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Abstract

Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale
characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for
hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed
model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the
empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an
improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised
series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis
function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition
stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in
the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For
illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the
proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without
denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based
hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce
the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision
and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an
extension of nonlinear prediction models.
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Introduction

Hydrological time series forecasting plays an increasingly

important role in the planning, management and optimal

allocation of water resources [1]. However, it is still a difficult

task due to the complicated stochastic characteristics existing in

hydrological series. Further, hydrological processes are affected

not only by climate change [2]-[3], including precipitation,

evaporation and temperature, but also by human activities and

socioeconomic development [4]. Therefore, the hydrological time

series always tend to be nonlinear and time-varying [5]. The

complex nonlinearity, high irregularity and multi-scale variability

make the forecasting of hydrological time series a difficult task.

Although many researchers have investigated the problem of

hydrological time series forecasting [6]-[7], completely under-

standing of hydrological processes has not yet been achieved. The

forecast accuracy of the current forecasting models is still not high,

especially for complex time series.

The current approaches to hydrological forecasting can be

divided into two categories: the process-driven models and the

data-driven models [8]. Models in the first category mainly

consider the internal physical mechanisms of hydrological

processes, and they usually need a large amount of data for

calibration and validation. However, there is not always enough

data available [9]-[10]. The data-driven models are known as

black-box methods [11], and they do not consider the physical

hydrological process, instead identifying the relationship between

the inputs and the outputs mathematically. The data-driven

models have been proved to have the advantage of lower demands

for quantitative data, better prediction performance and simpler

formulation than the process-driven models [12]-[13].

The data-driven models developed in recent decades contain

two main categories: traditional statistical techniques and artificial

intelligence (AI) tools [14]-[15]. The statistical models can provide

good prediction results when the series are linear or near-linear,

but they cannot capture the nonlinear patterns hidden in

hydrological time series. The nonlinear and AI models include

artificial neural networks (ANNs), genetic algorithms (GAs) and

support vector machines (SVMs), which provide powerful

solutions to nonlinear hydrological forecasting [16]-[18]. How-

ever, these AI methods have their own shortcomings and
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disadvantages. For example, ANNs often suffers from overfitting,

and SVMs are usually sensitive to parameter selection.

To overcome the shortcomings of the data-driven models

described above and obtain results that are more accurate in

forecasting, many hybrid models have been proposed and applied

in hydrological series forecasting [19]-[20]. Recently, some hybrid

models based on the principle of ‘decomposition and ensemble’

have been proposed. The main purpose of decomposition is to

simplify the forecasting process, and the results of ensemble are

used to evaluate the forecast performance. Forecast models of this

type have already been applied in the field of hydrology research.

For example, Kisi [21] used a combination of linear regression

model and discrete wavelet transform to predict the river stage.

Nourani et al. [22] and Kisi [23] combined the wavelet technique

with ANNs to predict rainfall or streamflow time series. Sang [24]

developed a method for discrete wavelet decomposition of series

and proposed an improved wavelet modeling framework for

hydrologic time series forecasting. The results of these studies

prove that the ‘decomposition and ensemble’ principle based

forecasting methods reduce the difficulty of forecasting and

outperform the single models.

However, there are still many problems in prediction when

using the ‘decomposition and ensemble’ principle. First, previous

researches show that the widely used method presently in

decomposing the hydrological time series is the wavelet analysis.

However, the effectiveness of the wavelet decomposition is affected

by many factors. For example, the accurate wavelet decomposition

of series is still a problem and it depends heavily on the choice of

wavelet basis function [25]. Second, the results of ensemble are

usually defined as the sum of the individual forecasting results [26].

However, this is unreasonable, primarily because the degrees of

importance of the intrinsic mode function (IMF) and the residual

components are different [27]. In addition, the complicated

hydrological time series usually contain noises and show complex

characteristics due to the random or uncertain factors of

environment [28]-[29], and the hydrological time series forecast-

ing models without considering denoising may influence the

prediction accuracy [30]-[31].

To overcome the above three shortcomings, we propose three

improvements to promote the prediction accuracy based on the

principle of ‘decomposition and ensemble’. The first improvement

is to reduce the noises involved in hydrological time series before

decomposition, which has a great influence on the forecasting

accuracy and may result in over-fitting or underfitting problems

[32]. Thus, a novel four-stage hybrid model is developed,

consisting of denoising, decomposition, component prediction

and ensemble. The second improvement is to adopt more accurate

and effective methods for the four stages. During the denoising

stage, the empirical mode decomposition (EMD)-based method is

employed. The improved EMD method, ensemble empirical

mode decomposition (EEMD), is selected as the decomposition

tool. Unlike the wavelet analysis and almost other previous

decomposition methods, the EMD method describes the local time

scale instantaneous frequencies better and does not need any

predetermined basis functions [33]-[34]. Another advantage of the

EMD-based technique is that it is very suitable for nonlinear and

nonstationary time series. The third improvement is utilizing the

ANN model instead of simply adding together the individual

forecasting results to obtain the ensemble results. Additionally, we

choose more reasonable cases with different characteristics and

comparison models to thoroughly evaluate the effectiveness of the

proposed hybrid-forecasting model. In this paper, we compare our

method with other six different methods using six different cases.

The remainder of this paper is organized as follows: Section 2

provides a brief introduction to the methodology of the four stages

mentioned above. Section 3 introduces the cases and data used in

the evaluation of the proposed model. Section 4 presents and

discusses the results of the case study. Finally, Section 5 provides

the conclusions of the paper.

Methods

There are four main stages involved in the proposed hybrid

prediction model, i.e., denoising, decomposition, components

prediction and ensemble prediction. The methods selected for

each stage will be briefly introduced in this section.

The denoising stage
The EMD method. At the beginning of the proposed

algorithm, the EMD-based denoising method is employed to

reduce the noises contained in the time series. The EMD is an

adaptive decomposition method, especially for nonlinear and non-

stationary data. The essence of the EMD is to extract IMF

components from complex signals. The IMF should satisfy the

following two conditions [35]:

(a) In the whole data set, the number of extrema and the

number of zero crossings must either equal or differ at most

by one;

(b) The mean value of the envelope defined by the local maxima

and minima should be zero at any point.

For an original time series x( t) ( t~ 1, 2, � � � , m) , the main

steps of the EMD are as follows:

(1) Identify all of the local extrema of x( t) .

(2) Create the upper envelope eup ( t) and lower envelope elow(t)

by the cubic spline interpolation, respectively.

(3) Compute the mean value m( t) of the upper and

lower envelopes: m( t) ~ ½eup ( t) z elow ( t) � = 2.

(4) Extract the mean envelope m( t) from the signal x( t) ,

where the difference is defined as d(t) :

d(t)~x(t){m(t): ð1Þ

(5) Check the properties of d( t) :

(i) If d( t) satisfies the requirements (a) and (b), then d( t)

is denoted as the ith IMF, and x( t) is replaced with the

residuer( t) ~ x( t) { d( t) . The ith IMF is denoted as

ci ( t) , and i is the order number of the IMF;

(ii) If d( t) is not an IMF, replace x( t) with d( t) .

(6) Repeat steps 1–5 until the residue r( t) becomes a monotonic

function or the number of extrema is less than or equal to one,

from which no further IMF can be extracted.

Finally, the original signal x( t) can be expressed as the sum of

the IMFs and the residue r( t) :

x(t)~
X

n

i~1

ci(t)zr(t), ð2Þ
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where n is the number of IMFs, ci ( t) ( i~ 1, � � � , n) is the

ith IMF and r( t) is the final residue. The residue r( t) can be

seen as the trend of the signal x( t) [36].

The EMD-based denoising method
Many algorithms have been proposed to reduce the noises in

series, including spectral analysis, Fourier transforms, wavelet

transform and empirical model decomposition (EMD) [37,38].

Fourier transforms mainly address linear and stationary signals,

and the effectiveness of the wavelet-analysis-based denoising

method depends on the choice of basic wavelet function and

decomposition level [39]. While, the EMD method directly

decomposes the original signal into a finite number of components

and it performs much better for non-linear and non-stationary

signals. In this study, the EMD-based denoising method proposed

by Kopsinis and McLaughlin [40] is adopted to reduce the noises

of the hydrological time series, and it is briefly introduced as

follows:

For the signalx( t) ( t~ 1, 2, � � � , m) , using the EMD

method described above, x( t) can be expressed as the sum of

the IMFs and the residue r( t) :

x(t)~
X

n

i~1

ci(t) zr(t), ð3Þ

where n is the number of IMFs and r( t) is the residue of x( t) .

To reduce the noises, a generalized reconstruction of the denoised

signal is given as follows:

The core issue of EMD-based denoising is to reconstruct the

signal using only the IMFs that contain useful information and

discard those that carry primarily noises, i.e., the IMFs that have

similar amounts of energy with the noise-only signal. According to

the feature of EMD, the power spectra of all of the IMFs excepting

the first noise-only IMF exhibit self-similar characteristics and the

noise-only IMFs energies linearly decrease in a semilog way.

Therefore, the first IMF carries the highest amounts of noise-only

energy and noises. In practice, the noise-only IMF energies can be

calculated according to [41]:

Ei~
E2
1

b
r{i, i~2, � � � ,n, ð4Þ

where b and r are parameters and depend on the number of

sifting iterations used in EMD implementation, which can be

Figure 1. The architecture of the RBFNN. It gives the topological structure of the radial basis function neural network (RBFNN).
doi:10.1371/journal.pone.0104663.g001

Figure 2. The architecture of the linear neural network.
doi:10.1371/journal.pone.0104663.g002
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estimated in one step with a large number of independent

realizations of noise and their corresponding IMFs [41]. In our

experiments, the number of sifting iterations is set to 20. The

parameters b and r are set to 0.719 and 2.01, respectively. E1 is

the energy of the first IMF and can be computed by the variance

estimation of the first IMF [42]:

Figure 3. The structure of the proposed EMD-EEMD-RBFNN-LNN model. The proposed model has four stages, i.e., denoising,
decomposition, component prediction and ensemble. The methods used in the four stages are empirical mode decomposition (EMD), ensemble
empirical mode decomposition (EEMD), radial basis function neural network (RBFNN) and linear neural network (LNN), respectively.
doi:10.1371/journal.pone.0104663.g003

Table 1. Six cases studied in this paper.

Case Series Station Type Length Time range

Case 1 S1 44 meteorological stations in HRB Annual mean precipitation of HRB 62 1951–2012

Case 2 S2 Beijing Annual precipitation 62 1951–2012

Case 3 S3 Beijing Summer precipitation 62 1951–2012

Case 4 S4 Guantai Annual runoff 45 1956–2000

Case 5 S5 Xiangshuibao Monthly runoff 540 Jan.1956 to Dec. 2000

Case 6 S6 Miyun Reservoir Monthly runoff 540 Jan.1956 to Dec. 2000

doi:10.1371/journal.pone.0104663.t001
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Figure 4. The selected stations of the Haihe River Basin. This figure shows the locations of the 3 hydrological stations (Guantai, Xiangshuibao,
Miyun Reservoir) and 44 meteorological stations (including Beijing). The precipitation data of the 44 meteorological stations are used to compute the
annual mean precipitation of HRB.
doi:10.1371/journal.pone.0104663.g004

Table 2. Four types of comparison models.

Models Type Style Stages Methods

C1 Single prediction One-stage Prediction RBFNN (ARIMA)

C2 Hybrid model Two-stage Denoising-prediction EMD-RBFNN(ARIMA)

C3 Hybrid model Three-stage Decomposition-prediction-ensemble EEMD-RBFNN(ARIMA)-LNN

C4 Hybrid model Four-stage Denosing-decomposition-prediction-ensemble EMD-EEMD-RBFNN-ADD

EMD-EEMD-ARIMA-LNN

EMD-WA-RBFNN-LNN

EMD-EEMD-RBFNN-LNN

doi:10.1371/journal.pone.0104663.t002
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E1~
median( ci(t) : t~1,2, � � � ,mj j)

0:6745
: ð5Þ

After the analysis and energy calculation of the IMFs, for a noisy

signal x(t) , a generalized reconstruction of the denoised signal
~x(t) is given as follows:

~xx(t)~
X

M2

k~M1

~cci(t)z
X

n

k~M2

ci(t), ð6Þ

where the parameters M1 and M2 control the number of IMFs

used in the reconstruction process [43], which give us flexibility on

the exclusion of the noisy low-order IMFs and on the optional

thresholding of the high-order ones. It has been empirically found

that the good choice ofM1 and M2 are 2 and n{ 2, respectively

[40]. ~ci (t) represents the ith thresholded IMF. Inspired by the

wavelet thresholding scheme, the thresholded IMF can be

obtained by setting the element of each IMF to zero if its

amplitude is less than the threshold, and the denoised signal is

reconstructed utilizing the high-amplitude elements only [40,44].

Generally, ~ci (t) can be obtained by two thresholding schemes: the

soft thresholding,

~cci(t)~
sgn(ci(t))( ci(t)j j{Ti),

0,

�

ci(t)j jwTi

ci(t)j jƒTi

, ð7Þ

or the hard thresholding,

~cci(t)~
ci(t),

0,

�

ci(t)j jwTi

ci(t)j jƒTi

, ð8Þ

where Ti is the threshold of the ith IMF. In our algorithm, we

adopt different thresholds Ti for different IMFs. The adaptive

threshold Ti is defined as follows:

Ti~C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ei lnm
p

,i~1, � � � ,n, ð9Þ

where Ei can be calculated using Eq. 4 and Eq. 5. n is the number

of IMFs. m is the length of the original data series. C is a constant,

which can be selected for each data according to the denoising

performance by setting the constant from 0.4 up to 1.4 with step of

0.1 [40]. Actually, according to the results of [40], the optimal

constant C for the denoising algorithm was found to be between

0.6 and 0.8 with a small performance discrepancy for any constant

between the above values. Therefore, in our experiments, the

constant C is set to 0.7.

The decomposition stage
The EMD method has been proven to be an effective

decomposition method [35]. However, an obvious drawback of

EMD is the frequent appearance of mode mixing. To overcome

this defect, Wu and Huang [45] proposed the EEMD method,

which is a substantial improvement of EMD and can better

separate the scales by adding white noise series to the original time

series. Therefore, the EEMD method is selected to decompose the

hydrological time series in this stage. The steps of the EEMD are

as follows:

(1) Add a white noise series to the original data;

(2) Decompose the data with added white noise into IMFs using

EMD method mentioned above;

(3) Repeat step (1) and step (2), but add different white noise

series each time;

(4) Obtain the ensemble means of corresponding IMFs as the

final results.

The added white noise series can cancel each other by taking

the average of the corresponding IMFs and the mean IMFs can be

close to the original time series by adding noise repeatedly.

Therefore, this can significantly reduce the chance of mode mixing

and represent a substantial improvement over the original EMD.

Nevertheless, how to select the optimal size of the ensemble and

the amplitude of the added noise is still an open problem [46]. In

fact, the effect of the added white noise can be decreased

according to the well-established statistical rule [45]:

"n~
"
ffiffiffiffi

N
p , ð10Þ

where N is the number of ensemble members, " is the amplitude

of the added noise, and "n is the final standard deviation of error,

which is defined as the difference between the input signal and the

corresponding IMF. In this paper, the number of ensemble

members is set to 100 and the standard deviation of white noise

series is set to 0.2 [47].

The component prediction stage
ANNs are considered as nonlinear statistical data modeling tools

that can simulate the complex relationship between inputs and

outputs. In this study, radial basis function neural network

(RBFNN), as an ANN technique, is adopted to predict the

decomposed IMFs and residual components. The main reason for

selecting RBFNN for prediction is that it has a simple structure

Table 3. Data used in the forecasting processes.

Series Total length Training data Validating data

S1 62 years (1951–2012) 52 (1951–2002) 10 (2003–2012)

S2 62 years (1951–2012) 52 (1951–2002) 10 (2003–2012)

S3 62 Summers (1951–2012) 52 (1951–2002) 10 (2003–2012)

S4 45 years (1956–2000) 35 (1956–1990) 10 (1991–2000)

S5 540 months (Jan.1956 to Dec. 2000) 480 (Jan.1956 to Dec.1995) 60 (Jan.1996 to Dec. 2000)

S6 540 months (Jan.1956 to Dec. 2000) 480 (Jan.1956 to Dec.1995) 60 (Jan.1996 to Dec. 2000)

doi:10.1371/journal.pone.0104663.t003
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and a flexible number of neurons [48]. Unlike other types of feed-

forward neural networks, the RBFNN has only one hidden layer.

Furthermore, RBFNN has a strong approximation ability and fast

convergence rate [49].

RBFNN is a three-layer feed-forward neural network, consisting

of an input layer, a hidden layer and an output layer. Fig. 1 shows

the architecture of the RBFNN.

In Fig. 1, x~ ( x1 , x2 , � � � , xm ) is the input vector;

y~ ( y1 , y2 , � � � , yp ) is the output vector; wij andwij
0 are

connection weights. The radial basis function of the hidden layer is

denoted as Q ( x, ri ) ( i~ 1, 2, � � � , n) . The most popular

radial basis function is the Gaussian function:

Qi(x)~ exp ({
1

2s2
x{rik k2), ð11Þ

where s is the standard deviation, ri is the ith node center of the

hidden layer, and x { rik k is the Euclidean distance between x

and ri .

The main steps of the RBFNN-based forecasting model are

shown as follows:

Step 1. Standardization. The time series x1 , x2 , . . . ,f
xm g is transformed into x

0
1 , x

0
2 , . . . x

0
m

� �

by the

following formula:

Figure 5. The denoised series of the six hydrological time series. This figure gives the denoising result obtained by the EMD-based method
(in red color), as a comparison, the denoising result by the wavelet analysis (in blue color) is also given. It shows much better performances of the
EMD-based method in denoising.
doi:10.1371/journal.pone.0104663.g005
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x
0
t~

xt{xmin

xmax{xmin

,(t~1,2, . . . ,m), ð12Þ

where xmin and xmax denote the minimum and the maximum

of the time series x1 , x2 , . . . , xmf g.
Step 2. Forecasting. The forecasting process contains three

stages, of which the first is determining the training set and the

Figure 6. The decomposition results of the six denoised hydrological time series. The six series are decomposed into several IMFs and one
residue. The IMFs are listed in the order from the highest frequency to the lowest frequency.
doi:10.1371/journal.pone.0104663.g006

Novel Forecasting Model for Nonlinear Time Series

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e104663



test set. For the series x
0
1 , x

0
2 , . . . x

0
m

� �

, the firstNelements

are defined as the training set, and the last m { N elements are

defined as the test set. The second stage is selecting the

parameters of the RBFNN. The third stage is determining the

error objective function.

Step 3. Denormalization. Supposing that the forecast result is

the series y
0
Nz 1 , y

0
Nz 2 , . . . , y

0
m

� �

, the denormalization

formula is as follows:

yj~y
0
j|(xmax{xmin)zxmin,(j~Nz1,Nz2, . . . ,m), ð13Þ

where yNz 1 , yNz 2 , . . . , ymf g is the final prediction

result.

The ensemble stage
In the ensemble stage, we adopt a linear neural network (LNN)

to integrate the prediction results of the above components, which

has a simple structure and the characteristics with fast convergence

and high precision. The LNN uses the Widrow-Hoff learning rule

known as the least mean square (LMS) to train the neural nets

[50]. The architecture of the LNN is shown in Fig. 2.

The LNN algorithm can be expressed as follows:

y~v(
Xm

i~1
wipizb), ð14Þ

where p~ ( p1 , p2 , � � � , pm ) is the input vector, m is the

number of neuron nodes in the input layer, yis the target output

vector, bis a bias, w~ ( w1 , w2 , � � � , wm ) is the connection

weight vector, which connects the input variables to the neurons,

and v( . ) is the transfer function of the single-layer LNN. The

mean square error of the LNN neural can be expressed as follows:

err~
1

n

Xn

i~1
ei(p)½ �2~ 1

n

Xn

i~1
yi(p){ti(p)½ �2, ð15Þ

where err is the mean square error, nis the number of samples,

yi ( p) is the network input and ti ( p) is the target output. The

learning rule of LNN is to minimize the mean square error by

adjusting the weight vector and the bias, which can be adjusted by

the following formulae:

w(pz1)~w(p)z2ge(p)tT (p),

b(pz1)~b(p)z2ge(p),
ð16Þ

where g is a learning rate. When g is larger, the learning and

convergence speeds are faster, and when g is excessively large, the

learning process will be unstable and the error will be bigger.

Therefore, to obtain a good convergence to the optimal weight

and bias, a suitable learning rate should be chosen.

The overall process of the proposed four-stage hybrid
model
For the original time series x( t) (t~ 1, 2, � � � , m), the overall

framework of the proposed model is summarized as follows:

Figure 7. The Lempel-Ziv complexity of the six hydrological time series. It shows the Lempel-Ziv complexity (LZC) of the six original series,
denoised series and the IMFs.
doi:10.1371/journal.pone.0104663.g007
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(1) Denoising. Remove noises inx( t) by the EMD interval

thresholding-based method, and obtain the denoised time

series ofx(t) , denoted as ~x(t) .

(2) Decomposition. Using the EEMD algorithm, decompose
~x(t) into n IMFs ci ( t) (i~ 1, 2, � � � , n) and one residual

component r( t) .

(3) Component prediction. After the decomposition, for each

extracted IMFs and residual component, the RBFNN is

Table 7. Evaluation of the forecasting of the six cases.

Series Models Method Error

MRE RMSE MAE

S1 C1 RBFNN (ARIMA) 0.0576 (0.0682) 39.4242 (40.6552) 30.6943 (34.9074)

C2 EMD-RBFNN(ARIMA) 0.0169 (0.0364) 12.1415 (22.6583) 8.5578 (18.3649)

C3 EEMD-RBFNN(ARIMA)-LNN 0.0521 (0.0519) 35.7531 (36.7028) 25.5369 (27.3512)

C4 EMD-EEMD-RBFNN-ADD 0.013 9.257 6.6003

EMD-EEMD-ARIMA-LNN 0.0132 9.1143 6.6901

EMD-WA-RBFNN-LNN 0.0141 10.0093 7.0872

EMD-EEMD-RBFNN-LNN 0.0088 5.3904 4.4765

S2 C1 RBFNN (ARIMA) 0.1736 (0.2069) 11.6159 (15.3111) 9.3125 (11.5839)

C2 EMD-RBFNN(ARIMA) 0.0856 (0.086) 5.1704 (5.9117) 4.3946 (5.0769)

C3 EEMD-RBFNN(ARIMA)-LNN 0.1531 (0.1251) 9.4989 (7.482) 6.9986 (6.4249)

C4 EMD-EEMD-RBFNN-ADD 0.036 2.2572 1.7702

EMD-EEMD-ARIMA-LNN 0.022 1.2721 1.0546

EMD-WA-RBFNN-LNN 0.0321 2.0572 1.6702

EMD-EEMD-RBFNN-LNN 0.0212 1.1345 1.0118

S3 C1 RBFNN (ARIMA) 0.5236(0.5431) 12.1047 (14.2315) 10.7881 (12.3121)

C2 EMD-RBFNN(ARIMA) 0.154 (0.1631) 4.6591 (5.6123) 3.1207 (4.1734)

C3 EEMD-RBFNN(ARIMA)-LNN 0.2943 (0.3151) 5.2861 (7.1241) 4.4373 (5.4321)

C4 EMD-EEMD-RBFNN-ADD 0.1004 2.6518 2.0959

EMD-EEMD-ARIMA-LNN 0.0908 2.4205 1.9865

EMD-WA-RBFNN-LNN 0.1379 3.4334 3.1274

EMD-EEMD-RBFNN-LNN 0.0441 1.1946 0.9799

S4 C1 RBFNN (ARIMA) 0.3257 (0.4295) 46.9568 (45.5323) 30.6295 (38.6238)

C2 EMD-RBFNN(ARIMA) 0.1835 (0.2097) 18.2246 (23.2594) 15.4026(16.717)

C3 EEMD-RBFNN(ARIMA)-LNN 0.2287 (0.2412) 24.6292 (30.2315) 18.0103 (21.5612)

C4 EMD-EEMD-RBFNN-ADD 0.1416 14.3944 12.2792

EMD-EEMD-ARIMA-LNN 0.0406 4.6091 3.4564

EMD-WA-RBFNN-LNN 0.1449 15.1783 12.217

EMD-EEMD-RBFNN-LNN 0.0175 2.0635 1.6963

S5 C1 RBFNN (ARIMA) 0.3696 (0.3821) 18.5852 (20.5852) 10.8025 (13.8025)

C2 EMD-RBFNN(ARIMA) 0.1322 (0.1271) 2.4513 (2.8773) 1.8826 (2.1834)

C3 EEMD-RBFNN(ARIMA)-LNN 0.2781 (0.2823) 11.1481 (12.1182) 8.0307 (9.5313)

C4 EMD-EEMD-RBFNN-ADD 0.1685 2.4647 1.8824

EMD-EEMD-ARIMA-LNN 0.1229 2.347 1.8145

EMD-WA-RBFNN-LNN 0.1633 1.9216 1.4997

EMD-EEMD-RBFNN-LNN 0.0871 1.3346 0.9848

S6 C1 RBFNN (ARIMA) 0.3621(0.3782) 17.6852 (18.8832) 16.7112 (17.8132)

C2 EMD-RBFNN(ARIMA) 0.2767 (0.3177) 17.4012 (18.6426) 14.3104 (15.2439)

C3 EEMD-RBFNN(ARIMA)-LNN 0.2512 (0.2617) 16.2011 (17.3281) 13.2131 (15.4312)

C4 EMD-EEMD-RBFNN-ADD 0.2494 21.8892 14.6176

EMD-EEMD-ARIMA-LNN 0.1741 10.5115 8.5526

EMD-WA-RBFNN-LNN 0.2622 15.4365 12.8694

EMD-EEMD-RBFNN-LNN 0.1264 8.8421 7.0021

doi:10.1371/journal.pone.0104663.t007
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adopted to model the decomposed components and obtain

the corresponding prediction results of each component.

(4) Ensemble. The prediction results of all of the extracted IMFs

and the residue obtained in the previous step are combined to

generate an ensemble result using the LNN model, which can

be seen as the final forecasting result of the original time

series.

The proposed four-stage hybrid forecasting model has the form

of ‘EMD (denoising)-EEMD (decomposition)-RBFNN (component

prediction)-LNN (ensemble)’. For convenience, we denote the

proposed model as EMD-EEMD-RBFNN-LNN. The structure of

the EMD-EEMD-RBFNN-LNN model is shown in Fig. 3.

Figure 8. Prediction results of the six series by using the proposed four-stage hybrid forecasting model and its three comparison
methods. The proposed four-stage model has the form ‘denoising-decomposition-component prediction-ensemble’. This study utilizes EMD-based
denoising method to denoise and decompose the denoised time series by EEMD, then predicts the IMFs by RBFNN and integrates the predicted
results by LNN i.e. it has the form ‘EMD-EEMD-RBFNN-LNN’. As a comparison, the prediction results of its three comparison models (in different colors)
are also given in this figure.
doi:10.1371/journal.pone.0104663.g008
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Case study and experimental design
To illustrate the effectiveness of our proposed four-stage hybrid

forecasting model, several real hydrological cases are studied in

this section.

Study area
The Haihe River Basin (HRB) is selected in this research. As

the largest water system in northern China, the HRB is

extremely important to China. Influenced by climatic change

and human activities, the precipitation and streamfollow have a

remarkably interannual and interdecadal variation in the HRB.

The precipitation in flood season (June-September) generally

accounts for 70%–85% of the annual precipitation. Annual

variability of precipitation is also very large. For example, the

annual precipitation is more than 800 mm in wet years but

only approximately 270 mm in drought years. This leads to

complex characteristics in hydrological series. Analyzing the

complex characteristics of the hydrological time series and

predicting their future trends are significant for water resources

planning and ensuring sustainable economic and social

development.

Data description
To thoroughly evaluate the effectiveness of the proposed

hybrid forecasting model, six cases with different characteristics

are analyzed. The time series of the six cases are denoted by S1,

S2, S3, S4, S5 and S6, respectively. Table 1 provides the

essential information of the six cases, including the lengths, the

time ranges, etc. Specifically, the series S1 presents a 62-year

(1951–2012) annual mean precipitation data of the whole HRB.

The series S2 and S3 both present 62-year (1951–2012)

precipitation data measured at the Beijing weather station, but

the first one is annual precipitation data and the other is

summer precipitation data, which is defined as the sum of the

monthly precipitation in June, July and August. The series S4

presents annual runoff data from 1956 to 2000 measured at the

Guantai hydrologic station. The series S5 and S6 are monthly

runoff data from January 1956 to December 2000, 540 data

points in total. S5 is measured at the Xiangshuibao station in the

Yang River of the HRB and S6 is measured at the Miyun

Reservoir station in the HRB.

For the six cases, the precipitation data are collected from the

China meteorological data sharing service system, and the

runoff data are extracted from China’s hydrological yearbook. It

should be noted that the data for S2, S3, S4 and S5 are directly

collected from the observed stations, as shown in Fig. 4. The

annual mean precipitation data of S1 are calculated from the

precipitation data of the 44 meteorological stations (shown in

Fig. 4) based on the Thiessen polygon theory in Geographic

Information System (GIS) software ArcGIS 9.3. The main

reason of selecting the six time series is that they have different

spatial and temporal scales, including not only data on a whole-

basin scale (S1) but also data for single hydrological stations (S2,

S3, S4, S5). Additionally, they also have different time scales,

including yearly, monthly and seasonal data. Selecting data of

different types is helpful for validating the applicability of the

model.

Model evaluation
Comparison models. To assess the effectiveness of the

proposed EMD-EEMD-RBFNN-LNN hybrid prediction frame-

work, we compared our method with other forecasting approach-

es. In our experiments, four types, altogether six comparison

methods are set. These comparison methods are set in accordance

with the following three purposes: (1) To verify the roles of the

denoising and decomposition stages in improving the prediction

performance, four types of comparison models are set: C1, C2, C3

and C4. (2) To verify the validity of the method selected in each

stage of C4, other three hybrid prediction methods with the type of

C4 are given. (3) To verify the effectiveness of the ANNs model

compared with traditional statistical models, the ARIMA method

is selected as a comparison with RBFNN in the prediction stage.

Based on the three points above, the comparison models of EMD-

EEMD-RBFNN-LNN are set as shown in Table 2. The detailed

descriptions of the comparison models in Table 2 are given as

follows:

The first kind of comparison model C1 is set as a one-stage

single prediction model and it predicts the trend of the original

time series directly. For comparison, the three types of

comparison models C1, C2 and C3 adopt the same approaches

with C4 in the corresponding stages. Therefore, the method used

by C1 is RBFNN or ARIMA, and the ARIMA method [51] is

employed as the comparison method to test the effectiveness of

the ANNs method. C2 is set as a two-stage hybrid model. The

first stage is to reduce the noises in the original time series and the

second stage is to predict the trend of the denoised series.

Specifically, we utilize the EMD-based denoising method to

reduce the noises of the original time series and then predict the

trend of the denoised series with the RBFNN (or ARIMA)

method, which is denoted as EMD-RBFNN (ARIMA). C3 is set

as a three-stage hybrid prediction model. First, decompose the

original time series into various components using EEMD

method; then, predict the trends of the components with the

RBFNN (ARIMA) model; and finally, integrate the prediction

results of all the components based on LNN, which is denoted as

EEMD-RBFNN (ARIMA)-LNN.

In addition, C4 is a type of four-stage hybrid model proposed

in this paper. First, reduce the noises in the original time series;

then decompose the denoised time series and predict the trend of

each component; and finally, assemble the prediction results of

all of the components. The method we employ for each stage of

C4 has been introduced in Section 2, the EMD-EEMD-RBFNN-

LNN is developed as our final proposed method. To verify the

validity of the selected method in each stage of C4, other three

hybrid prediction methods with the form of C4 are given as

follows: (1) To test the effectiveness of the ensemble method

LNN with the traditional simple addition (ADD) method, the

first comparison method denoted by EMD-EEMD-RBFNN-

ADD is set. (2) The second method is denoted as EMD-EEMD-

ARIMA-LNN, which is set to test the effectiveness of the

prediction method RBFNN compared with traditional statistic

methods, for example, the ARIMA method. (3) The third

method is denoted as EMD-WA-RBFNN-LNN, which is set to

test the validity of the EEMD method in the decomposition

stage, the wavelet analysis (WA) method is employed as a

comparison method with EEMD.

Evaluation criteria
To evaluate the prediction accuracy, the data for the six

forecasted series are divided into two parts (Table 3) for

calibration and verification, respectively. The mean relative error

(MRE), mean absolute error (MAE) and root mean square error

(RMSE) are used for evaluating of different prediction methods,

respectively, which are defined as follows:
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MRE~
1

m

Xm

i~1

f (i){r(i)j j
r(i)

|100%

MAE~
1

m

Xm

i~1
f (i){r(i)j j|100%

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

Xm

i~1
(f (i){r(i))2

r

,

ð17Þ

where r( i) is the real value, f ( i) is the forecasted data, and m is

the size of the data. MRE, MAE and RMSE measure the

deviation between the actual and predicted value.

Results

Denoising results
The denoising results of the six hydrological time series by the

EMD-based method are shown in Fig. 5. The statistical charac-

teristic values, including mean (�x), standard deviation (s ), signal-

to-noise ratio (SNR) and the root mean square error (RMSE) are

used to evaluate the denoising effectiveness, and these are listed in

Table 4.

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

t~1

(x(t){~xx(t))2

s

SNR~10 � log (

P

m

t~1

x2(t)

P

m

t~1

(x2(t){~xx2(t))2
),

ð18Þ

where x(t) is the original time series, ~x(t) is the denoised time

series.

RMSE (Eq. 18) measures the differences between two series;

actually, the smaller the RMSE is, the better the performance that

can be obtained by denoising. The SNR (Eq. 18) quantifies how

much a signal has been corrupted by noises. Table 4 shows the

statistical characteristic values. In Table 4, x, ~x andNare the

original time series, denoised time series and noisy time series,

respectively. From Table 4, we can see that the mean values of the

denoised and original series are similar. Further, the statistical

values of wavelet analysis are also listed in Table 4, and its

denoised results are shown in Fig. 5. Compared with the wavelet

analysis, the SNR is larger and the RMSE is smaller in the EMD-

based denoising method. Therefore, the EMD-based method

shows much better performance in denoising, which can be clearly

seen from Fig. 5.

Decomposition results and complexity analysis
Using the EEMD method, the six denoised hydrological time

series obtained above are decomposed into several independent

IMFs and one residue. For convenience, the ith IMF is denoted as

IMFi (i~ 1, � � � , n), and n is the number of IMFs. The

decomposition results are illustrated in Fig. 6, which lists all of

the IMFs in order from the highest frequency to the lowest

frequency, andRis the residual component that maintains the

trend of the original time series. It is easy to see that the series S1,

S2, S3 and S4 are decomposed into four independent IMFs and

one residue, whereas S5 and S6 are decomposed into seven and

eight independent IMFs and one residue, respectively. The

decomposition results indicate that the hydrological time series

have complex multi-scale characteristics.

In this study, the complexities of the original hydrological time

series and the IMFs obtained by decomposition are measured with

the Lempel-Ziv complexity (LZC) theory, which has been used in

multiple contexts and is considered an effective model for the

measurement of complexity and randomness [52]-[53]. Fig. 7

shows the LZC of the six original series, the denoised series and

the IMFs. From Fig. 7, we can see that most of the LZC of the

original time series in the six cases are larger than 1, which

indicates that the hydrological time series have complex charac-

teristics [54]. The LZC values for the denoised time series are

smaller than those for the original time series, meaning that the

denoising process reduces the complexity of the original sequences.

Fig. 7 also shows that the denoised series are decomposed into

several IMFs with smaller LZC values, and they decrease from the

highest frequency to the lowest frequency; furthermore, most of

the LZC values of the IMFs are much smaller than those for the

undecomposed series. Therefore, decomposition greatly reduces

the difficulty of forecasting.

Forecasting results
For each extracted IMF and residual component, the RBFNN is

adopted to forecast the decomposed components. Similarly, the

ARIMA method is employed as a comparative forecast model;

that is, each component is predicted by both RBFNN and ARIMA

methods. One important part of RBFNN is the determination of

the neural nodes of the layers, and the other is the selection of

network parameters. In this study, the RBFNN is trained by the

toolbox newrb in Matlab, which has the format: net = newrb (P,
T, goal, spread, MN, DF), where the ‘goal’ and ‘spread’ are two

important parameters. The neural node of the output layer is set as

1, and the number of neurons of the input layer is determined by

training for many cycles; it does not need to select the neural node

of the hidden layer because newrb adds neurons to the hidden

layer adaptively. In an ARIMA (p-d-q) model, the best ARIMA

model for each training sample is determined based on the

Schwarz Criterion [55].

All of the IMFs and residual components of the six hydrological

time series are predicted. Taking S1 and S5 as examples, Tables 5

and 6 show the optimal structure and prediction error of the

RBFNN and ARIMA models when modeling the IMFs of the

denoised series. The results of the prediction errors in both tables

show that the RBFNN performs better than the ARIMA method.

Furthermore, with the frequency of each component gradually

reduced from IMF1 to the residue R, the prediction accuracy of

each component gradually increases from IMF1 to R, which

further implies that simply adding the forecasting results of the

IMFs in the ensemble stage is unreasonable and inaccurate.

The results of evaluating the forecasting of six cases are shown

in Table 7, where the values in brackets are the prediction results

of the ARIMA method as a comparison with the RBFNN model,

the text in bold shows the results of the proposed EMD-EEMD-

RBFNN-LNN model, and the other values are its comparison

models. Fig. 8 shows the prediction results of the six cases by using

the four-stage hybrid forecasting model, which contains the EMD-

EEMD-RBFNN-LNN method and its three comparison models:

EMD-EEMD-RBFNN-ADD, EMD-EEMD-ARIMA-LNN and

EMD-WA-RBFNN-LNN.

Discussion

Based on Table 7 and Fig. 8, we can get the following

conclusions:
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(1) The proposed EMD-EEMD-RBFNN-LNN model performs

the best with the lowest values of MRE, RMSE and MAE for

all six cases. For example, the predicted results of S1 show that

MRE, RMSE and MAE of EMD-EEMD-RBFNN-LNN are

reduced by 37.58%,84.72%, 46.14%,86.32% and

36.83%,85.41%, respectively, when compared to the other

comparison models listed in Table 7. It has been shown that

the forecasting results of any series by C4 are more accurate

than those by C1, C2 and C3, indicating that C4 improves the

prediction framework. Through comparing several methods

in C4, in Fig. 8, we can see that the deviation between the

actual value (in blue) and the predicted value is the smallest for

the EMD-EEMD-RBFNN-LNN model (in red). This indi-

cates that the proposed EMD-EEMD-RBFNN-LNN hybrid

model has the best prediction performance and improves

prediction accuracy.

(2) Removing the noise of the original time series before

forecasting improves the prediction accuracy. This can be

seen from Table 7. Results of MRE, RMSE and MAE of the

six cases show that C2 performs better than C1; for example,

compared to C1, MRE, RMSE and MAE of C2 are reduced

by 43.66%, 61.19% and 49.71% for S4, respectively. The

only difference between C1 and C2 is that C2 predicts the

time series after noise removal.

(3) The decomposition strategy does effectively enhance the

prediction accuracy. From the prediction results of C1, C2,

C3 and C4, it is clear that the prediction accuracy of C3 is less

than the prediction accuracy of C1, and C2 performs worse

than C4. For example, compared to C1, the MRE, RMSE

and MAE of C3 are reduced by 24.75%, 40.02% and 25.66%

for S5, respectively. These results indicate that many multi-

scale components with different characteristics existed in the

hydrological time series. The decomposition process segre-

gates the multi-scale components from the hydrological time

series and predicts the components separately, and this can

enhance the forecasting performance.

(4) Comparing all of the prediction results, the forecasting

precisions of the four models C1, C2, C3 and C4 are higher

when using the RBFNN model than when using the ARIMA

method. This can be easily seen from Table 7. The values in

brackets are the prediction results of the ARIMA method,

and they are larger than the values of RBFNN for MRE,

RMSE and MAE. For example, MRE, RMSE and MAE of

EEMD-RBFNN (ARIMA)-LNN are 0.2943(0.3151),

5.2861(7.1241) and 4.4373(5.4321) for the series S3,

respectively. This indicates that the nonlinear AI models

are more suitable for prediction than traditional statistical

models.

(5) Compared with the single prediction model, the hybrid

prediction model has better forecasting performance. This is

because the forecasting results of the four models C1, C2, C3

and C4 have significant differences. Among them, C1 has the

worst forecasting accuracy, while C4 has the best forecasting

accuracy, especially for the time series with complex multi-

time characteristics, such as S5 and S6.

(6) For several hybrid prediction models in C4, the prediction

performances are different when using different decomposi-

tion and ensemble methods. Compared with other decompo-

sition methods, as in Table 7 and Fig. 8, the proposed EMD-

EEMD-RBFNN-LNN algorithm can yield much better

prediction performance than the EMD-WA-RBFNN-LNN

method, demonstrating that EEMD is much more efficient in

decomposition than the WA method. For the ensemble

strategy, the performances of EMD-EEMD-RBFNN-LNN

and EMD-EEMD-ARIMA-LNN are both better than EMD-

EEMD-RBFNN-ADD, indicating that LNN is the more

powerful ensemble method.

(7) Based on Table 7, it can be easily seen that the proposed

four-stage model C4 performs better than the other three

comparison models for all six cases. Therefore, the

proposed ‘denoising-decomposition-prediction-ensemble’

framework has wide applicability for hydrological time

series forecasting.

Conclusions

Considering the intrinsic complexity of hydrological time

series, a new method with four stages, EMD-EEMD-RBFNN-

LNN, is proposed for predicting the hydrological time series. The

results of six cases show that the proposed hybrid prediction

model improves the prediction performance significantly and

outperforms some other popular forecasting methods. From the

results of the six experiment cases, the following conclusions can

be drawn:

(1) The proposed EMD (denoising)-EEMD (decomposition)-

RBFNN (prediction)-LNN (ensemble) model is significantly

superior to all other comparison methods in terms of

prediction accuracy, including the models ARIMA, EMD-

RBFNN and EMD-WA-RBFNN-LNN, etc.

(2) The time series denoising and decomposition enhance the

forecasting performance, which suggests that the denoising

and decomposition strategies are effective approaches for

improving prediction accuracy.

(3) The results of the complexity analysis show that the denoising

and decomposition stages decrease the complexity of the series

and reduce the difficulties of the forecasting.

(4) As the nonlinear and non-stationary characteristics existed in

the hydrological time series, the nonlinear model EMD-

EEMD-RBFNN-LNN is more suitable for prediction than

traditional statistic models.

(5) The proposed four-stage hybrid model has wide applicability

in hydrological time series forecasting as it can improve the

prediction performance for several hydrological time series

with different characteristics.

As the denoising and decomposition stages can decrease the

complexity of the series, enhance the forecasting performance

and reduce the difficulties of the forecasting, the proposed

model can be utilized as a very promising method for complex

time series forecasting, especially for hydrological time series

with multiple components and high irregularity. In addition,

this new forecast model is also capable of solving other

nonlinear prediction problems. Certainly, there are still two

problems which need to be further studied: (1) The prediction

methods need to be further improved because any black-box

model has some defects, such as the choice of reasonable

parameters and structures; (2) The present study only considers

univariate time series analysis, but some factors affecting

hydrological time series such as climate change are not taken

into consideration. If these factors can be included into the

proposed hybrid prediction model, the forecasting performance

will be greatly improved.
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