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We propose a mixed integer nonlinear programming model for the design of a one-period
planning horizon supply chain with integrated and flexible decisions on location of plants and of
warehouses, on levels of production and of inventory, and on transportation models, considering
stochastic demand and the ABC classification for finished goods, which is an NP-hard industrial
engineering optimization problem. Furthermore, computational implementation of the proposed
model is presented through the direct application of the outer approximation algorithm on some
randomly generated supply chain data.

1. Introduction

It is known that industrial organizations can obtain significant savings through the optimal
design of their supply chain networks. Indeed, the optimal design can contribute to refine
logistics objects as well as logistics strategies, improve on the architecture logistics network,
and above all, support decision making. However, decision makers have troublesome
task when dealing with integrated planning of logistics networks. Since this industrial
engineering optimization problem is in general difficult and more specifically NP-hard even
for networks with small sizes, trying one by one potential plans is very time consuming, and
therefore impractical.

In fact the optimization of an integrated logistics network design is still a challenge,
specially if many items, many layers, many logistics components, many different types of
decision variables and stochastic demands are being considered.
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With respect to the number of different types of decision variables, just a few existing
studies have addressed the logistics network design problem considering three or more
layers and deterministic demands with four different types using mixed integer linear
programming models (MILP) [1, 2]. According to the recent review made in [3], the works
of [4, 5] can fit the design optimization of a one-period planning horizon logistics network
with stochastic demandwith three or more layers, but they involve only decisions on location
using MILP models.

Uncertainty of customer demands has also been considered in [6] in order to
determine, for example, the optimal network design, transportation and inventory levels
of a single-item multiechelon supply chain. In [7], the same authors formulated a bi-
criterionMINLP for the optimal design of responsive process supply chains with inventories,
considering economic and responsiveness objectives.

Besides the cited references relevant for this work, there exist many works in the
literature that address the optimization of logistics network design problem considering
diverse aspects; we encourage the reader to see more details in the remarkable review of
[3].

In this work, we propose a more realistic mathematical formulation for the design
of a one-period logistics network having three layers (suppliers, plants, warehouses and
customers), which has many finished products with stochastic demands. The proposed
model is flexible and integrates decisions on location of plants and of warehouses, on levels
of production and of inventory, and on transportation models. It is formulated as a mixed
integer nonlinear programming problem (MINLP) so that it can incorporate decisions on
inventory levels in more realistic scale, according to [8] apud Croxton and Zinn [9].

Based on the models of Cordeau et al. [10] and of Miranda and Garrido [11], the
proposed model innovates in terms of formulating a four-type decision-variable logistics
network design problem considering three layers and multi products with stochastic
demands, as a MINLP. In relation to the MILP model in [10], the proposed model includes
decisions on inventory levels in warehouses based on the stochastic demands of the
costumers. Although the MILP model of [11] considers stochastic demand for one product,
it involves only decisions on inventory levels, whereas the proposed model considers
additionally decisions on location of plants and of warehouses, on production levels, and on
transportation models for a multiproduct logistics network. Moreover, the proposed model
makes use of the ABC classification for finished products, setting an appropriate level of
service for each product depending on its classification. In this case, level of service of a
product is given in terms of its stock availability; the higher the ABC classification, the higher
is the stock availability.

Furthermore, the results of computational experiments on the proposed model are
presented through the direct application of the outer approximation algorithm, proposed by
Duran and Grossmann [12], on three randomly generated supply chain data. Geographic
information system (GIS) is used to locate and define distances between the nodes of the
logistics network (suppliers, plants, warehouses and customers) and optimize them.

Many algorithms have been proposed to optimize integrated logistics networks
by making use of particular properties of the models or combining existing techniques.
For example, through the exploitation of the separable model, a spatial decomposition
algorithm based on Lagragean relaxation and piecewise linear approximation was proposed
in [6] to find the optimal network design, transportation and inventory levels of a single-
item multiechelon supply chain. In [13], two heuristic methods are proposed to solve
approximately a joint supply chain network design and inventory management model.
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While the first algorithm introduces a convexification scheme before addressing a MINLP,
the second one uses Lagragean relaxation and decomposition technique to deal with the
nonconvexity nature of the model.

The work is presented as follows. Section 2 presents the notation and themathematical
formulation for a four-type decision-variable MINLP model in order to find an optimal
design of a certain supply chain network. In Section 3, we briefly describe the outer
approximation algorithm and the computational experiments realized to solve three
instances whose parameters and supply chain components were randomly generated. Final
comments are given in Section 4.

2. The Proposed Formulation

Here, we present the proposed MINLP model with four types of decision variables in
order to find an optimal design of a more realistic multiproduct supply chain network with
three layers (suppliers, plants, warehouses and customers). The proposed mathematical
formulation is based on an extension of the MILP model presented in Cordeau et al. [10]
for a network design problem with fewer components and fewer layers and deterministic
demands. Besides the decisions on facility locations, on production and on transportation
addressed by [10], the proposed model includes strategic decisions on inventory levels, as
well as more constraints related to potential facilities, production of multi finished products
and their transportation along the network. The inventory policy used in this study is
stochastic, based on order point and immediate replenishment, with multistorage points.

The proposed formulation was also developed based on the work of Miranda and
Garrido [11], that considers the one-period supply chain design problemwith two layers, one
product with stochastic demand, and decision only on inventory levels, while the proposed
model considers stochastic demand for all finished products in the logistics network and
strategic decisions on location of facilities, on production and on transportation, which are
integrated to decision on inventory levels.

In general perspective, the proposed model deals with location-allocation of facilities
in three layers. The model treats production levels in each designed plant. It also treats modes
of transportation between each origin-destination pair of the network. Inventory costs are
considered in order to support decision on allocation of warehouses and on amount of items
to be stored. The model is multi item with one-period planning horizon and indivisible
demand. It does not consider any interaction between similar facilities nor routing of the
products.

2.1. Notation

We present the notation used hereafter for sets, parameters and decision variables in this
study. As one should notice, we used most of the notation of Cordeau et al. [10].

Sets

C: Set of costumers

Cf : set of costumers of finished product f

D: set of potential destinations (D = C ∪ P ∪W)

Dk: set of potential destinations for commodity k
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Dr : set of potential destinations for raw material r

F: set of finished products

Fr : set of finished products that require raw material r

K: set of commodities (K = F ∪ R)

Mod: set of transportation modes between o and d

Mk
od
: set of transportation modes for commodity k between o and d

O: set of origins (O = P ∪ S ∪W)

Ok: set of potential origins for commodity k

Or : set of potential origins for raw material r

P : set of potential plant locations

P f : set of potential plant locations that assembly product f

R: set of raw materials

S: set of potential suppliers

Sr : set of potential suppliers of raw material r

W : set of potential warehouse locations

Wf : set of potential warehouse locations that store product f .

Parameters

a
f
c : Demand of customer c for product f

brf : amount of raw material r required in product f

co: fixed cost of selecting origin o

cko : fixed cost of assigning commodity k to origin o

ck
od
: fixed cost of providing commodity k to destination d from origin o

cm
od
: fixed cost of using transportation mode m from origin o to d

ckm
od

: unitary cost of providing commodity k to d from o using transportation mode
m

CPI
f
w: handling cost of product f in warehouse w

CP
f
w: fixed cost of getting product f from warehouse w

D
f
w: demand of warehouse w for finished product f

d
f
c : demand mean value for product f by customer c

gfm: amount of capacity required by one unity of product f in mode m; similarly,
we have the description for gkm

gm
od
: capacity of transportation of mode m from o to d; similarly, we have the

description for gm
wc

IC
f
w: cost of storing product f in warehouse w

LT
f
w: lead time to replenish product f from warehouse w

n: number of segments of data time unit with respect to the fixed planning horizon
time unit
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N1: maximum number of warehouses in a logistics network

N2: maximum number of plants in a logistics network

qko : maximum amount of commodity k shipped from o

qk
od
: maximum amount of commodity k shipped from o to d

TH: monetary updating factor

uo: capacity of origin o

uk
o: amount of capacity required by one unit of commodity k at origin o

v
f
c : demand variance value for product f by customer c

Z
f
w1−α

: the standard normal probability that warehouse w, with level of service 1 −

α, should cover demand for product f during lead times, according to the ABC
classification.

Decision Variables

X
fm
wc : Amount of product f provided by warehouse w to costumer c using

transportation mode m; similarly, we have the description for Xkm
od

Uo: indicate if origin o is selected

V k
o : indicate if commodity k is assigned to origin o

Y
f
wc: indicate if warehouse w provides product f to costumer c; similarly, we have

the description for Y k
od

Zm
wc: indicate if transportation mode m is selected to serve from warehouse w to

costumer c; similarly, we have the description for Zm
od
.

2.2. Mathematical Model

The proposed model is the following:

minimize
∑

o∈O

(

coUo +
∑

d∈D

∑

m∈Mod

cmodZ
m
od

)

+
∑

k∈K

∑

o∈Ok

⎡

⎣ckoV
k
o +

∑

d∈Dk

⎛

⎝ckodY
k
od +

∑
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od

ckmod X
km
od

⎞

⎠

⎤

⎦
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TH

n

∑

f∈F

∑

w∈W

(

CPI
f
w

∑

c∈C

∑
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X
fm
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+ TH
∑

f∈F
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w∈W

⎡

⎣

√
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f
wIC

f
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X
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√
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c Y

f
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⎤

⎦

(2.1)
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subject to
∑

s∈Sr

∑

m∈Mr
sp

Xrm
sp −

∑

f∈Fr

∑

w∈Wf

∑

m∈M
f
pw

brfX
fm
pw = 0, r ∈ R, p ∈ P, (2.2)

∑

p∈Pf

∑

m∈M
f
pw

X
fm
pw −

∑

c∈C

∑

m∈M
f
wc

X
fm
wc = 0, f ∈ F, w ∈ Wf , (2.3)

∑

w∈Wf

∑

m∈M
f
wc

X
fm
wc = a

f
c , f ∈ F, c ∈ Cf , (2.4)

∑

k∈K

∑

d∈Dk

∑

m∈Mk
od

uk
oX

km
od − uoUo ≤ 0, o ∈ O, (2.5)

∑

d∈Dk

∑

m∈Mk
od

Xkm
od − qkoV

k
o ≤ 0, k ∈ K, o ∈ Ok, (2.6)

∑

m∈Mkm
od

Xkm
od − qkodY

k
od ≤ 0, k ∈ K, o ∈ Ok, d ∈ Dk, (2.7)

∑

k∈K

gkmXkm
od − gm

odZ
m
od ≤ 0, o ∈ O, d ∈ D, m ∈ Mod, (2.8)

∑

f∈F

u
f
wg

fmX
fm
wc − gm

wcZ
m
wc ≤ 0, w ∈ W, c ∈ C, m ∈ Mwc, (2.9)

∑

w∈W

Uw ≤ N1, (2.10)

∑

p∈P

Up ≤ N2, (2.11)

∑

w∈W

Y
f
wc = 1, f ∈ F, c ∈ C, (2.12)

Xkm
od ∈ R+, k ∈ K, o ∈ Ok, d ∈ Dk, m ∈ Mk

od, (2.13)

Uo ∈ {0, 1}, o ∈ O, (2.14)

V k
o ∈ {0, 1}, k ∈ K, o ∈ Ok, (2.15)

Y k
od ∈ {0, 1}, k ∈ K, o ∈ Ok, d ∈ Dk, (2.16)

Zm
od ∈ {0, 1}, k ∈ K, o ∈ Ok, d ∈ Dk, m ∈ Mod. (2.17)

The objective function (2.1) aims to model decisions on facilities location, on
production, on transportation and on inventory, minimizing the corresponding costs. It
results from incorporating inventory costs addressed in model [11] into model [10], in a total
of 5 big terms (displayed in 5 lines). The first two big terms of the sum (2.1) represent the
fixed and variable costs related to the decisions of location and allocation for the considered
logistics network, while the last three big terms represent the fixed and variable costs related

to the decisions on inventory levels. Recall that
∑

w∈W

∑

m∈Mpw
X

fm
pw represents the total

amount of product f manufactured at plant p during the planning horizon time.
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The cost of transportation of product f between plant p and warehouse w, that

appeared in model [11], is now represented by parameter CPI
f
w in terms of handling costs.

Observe that parameter Zm
w1−α

, showed in the term that models safety stock cost in (2.1), now
reflects the level of service of each potential warehouse according to the ABC classification of
finished products considered in the network. Recall that level of service is given in terms of
stock availability. Also, notice that the objective function model considers the possibility of
adjusting the data in case the data time unit corresponds to the planning horizon time unit
divided by n.

After gathering model [10] with parts of model [11] related to inventory, we could
reduce the number of constraints and variables using the fact that the economic order
quantity of product f for warehouse w is given by

Q
f
w =

√

√

√

√

2 CP
f
wD

f
w

IC
f
w

, (2.18)

where the demand of warehouse w for product f is given by

D
f
w =

1

n

∑

c∈C

∑

m∈M

X
fm
wc =

∑

c∈C

d
f
cY

f
wc, (2.19)

which is introduced into the objective function so that its final version becomes the expression
(2.1).

As one can verify, the constraints (2.2)–(2.8) and (2.13)–(2.17) are exactly the same
as introduced in model [10]. The group of constraints (2.2) ensures that the total amount
of raw material r shipped by a supplier to plant p is equal to the amount required by all
products made at this plant, while constraints (2.3) assure that all finished products that
enter a warehouse must leave it. Demands constraints are imposed by (2.4). Global capacity
limits on suppliers, plants and warehouses are given by constraints (2.5). Constraints (2.6)
limit the total amount of a given raw material that is purchased from a particular supplier
or limit the number of units of a finished product that are made in a particular plant.
If origin o is selected to provide the commodity k to destination d, the constraints (2.7)
guarantee this transportation. Capacity constraint for each transportation model is given in
(2.8). In order to deal with the possibility of considering the flow of stock-keeping units
of products (SKU) in the network, besides the flow of products units, we introduce the
factor constraint (2.9). This factor enables that SKU of products can flow from warehouses to
costumers through transportation modes with equivalent occupancy. The constraints (2.10)
and (2.11) impose an upper bound on the number of open and potential warehouses and
plants, respectively N1 and N2, in the studied supply chain. The constraint (2.12) assures
that only one warehouse can provide a specific finished product to a costumer. Finally, the
considered decision variables are defined in constraints (2.13)–(2.17).

As we can see, the proposed model (2.1)–(2.17) is a mixed integer nonlinear
programming problem with a nonlinear objective function and linear constraints. Mixed
integer nonlinear programming are more appropriate to model supply chain network design
problems which include location, transportation and inventory costs than mixed integer
linear programming, because, according to Ballou [8] apud Croxton and Zinn [9], in reality
the relation between the number of warehouses and inventory is non linear.
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Nevertheless, the proposed model has some limitations. For instance, the model
considers storage only in warehouses. Another limiting aspect of the model is the fact that a
unique supplier can not satisfy the demand of each costumer for all products. Discounts on
quantity are not considered for acquisition nor transportation of products.

3. Methodology and Computational Tests

Among the existing methodologies that can solve a general mixed integer nonlinear
programming problem, like

(MINLP) minimize f
(

x, y
)

subject to gi
(

x, y
)

≤ 0, i = 1, . . . , p,

hj

(

x, y
)

= 0, j = 1, . . . , q,

x ∈ X ⊆ R
n, y ∈ Y ⊆ Z

m
+ ,

(3.1)

where f : X × Y → R, gi : X × Y → R (i = 1, . . . , q) and hj : X × Y → R (j = 1, . . . , q),
we choose the outer approximation (OA) algorithm proposed by Duran and Grossmann in
[12]. It consists in solving an alternate sequence of nonlinear programming subproblems
and linear relaxed versions of mixed integer linear programming master problems. If by
assumption (1) X is a nonempty, convex and compact set, Y is finite, (2) f and gi, i = 1, . . . , q,
are convex and differentiable in X × Y , (3) hj , j = 1, . . . , q, is linear function in X × Y , and
(4) certain constraint qualification is satisfied for the nonlinear programming subproblems,
which results from the relaxation of the integrality of y in MINLP, then OA algorithm stops
in a finite number of iterations at a global optimal solution. Otherwise, it reports an infeasible
solution.

One of the advantages of OAmethod is the fact that it generally requires relatively few
cycles or major iterations with less computational effort. The potential of the OA method is
showed in [12], where the authors compared the performance of OAmethod with a standard
branch & bound procedure and with the generalized Benders decomposition (GBD)method
on a set of four test MINLP problems.

Since the objective function (1) is not convex, which contradicts assumption (2), there
is no (theoretical) guarantee that the OA algorithm will find the global optimum. But, in
practice, OA can find global optima of some nonconvex MINLP problems.

3.1. Computational Experiments

We test the proposed model on three randomly generated instances of a certain supply chain
network design. Some of the data originated from an earlier work of Monteiro [14]. The
remaining data were randomly generated in order to get supply chains with balanced costs.
(We skip these details due to the limited space.)

The OA algorithm as well as the instances data were implemented in AIMMS 3.8. The
nonlinear programming subproblems generated by OA algorithm were solved by applying
MINOS 5.5, since, according to [15], it has good performance when dealing with nonlinear
problems with linear constraints, such as the proposed model. With reliability, CPLEX 11
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were applied to solve MILP subproblems generated by OA algorithm. The parameters in
AIMMS were initially set such that the OA algorithm would select automatically (without
the user interference) the starting point for each run. We ran the computational experiments
in a notebook Core2Duo, with 2GHz processor and 2Gb RAM for all instances.

For the experiments on the proposed model (2.1)–(2.17), we choose year as the time
unit of the planning horizon for the design of the network. In this case, as the expected
demand data values were generated in months as well as the lead times of products
replenishments, we set n = 12 (number of segments of the data time unit with respect to
the fixed planning horizon time unit). Also, we set N1 = N2 = 4, and fixed TH = 11.25 based
on recent Brazilian taxes.

First Computational Test

The first instance was randomly generated to present the following supply chain characteris-
tics:

(1) a network with 3 echelons or layers composed by 7 suppliers, 6 plants, 6
warehouses and 20 costumers is considered.

(2) It has a total of 7 distinct raw materials and 3 different finished products.

(3) There are 2 transportation modes (TR1 and TR2) with different charges.

(4) Each supplier has a minimum and a maximum quantity limit of inputs to offer
the manufacturers. The freight in this echelon is the cost of transportation plus the
cost of purchase. There are two options of transportation from suppliers to plants,
which depends on the capacity of transportation mode; in one case the supplier is
in charge of the cost of transportation; in the other case the plant is in charge of it.

(5) Each plant has a fixed maintenance cost as well as a product allocation cost.
The freight between a plant and a warehouse depends on the distance and
transportation server.

(6) Each warehouse has an annual fixed maintenance cost and allocation cost for each
type of product. There is also a handling cost by item. (The ordering cost is included
in the objective function (2.1).)

(7) The distribution process considers a unique supplier by product for each costumer.

(8) Each costumer has a specific demand for each product, with mean and variance
values based on the monthly historical demand. (Amonth has 20 working days.)

(9) The third product (PR3) is in Class A of the classification ABC. Its lead time lasts 2
days, the other products have lead time equals to 3 days.

(10) The product PR3 is available in stock 95% when a order is placed, while other
products are available 85%.

(11) All three products have corresponding uk
o = 1 and gkm = 1. This means that one

unit of a product has equivalent unit in both transportation modes.

Thus, considering all the characteristics of the supply chain, the first randomly
generated instance for problem (2.1)–(2.17) has 1,525 real variables and 1,293 binary
variables, and 1,444 functional constraints. An optimal solution was found by the
implemented OA algorithm in 8,013.87 seconds, with 12 calls to MINOS and 12 calls to
CPLEX. (As mentioned early, there is no guarantee that this optimal solution is global.)
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Table 1: Costs for the optimal network design of instance 1.

Optimal costs (in $)

Acquisition and transportation costs (supplier-plant) 452,793.80

Transportation costs (warehouse-costumer) 241,901.01

Transportation costs (plant-warehouse) 119,486.43

Carrying costs (warehouses) 79,036.14

Maintenance costs (plants) 169,880.00

Maintenance costs (warehouses) 59,234.00

Allocation costs (products-plants) 19,377.01

Allocation costs (products-warehouses) 8,289.17

Other allocation costs 3,503.14

Total cost 1,153,500.70

Table 2: Inventory control information for products in warehouse 1 (WH1) of instance 1.

Inventory information
WH1

PR1 PR2 PR3

Order point 562 697 529

Order quantity 576 588 611

Lead-time (in month) 0.15 0.15 0.10

Demand mean value 3339 4125 4262

Security stock 62 79 103

Both routines realized 12 and 6,888,781 iterations, respectively. The amount of memory used
by AIMMS was 96.7MB. The costs related to the optimal design of the logistics network
associated to the first instance are shown in Table 1. The information related to inventory
control of the optimal design for the finished products of instance 1 is presented in Table 2.
In Figure 1, the optimal logistics network flow of the products from warehouse WH1 to the
customers in instance 1 is illustrated.

Second Computational Test

The second instance has the same characteristics as the first one with more network
components. Corresponding random data was generated to have a supply chain structure
with 6 finished products, 12 rawmaterials, 10 suppliers, 40 costumers, 8 plants, 8 warehouses,
and still with 2 transportation modes.

For this instance, the sixth product (PR6) is stored in packages of 6 units. The SKU of
PR6 has a volume of 2.4 in both transportation modes. For the remaining products, one unit
of a product has equivalent unit in both transportation modes. With respect to classification
ABC, we have that PR3 belongs to class A, PR2 and PR6 are in class B, and PR1, PR4 and PR5
are in class C. The availability in stock is 95%, 85%, and 70% for products in the classes A, B
and C, respectively. The lead time for products in the classes A, B and C lasts 2, 3 and 4 days,
respectively.
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Figure 1: Optimal flow map of the finished products of instance 1.

The second computational test with problem (2.1)–(2.17) has 6,529 real variables
and 4,366 binary variables, and 5,061 functional constraints, corresponding to the data of
the second instance. An optimal solution was found by the implemented OA algorithm in
10,383.69 sec, with 3 calls to MINOS and 3 calls to CPLEX. Both routines realized 3 and
3,228,522 iterations, respectively. The amount of memory used by AIMMS was 101.0MB. The
costs related to the optimal design of the logistics network associated to the second instance
are shown in Table 3. For the products of instance 2, the information related to inventory
control of the optimal design is presented in Table 4. In Figure 2, the optimal logistics network
flow of the products from warehouses WH4 and WH5 to the customers in instance 2 is
illustrated.

Third Computational Test

Consider that the logistics network of instance 3 is structured as instance 1. The data of
instance 3 was randomly generated so that its network has a total of 10 distinct finished
products and 15 different raw materials. It also has 60 costumers, and a demand for each
product that varies from 300 to 5900 units. The products PR7 and PR9 are stored in packages
of 6 and 10 units, respectively. In this case, the occupancy in terms of transportation rate
(gkm) for the new 4 products PR7, PR8, PR9 and PR10 is 2.8, 1.1, 3.0 and 1.2, respectively. We
still have 2 transportation modes through all the logistics network. Products PR7 and PR10
belong to class A of the ABC classification, both have lead time of 2 days and 95% of stock
availability. Products PR3, PR6 and PR8 are in class B. Each product in class B has lead time
equals to 3 days and 85% stock availability. The remaining products are in class C, each of
them has lead time of 4 days and 70% stock availability.

The third computational test with instance 3 of problem (2.1)–(2.17) has 13,281 real
variables and 8,142 binary variables, and 10,107 functional constraints. An optimal solution
was found by the implemented OA algorithm in 15,342.75 sec, with 2 calls to MINOS and 2
calls to CPLEX. Both routines realized 2 and 2,175,477 iterations, respectively. The amount of
memory used byAIMMSwas 131.2MB. The costs related to the optimal design of the logistics
network associated to the third instance are shown in Table 5. The information related to
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Table 3: Costs for the optimal network design of instance 2.

Optimal costs (in $)

Acquisition and transportation costs (supplier-plant) 1,187,714.69

Transportation costs (warehouse-costumer) 432,554.07

Transportation costs (plant-warehouse) 66,743.19

Carrying costs (warehouses) 212.484.98

Maintenance costs (plants) 218,698.00

Maintenance costs (warehouses) 129,296.00

Allocation costs (products-plants) 45,697.42

Allocation costs (products-warehouses) 16,691.82

Other allocation costs 18,067.32

Total cost 2,327,947.48

Table 4: Inventory control information for products in warehouses 4 and 5 (WH4 and WH5) of instance 2.

Inventory information
WH4 WH5

PR1 PR2 PR3 PR4 PR5 PR6

Order point 1,113 1,037 754 773 882 1,634

Order quantity 651 743 777 593 612 983

Lead-time (in month) 0.20 0.15 0.10 0.20 0.20 0.15

Demand mean value 5,353 6,332 6,387 3,718 4,238 10,030

Security stock 43 87 115 30 34 130

Figure 2: Optimal flow map of the finished products of instance 2.
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Table 5: Costs for the optimal network design of instance 3.

Optimal costs (in $)

Acquisition and transportation costs (supplier-plant) 3,765,730.62

Transportation costs (warehouse-costumer) 2,949,963.50

Transportation costs (plant-warehouse) 1,228,168.87

Carrying costs (warehouses) 633,424.34

Maintenance costs (plants) 331,910.00

Maintenance costs (warehouses) 114,297.00

Allocation costs (products-plants) 101,683.07

Allocation costs (products-warehouses) 46,628.50

Other allocation costs 23,881.93

Total cost 9,195,687.82

Table 6: Inventory control information for products in warehouse 2 (WH2) of instance 3.

Products Order point Order quantity Lead-time (in month) Demand mean value Security stock

WH2

PR2 875 651 0.20 834 41

PR6 1,133 797 0.15 1,027 106

PR7 818 744 0.10 702 116

PR8 825 619 0.15 734 91

PR10 745 745 0.10 611 134

Table 7: Inventory control information for products in warehouse 1 (WH1) of instance 3.

Products Order point Order quantity Lead-time (in month) Demand mean value Security stock

WH1

PR1 1,558 865 0.20 1,510 48

PR2 903 602 0.20 864 39

PR3 1,381 865 0.15 1,284 97

PR4 1,136 762 0.20 1,100 36

PR5 1,293 696 0.20 1,252 41

PR6 1,336 931 0.15 1,218 118

PR7 369 532 0.10 294 75

PR8 1,295 839 0.15 1,183 112

PR9 1,686 857 0.20 1,628 58

PR10 1,124 947 0.10 935 189

inventory control of the optimal design for the products of instance 3 is presented in Tables 6
and 7. In Figure 3, the optimal logistics network flow of the products from warehouses WH4
and WH5 to the customers in instance 3 is illustrated.

3.2. Computational Analysis

The summary of the computational experiments with 3 different instances is presented in
Table 8. We observe that the OA algorithm realized more iterations to solve instance 1 than



14 Mathematical Problems in Engineering

Figure 3: Optimal flow map of the finished products of instance 3.

Table 8: Computational results for all instances.

Instance 1 Instance 2 Instance 3

Total variables 2,818 10,895 21,423

Binary variables 1,293 4,366 8,142

Functional constraints 1,444 5,061 10,107

Calls to NLP and MILP solvers 12 3 2

Iterations for NLP solver 12 3 2

Iterations for MILP solver 6,888,781 3,228,522 2,175,477

Total time (sec) 8,013.87 10,383.49 15,342.75

Used memory (MB) 96.7 101.0 131.2

to solve the others. One possible explanation is the fact that the OA algorithm might have
generated many infeasible nonlinear subproblems, which in turn is an example of a real
drawback of this algorithm. In Table 9, we observe that as the supply chain structure becomes
more complex in number of components, the majority of the costs increases.

4. Final Comments

We have proposed a new integrated and flexible mathematical formulation for the design
of a supply chain network that ultimately shall support decision makers of diverse fields
and markets. The proposed model is based on existing formulation from the literature which
was extended to include not only facility locations, production, and transportation, but also
inventory levels in warehouses based on the stochastic demand of customers, for a more
realistic perspective. Although the proposed model has an objective function with a non
convex term, we decided to apply the outer approximation algorithm to obtain an optimal
solution, because empirical evidences have shown that the outer approximation algorithm
can solve a MINLP problem in less computational effort.
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Table 9: Cumulative costs for the network design for all instances.

Costs description Instance 1 Instance 2 Instance 3

Acquisition and transportation costs (supplier-plant) 452,793.80 1,187,714.69 3,765,730.62

Transportation costs (warehouse-costumer) 241,901.01 432,554.07 2,949,963.50

Transportation costs (plant-warehouse) 119,486.43 66,743.19 1,228,168.87

Carrying costs (warehouses) 79,036.14 212.484.98 633,424.34

Maintenance costs (plants) 169,880.00 218,698.00 331,910.00

Maintenance costs (warehouses) 59,234.00 129,296.00 114,297.00

Allocation costs (products-plants) 19,377.01 45,697.42 101,683.07

Allocation costs (products-warehouses) 8,289.17 16,691.82 46,628.50

Other allocation costs 3,503.14 18,067.32 23,881.93

Total costs 1,153,500.70 2,327,947.48 9,195,687.82

The integrated analysis of the decision variables, related to suppliers selection, level
of production, transportation modes and level of stocks, in a model for one-period, can offer
reduced logistics costs, which shows the important contribution of this study.

On the other hand, flexibility of themodel allows one to easily either reduce or increase
the logistics network complexity in number of components and of layers. Moreover, one can
modify the proposed model to consider costs associated to stocks in transit, backlogging,
variability in lead time per product, just to mention a few.

Finally, a supply chain network design model that introduces the ABC classification
for finished products should support decision on choosing a plan that gives importance to
products whose profit contributions are higher.
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