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A Four-Quadrant Thrust Estimation Scheme for
Marine Propellers: Theory and Experiments

Luca Pivano, Tor Arne Johansen and Øyvind N. Smogeli

Abstract— A thrust estimation scheme for marine propellers
that can operate in the full four-quadrant range of the propeller
shaft speed and the vessel speed has been developed. The scheme
is formed by a nonlinear observer to estimate the propeller torque
and the propeller shaft speed and by a mapping to compute the
thrust from the observer estimates. The mapping includes the
estimation of the propeller advance ratio. The advance speed
is assumed to be unknown, and only measurements of shaft
speed and motor torque have been used. The robustness of
the scheme is demonstrated by Lyapunov theory. The proposed
method is experimentally tested on an electrically driven fixed
pitch propeller in open-water conditions, in waves and with a
wake screen that scales the local flow down in order to simulate
one of the effects of the interaction between the propeller and
the vessel hull.

Index Terms— estimation, nonlinear, marine propulsion.

I. INTRODUCTION

In marine guidance, navigation and control (GNC) systems,

the low level thruster controllers have traditionally received

less attention compared to the guidance system and the high-

level plant control. In the design of Dynamic Positioning (DP),

thruster assisted Position Mooring (PM) and autopilot systems,

for example, much effort has been put into the high-level

control schemes and the propeller dynamics has often been

neglected. More recently, also the issue of thruster dynamics

and control has received more attention. For recent references,

see for example [1], [4], [8], [12], [20], [27], [29], [31], [32]

and the references therein. The main difficulties in the design

of effective propeller controllers lie in the modeling of the

propeller’s dynamics and in the problem of measuring the

environmental state.

When a ship performs a marine operation, propellers are

often affected by thrust losses due to cross flow, ventilation,

in-and-out-of water effects, wave-induced water velocities,

interaction between the vessel hull and the propeller and

between propellers. Propellers may thus work far from ideal

conditions therefore, knowledge of the propeller thrust and

torque, together with the thrust induced pressure force on the

hull, is fundamental to achieve high vessel control perfor-

mance. The knowledge of the propeller thrust, either measured

or estimated, could also allow the design of controllers for

reducing power fluctuations and wear and tear in high sea

state. Moreover, the performance monitoring is also useful
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for improving fault detection and thrust allocation in different

propeller working conditions.

These considerations motivate the development of schemes

to estimate the propeller thrust because, in general, its mea-

surement is not available. The estimated value of the thrust

could be used for underwater vehicles for example, in ob-

servers for the estimation of the ocean current [7] and in adap-

tive schemes for the identification of the vehicle hydrodynamic

drag [24]. Recently, observers for monitoring the propeller

performance have been developed and included in new control

designs for electrically driven propellers, see [3], [10], [18],

[21], [25], and [28].

The problem of propeller thrust estimation has been treated

in [33], where full-scale experimental results were provided in

steady-state conditions, in waves, and for inclined inflow. The

estimation was based on the propeller torque measurement

and on a linear relation between thrust and torque. Experi-

mental results were presented only for positive shaft speed

and vessel speed. Steady-state thrust estimates can also be

obtained from thrust and torque identity techniques [6] which

assume the knowledge of the propeller torque, used to compute

an equivalent open water advance ratio. This is combined

with open-water propeller characteristics, corrected for scale

effects, to obtain the thrust estimate. Thrust estimation has

been also treated in [10], where the estimate was computed

from the propeller torque obtained with a Kalman filter where

a linear shaft friction torque was considered. The relation

between thrust and torque involved an axial flow velocity

model and requires the knowledge of the advance speed.

The scheme was also highly sensitive to hydrodynamic and

mechanical modeling errors. The performance was validated

by simulations.

An adaptive observer to estimate shaft speed and thrust was

also designed for variable pitch propulsion systems in [3] and

[18]. The observer was used for fault detection in the shaft

speed control loop. A linear approximation of the propeller

characteristics was utilized, therefore this approach could not

guarantee accurate results in all four quadrant plane composed

by the vessel speed and the propeller shaft speed. Moreover,

the observer employed the vessel speed measurement.

The contribution of this paper is the development of a four-

quadrant thrust estimation scheme, extending the preliminary

results described in [22] and [23]. The strength of the pre-

sented approach is that only measurements of the propeller

shaft speed and the motor torque, normally available on ships,

are utilized. Differently from [10], the advance speed which

is very difficult to measure in real vessels, is assumed to be

unknown.
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Our scheme is based on a robust nonlinear observer to

estimate the propeller torque and the shaft speed, and on a

mapping to compute the propeller thrust from the observer

estimates. The observer is similar to the one introduced in

[28], but the inclusion of a nonlinear friction term is a new

contribution. Moreover, in order to analyze the effect of the

measurement and friction modeling errors on the observer

estimates, a Lyapunov based robustness analysis has been

performed. The thrust is computed from the torque estimate

through a mapping that involves the estimation of the advance

ratio. The performance of the proposed scheme is demon-

strated by extensive experiments carried out on an electrically

driven fixed pitch propeller in a basin with close to open-water

conditions, in waves and with a wake screen that scales the

local flow down in order to simulate one of the effects of the

interaction between the propeller and the vessel hull.

The paper is organized as follows. The overall propulsion

system is described in Section II. The experimental setup and

instrumentation are presented in Section III. Modeling of the

propeller shaft dynamics, thrust and torque, and the open-water

characteristics is treated in Section IV. The thrust estimation

scheme is described in Section V and experimental results are

presented in Section VI. Finally, the conclusions are given in

Section VII.

II. OVERALL SYSTEM DESCRIPTION

Fig. 1. Block diagram of the propeller system and the thrust estimation
scheme.

A block diagram that represents the propeller system and the

scheme implemented to estimate the propeller thrust is shown

in Fig. 1. The propeller is connected to the motor through a

shaft and a gear box. The motor torque applied to the shaft is

denoted Qm. The gear ratio is defined by Rgb = ωm/ω, where

ωm is the motor shaft angular speed and ω is the propeller

angular speed. The value of ω is particularly influenced by

the load, represented by the propeller torque Qp, due to the

rotation of the blades in the water. The output of the system

is the thrust Tp produced by the propeller.

The thrust estimation scheme includes a nonlinear observer

that computes the estimate Q̂p of the propeller load torque

and the estimate ω̂ of the shaft speed. The observer uses the

measurements of the motor torque Qm and the propeller shaft

speed ω. An estimate T̂p of the propeller thrust is computed

using the observer estimates Q̂p and ω̂ through a mapping f.

III. EXPERIMENTAL SETUP AND INSTRUMENTATION

The tests were carried out at the Marine Cybernetics

Laboratory, an experimental laboratory located at NTNU in

Trondheim. The basin, 6.45 m wide, 40 m long and 1.5 m

deep, is equipped with a 6DOF towing carriage that can reach

a maximum speed of 2 m/s and with a wave generator able

to generate waves up to 0.3 m. The tank dimensions may

appear too small for accurate open-water and dynamic tests

due to the influence of previous motions, presence of walls

and free surface motion. The variance of the obtained results

was found to be small. We employed a three phase brushless

motor in combination with a drive equipped with a built-in

torque controller and a build-in shaft speed controller. In this

way we could choose to control the motor torque in order to

obtain the desired motor torque or the shaft speed to obtain

the desired ω. The motor was connected to the propeller

shaft through a gear-box with ratio 1:1. The rig with motor,

underwater housing, shaft and propeller was attached to the

towing carriage in order to move the propeller through the

water. The tests were performed on a fixed pitch propeller

without duct and with geometric parameters given in Table

I. The real-time system Opal RT-Lab R© was used to interface

the Matlab/Simulink R© environment to the motor drive and the

sensors. The shaft speed was measured on the motor shaft with

a tachometer dynamo. The thrust and torque were measured

with an inductive transducer and a strain gauge transducer

placed on the propeller shaft, respectively. The measurement

of the motor torque was furnished by the motor drive. All the

signals were acquired at the frequency of 200 Hz. A sketch

of the setup is shown in Fig. 2 and a picture of the propeller

system is presented in Fig. 3.

Fig. 2. Sketch of the experimental setup.

TABLE I

P1362 PROPELLER GEOMETRICAL PARAMETERS

Parameter Value Description

D 0.25 m Propeller diameter

Z 4 Number of blades

P/D 1.0 Pitch ratio P/D

Ae/A0 0.55 Expanded blade area ratio
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Fig. 3. Propeller open-water configuration (main picture) and wake screen
(small picture).

IV. PROPELLER MODELING

A. Propeller shaft dynamics

The shaft dynamics is derived by considering the motor

connected to the propeller through a rigid shaft and a gear-

box with gear ratio Rgb, as shown in the block diagram of

Fig. 1. The shaft is considered affected by a friction torque

denoted Qf (ω), which is assumed to depend only on the shaft

speed. The shaft dynamics can be written as

Jmω̇ = RgbQm − Qp − Qf (ω), (1)

where Jm is total moment of inertia including the shaft,

the gear box and the propeller. The friction torque has been

modeled as

Qf (ω) = kf1
arctan

(ω

ǫ

)

+ kf2
ω + kf3

arctan(kf4
ω), (2)

where the Coulomb effect, usually written as a sign(ω), has

been replaced by the function 2

π
arctan(ω

ǫ
) with a small

positive ǫ in order to avoid the singularity for ω = 0. The

remaining terms in (2) represent a linear and a nonlinear vis-

cous effect. All the coefficients kfi
are constant and positive.

The static friction model (2) is able to approximate the friction

torques experienced in practice (see [1], [16] and [22]).

1) Shaft moment of inertia and friction torque identifica-

tion: To identify the friction torque and the shaft moment of

inertia in (1), we ran tests with different motor torque profiles

and various towing carriage speeds. From the measurement of

the propeller angular speed, the motor torque and the propeller

torque, and computing the derivative of ω with the necessary

filtering, we identified the parameters kfi
of the friction torque

model (2) and the shaft moment of inertia Jm. The parameters

kfi
and Jm can be grouped in the vector

θ =
[

kf1
kf2

kf3
kf4

Jm

]T
. (3)

With Rgb = 1 and defining z = Qm−Qp, θ is computed over

a time-series of N samples as

θ = arg min

N
∑

i=1

|zi − Qf (ωi) − Jmω̇i|
2
. (4)

where the subscript i indicates the i-th sample (see for exam-

ples [9]). The parameters obtained are shown in Table II.

TABLE II

FRICTION MODEL PARAMETERS AND SHAFT MOMENT OF INERTIA.

Parameter Value Parameter Value

Jm[kg · m2] 6.07 · 10−3 kf3
[kg · m2/s] 6.61 · 10−3

kf1
[kg · m2/s] 3.97 · 10−1 kf4

[−] 8.94 · 10−2

kf2
[kg · m2/s] 9.28 · 10−3 ǫ[−] 1 · 10−3

Figure 4 shows the friction torque computed from mea-

surements and the identified model. The friction exhibits a

nonlinear behavior and is affected by the temperature in the

gears, bearings and oil. The friction presents also a hysteresis

effect but its influence is not very significant and it has been

neglected.

For the tested propeller system, the losses due to the friction

torque are quite high compared to a full scale propeller, where

they are usually less significant.
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Fig. 4. Friction torque: computed from measurements and the identified
nonlinear static model.

B. Propeller thrust and torque

Fig. 5. Definition of the advance speed ua and vessel speed U and the
undisturbed flow speed uu.
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Modeling the thrust and torque produced by a propeller is

a complicated task, since it is difficult to develop a finite-

dimensional analytical model from the laws of physics. This

is mainly due to the difficulty in modelling the flow dy-

namics, especially when the flow is not uniform [1], [4],

[5], [12], [16], [20]. The thrust and torque depend also on

the propeller geometric parameters (i.e. propeller diameter,

pitch angle, etc.), the non-dimensional parameters advance

ratio J and Reynolds number, the propeller submergence and

environmental state (waves, currents, etc.). A common practice

is the use of simplified models which are chosen based on the

propeller application. See for example [8], [21] and [28] and

the references therein.

1) Open-Water propeller characteristics: Neglecting the

effect of waves and marine currents, and assuming a deeply

submerged fixed pitch propeller, the thrust and torque are

usually represented in nondimensional form. One form is

represented by the standard open-water coefficients KT and

KQ, given as functions of the advance ratio J . The term open-

water refers to the case where the propeller is tested without

the presence of a vessel hull. The coefficients KT and KQ are

computed from [6] as

KT = Tp

4π2

ρ |ω|ωD4
, (5)

KQ = Qp

4π2

ρ |ω|ωD5
, (6)

where ρ is the density of the water and D is the propeller

diameter. The advance ratio is computed as

J =
2πua

ωD
, (7)

where ua is the advance speed, i.e. the water inflow velocity

to the propeller. The KT and KQ curves are measured for a

range of propeller advance numbers J , usually in a cavitation

tunnel or a towing tank [14]. When the propeller is working

in water that has been disturbed by the passage of the hull, it

is no longer advancing relatively to the water at the speed of

the ship U, but at some different speed ua. The advance speed

is very difficult to measure and an estimate of ua is usually

computed using the steady-state relation

ua = (1 − w)U, (8)

where w is the wake fraction number, often identified from

experimental tests (see e.g. [17]). Figure 5 shows a sketch of

a vessel with the velocities involved. The surge vessel speed

U is relative to the earth while ua is the longitudinal water

speed relative to the propeller disc. The undisturbed water

velocity uu has the same magnitude as the vessel speed but

with opposite direction.

A measure of the propeller performance is the open-water

efficiency, which is defined as the ratio of the produced to the

consumed power by the propeller. The propeller efficiency is

usually plotted for positive values of J and is computed from

(5), (6) and (7) as

η =
uaTp

ωQp

=
uaKT

ωDKQ

=
JKT

2πKQ

. (9)

The curves KT and KQ are usually employed in the first and

in the third quadrant of the plane composed by ua and ω, and

they are not defined for ω = 0. For propellers operating in the

whole plane (ua,ω), four-quadrant open-water characteristics

are normally utilized [6]. The four-quadrant coefficients CT

and CQ are plotted as functions of the advance angle β. The

value of β is computed with the four quadrant inverse tangent

function as

β = arctan2 (ua, 0.7Rω) , (10)

where R is the propeller disc radius. The four-quadrant coef-

ficients are calculated from [6] as

CT =
Tp

1

2
ρV 2

r A0

, (11)

CQ =
Qp

1

2
ρV 2

r A0D
, (12)

where A0 is the propeller disc area and Vr is the relative

advance velocity:

V 2
r = u2

a + (0.7Rω)2. (13)

2) Measured open-water characteristics: To measure the

open-water propeller characteristics, we performed tests at

different values of the advance ratio J. To obtain the desired

shaft speed ω, the built-in speed controller of the drive

was used. In our setup, the housing that contains gear and

measurement devices does not create a significant wake and

the advance speed ua has been considered equal to the towing

carriage speed U. This yields a wake fraction number w equal

to zero. The standard propeller characteristics are plotted in

Fig. 6. In Fig. 7 a sample of filtered data used to derive the

KT and KQ curves are plotted. For positive ua and ω, the

inflow to the propeller is uniform and the thrust and torque

are quite steady. When the advance speed becomes negative,

the propeller tries to reverse the inlet flow and a recirculation

zone (often called a ring vortex) occurs [30]. This is due to the

interaction between the inlet flow and the reversed flow. The

flow then becomes unsteady and can cause oscillations in the

propeller thrust and torque. For negative values of J, KT and

KQ were computed from the average of the measured thrust

and torque.
From Fig. 6, it can be noticed that the tested propeller is not

symmetric in the thrust production with respect to the shaft

speed. For positive values of ω the efficiency is higher because

the propeller was designed to work mainly at forward vessel

speed.
Figure 8 shows the four-quadrant propeller characteristics

and an approximation computed with a 25th order Fourier

series, commonly adopted for the CT and CQ curves [6] .
3) Torque model for the observer: In order to estimate the

propeller torque with an observer, a dynamic model for Qp

is developed. The propeller torque Qp is treated as a time-

varying parameter and modeled as a first order process with

a positive time constant τ1, driven by a bounded noise w1 as

in [22], [23] and [26]:

Q̇p = −
1

τ1

Qp + w1. (14)
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Fig. 6. Measured standard propeller characteristics: positive ω (a) and
negative ω (b).
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Fig. 7. Sample of measured data used to compute the propeller characteris-
tics.

The proposed model does not have a structure related to the

propeller hydrodynamics and geometry, but it is often used

for the estimation of unknown variables. This is motivated

by the fact that precise models often involve variables which

are not measured or are known with large uncertainty, like

flow velocities. In [1] and [20] more accurate dynamic models

of thrust and torque have been developed. Both models use

measurements of the advance speed and the axial flow velocity,

the speed of the water at the propeller disc, which are difficult

to measure on a real vessel.

V. THRUST ESTIMATION SCHEME

This section presents the thrust estimation scheme. The

required accuracy for the thrust estimate usually depends

upon the application. For example, for ships that perform

DP operations and low speed maneuvering, it is important

to obtain accurate estimates in all quadrants since they may

be equally explored, in certain sea and weather conditions.
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Fig. 8. Measured propeller four-quadrant open-water characteristics.

For ship in transit, however, only the first quadrant is usually

explored therefore the accuracy required in the other quadrants

is not particularly high.

A. Propeller torque observer

The observer is based on the shaft dynamics and on the

torque model described in the previous section. The motor

torque Qm and the shaft speed ω are assumed to be measur-

able. For electric motors, the motor torque can be computed

quite accurately from the motor current. For diesel engines,

the motor torque can be measured with strain gauges on the

motor shaft [2] or by measuring the fuel index [3].

From the shaft dynamics (1), the friction model (2) and the

propeller torque (14), adding the measurement and modeling

errors, the overall propeller dynamics can be written as

Jmω̇ = RgbQm − Qp + ∆f − kf1
arctan

(

ω
ǫ

)

− kf2
ω

−kf3
arctan(kf4

ω),

Q̇p = − 1

τ1

Qp + w1.
(15)

The output of the system is represented by

y = ω + v, (16)

where v is a bounded measurement error. A friction torque

modeling error and the measurement error on Qm are ac-

counted for by ∆f , assumed to be bounded. Defining with

ŷ = ω̂ the estimate of the angular shaft speed and with Q̂p

the estimate of the propeller torque, the following observer

with gains l1 and l2 is proposed:

Jm
˙̂ω = RgbQm − Q̂p − kf1

arctan( ω̂
ǫ
) − kf2

ω̂
−kf3

arctan(kf4
ω̂) + l1(y − ŷ),

˙̂
Qp = − 1

τ1

Q̂p − l2(y − ŷ).

(17)

The noise and errors can be treated as inputs, grouped in the

vector u:

u = [u1 u2 u3]
T

= [∆f v w1]
T

. (18)
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With ẽ1 = ω − ω̂ and ẽ2 = Qp − Q̂p, the observer error

dynamics can be written as:

˙̃e1 = 1

Jm

[

−ẽ2 − kf1

(

arctan
(

ω
ǫ

)

− arctan
(

ω̂
ǫ

))]

−
kf3

Jm
[arctan (kf4

ω) − arctan (kf4
ω̂)]

+ 1

Jm
[−kf2

ẽ1 − l1ẽ1 + u1 − l1u2]
˙̃e2 = − 1

τ1

ẽ2 + l2ẽ1 + l2u2 + u3.
(19)

Substituting ω = ẽ1 + ω̂ in (19), we can group the nonlinear-

ities in the following function:

ψ(ẽ1, ω̂) = +
kf1

Jm

(

arctan
(

ẽ1+ω̂
ǫ

)

− arctan
(

ω̂
ǫ

))

+
kf3

Jm
(arctan (kf4

(ẽ1 + ω̂)) − arctan (kf4
ω̂)) ,
(20)

where ψ(ẽ1, ω̂) has the property that ∀ẽ1,∀ω̂, ẽ1ψ(ẽ1, ω̂) ≥ 0.
With ẽ = [ẽ1 ẽ2]

T and using (20), we can rewrite the observer

error dynamics (19) as

˙̃e = −A1ẽ − F1(ẽ1, ω̂) + B1u , (21)

where

A1 =

[

1

Jm
(kf2

+ l1)
1

Jm

−l2
1

τ1

]

, (22)

F1(ẽ1, ω̂) =

[

ψ(ẽ1, ω̂)
0

]

, (23)

B1 =

[

1

Jm
− l1

Jm
0

0 l2 1

]

. (24)

Proposition 1: If the parameters α, µ, k, and the observer

gains l1, l2 are chosen such that

A1 α > 0 such that ∀ẽ1, ∀ω̂: |ψ(ẽ1, ω̂)| ≤ α |ẽ1| ,
A2 0 < µ < 2

Jm
,

A3 κ > 0,
A4 0 < l2 < α4κ2Jm,
A5 l1 > −kf2

+ l2
α2κ

+ 1

2µκ
,

then the system (19) is input-to-state stable (ISS).

Proof: See Appendix.

Remark 2: For the observer considered, there always exist

parameter and gain values that can be chosen according to the

above criteria.

The ISS property of the observer error dynamics provides

the robustness of the observer against noise and modeling

errors. The observer errors, and thus the torque and shaft

speed estimates, remain bounded for any initial conditions

regardless of the values of the measurement errors, the noise

w1 in the propeller torque model and the difference between

the friction torque model and the actual friction. In particular,

the observer robustness against friction torque modeling errors

is very important. The shaft friction torque may depend upon

variables which are not directly accounted for in the model,

like temperature and bearing lubrication.

B. Thrust and torque relationship

As stated above it is difficult to derive accurate models

for the thrust and torque, especially when the inflow to

the propeller is not uniform. For example, [1], [11] and

[20] experimentally demonstrated the need of including the

dynamics of the axial flow velocity at the propeller disc to

obtain accurate thrust and torque models. Moreover, in [1]

and [11] the modeling involved lift theory, and the thrust

and torque were computed as functions of the lift and drag

produced by the propeller blades. It is clear that thrust and

torque are produced by the same physical phenomenon and

are closely related. It is not wrong to think that in the value

of propeller torque, some variables that influence the behavior

of the propeller, like the axial flow velocity, for example,

are implicitly hidden within. For this reason, it is possible to

compute an estimate of the propeller thrust from the propeller

torque and the shaft speed.

In this section a mapping to compute the propeller thrust

from the torque that utilizes the standard propeller characteris-

tics is presented. Even though the propeller characteristics are

measured in steady-state conditions, we are able to achieve

quite accurate results in all four-quadrants due to the close

relationship between thrust and torque.

Considering the standard propeller characteristics and taking

the ratio of (5) and (6), the steady-state propeller thrust can

be expressed as

Tp = QpGQT (J), (25)

where

GQT (J) =
KT

KQD
, (26)

is defined as the steady-state gain from the propeller torque

to the thrust. This gain depends on the propeller working

conditions and can be expressed as a function of the advance

ratio J .

Since the advance speed is not measured, the value of J
is estimated in order to compute the value of GQT (J). A

propeller does not usually work at values of J greater than 1−
1.2 (depending on the propeller), where the produced thrust is

negative, and for J smaller than −1.5. Based on this, we limit

our analysis to values of J in the range [−1.5, 1.1]. However,

when the shaft speed is reversed, the propeller works for a

short time outside the range of J that has been considered.

In this condition, both thrust and torque are small since the

shaft speed is small, and the approximation error of GQT (J)
does not affect the estimation significantly. This is shown in

the experimental results reported in Section VI.

The estimation of J is performed using the estimates Q̂p

and ω̂. From (6), we can compute K̂Q, an estimate of KQ as

K̂Q = Q̂p

4π2

ρω̂2D5
, ω̂ �= 0. (27)

The value of K̂Q has been limited by the upper bound

KQ(Jmin) and lower bound KQ(Jmax) where [Jmin, Jmax]
is the range of J. In this way we handle also the case when

ω̂ = 0. An estimate Ĵ of the advance ratio can be derived by

inverting the KQ curve and using the value of K̂Q computed

with (27). It can be noticed in part (a) of Figures 9 and 10,

that the KQ curve is not invertible in the whole range of

J considered. For this reason, the J axis has been divided

in three zones. In zones 1 and 3 the KQ curve is invertible

and an accurate estimate of J can be computed. In zone 2,

Ĵ has been approximated with zero to ensure correct thrust
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estimation when the advance speed is zero, i.e. the vessel

is at rest and not subjected to current. This approximation

introduces an error on the estimate which is computed as

T̂p =

{

Q̂pGQT (Ĵ)|ω̂≥0 ω̂ ≥ 0

Q̂pGQT (Ĵ)|ω̂<0 ω̂ < 0.
(28)

Plots of the gains GQT (J) and GQT (Ĵ), for positive and

negative values of ω, are shown Figures 9 and 10. If Q̂p

and ω̂ are accurate, outside zone 2, GQT (Ĵ) approximates

accurately GQT (J) and the estimated thrust is precise. In

zone 2, GQT (Ĵ) is equal to GQT (0) and, due to the propeller

characteristics, the difference between GQT (Ĵ) and GQT (J)
is not of significant magnitude. In the border of zone 2,

GQT (Ĵ) has been joined smoothly to GQT (0) in order to

avoid sharp variation on the thrust estimate. For the tested

propeller, the value of J is limited to the range [-1.5,1.1] for

ω ≥ 0 and to the range [-1.5,0.9] for ω < 0. The maximum

relative error between GQT (Ĵ) and GQT (J) is about 8% for

ω ≥ 0 and 13% for ω < 0.

A block diagram that represents the thrust estimation pro-

cedure is shown in Fig. 11.
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Fig. 9. Part (a): Kq characteristic for positive ω. Part (b): the ratio GQT (J)
between thrust and torque computed from the propeller characteristics and its
approximation GQT (Ĵ) for positive ω.

Remark 3: On full scale vessels, the open-water character-

istics obtained in a model scale is expected to be corrected for

scale effects [13].

Remark 4: If the propeller open-water characteristics are

not available, Computational Fluid Dynamics (CFD) tech-

niques can help to derive it from the 3D drawing of the

propeller, see for example [19] and references therein.

Remark 5: The thrust and torque relationship is not derived

from the four-quadrant propeller characteristics because it is

not possible to estimate the advance angle β only from Q̂p

and ω̂, since we cannot compute the coefficient CQ without

knowing ua. This makes this parameterization difficult to use

while we can estimate J from KQ, computed using ω̂ and Q̂p.
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Fig. 10. Part (a): Kq characteristic for negative ω. Part (b): the ratio GQT (J)
between thrust and torque computed from the propeller characteristics and its
approximation GQT (Ĵ) for negative ω.

Fig. 11. Block diagram of the procedure to compute the propeller thrust
from the estimated torque and shaft speed.

VI. EXPERIMENTAL RESULTS

A. Observer tuning

The gains l1, l2 and the time constant τ1 for the torque

observer in (17) were chosen as follows. The condition A1 of

proposition 1 in Section V is satisfied with α = 1.7 ·105. This

value is quite large due to the arctan function that represents

the Coulomb friction, which presents a steep slope for values

of ω close to zero. The conditions A2-A5 are satisfied with

µ = 1, κ = 10, and with

l1 > 4.1 · 10−2 + 3.5 · 10−12l2,

0 < l2 < 5 · 1020,

which practically allows us to choose l1 and l2 freely. Consid-

ering the fact that we want the observer dynamics faster than

the system dynamics and at the same time, too high gains can

produce oscillatory estimates due to the measurement noise on

the shaft speed, l1 and l2 were chosen as a trade-off between

the two opposite requirements.

The time constant was obtained from a sensitivity analysis

on the observer estimation errors with respect to τ1. Running

the observer with l1 = 3 kg · m2/s, l2 = 80 kg · m2/s2,

on data acquired over more than 1 h of tests carried out in

open-water conditions at different advance speeds and shaft

speeds, we derived Fig. 12. The graph shows the root mean

square error (RMSE) between the observer estimates and the
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measurements. The value of the time constant has been varied

between 0.01 and 100. For τ1 ≥ 1, the accuracy of the

estimates is practically the same, while for smaller values the

estimate are less precise. For small values of τ1, the torque

estimation error decreases when the shaft speed estimation

error diminishes. This allows us to choose the time constant

based on the speed error, since the torque measurements is not

available in real cases. The observer parameters used in the

experiments are l1 = 3 kg · m2/s, l2 = 80 kg · m2/s2 and

τ1 = 10 s.

1001010.10.01
0

0.5

1

1.5

2

τ1 [s]

R
SM

E

ω̃
Q̃p

Fig. 12. Observer estimation errors for different values of τ1.

B. Open water tests

A series of tests to validate the proposed scheme have

been carried out in open-water conditions. The propeller was

submerged at h/R = 4, where h is the propeller submergence,

in order to avoid losses due to ventilation. Figures 13 and 14

show data from an experiment where both the advance speed

and the shaft speed had a trapezoidal form. Figures 15 and

16 show data from a test with sinusoidal advance and shaft

speed.

The shaft speed and propeller torque estimates are plotted

in part (a) and (c) of Figures 13 and 15, respectively. Both

estimates are accurate and almost indistinguishable from the

measurements. The observer estimation errors are plotted in

part (b) and (d) of Figures 13 and 15. The advance speed is

plotted in part (e) of the same figures.

Figures 14 and 16 show the measured and estimated thrust

from the same tests. The estimated T̂p, shown in part (a),

obtained with the proposed method reproduces quite well the

measurements in all the quadrants. Part (e) of the same figures

shows the advance angle β. The estimate T̂p is compared with

the estimate T̂pCT
, shown in part (c), computed using the mea-

sured four-quadrant propeller characteristics CT , introduced in

Section IV, with ua = U. This estimate is not very accurate,

especially in the 2nd and 4th quadrant where the inflow to

the propeller can be irregular. The proposed scheme furnish a

more accurate thrust estimate since it can sense the effect of

the flow variation through the propeller torque estimate. The

thrust estimation errors are shown in (b) and (d) of Figures 14

and 16.

C. Wake screen test

Tests with a wake screen, shown in Fig. 3, were performed

to simulate one of the effects of the hull on the propeller

inflow. The wake screen created an uniform loss of speed.

This does not represent entirely the effect of the hull because

795 805 815 825 835
-2

-1

0

1

2

Time [s]

u
a

[m
/
s] (e)

-1

-0.5

0

0.5

1

Q
p
−

Q̂
p

[N
m

]

(d)

-6

-4

-2

0

2

4

6

Q
p

[N
m

]

(c)

measured Qp

Q̂p

-4

-2

0

2

4

ω
−

ω̂
[r

a
d
/
s]

(b)

-60

-40

-20

0

20

40

60

ω
[r

a
d
/
s]

(a)

measured ω
ω̂

Fig. 13. Data from the first open-water test.

the propeller inflow is not usually uniform. The propeller was

submerged at h/R = 4.

Figure 17 shows the results from a test where both the

advance speed and the shaft speed had a trapezoidal form. As

for the open-water experiments, the estimates provided by the

observer, shown in (a) and (b), are very accurate. In (d) and (e)

of the same plot, the estimate T̂p obtained with the proposed

method is compared with the estimate T̂pCT
, computed using

the measured four-quadrant propeller characteristic CT . The

advance speed is computed with (8), where the value of the

wake fraction w has been identified from tests performed in

steady-state conditions. For positive towing carriage speed U ,

shown in (c), the experimentally found value was w = 0.3.
For negative towing carriage speed, the inlet water flow to

the propeller was not affected by the grid, placed upstream

of the propeller, and the wake fraction number was zero. The

estimate T̂p is quite accurate also in this experiment while the

estimate T̂pCT
, as for the open-water tests, is accurate only
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Fig. 14. Data from the first open-water test.

when ω and the ua have the same sign.

D. Test in waves

Tests in waves were carried-out in order to validate the

estimation scheme with a periodic propeller inflow and with

large losses due to ventilation. Figure 18 shows the result

of a test performed in regular waves with amplitude 0.05 m

(equivalent to 0.2 D) and frequency 0.69 Hz. The propeller

was also moved along its vertical axis with a sinusoidal

motion. This was done to simulate the motion that a propeller

may experience in rough sea conditions. This test does not

reproduce entirely rough sea conditions but it may be a valid

indication of the performance of the proposed method when

operating in off-design conditions. The towing carriage was

kept at rest (U = 0), but the advance speed was still not

zero since the waves create an inflow to the propeller. Part

(c) of Fig. 18 shows the propeller vertical displacement d.

The propeller shaft speed, depicted in part (a), has been kept

constant at 38 rad/s. A drop of thrust and torque occurred

when the propeller rotated close to the water surface, since
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Fig. 15. Data from the second open-water test.

the load decreased due to ventilation. The small oscillations

of thrust and torque were due to waves that created a periodic

additional axial velocity component that varied with depth and

time across the propeller plane. Both phenomena were well

reproduced by the torque estimate, as shown in part (b) of

Fig. 18. The thrust estimate T̂p obtained from the proposed

method is depicted in Fig. 18 (d) and is compared with T̂pCT
,

the thrust computed directly from the CT characteristic. The

proposed method produced a satisfactory estimate and both

the oscillations and the drop of thrust were properly captured.

The estimate T̂pCT
has been computed assuming ua = 0, the

best guess we could make since U = 0. Since ω was constant

and ua = 0, the estimate T̂pCT
was constant and could not

capture the thrust variations due to waves.

VII. CONCLUSION

A thrust estimation scheme for a marine propeller has been

developed and experimentally tested on an electrically driven

propeller. Tests were performed in open-water conditions, with

a wake screen to simulate one of the effects of the hull on the

propeller inflow and in waves with vertical propeller motion in
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Fig. 16. Data from the second open-water test.

order to reproduce the motion that a propeller may experience

in rough sea conditions. The robustness of the scheme with

respect to modeling and measurement errors was demonstrated

with the use of Lyapunov theory and corroborated by exper-

imental results. The scheme involved a nonlinear observer to

estimate the propeller torque and the shaft speed using only

the measurements of the motor torque and the propeller shaft

speed. The thrust estimate was computed from the estimated

propeller torque and shaft speed involving the estimation of

the advance ratio J. This only required knowledge of the

standard propeller characteristics. The thrust obtained from the

proposed method was compared with the thrust computed from

the four-quadrant propeller characteristics showing improved

accuracy in the estimates.

The thrust estimation scheme can be implemented also for

ducted propellers, where the standard propeller characteristics

are slightly different compared to a propeller without a duct.

Although the presented results concern tests carried out on

an electrically driven propeller, the scheme could be applied
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Fig. 17. Data from the wake screen experiment.

also to propellers driven by diesel motors where the motor

torque can be measured with strain gauges on the motor shaft

[2] or by measuring the fuel index [3].

The presented results are promising for the use of such

a thrust estimation scheme in high performance propeller

controllers.
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APPENDIX

The appendix presents the proof of Proposition 1.

First we consider the input u, defined in (18), equal to zero

∀t and later we investigate its effect on the error dynamics.

Taking the Lyapunov function candidate V := 1

2
ẽT P1ẽ, where

P1 = PT
1 > 0 and
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Fig. 18. Data from the experiment with waves.

P1 =

[

p11 p12

p12 p22

]

, (29)

we can compute its time derivative along the trajectory of (19)

obtaining

V̇ = −
[

1

Jm
p11 (kf2

+ l1) − p12l2

]

ẽ2
1 −

[

p22

τ1

+ p12

Jm

]

ẽ2
2

−
[

p12

Jm
(kf2

+ l1) + p12

τ1

+ p11

Jm
− p22l2

]

ẽ1ẽ2

−p12ψ(ẽ1, ω̂)ẽ2 − p11ψ(ẽ1, ω̂)ẽ1.
(30)

From the nonlinearity ψ(ẽ1, ω̂) we can subtract the linear

function αẽ1, where α is constant and satisfies A1, such that

g1(ẽ1, ω̂) = ψ(ẽ1, ω̂) − αẽ1. (31)

Since the graph of ψ(ẽ1, ω̂) belongs to the sector [0, α], the

graph of g(ẽ1, ω̂) belongs to the sector [−α, α], i.e.

∀ẽ1,∀ω̂ : [g(ẽ1, ω̂)]
2

< α2ẽ2
1. (32)

Substituting (31) in (30) and recalling that, since p11 > 0,

p11ψ(ẽ1, ω̂)ẽ1 > 0 we get

V̇ ≤ −
[

1

Jm
p11 (kf2

+ l1) − p12l2

]

ẽ2
1 −

[

p22

τ1

+ p12

Jm

]

ẽ2
2

−
[

p12

Jm
(kf2

+ l1) + p12

τ1

+ p11

Jm
− p22l2 + p12α

]

ẽ1ẽ2

−p12g1(ẽ1, ω̂)ẽ2.
(33)

Choosing p12 > 0, we can use Young’s inequality

−2xy ≤ µx2 +
1

µ
y2 ∀µ > 0,

on the last term of (33) obtaining

−p12g1(ẽ1, ω̂)ẽ2 ≤ µp12

2
ẽ2
2 + p12

2µ
[g1(ẽ1, ω̂)]

2

≤ µp12

2
ẽ2
2 + p12

2µ
α2ẽ2

1.
(34)

Using (34) in (33) we attain

V̇ ≤ −
[

1

Jm
p11 (kf2

+ l1) − p12l2 −
p12

2µ
α2

]

ẽ2
1

−
[

p12

Jm
(kf2

+ l1) + p12

τ1

+ p11

Jm
− p22l2 + p12α

]

ẽ1ẽ2

−
[

p22

τ1

+ p12

Jm
− µp12

2

]

ẽ2
2.

(35)

Selecting l2 > 0 and p22 such that

p22 =
1

l2

[

p12

Jm

(kf2
+ l1) +

p12

τ1

+
p11

Jm

+ p12α

]

, (36)

the cross-term in (35) is cancelled. To obtain a negative definite

V̇ the following are needed:

1

Jm

p11 (kf2
+ l1) − p12l2 −

p12

2µ
α2 > 0, (37)

p22

τ1

+ p12

(

1

Jm

−
µ

2

)

> 0. (38)

Choosing p11 = p12α
2κJm with κ > 0, the inequality (37) is

satisfied for

l1 > −kf2
+

l2
α2κ

+
1

2µκ
. (39)

With this choice of l1, we observe from (36) that p22 > 0 and

the inequality (38) certainly holds if

µ <
2

Jm

. (40)

Combining (39) and (36), we get p22 > p11

l2Jm
. This yields

P1 >

[

p11
p11

α2κJm
p11

α2κJm

p11

l2Jm

]

. (41)

If l2 < α4κ2Jm then P1 is positive definite. Choosing the

observer gains according to A4 and A5 of Proposition 1,

the derivative of the Lyapunov function candidate is negative

definite since

V̇ ≤ −min{q1, q2} ‖ẽ‖
2

2
, (42)

where

q1 =
1

Jm

p11 (kf2
+ l1) − p12l2 −

p12

2µ
α2, (43)

q2 =
p22

τ1

+ p12

(

1

Jm

−
µ

2

)

. (44)

The observer error dynamics, with u = 0 ∀t, is thus globally

exponentially stable (GES). When the input u is different from

zero for some t, the term 2ẽT P1B1u must be added to the
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derivative of the Lyapunov function in (42):

V̇ ≤ −min{q1, q2} ‖ẽ‖
2

2
+ 2ẽT P1B1u

≤ −min{q1, q2} ‖ẽ‖
2

2
+ 2

∥

∥ẽT P1B1u
∥

∥

2

≤ −min{q1, q2} ‖ẽ‖
2

2
+ 2

∥

∥ẽT
∥

∥

2
‖P1‖2

‖B1‖2
‖u‖

2
.

(45)

With 0 < θ < 1, we obtain

V̇ ≤ −min{q1, q2} ‖ẽ‖
2

2
+ ‖P1‖2

‖B1‖2
‖ẽ‖

2
‖u‖

2

≤ −(1 − θ)min{q1, q2} ‖ẽ‖
2

2
− θ min{q1, q2} ‖ẽ‖

2

2

+ ‖P1‖2
‖B1‖2

‖ẽ‖
2
‖u‖

2
.

(46)

For any ‖ẽ‖
2

such that

‖ẽ‖
2
≥ ρ(‖u‖

2
), (47)

where

ρ(‖u‖
2
) =

‖P1‖2
‖B1‖2

θ min{q1, q2}
‖u‖

2
(48)

is a (linear) class K function, we obtain

V̇ ≤ −(1 − θ)min{q1, q2} ‖ẽ‖
2

2
≤ 0. (49)

Since V is positive definite and radially unbounded, from

Theorem 4.19 in [15], the system (19) is ISS. Furthermore,

the observer error is uniformly ultimately bounded (UUB) by

ρ
(

supt>t0
(‖u‖

2
)
)

.
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