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A mesh-free semi-analytical Fourier-based method is presented to evaluate the frequency-dependent losses in the windings of SSTs
with foil-wound transformers. In the employed diffusion equation, which accounts for induced eddy currents, the imposed current
density and conductivity in the transformer window area are represented using spatial Fourier series and method of images. As a
result, induced current density distribution in foil conductors and AC loss in MFTs is calculated using the semi-analytical method.
The proposed method is verified using Finite Element Method (FEM). It is observed that with the considered approach one can
estimates the AC winding loss in the frequency range of 5-25 kHz, with 2.7% maximum absolute error and approximately 2.5 times
less number of degrees-of-freedom compared to FEM computations.

Index Terms—Solid State transformers, medium frequency transformers, foil winding, eddy current, Fourier based analysis,
analytical modeling of electromagnetic fields.

I. INTRODUCTION

SOLID STATE TRANSFORMERS (SSTs) are power
conversion systems composed of two power electronic

stages coupled to the primary and secondary sides of a
medium frequency transformer (MFT). While the power
electronics enable improved control of the terminal voltages
and currents as well as the reactive and active power
flows, MFT provides reduced volume and weight in the
isolation stage. These benefits makes SSTs an emerging
alternative to low frequency transformers for renewable
energy resources, smart grids and traction systems. However,
these improvements introduce new challenges in the design of
novel SSTs [1]. The considerations toward heat management
of the increased power density, as well as the medium
voltage (MV) isolation requirements for reduced geometric
dimensions of MFTs becomes important. Therefore, the
accurate modeling of MFTs in the design approaches is a
necessity.

The previous research direction in developing high
power, efficient MFT designs were mostly based on the
utilization of litz wire. Multiple single insulated strands in
the litz wire limit the frequency-dependent skin effect loss.
Subsequently, employing twisted and interleaved winding
topologies with litz wire brings reduction of proximity effect
loss in MFTs [2]. However, the manufacturing challenges
of ultra-thin strand conductors and the low fill factor of litz
wire have promoted foil conductors for MFT windings [3].
Foil-wound MFTs exhibit high utilization of window area
as well as reduced manufacturing cost. However, twisting
and interleaving ultra-thin and high foil conductors is not
practical. Thus, the frequency-related winding loss becomes
a dominating component in analyzing the general system
operation performance of foil-wound SSTs.

This study aims to facilitate the AC losses computation by
developing a semi-analytical approach. The proposed method
is a mesh-free Fourier-based method, in which the model
parameters are described by periodic functions to analyze
electromagnetic field distributions [4]. The proposed method is
implemented on a foil-wound SST to find a 2D expression for
the induced current density distribution inside the conducting
regions in the MFT window area.

This paper is structured as follows: Section I is a brief
survey on the classical methods for calculating AC losses
in MFTs. Section II details the proposed semi-analytical
method. Finally, Section III compares the accuracy and the
computational cost of the proposed method with FEM.

II. CLASSICAL METHODS

The predictions of the current density distribution and the
AC losses due to skin and proximity effects have been ad-
dressed in several studies mentioned in [5]. The most referred
method is the ”ready-to-use” Dowell’s 1D expression for AC
resistance of transformer windings [6]. This method assumes
the height of the foil windings equal to the height of the
winding window, which enables a uni-directional magnetic
field and current density distribution in the window area of
MFTs. However, due to the insulation requirements in higher
voltage applications, the height of the winding is limited within
the isolation distances in the window area of the transformer.
This constraint introduces some deviations from Dowell’s
method. The magnetic field gets a second-dimensional com-
ponent causing high current density concentrations in the foil
corners, called the ”edge effect” [7]. The error in Dowell’s
equation relative to a full cylindrical solution can be as much
as nearly 33% [8]. However, the deviation of classical methods
is intensely higher in MFTs, since the isolation clearance
distance between core and windings increases.

Later, Bennett [9] and Ferreira [10], [11] modified the Dow-
ell’s method by introducing porosity factor (η) into closed-
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Fig. 1. The comparison of calculated resistance factor using classical methods
and 2D FE method for an arbitrary reference MFT model with η = 0.72.

form equation of Dowell. Porosity factor is the geometric ratio
of the conductor height to window height of MFT. However,
accurate estimation of the 2D current distribution in high-
frequency applications is mostly achieved using FEM analysis
[12]. Fig. 1 shows the deviation of classical methods in
calculating resistance factor compared to FEM for an arbitrary
foil-wound MFT. Resistance factor Fr is the ratio of AC to
DC resistances, and penetration ratio ∆, is defined as:

∆ =
dw√

1
πµσf

, (1)

where dw is the conductor thickness, µ, σ and f are the
permeability, conductivity of the conductor and frequency,
respectively.

The accuracy of FEM comes with the cost of extra fine
mesh, implying high computational cost, making it a less-
preferable choice for design tools. In addition to research con-
tributed to 2D eddy loss estimations by introducing porosity
correction coefficients, utilization of empirical approaches is
proposed in [5]. However, these methods are mainly valid for
specific geometries and need Preprocessing. Thus, the need
for a flexible and easy-to-apply method is a research question
not answered yet.

III. SEMI-ANALYTICAL FOURIER-BASED METHOD

The concept of the proposed 2D semi-analytical method is
illustrated in Fig. 2. To solve the 2D induced current density
distribution in the foils of the winding, conducting and non-
conducting surfaces in the window area are divided into mul-
tiple regions. By using method of images, it is assumed that
the window area is periodic in axial direction. The imposed
current density and conductivity of the conducting regions are
represented using spatial harmonic coefficients of a Fourier
series. Since the relative permeability in the ferromagnetic
core materials is excessively higher than the permeability in
the conducting and non-conducting materials, it assumed that
the core has an infinite permeability. This assumption enables
replacing the core domain by Neuman boundary conditions
(BC) on the window area boundaries.

Neuman boundary conditions

continuous boundary conditions

Neuman 

boundary 

conditions

due to 

periodicity

method 

of 

images 

applied 

µ
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Fig. 2. The geometric model of the window area of a MFT and the
implementation of the proposed method. (a) Method of images applied to
the window area of MFT. (b) Conducting and non-conducting regions and the
boundary conditions.

A. Magnetic Field Formulation
The 2D electromagnetic field distribution in the window

area is solved using z-axis magnetic vector potential, Az(x, y).
Based on the derivative form of Maxwell’s equations and
the constitutive relations, Laplace equation for non-conducting
regions and Poisson equation for conducting regions can be
derived as:

∇2Az(x, y) = 0, (2)

∇2Az(x, y) = −µ Jz(x, y), (3)

where Jz(x, y) is the 2D current density distribution in the
conducting regions. The current density is composed of two
terms; the imposed and the induced current densities. Where
the induced current density is defined by:

J ind
z (x, y) = −σ(y)

∂Az(x, y)

∂t
, (4)

the diffusion equation for conducting regions is derived as:

∂2Az(x, y)

∂x2
+
∂2Az(x, y)

∂y2
=

−µ
[
J imp
z (y)− jωσ(y)Az(x, y)

]
,

(5)

where ω is the angular frequency of the imposed current.

B. Fourier-based Semi-analytical Method
To solve (5), method of images is applied in axial direction

of the geometry as shown in Fig. 2. The Fourier series
representation of imposed current density and conductivity of
foils are expressed as:

J imp
z (y) =

N∑
n=−N

Jn e
jkny, (6)
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σ(y) =

N∑
n=−N

σn e
jkny. (7)

With a half period of the region τy , the spatial frequency
kn is defined as:

kn = (nπ/τy). (8)

Since the imposed current density and conductivity, as
source terms of the diffusion equation, are expressed using
Fourier series, the solution for the magnetic vector potential
is in terms of Fourier series as well. After the derivations
detailed in [13], the expression for magnetic vector potential
expressions in non-conducting regions, Anon−cond

z , and con-
ducting regions, Acond

z , are derived as:

Anon−cond
z = [e(x− xR)a + e(xL − x)b] ejKy, (9)

Acond
z = Q [E(x− xR)a + E(xL − x)b + P ] ejKy, (10)

where P is the source term of diffusion equation and is
expressed by:

P =

 (K2 + jωµΨ̄)−1 µ J imp
n , for : n 6= 0

− 1
2µ J

imp
n (x− xL)2, for : n = 0.

(11)

Where e(x) and E(x) are diagonal matrices containing
eknx and eλnx elements, respectively, Ψ̄ is a Toeplitz ma-
trix containing Fourier coefficients of the position dependant
conductivity, σn.

The multiplication of conductivity and magnetic vector
potential in (4), both represented using Fourier series, results
in multiplication of two matrices. Matrix Q and Λ contain
eigenvalues and eigenvectors resulting from the decomposition
of the resultant matrix:

QΛ2Q−1 = K2 + jωµΨ̄. (12)

The derived equations for the magnetic vector potential are
composed of a set of linear equations corresponding to each
spatial harmonic. Therefore, a system of linear equations
containing the unknowns an and bn for each region can be
formed and solved using a set of boundary conditions.

The high aspect ration of the conductor geometry causes
the system of equations to be ill-conditioned. To improve
the condition number, scaling has been implemented on the
coefficients presented in a and b, as detailed in [14]. This
implementation scales the increasing values of coefficients in
a and the reducing values of coefficients in b with respect to
the harmonic order of each coefficient. The scaling has been
implemented by assigning xR and xL to the formulation as
the right and left boundaries of each region.

Next, the expression for the induced current density in
conducting regions is achieved by substituting (7) and (10)
in (4),

J ind
z (x, y) =

(−jωΨ̄) [Q (E(x− xR) a + E(xL − x) b)] ejKy.
(13)

Finally, the loss in the conductors is calculated using the
surface integral of the current density in the conducting
regions.

Ploss = Re
{

1

2σ

∫
S

Jz(x, y) · J∗
z (x, y)ds

}
. (14)

C. Boundary Conditions

The solution for the induced current density distribution
in (13) is achieved by applying a set of boundary condi-
tions (BCs) to the boundaries of the regions of the geometry
shown in Fig. 2.
Expressions for boundary values of the tangential magnetic
field intensity (Hy) and normal flux density (Bx) on the
boundaries of conducting regions xb is derived as:

Hy = − 1

µ
QΛ

[
E(xb − xR)a−E(xL − xb)b +B0

y

]
, (15)

Bx = jKQ
[
E(xb − xR)a + E(xL − xb)b +B0

x

]
. (16)

B0
y and B0

x are the offset values of the tangential and normal
flux densities for each region, expressed by:

B0
y = mµJ imp

0 dw, (17)

and

B0
x =

 (K2 + jωµΨ̄)−1 µJ imp
n , for : n 6= 0

− 1
2mµJ

imp
n d2w, for : n = 0,

(18)

where J0 is the zero harmonic component of the imposed
current density, and m is the turn number of the conducting
regions in the winding window.

Similarly, Hy and Bx on the boundaries of non-conducting
regions are expressed by:

Hy = − 1

µ
K
[
e(xb − xR)a− e(xL − xb)b +B0

y

]
, (19)

Bx = jK
[
e(xb − xR)a + e(xL − xb)b +B0

x

]
. (20)

While the core is assumed to be infinitely permeable, the
magnetic flux density on the region boundaries adjacent to
the core is zero along the tangential axis. By applying the
method of images, as shown in Fig. 2 (a), the imposed current
density expressed by Fourier series is evenly periodic in the
axial direction. This periodicity forces the tangential magnetic
field to zero on the upper and lower boundaries of the window
area. On the left and right boundaries of the window area,
the tangential magnetic field is forced to zero using (19).
Consequently, the continuity BCs are applied to the boundaries
of the non-conducting and conducting regions, shown in Fig.2
(b). These BCs force continuation of normal magnetic flux
density Bx and tangential magnetic field intensity Hy inside
the window area.
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Fig. 3. The geometric model of the window area of the benchmark MFT.

IV. RESULTS AND DISCUSSION

To evaluate the accuracy of the proposed method, a shell
type MFT benchmark, shown in Fig. 3, is simulated using
the semi-analytical method and FEM. Planar symmetry of
the model is used to reduce the computations. The geometric
specifications of the benchmark are given in Table I. The
windings have a conductivity of 37.74 MS/m. To investigate
the frequency-dependent performance of the proposed method,
the operating frequency is changed from 5 kHz to 25 kHz.
The imposed current in foils is equal to 10 A. Initially,
the problem is solved using Comsol Multiphysics 5.6 FEM
software. The model is meshed using second-order quadratic-
shaped elements in the conducting regions and triangular
elements in the non-conducting regions of the window area.
The maximum size of the mesh elements is limited based on
the skin depth of the conductor operating at 20 kHz. In order
to determine the required number of the mesh elements in the
conducting regions of the model, a mesh convergence study
is carried for FEM.

The current density distribution for the first turn of the
primary winding, solved using the semi-analytical method,
and the the local discrepancy between the semi-analytical
method and FEM is shown in Fig. 4. The point-to-point
evaluation of the current density shows that the proposed
semi-analytic method is in line with FEM results. The highest
discrepancy is present at the upper and lower edges of the
foil, where the Gibbs effect is present. The problem can be
solved by introducing Lancsoz sigma factor to the Fourier
coefficients [15]. However, this deviation on the edges has
low impact on the cumulative winding loss estimations of the
MFT, as seen in Fig. 5.

A comparison of calculated resistance factor of the
windings using the semi-analytical and FEM methods is
given in Fig. 5. The simulations are done for a frequency
range of 5 kHz to 25 kHz. The semi-analytic solution with
N=200 gives maximum absolute error, ε, of 2.7% compared
to FEM at the frequency of 20 kHz. ε is the maximum

TABLE I
SPECIFICATIONS OF THE BENCHMARK.

Dimensions Symbol Value

Number of winding turns N1/N2 14/14

Foil thickness dw 0.5 mm

Foil height hw 90 mm

Inter layer insulation thickness dins 0.2 mm

Core window height hc 126 mm

Winding-core limb clearance distance dwc 14 mm

Winding-core yoke clearance distance hwc 30 mm

Inter-winding clearance distance dw12 36 mm

x (mm)

FEM vs. Semi-ANA

x (mm)

y 
(m

m
)

Semi-ANA

y 
(m

m
)

Fig. 4. The current density distribution in one foil calculated by FEM and
the semi-analytical method (Semi-ANA) and the local discrepancy distribution
between semi-analytic method and FEM (f = 20 kHz).

absolute deviation of results in the applied frequency range,
calculated with semi-analytical method compared to FEM.

To evaluate the computational cost of the proposed method,
the number of degrees-of-freedom (dof) of the semi-analytical
method is compared with FEM. As detailed in Table II, for
all solutions in the semi-analytical method, number of dof is
lower compared to FEM. For the semi-analytical method with
N=200 dof is approximately 2.5 times smaller than dof in
FEM. In addition to dof, the sparsity of the developed system
of linear equations is evaluated for both methods. Either of
the two methods shows a high degree of sparsity. To make a
fair comparison in terms of computational costs, the developed

TABLE II
A COMPARISON OF COMPUTATIONAL COST AND ERROR IN

SEMI-ANALYTICAL METHOD (SEMI-ANA) WITH DIFFERENT HARMONIC
NUMBERS COMPARED TO FEM.

Method dof Sparsity(%) Time(s) ε(%)

FEM 27964 99 12.2 -

Semi-ANA, N=200 11658 96 15.01 2.7

Semi-ANA, N=150 8758 96 5.9 4.3

Semi-ANA, N=120 7018 96 1.54 7.4

Semi-ANA, N=80 4698 96 0.6 10.2
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,(a)

(b)

,

,

,

,
,

Fig. 5. Comparison of results in the frequency range of 5-25 kHz, calculated
using FEM and semi-analytical method. (a) Resistance factor (b) Absolute
deviation of RF estimated using semi-analytical method compared to FEM.

stiffness matrix and source vector from COMSOL are exported
to MATLAB. For the fairness of the comparison, both systems
of equations derived from FEM and proposed approach, are
solved using direct solver. A comparison of the simulation time
is included in Table II. The solution with N=200 with 2.7%
ε is slightly slower than FEM since the sparsity of system of
linear equations in FEM is higher than the proposed method.
However, the solution time for the semi-analytical method with
N=150 is achieved with close to 2.5 times less processing time
compared to FEM and with ε of 4.3%. Choosing a proper
solver for the system of linear equations developed in the
proposed method could provide the advantages of reduced dof.
In addition, the reduced amount of dof enables a faster post
processing. Finally, the mesh free approach can be added to the
advantages of the proposed approach. The meshing time of the
problem under study for this paper takes approximately half of
the solving time which definitely contributes to computational
burden in a design routine.

V. CONCLUSION

A mesh-free Fourier-based method is presented to model the
AC winding loss in foil-wound MFTs. The proposed semi-

analytical approach uses the Fourier-based representation of
the position dependent conductivity in the foils and imposed
current density in the window area of MFTs. The solution of
the magnetic vector potential in the window area of MFT is
used to calculate the AC loss and resistance factor of the MFT
winding. Results obtained by the semi-analytical method for
the frequency range of 5-25 kHz show that the size of the
system of linear equations in the semi-analytical method is
reduced by 2.5 times compared to FEM, and a good level of
accuracy with maximum absolute error of 2.7% is achieved.
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