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Abstract. This paper deals with sequences of random variables belonging to a
fixed chaos of order q generated by a Poisson random measure on a Polish space.
The problem is investigated whether convergence of the third and fourth moment
of such a suitably normalized sequence to the third and fourth moment of a centred
Gamma law implies convergence in distribution of the involved random variables.
A positive answer is obtained for q = 2 and q = 4. The proof of this four moments
theorem is based on a number of new estimates for contraction norms. Applications
concern homogeneous sums and U -statistics on the Poisson space.

1. Introduction

Probabilistic limit theorems for sequences of multiple stochastic integrals have
found considerable attention during the last decade. One of the most remark-
able results in this direction is the fourth moment theorem of Nualart and Peccati
(2005). It asserts that a sequence of suitably normalized multiple stochastic inte-
grals of order q ≥ 2 with respect to a Gaussian random measure on a Polish space
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satisfies a central limit theorem if and only if the sequence of their fourth mo-
ments converges to 3, the fourth moment of a standard Gaussian distribution. This
drastic simplification of the method of moments has stimulated a large number
of applications, for example to Gaussian random processes or fields, mathemati-
cal statistics, random matrices or random polynomials (we refer the reader to the
monograph Nourdin and Peccati (2012) and also to the constantly updated web-
page https://sites.google.com/site/malliavinstein/home for further details
and references).

Besides the fourth moment theorem mentioned above, there is also a ‘non-central’
version dealing with the approximation of a sequence of multiple stochastic inte-
grals by a centred Gamma-distributed random variable, cf. Nourdin and Peccati
(2009). Again, the result is a drastic simplification of the method of moments as
it delivers convergence in distribution if and only if a certain linear combination of
the third and the fourth moment of the involved random variables converges to the
corresponding expression for centred Gamma random variables. In view of normal-
ization conditions we see that in fact the first four moments of the random variables
are involved, which gives rise to the name ‘four moments theorem’ for such a result.
To simplify the terminology, we will also speak about a four moments theorem in
the case of normal approximation.

The present paper asks whether a similar non-central limit theorem is available
for sequences of multiple stochastic integrals with respect to a Poisson random
measure on a Polish space. In this set-up, a central four moments theorem has
been derived in Lachièze-Rey and Peccati (2013) under an additional sign condi-
tion (see also Eichelsbacher and Thäle, 2014), which, on the Poisson space, seems
to be unavoidable. While Gamma approximation on the Poisson space in the spirit
of the Malliavin-Stein method has been dealt with in Peccati and Thäle (2013), the
problem of a four moments theorem similar to that for Gaussian multiple stochastic
integrals mentioned above remained open in general. The main result of our paper,
Theorem 3.5, delivers a four moments theorem for sequences of Poisson stochastic
integrals of order q = 2 and q = 4. For this reason, the present work can be seen as a
natural continuation of Peccati and Thäle (2013), where the case q = 2 has already
been settled under additional assumptions, which we are able to overcome. The
proof of our four moments theorem relies on a couple of new estimates for norms
of so-called contraction kernels and the combinatorially involved multiplication for-
mula for stochastic interals on the Poisson space. It is precisely this combinatorial
complexity which allows us to obtain positive result only for sequences of Poisson
stochastic integrals of order q = 2 and q = 4. However, all intermediate steps in
our proof will be formulated for general q ≥ 2 to make as transparent as possible
and to highlight, in which argument the restrictive condition on the order of the in-
tegrals arises. The main difference between the central and the non-central version
of the four moments theorem is that in the non-central case one has to deal with a
linear combination of the third and the fourth moment of the stochastic integrals,
while the central case only requires an analysis of the fourth moment. Even under
additional conditions on the integrands, this leads to difficulties, which we can over-
come only for q = 2 and q = 4. We have to leave it as an open problem for future
research to extend our result to arbitrary even q by other methods. In the case
of Gaussian stochastic integrals, one can a priori exclude that an integral of odd
order converges in distribution to a Gamma-type limit; see Nourdin and Peccati
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(2009, Remark 1.3). However, it remains unclear whether a Poisson integral of odd
order can or cannot converge to such a Gamma-type limit. We also have to leave
this issue as another open problem.

The main result of our paper is applied to a universality question for homoge-
neous sums on a Poisson chaos as well as to a non-central analogue of de Jong’s
theorem for completely degenerate U -statistics of order two and four. This par-
tially complements the results for Gamma and normal approximation obtained in
Eichelsbacher and Thäle (2014), Peccati and Thäle (2013) and Peccati and Zheng
(2014). We emphasize in this context that limit theorems for non-linear functionals
of Poisson random measures have recently found numerous applications especially in
geometric probability or stochastic geometry; see Eichelsbacher and Thäle (2014),
Lachièze-Rey and Peccati (2013), Last et al. (2014), Last et al. (2015+), Peccati and
Thäle (2013), Schulte and Thäle (2012), Schulte and Thäle (2014) and in the the-
ory of Lévy processes Eichelsbacher and Thäle (2014), Last et al. (2015+), Peccati
et al. (2010), Peccati and Zheng (2010).

Our paper is structured as follows. In Section 2, we introduce and collect neces-
sary background material. To contrast our results with those available for Gaussian
multiple stochastic integrals, we shall present them in the context of completely
random measures, which captures both settings. Our main results are the con-
tent of Section 3, while Section 4 contains applications to homogeneous sums and
U -statistics. The proof of Theorem 3.5 is presented in the final Section 5.

2. Preliminaries

In this section, we introduce the basic definitions, mainly related to Poisson
stochastic integrals. For further details and background material we refer the reader
to the monograph Peccati and Taqqu (2011) as well as to the papers Nualart and
Vives (1990) and Peccati et al. (2010).

2.1. Completely random measures. Without loss of generality, we assume that all
objects are defined on a common probability space (Ω,F ,P). Let Z denote a Polish
space with Borel σ-field Z , which is equipped with a non-atomic σ-finite measure
µ. We define the class Zµ = {B ∈ Z : µ(B) < ∞} and let ϕ = {ϕ(B) : B ∈ Zµ}
indicate a completely random measure on (Z,Z ) with control measure µ. That is,
ϕ is a set of random variables such that

(i) for every collection of pairwise disjoint elements B1, . . . , Bn ∈ Zµ, the random
variables ϕ(B1), . . . , ϕ(Bn) are independent;

(ii) for every B,C ∈ Zµ, one has the identity E[ϕ(B)ϕ(C)] = µ(B ∩ C).

If E[ϕ(B)] = 0 and ϕ(B) ∈ L2(P) (i.e., ϕ(B) is square-integrable with respect to
P) for every B ∈ Zµ, then the mapping Zµ → L2(P), B 7→ ϕ(B), is σ-additive in
the sense that for every sequence (Bn)n≥1 of pairwise disjoint elements of Zµ, one
has that

ϕ

(
∞⋃

n=1

Bn

)
=

∞∑

n=1

ϕ(Bn) P-a.s., (2.1)

where the right-hand side converges in L2(P). By σ(ϕ) we denote the σ-field gen-
erated by ϕ.
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In this paper, we shall deal with two special and prominent instances of com-
pletely random measures, namely a centred Gaussian and a compensated Poisson
measure.

(a) A centred Gaussian measure with control measure µ is denoted by G and
is a completely random measure such that the elements of G are jointly
Gaussian and centred.

(b) A compensated Poisson measure with control measure µ is indicated by η̂

and is a completely random measure such that for every B ∈ Zµ, η̂(B)
d
=

η(B)− µ(B), where η(B) is a Poisson random variable with mean µ(B).

By definition, both G and η̂ are centred families in L2(P), implying that (2.1) is
satisfied. Moreover, for P-almost every ω ∈ Ω, η̂(·, ω) is a signed measure on (Z,Z ),
while G does not satisfy this property, cf. Peccati and Taqqu (2011, Example 5.1.7
(iii)).

2.2. L2-spaces. Let q ≥ 1 be an integer. We shall use the shorthand notation
L2(µq) for the space L2(Zq,Z q, µq) of (deterministic) functions that are square-
integrable with respect to µq. The symbol L2

s(µ
q) stands for the subspace of L2(µq)

consisting of symmetric functions, i.e. functions that are µq-a.e. invariant under
permutations of their arguments. For f, g ∈ L2(µq) we define the scalar product

〈f, g〉L2(µq) =
´

Zq fg dµ
q and the norm ‖f‖L2(µq) = 〈f, f〉1/2L2(µq). If there is no risk of

confusion, we suppress in what follows the dependency on q and µ, and merely write
〈 · , · 〉 and ‖·‖, respectively. Moreover, let L2(σ(ϕ),P) denote the space of all square-
integrable functionals of ϕ, where ϕ is either a Poisson measure η̂ or a Gaussian
measure G. If F ∈ L2(σ(ϕ),P), we shall sometimes write F = F (ϕ) in order
to underpin the dependency of F on ϕ. As a convention, we shall use lower case
variables for elements of L2(µq) and capitals for elements of L2(σ(ϕ),P). Finally, we
introduce the space L2(P, L2(µ)) = L2(Ω×Z,F⊗Z ,P⊗µ) as the space of all jointly
square-integrable measurable mappings u : Ω×Z → R. If u, v ∈ L2(P, L2(µ)), their
scalar product is defined as 〈u, v〉L2(P,L2(µ)) =

´

Ω

´

Z
u(ω, z)v(ω, z)µ(dz)P(dω) and

we denote by ‖ · ‖L2(P,L2(µ)) the norm induced by it.

2.3. Multiple stochastic integrals. Let ϕ = η̂ or ϕ = G. For every integer q ≥ 1 we
denote the multiple stochastic integral of order q with respect to ϕ by Iϕq . It is a

mapping Iϕq : L2
s(µ

q) → L2(σ(ϕ),P), which is linear and continuous. Additionally,

for f ∈ L2
s(µ

q), the random variable Iϕq (f) is centred. Moreover, the multiple
stochastic integral satisfies the Itô isometry

E[Iϕp (f)I
ϕ
q (g)] =

{
0 if q 6= p

q!〈f, g〉L2
s(µ

q) if q = p
(2.2)

for any integers p, q ≥ 1 and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q). For general f ∈ L2(µq), we

put Iϕq (f) = Iϕq (f̃), where

f̃(z1, . . . , zq) =
1

q!

∑

π∈Πq

f(zπ(1), . . . , zπ(q))

is the canonical symmetrization of f , and Πq is the group of all q! permutations π of
the set {1, . . . , q}. We emphasize that due to Jensen’s inequality and the convexity
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of norms, we have the inequality ‖f̃‖ ≤ ‖f‖. As a convention, we set Iϕ0 : R → R

equal to the identity map on R.
Since this article is mostly concerned with Poisson integrals, we shall write Iq

instead of I η̂q .

2.4. Chaos decomposition. The Itô isometry in (2.2) formalizes an orthogonality
relation between multiple stochastic integrals of different order. Even more, one
has the following so-called chaos decomposition (see Nualart and Vives, 1990):

L2(σ(ϕ),P) =

∞⊕

q=0

Wϕ
q , (2.3)

where Wϕ
0 = R and Wϕ

q = {Iϕq (f) : f ∈ L2
s(µ

q)} for ϕ = η̂ or ϕ = G, q ≥ 1.
Depending on the choice of ϕ, we shall often use the terms Poisson chaos and
Gaussian chaos of order q for Wϕ

q , respectively.

A consequence of (2.3) is that any F ∈ L2(σ(ϕ),P), with ϕ = η̂ or ϕ = G,
admits a chaotic decomposition

F = E[F ] +
∞∑

q=1

Iϕq (fq) ,

where the kernels fq ∈ L2
s(µ

q) are unique µq-a.e. and the series converges in L2(P).

2.5. Contractions. Fix integers p, q ≥ 1 and functions f ∈ L2
s(µ

p), g ∈ L2
s(µ

q). For
any r ∈ {0, . . . , p∧q}, ℓ ∈ {1, . . . , r} we define the contraction f ⋆ℓrg : Zp+q−r−ℓ → R

which acts on the tensor product f ⊗ g and reduces the number of variables from
p + q to p + q − r − ℓ in the following way: r variables are identified and among
these, ℓ are integrated out with respect to µ. More formally,

f ⋆ℓr g(γ1, . . . , γr−ℓ, t1, . . . , tp−r, s1, . . . , sq−r)

=

ˆ

Zℓ

f(z1, . . . , zℓ, γ1, . . . , γr−ℓ, t1, . . . , tp−r)

× g(z1, . . . , zℓ, γ1, . . . , γr−ℓ, s1, . . . , sq−r)µ
ℓ(d(z1, . . . , zℓ)) ,

and for ℓ = 0 we put

f ⋆0r g(γ1, . . . , γr, t1, . . . , tp−r, s1, . . . , sq−r)

= f(γ1, . . . , γr, t1, . . . , tp−r)g(γ1, . . . , γr, s1, . . . , sq−r) .

Note that even if f and g are symmetric, the contraction f ⋆ℓr g is not necessarily
symmetric. We denote the canonical symmetrization of f ⋆ℓr g by

f ⋆̃
ℓ
rg(z1, . . . , zp+q−r−ℓ) =

1

(p+ q − r − ℓ)!

∑

π∈Πp+q−r−ℓ

f ⋆ℓr g(zπ(1), . . . , zπ(p+q−r−ℓ)).

We also emphasize that for f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), the contraction f ⋆ℓr
g is neither necessarily well-defined nor necessarily an element of L2(µp+q−r−ℓ).
At least, by using the Cauchy-Schwarz inequality, we can deduce that f ⋆rr g ∈
L2(µp+q−2r) for any r ∈ {0, . . . , p ∧ q}. For this reason and to circumvent any
complications in the calculations, we make the following technical assumptions.
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2.6. Technical assumptions (A). We use the same set of technical assumptions as
in Lachièze-Rey and Peccati (2013), Peccati et al. (2010) and Peccati and Thäle
(2013). For a detailed explanation of the conditions and their consequences, we
refer to these works.

For a sequence Fn = Iq(fn), n ≥ 1, of multiple integrals of fixed order q ≥ 1
with fn ∈ L2(µq

n) for every n ≥ 1 (we allow the non-atomic and σ-finite measure to
vary with n), we assume that the following three technical conditions are satisfied:

(a) for any r ∈ {1, . . . , q}, the contraction fn ⋆q−r
q fn is an element of L2(µr

n);

(b) for any r ∈ {1, . . . , q}, ℓ ∈ {1, . . . , r} and (z1, . . . , z2q−r−ℓ) ∈ Z2q−r−ℓ, the
quantity (|fn| ⋆ℓr |fn|)(z1, . . . , z2q−r−ℓ) is well-defined and finite;

(c) for any k ∈ {0, . . . , 2(q− 1)} and any r and ℓ satisfying k = 2(q− 1)− r− ℓ,
we have that

ˆ

Z

(
ˆ

Zk

(
fn(z, ·) ⋆ℓr fn(z, ·)

)2
dµk

n

)1/2

µn(dz) < ∞ .

2.7. Multiplication formula. A very convenient property of multiple stochastic in-
tegrals is that one can express the product of two such integrals as a linear com-
bination of multiple integrals of contraction kernels. More precisely, we have the
following multiplication formula for Poisson integrals, which is taken from Last
(2014, Proposition 6.1), but see also Peccati and Taqqu (2011, Proposition 6.5.1)
for a version that holds under stronger integrability assumptions and for diffuse
controls µ only.

Lemma 2.1 (Multiplication formula for Poisson integrals). Let f ∈ L2
s(µ

p) and
g ∈ L2

s(µ
q), p, q ≥ 1. Suppose that f ⋆ℓr g ∈ L2(µp+q−r−ℓ) for every r ∈ {0, . . . , p∧q}

and every ℓ ∈ {0, . . . , r}. Then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

) r∑

ℓ=0

Ip+q−r−ℓ(f ⋆̃
ℓ
rg). (2.4)

We remark that if a kernel f ∈ L2
s(µ

q) satisfies the technical assumptions (A),
the assumptions of Lemma 2.1 are automatically satisfied if g = f , implying that
Iq(f)

2 ∈ L2(σ(η̂),P). To simplify our notation, for f ∈ L2
s(µ

q) we put Gq
0f = q!‖f‖2

and

Gq
pf =

q∑

r=0

r∑

ℓ=0

1(2q − r − ℓ = p)r!

(
q

r

)2(
r

ℓ

)
f ⋆̃

ℓ
rf (2.5)

for p ∈ {1, . . . , 2q}. In other words, the operator Gq
p turns a function of q variables

into a function of p variables. We can now re-write (2.4) in a simplified form as

Iq(f)
2 =

2q∑

p=0

Ip(G
q
pf)

with I0(G
q
0f) = Gq

0f = q!‖f‖2.
The multiplication formula paves the way for the computation of moments of

multiple stochastic integrals. In particular, we have the following expressions for
the third and the fourth moment of a multiple Poisson integral.
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Lemma 2.2 (Third and fourth moment of Poisson integrals). Fix an integer q ≥ 1.
Let f ∈ L2

s(µ
q) such that the technical assumptions (A) are satisfied. Then Iq(f) ∈

L4(P). Moreover, we have that

E[Iq(f)
3] = q!

q∑

r=0

r∑

ℓ=0

1(q = r + ℓ)r!

(
q

r

)2(
r

ℓ

)
〈f ⋆̃

ℓ
rf, f 〉, (2.6)

E[Iq(f)
4] =

2q∑

p=0

p!‖Gq
p f‖2. (2.7)

Proof : The technical assumptions (A) ensure that all symmetrized contraction ker-

nels f ⋆̃
ℓ
rf appearing in (2.6) and (2.7) are elements of L2(µ2q−r−ℓ), which implies

that the third and the fourth moment of Iq(f) are finite. The explicit formulae in
(2.6) and (2.7) follow directly from the isometry property (2.2) and the multiplica-
tion formula (2.4). �

Remark 2.3. Note that for even q ≥ 2, (2.6) reduces to

E[Iq(f)
3] = q!

q∑

r=q/2

r!

(
q

r

)2(
r

q − r

)
〈f ⋆̃

q−r
r f, f 〉 . (2.8)

Remark 2.4. There is also a multiplication formula for the Gaussian case. It reads

IGp (f)IGq (g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
IGp+q−2r(f ⋆̃

r
rg),

where p, q ≥ 1 and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q), see Peccati and Taqqu (2011, Propo-
sition 6.4.1). As a consequence, we see that the third and fourth moment of a
Gaussian multiple integral have a more compact form compared to the Poisson
case. Indeed, for an integer q ≥ 1 and f ∈ L2

s(µ
q), one has that

E[IGq (f)3] =
(q!)3

(q/2!)2
〈f ⋆̃

q/2
q/2f, f 〉1(q is even) , (2.9)

E[IGq (f)4] =

q∑

r=0

(r!)2
(
q

r

)4

(2q − 2r)!‖f ⋆̃
r
rf‖2 .

In particular, the third moment of a Gaussian integral of odd order vanishes, while
this is in general not the case for a Poisson integral.

3. Four moments theorems

This section contains the main results of our paper, namely a four moments
theorem for Gamma approximation on a Poisson chaos of fixed order. To allow
for an easier comparison with the existing literature, we first recall known results
on a Gaussian chaos and also a version of the four moments theorem for normal
approximation on a Poisson chaos.

3.1. Four moments theorems on a Gaussian chaos. The classical method of mo-
ments yields a central limit theorem for a normalized sequence of random variables
under the condition that all moments converge to those of the standard Gauss-
ian distribution. The four moments theorem on a Gaussian chaos is a drastical
simplification of the method of moments as it provides a central limit theorem for
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a sequence of normalized Gaussian multiple stochastic integrals under the much
weaker condition that only the fourth moment converges to 3 (which is the fourth
moment of the standard Gaussian distribution). Alternatively, this statement can
be re-formulated in terms of the convergence of norms of contractions. In what
follows we write X ∼ L if a random variable X has distribution L.
Theorem 3.1 (see Theorem 1 in Nualart and Peccati, 2005). Fix an integer q ≥ 2
and let {fn : n ≥ 1} ⊂ L2

s(µ
q) be such that

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IGq (fn)
2] = 1 .

Further, let N ∼ N (0, 1) be a standard Gaussian random variable. Then the fol-
lowing three assertions are equivalent:

(i) As n → ∞, the sequence {IGq (fn) : n ≥ 1} converges in distribution to N ;

(ii) lim
n→∞

E[IGq (fn)
4] = 3;

(iii) lim
n→∞

‖fn ⋆rr fn‖ = 0 for every r ∈ {1, . . . , q − 1}.

In the subsequent work Nourdin and Peccati (2009), the authors have shown
a ‘non-central’ version of Theorem 3.1 where the limiting distribution is a centred
Gamma distribution. To state the result properly, let us recall the formal definition
of the latter limit law.

Definition 3.2 (Centred Gamma distribution). A random variable Y has a centred
Gamma distribution Γν with parameter ν > 0, if

Y
d
= 2X − ν,

where X has the usual Gamma law with mean and variance both equal to ν/2 and

where
d
= stands for equality in distribution. The probability density of Γν is given

by

gν(x) =
2−ν/2

Γ(ν/2)
(x+ ν)ν/2−1e−(x+ν)/21(x > −ν),

and the the first four moments of Y are

E[Y ] = 0 , E[Y 2] = 2ν , E[Y 3] = 8ν , E[Y 4] = 12ν2 + 48ν .

We are now in the position to re-phrase the following non-central analogue of
Theorem 3.1.

Theorem 3.3 (see Theorem 1.2 in Nourdin and Peccati, 2009). Let ν > 0 and fix
an even integer q ≥ 2. Let {fn : n ≥ 1} ⊂ L2

s(µ
q) be such that

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IGq (fn)
2] = 2ν .

Further, let Y ∼ Γν be a centred Gamma-distributed random variable with param-
eter ν. Then the following three assertions are equivalent:

(i) As n → ∞, the sequence {IGq (fn) : n ≥ 1} converges in distribution to Y ;

(ii) lim
n→∞

E[IGq (fn)
4]− 12E[IGq (fn)

3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ⋆rr fn‖ = 0 for every r ∈ {1, . . . , q − 1} \ {q/2}, and
lim

n→∞
‖fn ⋆̃q/2q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 .
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It is a characterizing feature of the centred Gamma-distribution that the so-

called ‘middle-contraction’ fn ⋆
q/2
q/2 fn plays a special role in condition (iii). The fact

that the middle-contraction does not vanish goes hand in hand with the appearance
of the third moment in condition (ii), recall (2.9).

3.2. Four moments theorems on a Poisson chaos. We now turn to four moments
theorems on a Poisson chaos of fixed order q ≥ 2. To this end, let, for each n ≥ 1,
µn be a σ-finite non-atomic measure on (Z,Z ) and denote by η̂n a compensated
Poisson random measure with control µn. Further let {fn : n ≥ 1} be a sequence
of symmetric function such that fn is square-integrable with respect to µq

n for each
n ≥ 1, in short fn ∈ L2

s(µ
q
n). In this set-up, ‖fn‖ denotes the norm of fn with

respect to µq
n, and fn ⋆ℓr fn stands for the contraction taken with respect to µn.

Finally, define Fn = Iq(fn), where for each n the stochastic integral is defined with
respect to η̂n.

As in the Gaussian case discussed in the previous section, we start with the case
of a standard normal limiting distribution.

Theorem 3.4 (see Theorem 3.12 in Lachièze-Rey and Peccati, 2013). Let {µn : n ≥
1} be a sequence of σ-finite and non-atomic measures such that lim

n→∞
µn(Z) = ∞

and fix q ≥ 2. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence such that for each n ≥ 1

either fn ≥ 0 or fn ≤ 0. Suppose that the technical assumptions (A) and the
normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)
2] = 1 (3.1)

are satisfied. Further, suppose that {Iq(fn)4 : n ≥ 1} is uniformly integrable and
let N ∼ N (0, 1) be a standard Gaussian random variable. Then the following three
assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to N ;
(ii) lim

n→∞
E[Iq(fn)

4] = 3;

(iii) lim
n→∞

‖fn ⋆ℓr fn‖ = 0 for all r ∈ {1, . . . , q} and ℓ ∈ {1, . . . , r ∧ (q − 1)}, and
lim
n→∞

‖fn‖L4(µq
n) = 0.

Let us comment on the differences between Theorem 3.1 and Theorem 3.4.

(1) In the Poisson case, one has to ensure that the involved control measures are
infinite measures, at least in the limit, as n → ∞. The reason for this is that
otherwise, the normalization (3.1) and the condition that lim

n→∞
‖fn‖L4(µq

n) =

0 are mutually exclusive, see also the remark after Assumption N in Peccati
and Taqqu (2008) for a brief discussion of this problem.

(2) One has to assume that the functions fn have a constant sign, that is for
each n ≥ 1 either fn ≥ 0 or fn ≤ 0. The reason for this is that in the Poisson
case, besides of the contraction norms ‖fn ⋆ℓr fn‖, also scalar products of
the form 〈fn ⋆ℓ1r1 fn, fn ⋆ℓ2r2 fn〉 enter the expression of the fourth moments

E[Iq(fn)
4]. The sign condition then allows to control the signs of these

scalar products, which rules out cancellation effects.
(3) In the Poisson case, one also has to assume that the sequence {Iq(fn)4 : n ≥

1} is uniformly integrable, while in the Gaussian case, this condition is
automatically fulfilled thanks to the hypercontractivity property of Gauss-
ian integrals (see e.g. Nourdin and Peccati, 2012, Theorem 2.7.2). This is
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needed to ensure that the convergence in distribution of Iq(fn) to N implies
the convergence of the first four moments.

For general q ≥ 2 and general sequences fn ∈ L2
s(µ

q
n), n ≥ 1, there is no known

version of a four moments theorem on a Poisson chaos relaxing one of the conditions
discussed above. However, for q = 2 the sign condition is not necessary as shown
by Theorem 2 in Peccati and Taqqu (2008). Moreover, for general q ≥ 2 and if the
sequence {fn : n ≥ 1} is tamed (see Definition 4.2 below), Theorem 3.2 in Peccati
and Zheng (2014) provides a four moments theorem without a sign condition. In
this case, also condition (iii) can be relaxed by assuming – besides the condition on
the L4-norm of fn – only that lim

n→∞
‖fn ⋆rr fn‖ = 0 for all r ∈ {1, . . . , q − 1}.

After having discussed the four moments theorem for normal approximation on
the Poisson space, we now turn to the main result of the present work, namely a
version of Theorem 3.3 for Poisson integrals of order q = 2 and q = 4. The reason
for this rather restrictive condition on the order of the involved integrals will be
discussed below.

Theorem 3.5 (Four moments theorem for Poisson integrals). Fix ν > 0. Let q ≥ 2
be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a sequence satisfying the technical assumptions

(A) and the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)
2] = 2ν .

Furthermore, let the sequence {Iq(fn)4 : n ≥ 1} be uniformly integrable and let Y ∼
Γν be a random variable following a centred Gamma distribution with parameter ν.
If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1

is satisfied, then the following three assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ;
(ii) lim

n→∞
E[Iq(fn)

4]− 12E[Iq(fn)
3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ⋆ℓr fn‖ = 0 for all r ∈ {1, . . . , q} and ℓ ∈ {1, . . . , r ∧ (q − 1)} such

that (r, ℓ) 6= (q/2, q/2), lim
n→∞

‖fn‖L4(µq
n) = 0, and lim

n→∞
‖fn ⋆̃q/2q/2fn− cq fn‖ = 0

with cq = 4

(q/2)!( q
q/2)

2 .

Remark 3.6. Under condition (a), Theorem 3.5 is a version of Proposition 2.9 in
Peccati and Thäle (2013). However, in that paper one has to assume that for
each n ≥ 1 the reference measure µn is finite. As discussed earlier in this section,
this is a quite restrictive assumption. We provide a proof which circumvents this
technicality.

The implication (i) =⇒ (ii) of Theorem 3.5 is a direct consequence of the uniform
integrability assumption. That (iii) implies (i) follows from a generalization of
Theorem 2.6 in Peccati and Thäle (2013) stated as Proposition 5.1 below. Showing
the implication (ii) =⇒ (iii) is the main part of the proof. While the proof of the
corresponding implication in Theorem 3.4 is rather straight forward and works for
arbitrary q ≥ 2, the proof here is based on a couple of new estimates and arguments.
They are of independent interest and might also be helpful beyond the context of
the present paper. In sharp contrast to Theorem 3.4, our arguments show that the
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‘usual’ technique (relying on the multiplication formula for Poisson integrals similar
as in the proofs of Theorems 3.1, 3.3 or 3.4) for proving the implication (ii) =⇒ (iii)
only works in case that q = 2 and q = 4 and cannot be improved. The main reason
for this is the involved combinatorial structure on a Poisson chaos implied by the
multiplication formula (2.4). The proof of Theorem 3.5 is the content of Section 5
below.

Theorem 3.5 has a counterpart in a free probability setting, see Bourguin (2015).
Here, one studies the approximation of the law of a sequence of elements belong-
ing to a fixed chaos of order q ≥ 1 of the so-called free Poisson algebra by the
Marchenko-Pastur law (also called free Poisson law). It is interesting to see that in
this case, the proof works for arbitrary q ≥ 1 and does not need a sign condition on
the kernels. This is explained by the relatively simple combinatorial structure on a
free Poisson chaos, which is inherited from the free multiplication formula in which
all combinatorial coefficients are equal to one. This causes that the expressions for
the third and fourth moment are much simpler compared to the classical set-up of
the present paper and implies that a proof of the corresponding free four moments
theorem works in full generality.

Comparing Theorem 3.4 and Theorem 3.5, it is natural to ask whether there
exists a version of Theorem 3.5 dealing with a sequence of non-negative kernels.
Indeed, Corollary 3.8 below provides such a version, but it deals with a different
limiting law, namely what we call a centred reflected Gamma distribution. In case
of a limiting Gaussian law, this phenomonon is not visible, since a Gaussian law is
symmetric, see also the discussion in Remark 5.10.

Definition 3.7 (Centred reflected Gamma distribution). A random variable Y has

a centred reflected Gamma distribution Γ̂ν with parameter ν > 0, if −Y ∼ Γν .

Note that if Y ∼ Γ̂ν follows a centred reflected Gamma distribution with param-
eter ν, the first four moments of Y are given by

E[Y ] = 0 , E[Y 2] = 2ν , E[Y 3] = −8ν , E[Y 4] = 12ν2 + 48ν .

Moreover, while the centred Gamma distribution has support [−ν,∞), the cen-
tred reflected Gamma distribution is supported on (−∞, ν]. The next result is an

immediate consequence of Theorem 3.5 and the definition of Γ̂ν .

Corollary 3.8 (Four moments theorem for Poisson integrals with non-negative
kernels). Fix ν > 0. Let q ≥ 2 be an even integer and fn ∈ L2

s(µ
q
n), n ≥ 1, be a

sequence of kernels satisfying the technical assumptions (A) and the normalization
condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)
2] = 2ν .

Let the sequence {I4q (fn) : n ≥ 1} be uniformly integrable and suppose that Y ∼ Γ̂ν

is a random variable having a centred reflected Gamma distribution with parameter
ν. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≥ 0 for all n ≥ 1

is satisfied, then the following three assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ;
(ii) lim

n→∞
E[Iq(fn)

4] + 12E[Iq(fn)
3] = 12ν2 − 48ν;
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(iii) lim
n→∞

‖fn ⋆ℓr fn‖ = 0 for all r ∈ {1, . . . , q}, ℓ ∈ {1, . . . , r ∧ (q − 1)} such that

(r, ℓ) 6= (q/2, q/2), lim
n→∞

‖f2
n‖ = 0, and lim

n→∞
‖fn ⋆̃q/2q/2fn + cq fn‖ = 0 with

cq = 4

(q/2)!( q
q/2)

2 .

Remark 3.9. We emphasize that one could derive our main result, Theorem 3.5, also
for the two-parametric centred Gamma distribution Γa,λ, a, λ > 0, with probability
density

ha,λ(x) =
λa

Γ(a)
(x+ a/λ)a−1e−(λx+a) 1(x > −a/λ).

The one-parametric centred Gamma distribution Γν then arises by putting a =
ν/2 and λ = 1/2. In order to allow for a better comparison with the existing
literature Nourdin and Peccati (2009) and Peccati and Thäle (2013), and to keep
the presentation transparent, we have decided to restrict to the one-parametric
case.

4. Application to homogeneous sums and U-statistics

4.1. Homogeneous sums. According to Peccati and Zheng (2014) a universality
result is a ‘mathematical statement implying that the asymptotic behaviour of a
large random system does not depend on the distribution of its components’. Such
results are at the heart of modern probability and the class of examples comprises
the classical central limit theorem or the semicircular law in free probability. In
this section, we shall derive a universality result for so-called homogeneous sums
based on a sequence of independent centred Poisson random variables. For further
background material concerning universality results for homogeneous sums we refer
to the monograph Nourdin and Peccati (2012) as well as to the original papers
Nourdin et al. (2010) and Peccati and Zheng (2014).

We start by introducing the notion of a particularly well-behaved class of kernels.

Definition 4.1 (Index functions). Fix an integer q ≥ 1. A function h : Nq → R is
an index function of order q, if

(a) h is symmetric in the sense that h(i1, . . . , iq) = h(iπ(1), . . . , iπ(q)) for all
(i1, . . . , iq) ∈ N

q and all permutations π ∈ Πq;
(b) h vanishes on diagonals meaning that for (i1, . . . , iq) ∈ N

q, h(i1, . . . , iq) = 0
whenever ik = iℓ for some k 6= ℓ.

Fix an integer N ≥ 1. If g and h are two index functions of order q, we define their
scalar product by

〈g, h〉(N,q) =
∑

1≤i1,...,iq≤N

g(i1, . . . , iq)h(i1, . . . , iq)

and write ‖h‖(N,q) = 〈h, h〉1/2(N,q) for the corresponding norm. We frequently suppress

the subscript (N, q) if it is clear from the context.

As in Section 3, we denote by {µn : n ≥ 1} a sequence of σ-finite non-atomic
measures on some Polish space (Z,Z ). The following definition should not be con-
fused with the definition of a tamed sequence given in Bourguin (2015) or Bourguin
and Peccati (2014).
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Definition 4.2 (Tamed sequences). Fix an integer q ≥ 1. A sequence fn ∈ L2
s(µ

q
n),

n ≥ 1, is tamed if there exists a sequence of integers {Nn : n ≥ 1} with Nn → ∞,
as n → ∞, and an infinite measurable partition {Bi : i ≥ 1} of Z verifying the
following conditions:

(a) there exists an α ∈ (0,∞) such that α < µn(Bi) < ∞ for every i, n ≥ 1,
(b) there is a sequence of index functions {hn : n ≥ 1} of order q, such that fn

has the representation

fn(z1, . . . , zq) =
∑

1≤i1,...,iq≤Nn

hn(i1, . . . , iq)

q∏

k=1

1Bik
(zk)√

µn(Bik)
. (4.1)

Remark 4.3. (a) It follows from the definition that if a sequence fn ∈ L2
s(µ

q
n),

n ≥ 1, is tamed, we necessarily must have that µn(Z) = ∞ for every n ≥ 1.
(b) If fn ∈ L2

s(µ
q
n), n ≥ 1, is a tamed sequence with a representation as at (4.1),

we have that ‖hn‖(Nn,q) = ‖fn‖L2(µq
n) < ∞.

(c) One easily verifies that tamed sequences automatically satisfy the technical
assumptions (A).

Definition 4.4 (Homogeneous sums). Fix integers N, q ≥ 1 and let X = {Xi : i ≥
1} be a sequence of random variables. Let h be an index function of order q. Then

Qq(N, h,X) =
∑

1≤i1,...,iq≤N

h(i1, . . . , iq)Xi1 · · ·Xiq

is the homogeneous sum of h of order q based on the first N elements of X.

If X = {Xi : i ≥ 1} is a sequence of independent and centred random variables
with unit variance, then

E[Qq(N, h,X)] = 0, E[Qq(N, h,X)2] = q!‖h‖2(N,q).

In what follows, two particular classes of random variables play a special role. By
G = {Gi : i ≥ 1} we indicate a sequence of independent and identically distributed
random variables, such that Gi ∼ N (0, 1) for every i ≥ 1. Moreover, we shall write
P = {Pi : i ≥ 1} for a sequence of independent random variables verifying

Pi
d
=

Po(λi)− λi√
λi

, i ≥ 1 ,

where Po(λi) indicates a Poisson random variable with mean λi, such that α =
inf{λi : i ≥ 1} > 0.

There is a close connection between homogeneous sums based on P (or G) and
multiple stochastic integrals with respect to a centred Poisson measure η̂n (or a
Gaussian measure Gn) of tamed sequences. Namely, if q ≥ 1 is a fixed integer and
fn ∈ L2

s(µ
q
n), n ≥ 1, is a tamed sequence with representation (4.1), then there is

a sequence of centred Poisson measures {η̂n : n ≥ 1} (or a sequence of Gaussian
measures {Gn : n ≥ 1}) such that

I η̂n
q (fn) = Qq(Nn, hn,P), IGn

q (fn) = Qq(Nn, hn,G). (4.2)

Vice versa, given a sequence of index functions {hn : n ≥ 1} of order q ≥ 1 and
a sequence of integers {Nn : n ≥ 1} diverging to infinity, as n → ∞, such that
‖hn‖(Nn,q) < ∞ for every n ≥ 1, then there is a tamed sequence {fn : n ≥ 1} with
representation (4.1) and sequences of centred Poisson measures {η̂n : n ≥ 1} and
Gaussian measures {Gn : n ≥ 1} such that (4.2) holds.
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The following result is a version of Nourdin et al. (2010, Theorem 1.8) and
Nourdin et al. (2010, Theorem 1.12). Notice that there, the results are stated for
integer-valued parameters ν ≥ 1, but they continue to hold for any ν > 0.

Theorem 4.5 (Gamma universality of homogeneous sums on a fixed Gaussian
chaos). Fix ν > 0, let q ≥ 2 be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a tamed sequence

with representation (4.1) that satisfies the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IGq (fn)
2] = lim

n→∞
E[Qq(Nn, hn,G)2] = 2ν.

Let Y ∼ Γν be a centred Gamma random variable with parameter ν. Then the
following five assertions are equivalent:

(i) As n → ∞, the sequence {Qq(Nn, hn,G) : n ≥ 1} converges in distribution to
Y ;

(ii) lim
n→∞

E[Qq(Nn, hn,G)4]− 12E[Qq(Nn, hn,G)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ⋆rr fn‖ = 0 for every r ∈ {1, . . . , q − 1} \ {q/2}, and
lim
n→∞

‖fn ⋆̃q/2q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 ;

(iv) for every sequence X = {Xi : i ≥ 1} of independent centred random variables
with unit variance which is such that supi E|Xi|2+ε < ∞ for some ε > 0, the
sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution to Y , as n → ∞;

(v) for every sequence X = {Xi : i ≥ 1} of i.i.d. centred random variables with
unit variance, the sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution
to Y , as n → ∞.

The following result answers the question whether Theorem 4.5 continues to hold
if in (i) and (ii) the class G is replaced by P. Due to the discussion in Section 3.2,
we cannot avoid additional assumptions in the Poisson case. In particular, we have
to assume that either q = 2 or q = 4.

Theorem 4.6 (Gamma universality of homogeneous sums on a fixed Poisson
chaos). Fix ν > 0 and let q ≥ 2 be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a tamed

sequence with representation (4.1) that satisfies the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)
2] = lim

n→∞
E[Qq(Nn, hn,P)2] = 2ν. (4.3)

Let Y ∼ Γν be a random variable following a centred Gamma distribution with
parameter ν. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1

is satisfied, then the following five assertions are equivalent:

(i) As n → ∞, the sequence {Qq(Nn, hn,P) : n ≥ 1} converges in distribution to
Y ;

(ii) lim
n→∞

E[Qq(Nn, hn,P)4]− 12E[Qq(Nn, hn,P)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ⋆rr fn‖ = 0 for all r ∈ {1, . . . , q − 1} \ {q/2}, and
lim
n→∞

‖fn ⋆̃q/2q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 ;

(iv) for every sequence X = {Xi : i ≥ 1} of independent centred random variables
with unit variance which is such that supi E|Xi|2+ε < ∞ for some ε > 0, the
sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution to Y , as n → ∞;
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(v) for every sequence X = {Xi : i ≥ 1} of i.i.d. centred random variables with
unit variance, the sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution
to Y , as n → ∞.

Proof : At first, we observe that due to Theorem 4.5, the assertions (iii), (iv) and
(v) are equivalent. In Peccati and Zheng (2014, Subsection 4.2), it has been argued
that

sup
i≥1

E|Pi|p < ∞ (4.4)

for all p ≥ 1. This means that P is a special instance of a sequence with the
properties in assertion (iv) such that we obtain the implication (iv) =⇒ (i). More-
over, (4.4) implies together with the normalization condition (4.3) and Nourdin
et al. (2010, Lemma 4.2) that the sequence {Qq(Nn, hn,P)4 : n ≥ 1} is uniformly
integrable such that we get the implication (i) =⇒ (ii).

To prove (ii) =⇒ (iii), we apply Theorem 3.5. For this, one has to observe that
assertion (iii) in Theorem 3.5 implies assertion (iii) in Theorem 4.6. �

Remark 4.7. Theorem 4.6 shows that one can dispense with the assumption on the
uniform integrability of the sequence {Iq(fn)4 : n ≥ 1} in Theorem 3.5 whenever
the sequence fn ∈ L2

s(µ
q
n), n ≥ 1, is tamed.

Remark 4.8. Replacing in (b) the condition that fn ≤ 0 by fn ≥ 0, in (ii) the
moment condition by lim

n→∞
E[Qq(Nn, hn,P)4] + 12E[Qq(Nn, hn,P)3] = 12ν2 − 48ν

and in (iii) the condition on the middle-contraction by ‖fn ⋆̃q/2q/2fn + cq fn‖ → 0,

one arrives at a version of Theorem 4.6 with a centred reflected Gamma limiting

random variable Y ∼ Γ̂ν in assertion (i), (iv) and (v).

4.2. U -statistics. Our second application is concerned with U -statistics. To in-
troduce them, fix an integer d ≥ 1 and let Y = {Yi : i ≥ 1} be a sequence of
i.i.d. random vectors in R

d, whose distribution has a density p(·) with respect to
the Lebesgue measure on R

d. Next, for any n ≥ 1, let Nn be a Poisson random
variable with mean n and define

ηn =

Nn∑

i=1

δYi
. (4.5)

Clearly, ηn is a Poisson random measure on R
d with control measure µn(dx) =

np(x) dx, implying that µn(R
d) = n → ∞, as n → ∞. Now, we put η̂n = ηn − µn

and set µ = µ1 for the sake of convenience. By a Poisson U -statistic of order q ≥ 2
based on ηn we mean in this paper a random variable of the form

Un =
∑

1≤i1<···<iq≤Nn

hn(Yi1 , . . . , Yiq ) , n ≥ 1 ,

where the kernel hn : (R
d)q → R is an element of L1

s(µ
q). On the other hand, a

classical U -statistic is a random variable Ûn such that

Ûn =
∑

1≤i1<···<iq≤n

hn(Yi1 , . . . , Yiq ) , n ≥ 1 .

The difference between Un and Ûn is that Un involves a random number
(
Nn

q

)
of

summands, while the number of summands in the definition of Ûn is fixed (namely
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(
n
q

)
). We say that a (Poisson or classical) U -statistic is completely degenerate if

ˆ

Rd

hn(x, z1, . . . , zq−1) p(x) dx = 0

for µq−1-almost every (z1, . . . , zq−1) ∈ (Rd)q−1. In particular, this implies that

E[Un] = E[Ûn] = 0. Moreover, we suppose that Un and Ûn are square-integrable.
We recall the following particular case of a celebrated theorem of de Jong, which

provides a simple moment condition under which a central limit theorem for a
sequence of completely degenerate U -statistics is guaranteed.

Theorem 4.9 (de Jong, 1987, 1990). Let q ≥ 2 and {hn : n ≥ 1} be a se-

quence of non-zero elements of L4
s(µ

q). Suppose that the U -statistics Un and Ûn

are completely degenerate and define σ2(n) = Var(Un). Then the moment condition

lim
n→∞

E[U4
n]/σ(n)

4 = 0 implies that, as n → ∞, the sequences Un/σ(n) and Ûn/σ(n)

converge in distribution to a standard Gaussian random variable.

In our paper, we are interested in the Gamma approximation of Poisson and
classical U -statistics. The next result generalizes Theorem 2.13 (B) in Peccati and
Thäle (2013), where the authors had to restrict to the case q = 2. Here, we add a
corresponding limit theorem in case that q = 4 under an additional sign condition.
It can be seen as a non-central version of de Jong’s theorem, Theorem 4.9. We shall
see that in the non-central case a similar result is true under a suitable condition
involving only the third and the fourth moment.

Theorem 4.10. Suppose that q ∈ {2, 4}. For each n ≥ 1 let hn ∈ L4
s(µ

q) be a
function such that

sup
n≥1

´

h4
n dµ

q
n

(
´

h2
n dµ

q
n)2

< ∞

and suppose that the U -statistics Un and Ûn are completely degenerate. Further
assume that there exists ν > 0 such that lim

n→∞
E[U2

n] = 2ν and that

(a) lim
n→∞

‖h2
n‖ = 0 if q = 2,

(b) fn ≤ 0 for all n ≥ 1 if q = 4.

Then the moment condition lim
n→∞

E[U4
n] − 12E[U3

n] = 12ν2 − 48ν implies that both

random variables Un and Ûn converge in distribution to Y ∼ Γν , as n → ∞.

Proof : Using the fact that the Poisson U -statistics Un is an element of the sum
of the first q Poisson chaoses with respect to η̂n as introduced after (4.5) (see
Reitzner and Schulte, 2013, Theorem 3.6), as well as the fact that Un is completely
degenerate, one obtains that Un = Iq(hn) for every n ≥ 1. The result for the
Poisson U -statistics Un then follows immediately from Theorem 3.5. Moreover, it
is known from Dynkin and Mandelbaum (1983) that E[(Un − Ûn)

2] = O(n−1/2), as

n → ∞. This yields the result also for Ûn. �

Remark 4.11. Using Theorem 2.6 in Peccati and Thäle (2013) or its generalization
Proposition 5.1 below, one can add a rate of convergence (for a certain smooth prob-

ability distance) between Un or Ûn and the limiting random variable Y . However,
we do not pursue such quantitative results in this paper.
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Remark 4.12. In assumption (b) of Theorem 4.10 one can replace the sign condition
fn ≤ 0 by fn ≥ 0 and at the same time the moment condition E[U4

n]− 12E[U3
n] →

12ν2 − 48ν by E[U4
n] + 12E[U3

n] → 12ν2 − 48ν. In this case, the limiting random

variable Y has a centred reflected Gamma distribution Γ̂ν with parameter ν > 0.

5. Proof of Theorem 3.5

5.1. Strategy of the proof. Before entering the details of the proof of Theorem 3.5,
let us briefly summarize the overall strategy.

First of all, the implication (i) =⇒ (ii) of Theorem 3.5 is a direct consequence of
the uniform integrability of the sequence {Iq(fn)4 : n ≥ 1}. Next, the implication
(iii) =⇒ (i) will follow from a generalization of the main result of Peccati and
Thäle (2013), which has been derived by the Malliavin-Stein method. It delivers a
criterion in terms of contraction norms, which ensures centred Gamma convergence
on a fixed Poisson chaos of even order and is presented as Proposition 5.1 below.
The main part of proof of Theorem 3.5 consists in showing that (ii) implies (iii). It
is based on the technical Lemmas 5.2 and 5.4, which establish new inequalities for
norms of contraction kernels, that are also of independent interest. Next, in Lemma
5.6 we derive an asymptotic lower bound for the moment expression E[Iq(fn)

4] −
12E[Iq(fn)

3] in terms of contraction norms. Finally, Lemma 5.7 shows under the
conditions of Theorem 3.5 that if the lower bound for E[Iq(fn)

4] − 12E[Iq(fn)
3]

converges to the ‘correct’ quantity, the contraction conditions in (iii) are satisfied.
Lemma 5.9 proves that this lower bound actually converges.

We emphasize that we state all intermediate steps of the proof of Theorem 3.5
as general as possible in order to highlight in which step the restrictive condition
that q = 2 or q = 4 and the sign condition on the kernels arise.

5.2. Preparatory steps. We start our investigations with a generalization of Theo-
rem 2.6 in Peccati and Thäle (2013). The main difference between that result and
Proposition 5.1 is that for technical reasons it has been assumed in Peccati and
Thäle (2013) that µn is a finite measure for each n ≥ 1 such that µn(Z) → ∞, as
n → ∞. Our next result shows that one can dispense with this assumption.

Proposition 5.1. Fix ν > 0 and an even integer q ≥ 2. Let the sequence
fn ∈ L2

s(µ
q
n), n ≥ 1, satisfy the technical assumptions (A) and the normalization

condition
lim

n→∞
q!‖fn‖2 = lim

n→∞
E[Iq(fn)

2] = 2ν .

Then, if

lim
n→∞

‖fn ⋆ℓr fn‖ = 0 for all r ∈ {1, . . . , q}, ℓ ∈ {1, . . . , r ∧ (q − 1)}
with (r, ℓ) 6= (q/2, q/2) ,

lim
n→∞

‖f2
n‖ = 0 ,

lim
n→∞

‖fn ⋆̃q/2q/2fn − cq fn‖ = 0 with cq =
4

(q/2)!
(

q
q/2

)2 ,

the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ∼ Γν , as n → ∞.

Proof : In principle, one can follow the proof of Peccati and Thäle (2013, Theorem
2.6). The only part where the assumption about the finiteness of the measures µn
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enters is Peccati and Thäle (2013, Proposition 2.3). To circumvent this problem,
one uses the modified integration-by-parts formula Schulte (2014+, Lemma 2.3)
and concludes as in the proof of Theorem 4.1 of Eichelsbacher and Thäle (2014).
Since the computations are quite straight forward, we omit the details. �

We now present two estimates of the norm of a symmetrized contraction kernel
in terms of non-symmetrized contraction norms. In particular, our first lemma
generalizes Peccati and Taqqu (2011, Identity (11.6.30)). We recall for f ∈ L2

s(µ
q),

q ≥ 1, that ‖f ⋆̃
q
qf‖2 = ‖f ⋆qq f‖2 = ‖f‖4 and ‖f ⋆00 f‖2 = ‖f‖4.

Lemma 5.2. Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) be a kernel satisfying the
technical assumptions (A). Then

‖f ⋆̃
0
0f‖2 =

(q!)2

(2q)!

(
2‖f‖4 +

q−1∑

p=1

(
q

p

)2

‖f ⋆pp f‖2
)
. (5.1)

Furthermore, for any r ∈ {1, . . . , q − 1} one has the inequality

‖f ⋆̃
r
rf‖2 ≤ ((q − r)!)2

(2(q − r))!

(
2‖f ⋆rr f‖2 +

q−r−1∑

p=1

(
q − r

p

)2

‖f ⋆pp f‖2
)
. (5.2)

If q ≥ 2 is an even integer, Equation (5.2) yields that

‖f ⋆̃
q/2
q/2f‖2 ≤ ((q/2)!)2

q!

(
2‖f ⋆

q/2
q/2 f‖2 +

q/2−1∑

p=1

(
q/2

p

)2

‖f ⋆pp f‖2
)
. (5.3)

This inequality will turn out to be crucial in what follows.
Before entering the proof of Lemma 5.2, we introduce some notation. Recall that

for an integer p ≥ 1, we denote the group of p! permutations of the set {1, . . . , p}
by Πp. For a kernel g ∈ L2(µp) and a permutation π ∈ Πp, we use the shorthand
g(π) for the mapping Zp ∋ (z1, . . . , zp) 7→ g(π)(z1, . . . , zp) = g(zπ(1), . . . , zπ(p)).
We can immediately see that ‖g‖ = ‖g(π)‖ for all π ∈ Πp such that automatically
g(π) ∈ L2(µp). In the following, we use the convention that π0 ∈ Πp is the identity
map, meaning that g(π0) = g.

For any integer M ≥ 1, any two permutations π, σ ∈ Π2M and any p ∈
{0, . . . ,M} we shall use the notation

π ∼p σ

if and only if

|{π(1), . . . , π(M)} ∩ {σ(1), . . . , σ(M)}| = p ,

where | · | stands for the cardinality of the argument set. If π ∼p σ, then clearly
|{π(M +1), . . . , π(2M)}∩{σ(M +1), . . . , σ(2M)}| = p. In the proof of Peccati and
Taqqu (2011, Proposition 11.2.2), there is an explanation that, given a permutation

π ∈ Π2M and an integer p ∈ {0, . . . ,M}, there are exactly (M !)2
(
M
p

)2
permutations

σ ∈ Π2M such that π ∼p σ.
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Proof of Lemma 5.2: Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) be a kernel satisfying
the technical assumptions (A). Fix r ∈ {0, 1, . . . , q − 1}. We have that

‖f ⋆̃
r
rf‖2 = 〈f ⋆rr f, f ⋆̃

r
rf〉 =

1

(2q − 2r)!

∑

π∈Π2q−2r

〈f ⋆rr f, f ⋆rr f(π)〉

=
1

(2q − 2r)!

q−r∑

p=0

∑

π∼pπ0

〈f ⋆rr f, f ⋆rr f(π)〉.
(5.4)

To prove (5.1), let r = 0 and π ∼0 π0 or π ∼q π0. Then we get

〈f ⋆00 f, f ⋆00 f(π)〉

=

ˆ

Z2q

f(z1, . . . , zq)f(zq+1, . . . , z2q)

× f(zπ(1), . . . , zπ(q))f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

=

(
ˆ

Zq

f(w1, . . . , wq)
2µq(d(w1, . . . , wq))

)2

= ‖f‖4.

Now, let π ∼p π0 with p ∈ {1, . . . , q − 1}. Then

〈f ⋆00 f, f ⋆00 f(π)〉

=

ˆ

Z2q

f(z1, . . . , zq)f(zq+1, . . . , z2q)

× f(zπ(1), . . . , zπ(q))f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

=

ˆ

Z2q−2p×Zp×Zp

f(z1, . . . , zq)f(zπ(1), . . . , zπ(q))

× f(zq+1, . . . , z2q)f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

(⋆)
=

ˆ

Z2q−2p

f ⋆pp f(w1, . . . , w2q−2p)

× f ⋆pp f(w1, . . . , w2q−2p)µ
2q−2p(d(w1, . . . , w2q−2p))

= ‖f ⋆pp f‖2 .

We note that the assumption that f is symmetric is essential to get the identity
highlighted by (⋆). In view of (5.4), we obtain

‖f ⋆̃
0
0f‖2

=
1

(2q)!

(
∑

π∼0π0

〈f ⋆00 f, f ⋆00 f(π)〉+
∑

π∼qπ0

〈f ⋆00 f, f ⋆00 f(π)〉

+

q−1∑

p=1

∑

π∼pπ0

〈f ⋆00 f, f ⋆00 f(π)〉
)

=
1

(2q)!

(
2(q!)2‖f‖4 +

q−1∑

p=1

(q!)2
(
q

p

)2

‖f ⋆pp f‖2
)
,
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such that (5.1) follows. Now, let r ∈ {1, . . . , q − 1} and observe that for π ∼q−r π0

one has that

〈f ⋆rr f, f ⋆rr f(π)〉

=

ˆ

Z2q−2r

(
ˆ

Zr

f(x1, . . . , xr, z1, . . . , zq−r)

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)µ
r(d(x1, . . . , xr))

)

×
(
ˆ

Zr

f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))µ
r(d(y1, . . . , yr))

)

µ2q−2r(d(z1, . . . , z2q−2r))

=

ˆ

Z2q

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2r×Zq−r×Zq−r

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2r

(
f ⋆q−r

q−r f(x1, . . . , xr, y1, . . . , yr)
)2

µ2r(d(x1, . . . xr, y1, . . . , yr))

= ‖f ⋆q−r
q−r f‖2

= ‖f ⋆rr f‖2 .

Similarly, we obtain for the case that π ∼0 π0,

〈f ⋆rr f, f ⋆rr f(π)〉 = ‖f ⋆rr f‖2 .

Now, let π ∼p π0 with p ∈ {1, . . . , q − r − 1}. Then, there is a permutation
σ ∈ Π2q−2p such that

〈f ⋆rr f, f ⋆rr f(π)〉 (5.5)

=

ˆ

Z2q

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2q−2p×Zp×Zp

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))
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=

ˆ

Z2q−2p

f ⋆pp f(w1, . . . , w2q−2p)

× f ⋆pp f(wσ(1), . . . , wσ(2q−2p))µ
2q−2p(d(w1, . . . , w2q−2p))

= 〈f ⋆pp f, f ⋆pp f(σ)〉
≤ ‖f ⋆pp f‖ ‖f ⋆pp f(σ)‖
= ‖f ⋆pp f‖2 .

Note that contrary to the case r = 0, σ shows up because of the appearance of the
variables x1, . . . , xr, y1, . . . , yr. Therefore, we need to apply the Cauchy-Schwarz
inequality once, which is the very reason for the inequality in (5.2). At this stage,
(5.2) follows by (5.4) and

‖f ⋆̃
r
rf‖2 =

1

(2q − 2r)!


 ∑

π∼0π0

〈f ⋆rr f, f ⋆rr f(π)〉+
∑

π∼q−rπ0

〈f ⋆rr f, f ⋆rr f(π)〉

+

q−r−1∑

p=1

∑

π∼pπ0

〈f ⋆rr f, f ⋆rr f(π)〉




≤ 1

(2q − 2r)!

(
2((q − r)!)2‖f ⋆rr f‖2 +

q−r−1∑

p=1

((q − r)!)2
(
q − r

p

)2

‖f ⋆pp f‖2
)
.

This completes the proof. �

Remark 5.3. A combinatorial argument shows that the permutation σ ∈ Π2q−2p

appearing in (5.5) cannot be such that f ⋆pp f(σ) = f ⋆pp f (in particular, σ cannot
be the identity). Hence, we cannot omit applying Cauchy-Schwarz in this case.

In Lemma 5.2 no condition on the sign of f was necessary. However, if we assume
that f has constant sign, we are able to deduce a ‘reverse’ counterpart of (5.2).

Lemma 5.4. Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) a kernel satisfying the
technical assumptions (A). If f ≤ 0 or f ≥ 0, then, for any r ∈ {0, 1, . . . , q − 1},
one has that

‖f ⋆̃
r
rf‖2 ≥ 2((q − r)!)2

(2q − 2r)!
‖f ⋆rr f‖2 . (5.6)

Proof : The left-hand side of (5.6) satisfies the identity at (5.4). Using the fact
that f has constant sign, the right-hand side of (5.4) becomes smaller if we sum
only over a subset of Π2q−2r, namely over all π ∈ Π2q−2r such that π ∼0 π0 or
π ∼q−r π0. Hence, we end up with

‖f ⋆̃
r
rf‖2 ≥ 1

(2q − 2r)!


 ∑

π∼0π0

〈f ⋆rr f, f ⋆rr f(π)〉+
∑

π∼q−rπ0

〈f ⋆rr f, f ⋆rr f(π)〉




=
2((q − r)!)2

(2(q − r))!
‖f ⋆rr f‖2 ,

which completes the proof. �

Remark 5.5. In view of Remark 5.3, inequality (5.6) is optimal under the conditions
of Lemma 5.4.
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5.3. Proof of the implication (ii) =⇒ (iii). Let us introduce some notation. We
shall write an ≍ bn for two real-valued sequences {an : n ≥ 1}, {bn : n ≥ 1},
whenever lim

n→∞
an − bn = 0. Be aware that this does not necessarily imply that

one of the individual sequences converges, but of course ensures the convergence of
both sequences whenever one of them converges.

The next lemma establishes an asymptotic lower bound for the linear combi-
nation of the fourth and third moment E[Iq(fn)

4] − 12E[Iq(fn)
3] of a sequence of

Poisson integrals of even order q ≥ 2 where fn ∈ L2
s(µ

q
n), n ≥ 1. It is one of the

main ingredients to show the implication (ii) =⇒ (iii) in Theorem 3.5. Note that
this bound holds for general even q ≥ 2. Moreover, at this point we do not need an
assumption on the sign of the kernels.

Lemma 5.6. Let ν > 0 and q ≥ 2 be an even integer. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a

sequence of kernels such that the technical assumptions (A) and the normalization
condition

lim
n→∞

q!‖fn‖2 = 2ν

are satisfied. Then one has that

E[Iq(fn)
4]− 12E[Iq(fn)

3] ≍ 12ν2 − 48ν +A(Iq(fn)) +R(Iq(fn)) , (5.7)

where the terms on the right-hand side of (5.7) satisfy A(Iq(fn)) ≥ A′(Iq(fn)) with

A′(Iq(fn)) =

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2− p)!

)2

)
‖fn ⋆pp fn‖2

+

2q−1∑

p=1,p 6=q

p!‖Gq
p fn‖2 + q!

q∑

p=q/2+1

(p!)2
(
p

q

)4(
p

q − p

)2

‖fn ⋆̃q−p
p fn‖2

+ 24q!‖c−1
q fn ⋆̃

q/2
q/2 fn − fn‖2

(5.8)

with cq = 4

(q/2)!( q
q/2)

2 , and

R(Iq(fn)) = q!

q∑

r,p=q/2
r 6=p

r! p!

(
q

r

)2(
q

p

)2(
r

q − r

)(
p

q − p

)
〈fn ⋆̃q−r

r fn, fn ⋆̃
q−p
p fn 〉

− 12q!

q∑

p=q/2+1

p!

(
q

p

)2(
p

q − p

)
〈fn ⋆̃q−p

p fn, fn 〉 .

(5.9)



A four moments theorem for Gamma limits on a Poisson chaos 215

Proof of Lemma 5.6: In view of Lemma 2.2 and since q is even, one has that

E[Iq(fn)
4]− 12E[Iq(fn)

3]

=

2q∑

p=0

p!‖Gq
p fn‖2 − 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ⋆̃q−p

p fn, fn 〉

= (q!)2‖fn‖4 + (2q)!‖fn ⋆̃00fn‖2 +
2q−1∑

p=1

p!‖Gq
pfn‖2

− 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ⋆̃q−p

p fn, fn 〉

= 3(q!)2‖fn‖4 +
q−1∑

p=1

(q!)4
(
p!(q − p)!

)2 ‖fn ⋆pp fn‖2 +
2q−1∑

p=1

p!‖Gq
pfn‖2

− 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ⋆̃q−p

p fn, fn 〉

= 3(q!)2‖fn‖4 + T1(Iq(fn)) + T2(Iq(fn)) + T3(Iq(fn)) ,

where the third equality stems from (5.1). The terms T1, T2, T3 read as follows:

T1(Iq(fn)) =

q−1∑

p=1
p 6=q/2

(q!)4
(
p!(q − p)!

)2 ‖fn ⋆pp fn‖2 +
2q−1∑

p=1,p 6=q

p!‖Gq
pfn‖2,

T2(Iq(fn)) =
(q!)4

(q/2)!4
‖fn ⋆

q/2
q/2 fn‖2 + q!‖Gq

qfn‖2 − 12q!(q/2)!

(
q

q/2

)2

〈fn ⋆̃q/2q/2fn, fn 〉,

T3(Iq(fn)) = −12q!

q∑

p=q/2+1

p!

(
q

p

)2(
p

q − p

)
〈fn ⋆̃q−p

p fn, fn 〉.

We use (5.3) to see that

(q!)4

(q/2)!4
‖fn ⋆

q/2
q/2 fn‖2

≥ (q!)5

2(q/2)!6
‖fn ⋆̃q/2q/2fn‖2 −

1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2− p)!

)2 ‖fn ⋆pp fn‖2.

Using the definition of Gq
qfn given at (2.5), we have the estimate

T2(Iq(fn)) ≥ q!


∥∥

q∑

r=q/2

r!

(
q

r

)2(
r

q − r

)
fn ⋆̃

q−r
r fn

∥∥2 + 1

2

(q!)4

(q/2)!6
‖fn ⋆̃q/2q/2fn‖2

−12(q/2)!

(
q

q/2

)2

〈fn ⋆̃q/2q/2fn, fn 〉
)

− 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2− p)!

)2 ‖fn ⋆pp fn‖2
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= q!

(
3

2

(q!)4

(q/2)!6
‖fn ⋆̃q/2q/2fn‖2 − 12

(q!)2

(q/2)!3
〈fn ⋆̃q/2q/2fn, fn 〉

)

+ q!

q∑

r=q/2+1

(r!)2
(
q

r

)4(
r

q − r

)2

‖fn ⋆̃q−r
r fn‖2

+ q!

q∑

r,p=q/2
r 6=p

r!p!

(
q

r

)2(
q

p

)2(
r

q − r

)(
p

q − p

)
〈fn ⋆̃q−r

r fn, fn ⋆̃
q−p
p fn 〉

− 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2− p)!

)2 ‖fn ⋆pp fn‖2.

Using the relation ‖fn ⋆pp fn‖ = ‖fn ⋆q−p
q−p fn‖, valid for all p ∈ {1, . . . , q − 1}, we

obtain
q−1∑

p=1
p 6=q/2

(q!)4
(
p!(q − p)!

)2 ‖fn ⋆pp fn‖2 −
1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2− p)!

)2 ‖fn ⋆pp fn‖2

=

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2− p)!

)2

)
‖fn ⋆pp fn‖2.

The proof is concluded by observing that

q!

(
3

2

(q!)4

((q/2)!)6
‖fn ⋆̃q/2q/2fn‖2 − 12

(q!)2

((q/2)!)3
〈fn ⋆̃q/2q/2fn, fn 〉

)

=
3

2
q!

(
(q!)4

((q/2)!)6
‖fn ⋆̃q/2q/2fn‖2 − 2× 4

(q!)2

((q/2)!)3
〈fn ⋆̃q/2q/2fn, fn 〉+ 16‖fn‖2

)

− 24q!‖fn‖2

= 24q!‖c−1
q fn ⋆̃

q/2
q/2 fn − fn‖2 − 24q!‖fn‖2

and by recalling condition (a), which implies that 3(q!)2‖fn‖4−24q!‖fn‖2 converges
to 12ν2 − 48ν. �

While all previous results did not use the assumptions on the order of the integral
and the sign of the kernels, in the next lemma we need that q ∈ {2, 4} and that the
kernels have constant sign.

Lemma 5.7. Let ν > 0 and q ∈ {2, 4}. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence

of kernels such that the technical assumptions (A) and the normalization condition
lim
n→∞

q!‖fn‖2 = 2ν are satisfied. Assume that for each n ≥ 1 either fn ≤ 0 or

fn ≥ 0. Then the following two assertions concerning the term A′(Iq(fn)) defined
at (5.8) are true:

(1) A′(Iq(fn)) ≥ 0 for all n ≥ 1;
(2) If A′(Iq(fn)) → 0, as n → ∞, then

lim
n→∞

‖fn ⋆ℓr fn‖ = 0 (5.10)

for all r ∈ {1, . . . , q} and ℓ ∈ {1, . . . , r∧(q−1)} such that (r, ℓ) 6= (q/2, q/2),

lim
n→∞

‖f2
n‖ = 0, (5.11)



A four moments theorem for Gamma limits on a Poisson chaos 217

lim
n→∞

‖fn ⋆̃q/2q/2 fn − cqfn‖ = 0 with cq =
4

(q/2)!
(

q
q/2

)2 . (5.12)

Proof : We start by showing the first assertion of the lemma. The only term that
might be negative on right-hand side of (5.8) is the first sum. For the case q = 2,
this does not play any role, because then the sum vanishes. Hence, A′(Iq(fn)) is a
positive linear combination of non-negative terms.

Now, let q ≥ 4 be even. Using the fact that fn has constant sign, ‖fn ⋆pp fn‖ =

‖fn ⋆q−p
q−p fn‖ for all p ∈ {1, . . . , q− 1} as well as Lemma 5.4, we obtain the estimate

2q−1∑

p=1, p 6=q

p!‖Gq
p fn‖2 ≥

2q−1∑

p=1, p 6=q

p!

q∑

r=0

r∑

ℓ=0

1(2q − r − ℓ = p)r!2
(
q

r

)4(
r

ℓ

)2

‖fn ⋆̃ℓrfn‖2

≥
2q−1∑

p=1, p 6=q,
p even

p!((q − p/2)!)2
(

q

q − p/2

)4

‖fn ⋆̃q−p/2
q−p/2fn‖2

=

q−1∑

p=1, p 6=q/2

(2p)!((q − p)!)2
(

q

q − p

)4

‖fn ⋆̃q−p
q−pfn‖2

=

q−1∑

p=1, p 6=q/2

(2(q − p))!(p!)2
(
q

p

)4

‖fn ⋆̃ppfn‖2

≥
q−1∑

p=1, p 6=q/2

2((q − p)!)2(p!)2
(
q

p

)4

‖fn ⋆pp fn‖2

=

q/2−1∑

p=1

4(q!)4

((q − p)!)2(p!)2
‖fn ⋆pp fn‖2.

Hence, we end up with

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2− p)!

)2

)
‖fn ⋆pp fn‖2 +

2q−1∑

p=1,p 6=q

p!‖Gq
p fn‖2

≥
q/2−1∑

p=1

(q!)4

(p!)2

(
6

(q − p)!2
− 1

2
(
(q/2)!(q/2− p)!

)2

)
‖fn ⋆pp fn‖2. (5.13)

For q = 4, p = 1 we have that

6

(q − p)!2
− 1

2
(
(q/2)!(q/2− p)!

)2 =
1

24
> 0 .

So, for q = 4 (and q = 2), the term A′(Iq(fn)) is bounded from below by a lin-
ear combination with positive coefficients of the norms of the contraction kernels
appearing in (5.10), (5.11) and (5.12) (while for all even q ≥ 6 this cannot be
guaranteed any more). This proves both statements of the lemma. �

Remark 5.8. As anticipated, for all even q ≥ 6 there are combinatorial coefficients in
(5.13) which are negative, implying that our proof cannot be generalized to Poisson
integrals of arbitrary order. The reason is that one would need a sharper version
of Lemma 5.4, which is in general not available as discussed in Remark 5.5. As a



218 T. Fissler and C. Thäle

consequence, we have to leave it as an open problem to establish a four moments
theorem for the Gamma approximation for Poisson integrals of order q ≥ 6 by
different methods.

It remains to check whether the conditions of Theorem 3.5 are sufficient to imply
that A′(Iq(fn)) → 0. The following lemma shows that this is indeed the case.

Lemma 5.9. Let ν > 0 and q ∈ {2, 4}. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence of

kernels satisfying the technical assumptions (A) and the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)
2] = 2ν .

Let the sequence {Iq(fn)4 : n ≥ 1} be uniformly integrable. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1,

is satisfied, then the following implication is true. If

lim
n→∞

E[Iq(fn)
4]− 12E[Iq(fn)

3] = 12ν2 − 48ν

then
lim
n→∞

‖fn ⋆ℓr fn‖ = 0 (5.14)

for all r ∈ {1, . . . , q} and ℓ ∈ {1, . . . , r ∧ (q − 1)} such that (r, ℓ) 6= (q/2, q/2),

lim
n→∞

‖f2
n‖ = 0, (5.15)

lim
n→∞

‖fn ⋆̃q/2q/2 fn − cqfn‖ = 0 with cq =
4

(q/2)!
(

q
q/2

)2 . (5.16)

Proof : First apply Lemma 5.6 to deduce thatA(Iq(fn))+R(Iq(fn)) → 0, as n → ∞.
Assume that q = 2 and ‖f2

n‖ → 0. Then (5.15) is satisfied by assumption.
Moreover,

R(I2(fn)) = 32〈fn ⋆̃11fn, fn ⋆̃02fn〉 − 48〈fn ⋆̃02fn, fn〉.
By the Cauchy-Schwarz inequality, we see that

|〈fn ⋆̃11fn, fn ⋆̃02fn〉| ≤ ‖fn ⋆̃11fn‖ ‖fn ⋆̃02fn‖, |〈fn ⋆̃02fn, fn〉| ≤ ‖fn‖ ‖fn ⋆̃02fn‖.
With respect to the definition of the contractions, we see that fn ⋆̃

0
2fn = f2

n. We

shall argue now that the sequence ‖fn ⋆̃11fn‖ is bounded. For this, observe that for
any fixed (s, t) ∈ Z2, we obtain by the Cauchy-Schwarz inequality that

|fn ⋆11 fn(t, s)| =
∣∣∣∣
ˆ

Z

fn(z, t)fn(z, s)µ(dz)

∣∣∣∣

≤
(
ˆ

Z

f2
n(z, t)µ(dz)

)1/2(ˆ

Z

f2
n(z, s)µ(dz)

)1/2

.

Consequently,

‖fn ⋆̃11fn‖2 ≤ ‖fn ⋆11 fn‖2 =

ˆ

Z2

|fn ⋆11 fn(t, s)|2µ2(d(s, t)) ≤ ‖fn‖4.

By assumption, we have that ‖fn‖2 → ν, so the sequence is bounded. Now, the fact
that ‖f2

n‖ → 0 implies that R(I2(fn)) → 0. Hence, A(I2(fn)) → 0, which implies
that A′(I2(fn)) → 0 using Lemma 5.7(1). Now, we apply Lemma 5.7(2) to see that
(5.14) and (5.16) follow.
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Next, let q = 4 and suppose that fn ≤ 0. Recall that the tensor product is
bi-linear and it is easily verified that the contraction operation preserves this bi-
linearity. Now, the fact that the kernels are non-positive ensures that R(Iq(fn)) ≥ 0
and we can again apply Lemma 5.7(1) to see that 0 ≤ A′(Iq(fn)) ≤ A(Iq(fn)).
Hence, we deduce that A(Iq(fn)) → 0. This directly implies that A′(Iq(fn)) → 0,
such that the claim follows again by Lemma 5.7(2). �

Remark 5.10. Let us explain in some more detail why in contrast to the case of
normal approximation the kernels have to be non-positive for Gamma approxima-
tions. An inspection of the proof of Theorem 3.5 shows that a constant sign of
the kernels is necessary to control the sign of scalar products. This is necessary
in Lemma 5.4 and therefore also in Lemma 5.7 to control the signs of A(Iq(fn))
and A′(Iq(fn)), respectively. On the other hand, this is also necessary in part b)
of Lemma 5.9, where one has to control the sign of R(Iq(fn)). In this context,

scalar products of the form 〈fn ⋆̃q−p
p fn, fn〉, p ∈ {q/2 + 1, . . . , q}, appear. They

are thrice-linear in fn, such that fn ≤ 0 implies that 〈fn ⋆̃q−p
p fn, fn〉 ≤ 0 and we

can conclude that R(Iq(fn)) ≥ 0. In summary, knowing that A′(Iq(fn)) ≥ 0 and
R(Iq(fn)) ≥ 0 enables us to use part (2) of Lemma 5.7 to get the implication (ii)
=⇒ (iii) in Theorem 3.5. Note that the latter scalar products in R(Iq(fn)) actually
stem from the third moment in assertion (ii) of Theorem 3.5 (see also (2.8)).

It is worth mentioning that this asymmetry in the assertions for Theorem 3.5
(and also in Theorem 3.3) is actually an intrinsic property of the Gamma distri-
bution which contrasts the normal case. For the central limit theorem in a Pois-
son chaos, it can be easily seen that if the law of the sequence {Iq(fn) : n ≥ 1}
converges to a standard normal law N (0, 1), then also the law of {Iq(−fn) : n ≥
1} = {−Iq(fn) : n ≥ 1} converges to N (0, 1), since the standard normal law is
symmetric. Consistently, assertions (ii) and (iii) in the four moments theorem
for normal approximation are invariant under a sign change of the kernels. In
sharp contrast, the assertions for Gamma approximations are not invariant un-
der such a sign change because of the lack of symmetry of the target distribution.
This means that if the law of {Iq(fn) : n ≥ 1} converges to Γν then that law of

{Iq(−fn) : n ≥ 1} = {−Iq(fn) : n ≥ 1} cannot converge to Γν . Consistently, asser-
tions (ii) and (iii) in Theorem 3.5 inherit this asymmetry, which is reflected by the

appearance of the third moment in (ii) and the term ‖fn ⋆̃q/2q/2fn − cq fn‖ in (iii),

both of them not being invariant under a change of the sign of fn.

5.4. An alternative approach to the four moments theorem. In Remark 5.10 we
explained that the sign condition on the kernels in part (b) of Theorem 3.5 ensures
that R(Iq(fn)) ≥ 0. Together with A′(Iq(fn)) ≥ 0, this is sufficient in combination
with part (2) of Lemma 5.7 to get the implication (ii) =⇒ (iii) in Theorem 3.5.
On the other hand, for part (a) of Theorem 3.5, dealing with the case q = 2,
the assumption that ‖f2

n‖ → 0 yields that R(I2(fn)) → 0, an assertion also being
sufficient in combination with A′(Iq(fn)) ≥ 0 to deduce the implication (ii) =⇒ (iii)
in Theorem 3.5 from part (2) of Lemma 5.7. From this point of view, it is natural
to ask whether the latter condition can be generalized to arbitrary q ≥ 2. Our next
result shows that this is indeed possible, but leads to a result which is weaker than
Theorem 3.5. Moreover, the proof again only works for q = 4 and we still have to
impose a sign condition on the sequence of kernels.
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Proposition 5.11. Fix ν > 0. Let fn ∈ L2
s(µ

4
n), n ≥ 1, be a sequence of kernels

such that fn ≥ 0 for all n ≥ 1 and such that the technical assumptions (A) and the
normalization condition

lim
n→∞

4!‖fn‖2 = lim
n→∞

E[I4(fn)
2] = 2ν

are satisfied. Assume additionally that

lim
n→∞

‖f2
n‖ = 0, and lim

n→∞
‖fn ⋆13 fn‖ = 0. (5.17)

If the sequence {I4(fn)4 : n ≥ 1} is uniformly integrable, then the equivalence stated
in Theorem 3.5 remains valid.

Proof : The implication (i) =⇒ (ii) follows from the uniform integrability of the
sequence {I4(fn)4 : n ≥ 1} and (iii) =⇒ (i) is a consequence of Proposition 5.1. To
establish the implication (ii) =⇒ (iii), we apply Lemma 5.6 and show that the term
R(I4(fn)) defined at (5.9) converges to zero, as n → ∞. With the Cauchy-Schwarz
inequality we obtain for p ∈ {3, 4} that

|〈fn ⋆̃4−p
p fn, fn〉| ≤ ‖fn ⋆4−p

p fn‖ ‖fn‖ → 0 ,

since ‖fn ⋆4−p
p fn‖ → 0 and ‖fn‖2 → ν

12 . Moreover, for p, r ∈ {2, 3, 4} with p 6= r
we also get

|〈fn ⋆̃4−p
p fn, fn ⋆̃

4−r
r fn〉| ≤ ‖fn ⋆̃4−p

p fn‖ ‖fn ⋆̃4−r
r fn‖ → 0 .

The convergence is ensured by condition (5.17) if p, r > 2. If otherwise p ∧ r = 2,
we use condition (5.17) together with the observation that ‖fn ⋆02 fn‖ = ‖fn ⋆24 fn‖
and ‖fn ⋆22 fn‖ ≤ ‖fn ⋆44 fn‖ as a consequence of Fubini’s theorem and the Cauchy-
Schwarz inequality. Summarizing, we see that R(I4(fn)) → 0, which in turn implies
that A(Iq(fn)) → 0 thanks to Lemma 5.6. We can then conclude as in the proof of
part (b) of Lemma 5.9. �
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M. Schulte and C. Thäle. The scaling limit of Poisson-driven order statistics with
applications in geometric probability. Stochastic Process. Appl. 122 (12), 4096–
4120 (2012). MR2971726.

http://www.ams.org/mathscinet-getitem?mr=MR3035760
http://www.ams.org/mathscinet-getitem?mr=MR3178507
http://www.ams.org/mathscinet-getitem?mr=MR3215537
http://www.ams.org/mathscinet-getitem?mr=MR2546749
http://www.ams.org/mathscinet-getitem?mr=MR2962301
http://www.ams.org/mathscinet-getitem?mr=MR2722791
http://www.ams.org/mathscinet-getitem?mr=MR2118863
http://www.ams.org/mathscinet-getitem?mr=MR1071538
http://www.ams.org/mathscinet-getitem?mr=MR2642882
http://www.ams.org/mathscinet-getitem?mr=MR2537812
http://www.ams.org/mathscinet-getitem?mr=MR2791919
http://www.ams.org/mathscinet-getitem?mr=MR3083936
http://www.ams.org/mathscinet-getitem?mr=MR2727319
http://www.ams.org/mathscinet-getitem?mr=MR3178515
http://www.ams.org/mathscinet-getitem?mr=MR3161465
http://www.ams.org/mathscinet-getitem?mr=MR2971726


222 T. Fissler and C. Thäle
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