unary operation symbols 3.1

⊇ {isatom, isnat, ispr, 1st, 2nd, become}
F2 Binary operation symbols ⊇ {pr, initbeh, send} 3.1

F3 Ternary operation symbols ⊇ {br} 3.1

L λ-abstractions, λx.e ∈ L 3.1

V Value expressions, v ∈ V 3.1

E Expressions, e ∈ E 3.1

λx.e Abstractions 3.1

app(e0, e1) Application 3.1

δ(ē) Application of operations 3.1

if(e0, e1, e2) Conditional branching 3.1

let{x := e0}e1 Lexical variable binding 3.1
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Symbol Description Section

seq(e1, . . . , en) Sequencing construct 3.1

FV(e) The free variables of the expression e 3.1

e[x := e′] The result of substituting e′ for x in e 3.1

C Contexts, C ∈ C 3.1

• The hole in contexts 3.1

C[e] The result of filling the context with e 3.1

Ad Actor addresses, identified with X 3.2

As Actor states, (?a), (b), [e] ∈ As 3.2

(?a) An uninitialized actor created by a 3.2

(b) An actor with behavior b ready to accept a message 3.2.1

[e] A processing actor with current computation e 3.2.1

M Messages, <V⇐ V> ∈M 3.2.1

cV Communicable values, cv ∈ cV 3.2.1〈〈
α µ

〉〉ρ
χ

An actor configuration with:

α – an actor map

µ – a multi-set of messages

ρ – the receptionists

χ – the external actors 3.2.1

K Actor configurations, κ ∈ K 3.2.2

Erdx The set of redexes, r ∈ Erdx 3.2.2

R The set of reduction contexts, R ∈ R 3.2.2

The reduction context hole 3.2.2
λ7→X The reduction relation for functional redexes, e0

λ7→X e1 3.2.2

7→ The reduction relation for configurations, κ0 7→ κ1 3.2.2

κ0
l−→ κ1 κ0 7→ κ1 via the rule labelled by l 3.2.2

Labels : Transition labels, l ∈ Labels 3.2.2

<fun : a> A functional transition 3.2.2

<new : a , a ′> newadr redex transition with focus a 3.2.2

<init : a , a ′> initbeh redex transition with focus a 3.2.2

<bec : a , a ′> become redex transition with focus a 3.2.2

<send : a ,m> send redex transition with focus a 3.2.2

<rcv : a , cv> The receipt of a message with focus a 3.2.2

<out : m> A message exiting the configuration 3.2.2

<in : m> A message entering the configuration 3.2.2
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Symbol Description Section

T(κ) All finite sequences of labeled transitions 3.2.3

from κ, ν ∈ T(κ)

T∞(κ) the set of all computation paths in T(κ), π ∈ T∞(K) 3.2.3

./ ∈ N ∪ {ω} The length of a finite or infinite sequence 3.2.3

Cfig(κ, L, i) The ith configuration of the computation from κ via L 3.2.3

κ
L−→ κ′ A multi-step transition 3.2.3

F(κ) the fair subset of T∞(κ) 3.2.4

event A zero-ary primitive/observation 4.1

<e : a> An observation transition 4.1〈〈
α, [C]a µ

〉〉
An observing configuration 4.1

O The set of observing configurations, O ∈ O 4.1

s Signifies that an event transition occurs 4.1

f Signifies that an event transition does not occur 4.1

obs(π) The s/f classification of the path π 4.1

Obs(κ) The s/f classification of the configuration, κ, ∈ {s, f , sf} 4.1

e0
∼=1 e1 Testing or Convex or Plotkin or Egli-Milner equivalence 4.2

e0
∼=2 e1 Must or Upper or Smyth equivalence 4.2

e0
∼=3 e1 May or Lower or Hoare equivalence 4.2

e0
∼= e1 Operational equivalence (either ∼=1 or equivalently ∼=2) 4.2

Hang The set of all stuck expressions, stuck ∈ Hang 5.1

Infin The set of all diverging expressions, bot ∈ Infin 5.1


