
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. FINANCIAL MATH. c© 2011 Society for Industrial and Applied Mathematics
Vol. 2, pp. 439–463
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Abstract. We develop an efficient Fourier-based numerical method for pricing Bermudan and discretely mon-
itored barrier options under the Heston stochastic volatility model. The two-dimensional pricing
problem is dealt with by a combination of a Fourier cosine series expansion, as in [F. Fang and
C. W. Oosterlee, SIAM J. Sci. Comput., 31 (2008), pp. 826–848, F. Fang and C. W. Oosterlee,
Numer. Math., 114 (2009), pp. 27–62], and high-order quadrature rules in the other dimension.
Error analysis and experiments confirm a fast error convergence.
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1. Introduction. In mathematical finance, stochastic volatility models have been devel-
oped to capture the volatility smiles and skews present in market quotes. Within this class,
the Heston stochastic volatility model [10], in which the variance of (the logarithm of) the
stock price is modeled by a square-root process, has become popular in industrial practice.
The pricing of European options is particularly efficient.

Fourier-based integration methods require the availability of the characteristic function
(ChF), i.e., the Fourier transform of the probability density function of the underlying stock
price. Since the ChF of Heston’s model has already been given in the original paper [10], fast
and accurate valuation tools for European options under Heston’s model are available.

Many exotic financial products include some form of path dependency. Monte Carlo
simulation methods are often used for the valuation of such products in practice. As a result,
the recent numerical advances in the context of Heston’s model were obtained mainly for
Monte Carlo simulation methods [5, 3].

In this paper we aim to develop a stable and efficient Fourier-based valuation method that
can price both Bermudan and discrete-barrier options under the Heston stochastic volatility
dynamics. It is in essence a generalization of the COS [7, 8] method, which is an efficient
option pricing method for (one-dimensional) Lévy processes, to the (two-dimensional) Heston
model. The following three issues, however, make this topic challenging:

– Near-singular behavior of the probability density of the variance:
The variance in the Heston model is governed by a noncentral chi-square distribution.
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440 FANG FANG AND CORNELIS W. OOSTERLEE

For some combinations of the relevant parameters, the density of the variance grows
drastically in the left-side tail; i.e., the density values tend to infinitely large numbers
as the variance approaches zero. Truncation of the integration range for the variance
may then easily introduce significant truncation errors.

– The integration kernel is not known explicitly :
For path-dependent options, the pricing formula requires a two-dimensional integration
over the log-stock price and the variance. The probability density function of the joint
distribution is, however, not known in closed form and has to be recovered from the
ChF.

– Quadratic computational complexity :
In numerical analysis, the highest computational speed is related to linear compu-
tational complexity, which means that the computational time grows only linearly
w.r.t. an increasing number of unknowns and/or exponential error convergence; i.e.,
the error decreases exponentially with a growing number of unknowns.
A direct application of basic numerical integration rules for options with early-exercise
features under Heston’s model would result in quadratic computational complexity in
both dimensions and would therefore cost a significant amount of CPU time.

The contributions of the present paper are the following. We determine parameter sets
which give rise to near-singular behavior and tackle the problem by a transformation from the
variance domain to the log-variance domain. Second, to solve the two-dimensional problem
in a robust and efficient manner, we combine the Fourier cosine expansion from [8] with
quadrature rules. In section 2, we describe the Heston asset dynamics. We focus on the
issue of the left-side tail of the variance density. In section 3, the discrete pricing formula
for Bermudan options is derived and an efficient recursive algorithm is developed. Minor
differences when pricing discrete-barrier options are highlighted in section 4. In section 5, the
error convergence and the error propagation are analyzed. Various numerical experiments are
presented in section 6, and conclusions are drawn in section 7.

2. Heston model. In this section we give some insight into the Heston model. After some
known results from the literature, we focus, in particular, on the near-singular behavior of
the variance process near the origin. By means of several numerical experiments, we find the
relevant parameter sets giving rise to this phenomenon and propose a transformation to deal
with it when pricing options.

2.1. Basics. The Heston stochastic volatility model defines the dynamics of the logarithm
of the stock price (log-stock), xt, and the variance, νt, by the following stochastic differential
equations (SDEs) [10]:

dxt =

(
μ− 1

2
νt

)
dt+ ρ

√
νtdW1,t +

√
1− ρ2

√
νtdW2,t,(1)

dνt = λ (ν̄ − νt) dt+ η
√
νtdW1,t,(2)

where the three nonnegative parameters, λ, ν̄, and η, represent the speed of mean reversion, the
mean level of variance, and the volatility of the volatility process, respectively. The Brownian
motions, W1,t and W2,t, are independent, and ρ is the correlation between the log-stock and
the variance processes.
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The square-root process defined in (2) precludes negative values for νt, and if νt reaches
zero, it can subsequently become positive. The Feller condition, 2λν̄ ≥ η2, guarantees that νt
stays positive; otherwise, it may reach zero. As indicated in [9, 6], with

q := 2λv̄/η2 − 1 and ζ := 2λ/
(
(1− e−λ(t−s))η2

)
,

the process 2ζνt ∼ χ2
(
q, 2ζνse

−λ(t−s)
)
, for 0 < s < t, is governed by the noncentral chi-

square distribution with degree q and noncentrality parameter 2ζνse
−λ(t−s). Therefore, the

probability density function of νt given νs reads as

(3) pν (νt|νs) = ζe−ζ(νse−λ(t−s)+νt)

(
νt

νse−λ(t−s)

) q
2

Iq

(
2ζe−

1
2
λ(t−s)√νsνt

)
,

where Iq(·) is the modified Bessel function of the first kind with order q.
The Feller condition is thus equivalent to “q ≥ 0.” This is difficult to satisfy in practice.

It has, for example, been reported [3] that one often finds 2λv̄ � η2 from market data, in
which case the cumulative distribution of the variance shows a near-singular behavior near the
origin, or, in other words, the left tail of the variance density grows extremely fast in value.

Such a behavior in the left tail may easily give rise to significant errors, especially for
integration-based option pricing methods, for which the integration range needs to be trun-
cated.

The exact simulation method, developed in Broadie and Kaya [5], provides, next to an
exact formula to sample the log-stock price, insight into the distribution for stochastic volatility
models. Integration of (1) and (2) yields [5]

xt − xs = μ(t− s)− 1

2

∫ t

s
ντdτ + ρ

∫ t

s

√
ντdW1,τ +

√
1− ρ2

∫ t

s

√
ντdW2,τ ,(4)

νt − νs = λν̄(t− s)− λ

∫ t

s
ντdτ + η

∫ t

s

√
ντdW1,τ .(5)

Equation (5) can be rewritten as an equation for
∫ t
s

√
ντdW1,τ , which, substituted into (4),

gives the following exact formula for xt:

xt − xs = μ(t− s) +
ρ

η
(νt − νs − λν̄(t− s)) +

(
λρ

η
− 1

2

)∫ t

s
ντdτ

+
√

1− ρ2
∫ t

s

√
ντdW2,τ .(6)

Equation (6) can be used to sample xt once the values of the variance, νt, and the time-
integrated variance,

∫ t
s ντdτ , are available. The variance is then sampled from (an approxima-

tion of) the noncentral chi-square distribution, and the time-integrated variance is sampled
from a distribution which is recovered from the ChF, Φ(u; νt, νs), for which a closed-form
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expression is available:

Φ(υ; νt, νs) := E

[
exp

(
iυ

∫ t

s
ντdτ

)∣∣∣∣ νt, νs
]

=

Iq

[
√
νtνs

4γ(υ)e−
1
2
γ(υ)(t−s)

η2(1− e−γ(υ)(t−s))

]

Iq

[
√
νtνs

4λe−
1
2
λ(t−s)

η2(1− e−λ(t−s))

] · γ(υ)e
− 1

2
(γ(υ)−λ)(t−s)(1− e−λ(t−s))

λ(1− e−γ(υ)(t−s))

· exp
(
νs + νt
η2

[
λ(1 + e−λ(t−s))

1− e−λ(t−s)
− γ(υ)(1 + e−γ(υ)(t−s))

1− e−γ(υ)(t−s)

])
,(7)

where, again, q = 2λν̄/η2 − 1 and Iq(x) is the modified Bessel function of the first kind with
order q. Variable γ(υ) is defined by

(8) γ(υ) :=
√
λ2 − 2iη2υ.

2.2. The left-side tail. As a first step to understanding the near-singular behavior in the
variance direction, we set up a series of numerical experiments to examine when the near-
singular behavior occurs. The following results can be used as a rule of thumb to determine
the values for which the variance density is governed by extremely large values at the left tail.

Result 2.1 (the left-side tail). Although each of the three parameters, λ, ν̄, and η, in (2)
plays a unique role in the tuning of the shape and the magnitude of the variance density, the
decay rate at the left tail can be well characterized by values of q, whose definition interval is
[−1,∞). Based on the nonnegativeness of λ, ν̄, and η, the near-singular problem occurs when
q ∈ [−1, 0], which is directly related to the Feller condition.

The experiments that support this insight are set up as follows: The values of ν̄ and η are
drawn randomly from [0, 1] (we consider interval [0, 1] reasonable for both ν̄ and η), and λ is
given by (1 + q)η2/(2ν̄). The experimental results are displayed in Figure 1.

The value of q determines the decay rate in the left tail of the variance density function,
whereas the right-side tail always decays to zero rapidly. For q � 0, the density values
decrease towards zero in both tails. For q smaller and approaching 0, the decay of the left-side
tail slows down. Near q = 0, the left tail stays almost constant. For q ∈ [−1, 0], the left tail
increases drastically in value.

In a recent paper [3], several challenging test cases, based on different values of λ, η, and ν̄,
were illustrated. For all those test cases we find q ≈ −0.96, which indeed is an indication of
difficult tests; see Figure 1.

The fact that q determines the decay rate of the densities’ left tail can be understood if
we take a closer look at (3) for the variance density function. When q changes sign, both
functions, (·)q/2 and Iq(·), change shape around the origin; i.e., they go from monotonically
increasing to monotonically decreasing.

2.3. Transformation to log-variance process. Based on the insights in the previous sub-
sections, we propose here a solution strategy for the problem of the left-side tail: We transform
the problem from the variance domain to the log-variance domain.
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Figure 1. Decay rate in the left-side tail of the variance density as q approaches −1 from above.
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Figure 2. Decay rate of the left tail of the log-variance density in original scale and log-scale as q approaches
−1.

By the change of variables, the density of the log-variance process, based on (3), reads as

(9) pln(ν) (σt|σs) = ζe−ζ(eσse−λ(t−s)+eσt)

(
eσt

eσse−λ(t−s)

) q
2

eσtIq

(
2ζe−

1
2
λ(t−s)

√
eσseσt

)
,

where σs := ln(νs) and pln(ν)(σt|σs) denotes the probability density of the log-variance at a
future time, given the information at the current time.

With the change of variables, a term eσt appears, which, for q ∈ [−1, 0], compensates the
(·)

q
2 -term, so that it converges towards zero as σt → −∞. Densities of the log-variance process

for different parameter sets are more symmetric than those from Figure 1. It is also illustrated
in log-scale, in Figure 2, that the left tails of the densities no longer increase significantly in
value. Instead, these tails decay to zero rapidly as σt → −∞, although the decay rate decreases
as q approaches −1.

D
ow

nl
oa

de
d 

02
/0

7/
13

 to
 1

31
.1

80
.1

30
.1

98
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

444 FANG FANG AND CORNELIS W. OOSTERLEE

Before applying any numerical method, we need to define a proper truncation range for
the log-variance density. For this, information about the center of the density as well as the
decay of the left and right tails is required.

Instead of giving a rule of thumb for this truncation range, as in [7, 12], we propose to
use Newton’s method to determine the interval boundaries, according to a predefined error
tolerance, TOL. In accordance with this tolerance, the stopping criterion of the Newton
method reads as pln(ν)(x|σ0;T ) < TOL for x ∈ R\[aν , bν ].

We also need the derivative of pln(ν)(σt|σs) w.r.t. σt. It can be derived with the help of
Maple:

dpln(ν)(σt|σs)
dσt

= −
[
(−ζeσt − q − 1) Iq

(
2
√
ζeσtu

)
− Iq+1

(
2
√
ζeσtu

)]

· ζe−u−ζeσt+σt ·
(
ζeσt

u

)q/2

,(10)

with u := ζeσs−λ(t−s).
A proper initial guess for interval boundaries is also required. We estimate the center of

the truncation range by the logarithm of the mean value of the variance (see, e.g., [3]):

ln(E(νt)) = ln
(
ν0e

−λT + ν̄
(
1− e−λT

))
.

As the left tail usually decays much slower than the right tail and because the speed of decay
seems closely related to the value of q, we use the following values as the initial guesses for
the boundaries of the truncation range [aν , bν ]:

(11) [a0ν , b
0
ν ] =

[
ln(E(νt))−

5

1 + q
, ln(E(νt)) +

2

1 + q

]
.

2.4. Joint distribution of log-stock and log-variance. When valuing path-dependent
options, we need to know the joint distribution of the log-stock and log-variance processes
at a future time, given the information at the current time, i.e., px,ln(ν)(xt, σt|xs, σs), with
0 < s < t. An analytic formula for this distribution does not exist, but we can deduce the
relevant information from the Fourier domain.

The SDEs in (1), (2) indicate that the variance at a future time is independent of the
log-stock value at the current time, i.e., pν(νt|νs, xs) = pν(νt|νs). As a result, we have

(12) px,ν(xt, νt|xs, νs) = px|ν(xt|νt, xs, νs) · pν(νt|νs),

where we use px,ν to denote the joint probability density of the log-stock and the variance
processes at a future time point, given that the information is known at the current time;
px|ν denotes the probability density of the log-stock process at a future time point, given the
variance value (and also given the information known at the current time). Equivalently, we
have

(13) px,ln(ν)(xt, σt|xs, σs) = px| ln(ν)(xt|σt, xs, σs) · pln(ν)(σt|σs),
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where px| ln(ν) denotes the probability density of the log-stock at a future time spot, given the
log-variance value as well as the information known at the current time.

The probability density of the log-variance, pln(ν)(σt|σs), is already given in (9), and there-
fore we need px| ln(ν)(xt|σt, xs, σs). Although there is no closed-form expression for px| ln(ν),
one can easily derive its conditional ChF, ϕ(ω;xs, σt, σs), based on (6):

ϕ(ω;xs, σt, σs) := Es [exp (iωxt|σt)]

= exp

(
iω

[
xs + μ(t− s) +

ρ

η
(eσt − eσs − λν̄(t− s))

])

· Φ
(
ω

(
λρ

η
− 1

2

)
+

1

2
iω2(1− ρ2); eσt , eσs

)
,(14)

where Φ(u; νt, νs) is the ChF of the time-integrated variance as given in (7).

3. The pricing method for Bermudan options. In this section, we derive the pricing
formula for Bermudan options under Heston’s model. This gives rise to a two-dimensional
integral with a kernel which is only partly available in closed form. To evaluate this two-
dimensional integral, we develop a discrete formula based on Fourier cosine series expansions
for the integration of the part of the kernel which is not known in closed form and a quadrature
rule for the integral of the known part of the kernel. An efficient algorithm to compute the
discrete formula with the help of the FFT algorithm is introduced.

3.1. The pricing equations. For a European option, which is defined at time s and ma-
tures at time t, with 0 < s < t, the risk-neutral valuation formula reads as

(15) v(xs, σs, s) = e−r(t−s)EQ
s [v(xt, σt, t)] .

Here v(xs, σs, s) denotes the option price at time s, r is the risk-free interest rate, and EQ
s is

the expectation operator under the risk-neutral measure, Q, given the information at s.
The Markov property enables us to price a Bermudan option between two consecutive

early-exercise dates by the risk-neutral valuation formula (15). This value is then called the
continuation value. The arbitrage-free price of the Bermudan option on any early-exercise
date is the maximum of the continuation value and the exercise payoff.

For M early-exercise dates and T := {tm, tm < tm+1|m = 0, 1, . . . ,M}, with tM ≡ T and
Δt := tm+1 − tm, the Bermudan option pricing formula reads as

(16) v(xtm , σtm , tm) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(xtm , tm) for m =M,

max [c(xtm , σtm , tm), g(xtm , tm)] for m = 1, 2, . . . ,M − 1,

c(xtm , σtm , tm) for m = 0,

with g(xτ , τ) being the payoff function at time τ and c(xτ , στ , τ) the continuation value at
time τ .

We simplify the notation and use xm and σm for xtm and σtm , respectively. The continu-
ation value is given by

(17) c(xm, σm, tm) = e−rΔtE
Q
tm [v(xm+1, σm+1, tm+1)] ,
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which can be written as

c(xm, σm, tm) = e−rΔt(18)

·
∫
R

∫
R

v(xm+1, σm+1, tm+1)px,ln(ν) (xm+1, σm+1 | xm, σm) dσm+1dxm+1.

With (13) we get

c(xm, σm, tm) = e−rΔt

·
∫
R

[ ∫
R

v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]
· pln(ν) (σm+1|σm) dσm+1.(19)

Equations (16) and (19) define the problem we would like to solve numerically. The inner
integral in (19) equals the pricing formula for European options defined between tm and tm+1,
provided the variance value at the future time point is known.

A scaled log-asset price will be used from now on in this work, defined by

xm = ln (Sm/K) .

3.2. Density recovery by Fourier cosine expansions. The COS method, based on Fourier
cosine expansions, is a very efficient method for the recovery of probability density functions
from the corresponding ChFs. It can therefore be efficiently used for the risk-neutral valuation
formula in cases where the density is not known in closed form. We will apply the COS method
to approximate the unknown conditional probability density, px| ln(ν), in (19).

The key idea of the COS method [7] is to approximate the underlying probability density
function, which is typically a smooth, real-valued function, by its Fourier cosine series expan-
sion, taking into account that the Fourier series coefficients have a direct connection to the
ChF.

First we define a truncated integration range, [a, b] ⊂ R, such that

(20)

∫ b

a
px| ln(ν)(xm+1|σm+1, xm, σm)dy ≤ TOLx

for some predefined error tolerance TOLx. In [7] this interval is defined as

(21) [a, b] := [ξ1 − 12
√

|ξ2|, ξ1 + 12
√

|ξ2|],

where ξn denotes the nth cumulant of the log-stock process. With an integration interval [a, b]
satisfying (21), we recover the probability density by its Fourier cosine series expansion:

(22) px| ln(ν)(xm+1|σm+1, xm, σm) =

∞∑′

n=0

Pn(σm+1, xm, σm) cos

(
nπ

xm+1 − a

b− a

)
.

∑′ indicates that the first element in the summation is multiplied by one half. The coefficients
Pn are the Fourier cosine coefficients, defined by

Pn(σm+1, xm, σm) :=
2

b− a

∫ b

a
px| ln(ν)(xm+1|σm+1, xm, σm) cos

(
nπ

xm+1 − a

b− a

)
dxm+1.
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By the expansion in (22), one separates xm+1 from xm. This type of variable separation is
not restricted to Fourier cosine series expansions, but in this case the Fourier expansion is
advantageous, as the series coefficients have a direct relation to the ChF and are therefore
known, i.e.,

(23) Pn(σm+1, xm, σm) ≈ 2

b− a
Re

{
ϕ

(
nπ

b− a
;xm, σm+1, σm

)
e−inπ a

b−a

}
,

with ϕ(θ;x, σm+1, σm) given by (14).
The error in this approximation is related to TOLx, as analyzed in [7], and (23) approx-

imates the Pn with machine accuracy if [a, b] is sufficiently wide. Subsequently, we truncate
the series summation in (22).

From Fourier theory, we know that cosine series of functions belonging to C∞([a, b] ⊂ R),
with nonzero derivatives, converge exponentially w.r.t. the number of terms in the series, so
that the series can be truncated without losing accuracy. By replacing Pn in (22) by (23)
and truncating the series by N terms, one obtains a semianalytic formula which accurately
approximates the probability density:

px| ln(ν)(xm+1|σm+1, xm, σm)

=

N−1∑′

n=0

2

b− a
Re

{
ϕ

(
nπ

b− a
; 0, σm+1, σm

)
einπ

xm−a
b−a

}
cos

(
nπ

xm+1 − a

b− a

)
+ εcos.

(24)

Here we used the fact that ϕ(ω;xm, σm+1, σm) = eiωxmϕ(ω; 0, σm+1, σm); i.e., xm can be
separated from the σ-terms and appears as a simple exponential term. This is important for
the efficient computation in the Bermudan case.

The error of this approximation, εcos, decreases exponentially w.r.t. N , provided that the
truncation range is set sufficiently wide (proof is given in [7]).

3.3. Discrete Fourier-based pricing formula. Equation (16) shows that the option price
at time t0 is a continuation value, which, as indicated by (19), depends on the continuation
values at times t1, t2, . . . , tM . The option price at time t0 can be recovered by recursion
backwards in time. This is the same approach as in [8], but here the integration is more
involved because of the two-dimensional kernel.

3.3.1. Quadrature rule in log-variance dimension. Using the initial values defined in
(11) and (21), we obtain the truncation range [aν , bν ] by Newton’s method.

After truncating the integration region by [aν , bν ]× [a, b], we need to compute

c1(xm, σm, tm) := e−rΔt

·
∫ bν

aν

[ ∫ b

a
v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]
· pln(ν) (σm+1|σm) dσm+1.(25)

We use the notation ci, i = 1, . . . , 3, to denote different approximations of continuation value,
c, to keep track of the numerical errors that enter with each approximation.
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448 FANG FANG AND CORNELIS W. OOSTERLEE

There are two ways to discretize the outer integral w.r.t. σm+1, i.e., by interpolation-
based quadrature rules or by a spectral series reconstruction of the interpolant (as in the COS
method). Since pln(ν) itself is known analytically, we apply a J-point quadrature integration
rule (like the Gauss–Legendre quadrature rule, the composite trapezoidal rule, etc.) to the
outer integral, which gives

c2(xm, σm, tm) := e−rΔt
J−1∑
j=0

wj · pln(ν)(ςj |σm)(26)

·
[∫ b

a
v(xm+1, ςj , tm+1)px| ln(ν) (xm+1| ςj , xm, σm) dxm+1

]
.

Here the wj are the weights of the quadrature nodes ςj , j = 1, 2, . . . , J − 1.
There are merits and demerits to using high-order quadrature rules, like the Gauss–

Legendre quadrature rule, and to low-order equidistant rules, like the composite trapezoidal
rule. The advantage of the former is an exponential error convergence rate for integration
of smooth functions, as is the case for pln(ν), whereas the latter has only polynomial error
convergence. The computational complexity of the method can be reduced by the trapezoidal
rule, due to a special matrix structure which results after discretization on an equidistant grid.
In numerical experiments we found that the accuracy of the trapezoidal rule was insufficient
when the Feller condition was not satisfied (unless an extremely large number of integration
points was used). Therefore we do not show results for this approach here.

3.3.2. COS reconstruction in log-stock dimension. In the next step, we replace px| ln(ν),
which is not known, by the COS approximation (24) and interchange the summation over n
with the integration over xm+1 to obtain

(27) c3(xm, σm, tm) := e−rΔt
J−1∑
j=0

wj

N−1∑′

n=0

Vn,j(tm+1)Re

{
ϕ̃

(
nπ

b− a
, ςj , σm

)
einπ

xm−a
b−a

}
,

with

(28) Vn,j (tm+1) :=
2

b− a

∫ b

a
v(xm+1, ςj , tm+1) cos

(
nπ

xm+1 − a

b− a

)
dxm+1,

and

(29) ϕ̃(ω, σm+1, σm) := pln(ν)(σm+1|σm) · ϕ (ω; 0, eσm+1 , eσm) .

The kernel function ϕ̃ will be the only input which characterizes the Heston model. By
combining the lengthy formulas of (9) and (14), the Bessel function present in pln(ν) cancels

with the Bessel function in the denominator of ϕ, leaving one Bessel term, Iq
(
e

1
2
(σm+1+σm) ·

2κ(υ)e−
1
2
γ(υ)Δt

)
, with γ(υ) given by (8):

υ = ω

(
λρ

η
− 1

2

)
+

1

2
iω2(1− ρ2) and κ(υ) =

2γ(υ)

η2(1− e−γ(υ)Δt)
.
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Coefficients Vn,j (tm+1) defined in (28) can be interpreted as the Fourier cosine series
coefficients of the option value at time tm+1. Expression c3(xm, σm, tm) in (27) thus becomes
a scaled inner product of the Fourier cosine series coefficients of the option price and of the
underlying density.

Finally, we interchange the summations in (27), which yields the discrete formula for the
continuation value:

(30) c3(xm, σm, tm) = e−rΔtRe

⎧⎨
⎩

N−1∑′

n=0

βn(σm, tm)einπ
xm−a
b−a

⎫⎬
⎭ ,

where

(31) βn(σm, tm) :=
J−1∑
j=0

wjVn,j(tm+1)ϕ̃

(
nπ

b− a
, ςj, σm

)
.

Equation (30) expresses the continuation value at time tm as a series expansion. The series
coefficients, which depend only on the value of the variance (and not on the log-stock value)
at time tm+1, are (scaled) inner products of the cosine series coefficients of the option price
at time tm+1 and the variance-dependent ChF ϕ̃.

Due to the use of a quadrature rule in the log-variance dimension, we compute on a
log-variance grid. The same log-variance grid is employed for all time points, which gives

(32) c3(xm, ςp, tm) = e−rΔtRe

⎧⎨
⎩

N−1∑′

n=0

βn(ςp, tm) exp

(
inπ

xm − a

b− a

)⎫⎬
⎭ ,

with

(33) βn(ςp, tm) :=

J−1∑
j=0

wjVn,j(tm+1)ϕ̃

(
nπ

b− a
, ςj, ςp

)
.

For xm, however, no computational grid is needed since the price is constructed from a
linear combination of cosine basis functions, in which the series coefficients do not depend on
xm itself. As such, xm can be separated from the other variables; it is present only in the
cosine functions. This enables us to derive an analytic formula for the series coefficients, as
shown in the next subsection.

One of the advantages of this spectral dimension is that expression (30) is known for any
value of xm ∈ R, not just for discrete values. So, one can determine the early-exercise points
rapidly by solving

c3(xm, ςj , tm)− g(xm) = 0, j = 0, 1, . . . , J − 1,

with an efficient root-finding procedure, like Newton’s method.
When the early-exercise points, x∗(σm, tm), have been determined, procedure (16) can be

used to compute the Bermudan option price. More specifically, the following hold:
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450 FANG FANG AND CORNELIS W. OOSTERLEE

• At tM : v(xM , σM , tM ) = g(xM ).
• At tm, with m = 1, 2, . . . ,M − 1:

(34) v̂(xm, σm, tm) =

{
g(xm) for x ∈ [a, x∗(σm, tm)],
c3(xm, σm,m) for x ∈ (x∗(σm, tm), b]

for a put option, and

(35) v̂(xm, σm, tm) =

{
c3(xm, σm,m) for x ∈ [a, x∗(σm, tm)],
g(xm) for x ∈ (x∗(σm, tm), b]

for a call option.
• At t0: v̂(x0, σ0, t0) = c3(x0, σ0, t0).

v̂ denotes that we deal with approximate option values, due to the various approximations
involved.

With the procedure above and expression (30), we can compute recursively v̂(x0, σ0, t0)
from v̂(xM , σM , tM ) backwards in time.

However, a more efficient technique exists. Instead of reconstructing v̂ for each time point,
we can recover the cosine series coefficients using backward recursion, and only at time t0 do
we apply (30) to reconstruct v̂.

3.4. Backward recursion. We show that the cosine coefficients of v̂(x1, σ1, t1) can be re-
covered recursively, with the FFT, from those of v̂(xM , σM , tM ) in O ((M−1)JN �) operations,
with � = max [log2(N), J ].

We first discuss the final time point, tM . Since the option price at the maturity date
equals the payoff (which does not depend on time), one can derive an analytic expression for
Vn,j(tM ) using (28):

(36) Vn,j(tM ) =

{
Gn(0, b) for call options,

Gn(a, 0) for put options,

where the Gn-functions are the cosine coefficients of the payoff function g(y), i.e.,

(37) Gn(l, u) :=
2

b− a

∫ u

l
g(y) cos

(
nπ

y − a

b− a

)
dy.

Given that g(x) = [α ·K(ex − 1)]+, we have

(38) Gn(l, u) =
2

b− a
αK [χk(l

∗, u∗)− ψk(l
∗, u∗)] , α =

{
1 for a call,
−1 for a put,

with

(39) l∗ =
{

max(l, 0), α = 1,
min(l, 0), α = −1,

u∗ =
{

max(u, 0), α = 1,
min(u, 0), α = −1,
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and

χk(l
∗, u∗) :=

∫ u∗

l∗
ex cos

(
nπ

x− a

b− a

)
dx,(40)

ψk(l
∗, u∗) :=

∫ u∗

l∗
cos

(
nπ

x− a

b− a

)
dx.(41)

χk and ψk admit the following analytic solutions:

χk(l, u) =
1

1 +
(

nπ
b−a

)2
[
cos

(
nπ

u− a

b− a

)
eu − cos

(
nπ

l − a

b− a

)
el

+
nπ

b− a
sin

(
nπ

u− a

b− a

)
eu − nπ

b− a
sin

(
nπ

l − a

b− a

)
el
]
,

ψk(l, u) =

⎧⎪⎨
⎪⎩

[
sin

(
nπ u−a

b−a

)
− sin

(
nπ l−a

b−a

)] b− a

nπ
, n �= 0,

u− l, n = 0.

(42)

Note that the applicability of the COS method is not limited to plain vanilla options. Analytic
solutions for the Fourier cosine coefficients of binary options have also been obtained in [7],
so that discontinuous payoffs can also be dealt with highly efficiently.

Subsequently, we continue with time point tM−1. By inserting Vn,j(tM ) into (33), we obtain
βn(ςp, tM−1) for p = 0, 1, . . . , J−1. With (32) one finds an analytic formula, c3(xM−1, ςp, tM−1),
for the continuation value at time tM−1. By Newton’s method, we then solve c3(y, ςp, tM−1)−
g(y) = 0 to determine the location of the early-exercise point, y ≡ x∗(ςp, tM−1).

With the early-exercise point, x∗(ςp, tM−1), known and v̂(xM−1, ςp, tM−1) as in (34) or (35),
we split the integral in (28) into two parts (for p = 0, 1, . . . , J − 1):

V̂k,p(tM−1) =

⎧⎨
⎩

Ĉk,p(x
∗(ςp, tM−1), b, tM−1) +Gk(a, x

∗(ςp, tM−1)) for a put,

Ĉk,p(a, x
∗(ςp, tM−1), tM−1) +Gk(x

∗(ςp, tM−1), b) for a call,

where V̂ , Ĉ denote approximate values. The Ĉk,p represent the cosine coefficients of the
continuation value:

(43) Ĉk,p(l, u, tM−1) :=
2

b− a

∫ u

l
c3(y, ςp, tM−1) cos

(
kπ
y − a

b− a

)
dy.

After replacing c3 in (43) by the COS approximation, interchanging summation and inte-
gration, we obtain

(44) Ĉk,p(l, u, tM−1) = e−rΔt Re

⎧⎨
⎩

N−1∑′

n=0

Mk,n(l, u)βn(ςp, tM−1)

⎫⎬
⎭ ,

with

(45) Mk,n(l, u) :=

∫ u

l
exp

(
inπ

y − a

b− a

)
cos

(
kπ
y − a

b− a

)
dy.

Expression (45) can be obtained analytically.
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The expressions above can be cast in an easy readable format in matrix/vector notation:

(46) Ĉ(l, u, tM−1) = e−rΔt Re
{
M(l, u)B′(tM−1)

}
,

where B′ indicates that the first row of matrix B is multiplied by one half.
Matrix M(l, u) is an N × N matrix composed of elements from Mk,n(l, u), and matrix

B(tM−1) is an N × J matrix, with J column vectors:

(47) B(tM−1) = [β0(tM−1), β1(tM−1), . . . , βJ−1(tM−1)] .

The column vectors (denoted by subscripts), βp(tM−1), are connected to the coefficients V(tM ),
i.e., the matrix with elements Vn,j(tM ), as follows:

(48) βp(tM−1) = [V(tM ) · ϕ̃(ςp)]w,

where w is a column vector (length J) with the quadrature weights and the (time-invariant)
matrix ϕ̃(ςp) is an N×J matrix with elements ϕ̃

(
nπ
b−a , ςj , ςp

)
, as defined in (29). The operator

“·” in (48) denotes an elementwise matrix-matrix product.
From [8] we know that matrix M(l, u) can be written as the sum of a Hankel matrix,

Mc(l, u), and a Toeplitz matrix, Ms(l, u). Because matrix-vector products with Hankel and
Toeplitz matrices can be transformed into circular convolutions of two vectors, the FFT algo-
rithm can be applied to achieve the O(N log2(N)) complexity in log-stock space. Details are
given in [8].

Repeating the same computational procedure backwards in time, we can derive the equa-
tions that connect V̂(tm−1) to V̂(tm), for m =M − 1,M − 2, . . . , 2:

(49)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂(tm) :=

⎧⎨
⎩

Ĉ(x∗(ςp, tm), b, tm) + G(a, x∗(ςp, tm)) for a put,

Ĉ(a, x∗(ςp, tm), tm) + G(x∗(ςp, tm), b) for a call,

β̂j(tm−1) :=
[
V̂(tm) · ϕ̃(ςj)

]
w,

B̂(tm−1) :=
[
β̂0(tm−1), β̂1(tm−1), . . . , β̂J−1(tm−1)

]
,

Ĉ(l, u, tm−1) := e−rΔt Re
{
M(l, u)B̂′(tm−1)

}
.

We continue the procedure until V̂(t1) is recovered, which is then inserted into (33) and
(30) to get a grid of option prices, v̂(x0, ςj , t0), for j = 0, 1, . . . , J − 1.

Now, one can either use a spline interpolation to get the value of v̂(x0, σ0, t0) from
v̂(x0, ςj , t0) or, at the initial stage of the computation, shift the σ-grid, so that σ0 lies ex-
actly on the grid.

We summarize the backward recursion algorithm below.
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Algorithm 1: Pricing Bermudan options under Heston’s model.
Initialization:

• Find aν and bν by Newton’s method (as described in section 2.3).
• Calculate V(tM ) with the analytic formula (36).
• Prepare matrix ϕ̃(ςj) for j = 0, 1, . . . , J − 1

(consisting of ϕ̃( nπ
b−a , ςj , ςp) as defined in (29)).

Main Loop to recover V̂(tm) for m =M − 1 to 1:
• Determine the early-exercise point by applying Newton’s method

to c3(y, ςp, tm)− g(y) = 0.
• Calculate the first row and column of Ms and Mc as given in

[8].
• For j = 0, 1, . . . , J − 1, calculate β̂j(tm) =

[
V̂(tm) · ϕ̃(ςj)

]
w.

• Multiply the first element of β̂j(tm) by one half, giving β̂′j(tm).

• Compute, with the FFT algorithm, the column vectors of Ĉ(tm),
e−rΔt Re

{
(Ms +Mc) β̂′j(tm−1)

}
.

• Recover V̂(tm) by (34) or (35).
Final step: Calculate v̂(x, ςj , t0) by inserting V̂(t1) into (33) and (30).
Use spline interpolation to get v̂(x, σ0, t0).

Special attention should be given to the calculation of ϕ̃(ω, σm+1, σm). First, it involves a
modified Bessel function of the first kind, which increases dramatically in value when q → −1
and/or ω → ∞. The scaled Bessel function should be used instead. A robust package has
been developed in [1, 2] with algorithms to compute I∗d (z) := exp (− |Re {z}|) Id(z) with a
complex-valued argument, z, and a real-valued order, d. As MATLAB (which we use here)
incorporates this package for the MATLAB Bessel function, we replace Iq (·) by e|Re{·}|I∗q (·)
during the computations.

The computation of the modified Bessel function costs significantly more (a factor of
approximately 1000) CPU time than a simple multiplication, because the main part of the
Bessel function algorithm is based on iterations. If the computation of the Bessel function costs
A times the number of operations needed for a multiplication, a matrix based on ϕ̃

(
kπ
b−a , ςq, ςj

)
would require O(NJ2A) operations to compute all matrix elements.

If one employs equidistant quadrature rules for the log-variance dimension, then for a
given value of k, the input argument of the Bessel function is a function of the grid point
combination, ςq + ςj, which gives rise to the Hankel matrix (if ςj represents an equidistant
grid). The favorable structure of a Hankel matrix enables us to determine only one row and
one column of the J × J matrix for each value of k. The total number of operations needed
is therefore reduced to O(NJA). However, since the error convergence is much slower with
equidistant quadrature rules, J should be set much larger than for Gaussian quadrature rules.
We will discuss this trade-off effect in the section with numerical results.

With the considerations in the remarks above, the computational effort in the initialization
step with nonequidistant quadrature rules is dominated by the computation of the Bessel
function in matrix ϕ̂, which is of order O(ANJ2).

The computations in the main loop of the algorithm are of order O(MN log2(N)J2),
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454 FANG FANG AND CORNELIS W. OOSTERLEE

dominated by the calculation of matrix B̂(tm−1). Since the computation of vector β̂j(tm−1)
costs O(NJ) operations, the calculation of matrix B̂(tm−1) is of O(NJ2) complexity.

The direct computation of the matrix-matrix product in (46) would cost O(N2J) opera-
tions. The computational complexity of (46) is, however, O(N log2(N)J), due to the special
structure of matrix M(l, u) and the use of the FFT algorithm.

Therefore, the overall complexity is O(max[A,M log2(N)]NJ2).

4. Discrete barrier options. Also, for discretely monitored barrier options, the pricing
technique explained above can be used. It is even somewhat easier, as the barrier levels
are known in advance, unlike the (time-dependent) early-exercise points, and need not be
determined inside the recursion loop. In the following we give the pricing formula for barrier
put options with double barriers.

For an “out” barrier put option with M monitoring dates, the pricing formula reads for
m = 0, 1, . . . ,M − 1 as

(50) v(xm, σm, tm) =

{
Rebate rb when knocked out,
c(xm, σm, tm) otherwise,

and

(51) v(xM , σM , tM ) =

{
Rebate rb when knocked out,
g(xM ) otherwise,

where the continuation value is governed by (19), as for Bermudan options.
The option price at the maturity date, tM , equals the payoff if the option is not knocked

out (or knocked in); otherwise the option price equals the rebate. Following (28), the Fourier
cosine coefficients of v(xm, σm, tM ), i.e., Vn,j(tM ), satisfy

Vn,j(tM ) =
2

b− a

∫
[a,l]∪[u,b]

rb cos

(
nπ

y − a

b− a

)
dy +

2

b− a

∫ u

l
g(y) cos

(
nπ

y − a

b− a

)
dy

=
2rb
b− a

(ψn(a, l) + ψn(u, b)) +Gn(l, u),(52)

with g(y) defined earlier, l and u denote lower and upper barrier levels, respectively,1 and the
Gn-terms are the analytically known cosine coefficients of the payoff function g(y), as given
earlier.

At tM−1 the barrier levels split the integral in (34) or (35) into several parts:

V̂k,p(tM−1) =
2rb
b− a

(ψk(a, l) + ψk(u, b)) +
2

b− a

∫ u

l
c3(y, ςp, tM−1) cos

(
kπ
y − a

b− a

)
dy

=
2rb
b− a

(ψk(a, l) + ψk(u, b)) + Ĉk,p(l, u, tM−1),(53)

where Ĉk,p are the cosine coefficients of the continuation value as given in (43).

1For single-sided barrier options, one can simply apply the same method by setting l = a or u = b.
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We can repeat the derivation from before: We replace c3 in (43) by the COS approximation
and interchange the summation and the integration, which gives

(54) Ĉ(l, u, tM−1) = e−rΔt Re
{
M(l, u)B′(tM−1)

}
,

where, as before, the first row of matrix B is multiplied by one half, and B(tM−1) is obtained
as in (47) and (48). Matrix M(l, u) is an N ×N matrix, which is time invariant, as l and u
are a priori known barrier levels. As a result, this matrix M(l, u) (only two columns and two
rows needed for the circular convolution) can be precomputed. Compared to Algorithm 1, the
main difference is that the computation of this matrix is not in the main recursion loop.

Following the same procedure, we move backwards in time and find the equations that
connect V̂(tm−1) with V̂(tm) for m = M − 1,M − 2, . . . , 2. Having V̂(t1) approximated, we
insert it into (33) and (30) to obtain the option price v̂(x0, σ0, t0).

5. Error analysis. As in [7, 8] we study here the convergence of the local error at each
time lattice, as well as the propagation of the error from one time lattice to the next.

5.1. Local error. We first analyze the convergence of the local error

ε(xm, σm, tm) := |c(xm, σm, tm)− c3(xm, σm, tm)| .

We depart from (19) and denote the inner integral as ϑ(xm, σm+1, σm), which actually
satisfies a risk-neutral valuation formula and thus defines the continuation value at time tm
given σm+1 and σm. For analysis purposes, we introduce an intermediate approximation after
the truncation of the integration range of the outer integral by [aν , bν ]:

(55) c0(xm, σm, tm) := e−rΔt

∫ bν

aν

pln(ν) (σm+1|σm)ϑ(xm, σm+1, σm)dσm+1.

Since the option price is bounded on a bounded interval, we can assume that a positive
number, δ0, exists with

δ0 = sup [ϑ(xm, σm+1, σm)] ∀σm+1, σm ∈ [aν , bν ],∀xm ∈ [a, b].

It then follows that

|c− c0| ≤ δ0e
−rΔt

∫
R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1,

which suggests that this truncation error depends purely on the decay to zero of the log-
variance density function, far in the tails. One can expect larger truncation errors for the
difficult parameter sets, like for q ∈ (−1, 0] compared to q ∈ (0,+∞). We assume a positive
number, δ1(q), depending on q, to exist such that

(56) e−rΔt

∫
R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1 ≤ TOL · δ1(q).

TOL in (56) appears because the size [aν , bν ] ensures that pln(ν)(σm+1|σm) < TOL for σm+1 ∈
R\[aν , bν ]. Collecting the information gives

|c− c0| ≤ TOL · δ1(q) · δ0.
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456 FANG FANG AND CORNELIS W. OOSTERLEE

Another intermediate quantity is obtained by replacing px| ln(ν) in (55) with the approximation
by the Fourier cosine series expansion, i.e.,

(57) c(xm, σm, tm) = e−rΔt

∫ bν

aν

pln(ν) (σm+1|σm) ϑ̃(xm, σm+1, σm)dσm+1,

where ϑ̃ is the COS approximation of ϑ:

ϑ̃(xm, σm+1, σm) :=
2

b− a

∫ b

a
v(xm+1, σm+1, tm+1)

⎡
⎣N−1∑′

n=0

cos

(
nπ

xm+1 − a

b− a

)

·Re
{
ϕ

(
nπ

b− a
; 0, σm+1, σm

)
einπ

xm−a
b−a

}⎤⎦ dxm+1.

The error analysis in [7] shows that the error due to the COS approximation,

εcos(N, a, b) := sup
[∣∣∣ϑ(xm, σm+1, σm)− ϑ̃(xm, σm+1, σm)

∣∣∣] ∀xm ∈ [a, b],∀σm+1, σm ∈ R,

converges exponentially in N for very smooth densities when the integration range [a + xm,
b+ xm] is sufficiently wide. As such, we have

|c0 − c| = εcos(N, a, b)

(
e−rΔt

∫ bν

aν

pln(ν) (σm+1|σm) dσm+1

)
≤ εcos(N, a, b).

The approximation c3 defined in (30) can now be obtained by applying a quadrature rule to
the integral of (57). Suppose that the (absolute) error from the quadrature rule is εQ(J). With
the triangle inequality, it then follows that for all xm ∈ [a, b] and for all σm, σm+1 ∈ [aν , bν ],

ε(xm, σm, tm) = |c− c3| ≤ |c− c0|+ |c0 − c|+ |c− c3|
≤ TOL · δ0 · δ1(q) + εcos(N, a, b) + εQ(J) := εloc.(58)

The local error thus consists of three parts:
1. truncation error from the log-variance domain, which depends on the decay rate to

zero of the log-variance density, outside the truncation range;
2. quadrature error, which converges exponentially in J when a Gauss–Legendre quad-

rature rule is used (as the log-variance density belongs to C∞);
3. COS approximation error, which converges exponentially in N when interval [a, b] is

set sufficiently wide.

5.2. Error propagation during recursion. In the backward recursion, we recovered the
approximate Fourier cosine series coefficients V̂k,p(tm) instead of Vk,p(tm). Here, we will study

the error εk,p(tm) :=
∣∣V̂k,p(tm) − Vk,p(tm)

∣∣ and its evolution through time. We focus on a
Bermudan put here.
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Starting at tM , V(tM ) is exact since the option price at tM is known analytically. At time
tM−1, an error, εk,p(tM−1), exists because we replaced c by c3 to determine Vk,p(tM−1). Based
on (43), we get

εk,p(tM−1) =
2

b− a

∣∣∣∣∣
∫ b

x∗(ςp,tM−1)
(c3(y, ςp, tM−1)− c(y, ςp, tM−1)) cos

(
kπ
y − a

b− a

)
dy

∣∣∣∣∣ .
The above integral can be seen as an inner product of function (c3−c) and the cosine function,
so that we can bound this error by the Cauchy–Schwarz inequality:

(εk,p(tM−1))
2 ≤ 4

(b− a)2

[∫ b

x∗(ςp,tM−1)
ε2(y, σM−1, tM−1)dy ·

∫ b

x∗(ςp,tM−1)
cos2

(
kπ
y − a

b− a

)
dy

]
.

The early-exercise point always lies in [a, b] so that b− x∗ < b− a. With cos2(x) ≤ 1, we find,
for all k, p, that

(εk,p(tM−1))
2 ≤ 4

(b− a)2

∫ b

x∗(ςp,tM−1)
ε2(y, σm, tm)dy ≤ 4

b− a

∫ b

a
ε2(y, σm, tm)dy.

With (58) for all σm and y, we obtain

εk,p(tM−1) ≤ 2εloc.

In the matrix max-norm, this reads as∣∣∣∣∣∣V̂(tM−1)−V(tM−1)
∣∣∣∣∣∣
max

≤ 2εloc.

In the following, we will prove, by induction, that if

(59)
∣∣∣∣∣∣V̂(tm+1)−V(tm+1)

∣∣∣∣∣∣
max

∼ O (εloc) ,

then it will also hold for time tm.
The final equation in (49) is equivalent to

Ĉk,q(x
∗(ςq), b, tm) =

2

b− a

∫ b

x∗(ςp,tM−1)
ĉ3(y, ςq, tm) cos

(
kπ
y − a

b− a

)
dxm,

where ĉ3(xm, σm, tm) is based on the same definition as c3(xm, σm, tm) in (27), except that
Vn,j(tm+1) is replaced by V̂n,j(tm+1). As such, it holds that

c3(xm, σm, tm)− ĉ3(xm, σm, tm)

= e−rΔt
J−1∑
j=0

wj

N−1∑′

n=0

(
V̂n,j(tm+1)− Vn,j(tm+1)

)
·Re

{
ϕ̃

(
nπ

b− a
, ςj , σm

)
einπ

xm−a
b−a

}
.
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To analyze this error term, we decompose ϕ̃ using (29) and replace the Re {·}-term by Pn,
defined in (23), which gives

(60) c3(xm, σm, tm)− ĉ3(xm, σm, tm) = e−rΔt
J−1∑
j=0

wjpln(ν)(ςj |σm)Θ(ςj , xm, σm),

where

Θ(ςj , xm, σm) :=

N−1∑′

n=0

(
V̂n,j(tm+1)− Vn,j(tm+1)

)

·
[
Pn(ςj , xm, σm)−

∫
R\[a,b]

px| ln(ν)(y|ςj , xm, σm) cos

(
nπ

y − a

b− a

)
dy

]
.

From (21), we know that∫
R\[a,b]

px| ln(ν)(y|ςj, xm, σm) cos

(
nπ

y − a

b− a

)
dy ∼ O(TOLx).

As Θ can be viewed as an inner product of two vectors, we can apply the Cauchy–Schwarz
inequality:

Θ2(ςj , xm, σm) ≤
N−1∑′

n=0

ε2n,j(tm+1)

N−1∑′

n=0

[Pn(ςj , xm, σm) +O(TOLx)]
2 .

For smooth density functions, as we have in Heston’s model, the cosine series coefficients Pn

converge exponentially in n. The sum,
∑′(Pn+O(TOLx))

2, is therefore a sum of a geometric
series, which is thus bounded. We assume that a positive number, δ3, exists, which satisfies

δ3 := sup

⎡
⎣N−1∑′

n=0

[Pn(ϑj , xm, σm) +O(TOLx)]
2

⎤
⎦ ∀xm ∈ [a, b],∀σm, ςj ∈ R.

It then follows that

Θ2(ςj, xm, σm) ≤ δ3

N−1∑′

n=0

ε2n,j(tm+1).

With (59), we can write εn,j(tm+1) ≤
√
δ4εloc for some positive number δ4 and find that

Θ2(ςj, xm, σm) ≤ δ3δ4Nε
2
loc.

Returning to (60) and employing the Cauchy–Schwarz inequality give us

|c3(xm, σm, tm)− ĉ3(xm, σm, tm)| ≤ e−rΔt

√√√√J−1∑
j=0

(wjpln(ν)(ςj |σm))2
J−1∑
j=0

Θ2(ςj , xm, σm)

≤ e−rΔt
√
δ3δ4δ5 ·

√
JN · εloc,

where δ5 is an upper bound for
∑J−1

j=0 (wjpln(ν)(ςj |σm))2 for all values of σm.
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With the results above, error εk,q(tm) can be bounded as follows:∣∣∣V̂k,q(xm, σm, tm)− Vk,q(xm, σm, tm)
∣∣∣ = ∣∣∣Ĉk,q(a, x

∗(ςq, tm), tm)− Ck,q(a, x
∗(ςq, tm), tm)

∣∣∣
≤ 2

b− a

√∫ b

x∗(ςp,tM−1)
(c(y, ςq, tm)− c3(y, ςq, tm))2dy

√∫ b

x∗(ςp,tM−1)
cos2

(
kπ
y − a

b− a

)
dy

≤ 2e−rΔt
√
δ3δ4δ5 ·

√
JN · εloc.(61)

So, when εloc converges exponentially in both N and J , it holds that∣∣∣∣∣∣V̂(tm)−V(tm)
∣∣∣∣∣∣
max

∼ O(εloc).

The speed of convergence will, however, decrease when the number of monitoring dates
increases, due to the increasing weighting term in (61). Larger values for N and J are required
in that case. We will examine this via numerical experiments in the next sections.

5.3. Error analysis experiment. We check the error convergence analysis from section 5
by pricing discrete barrier options for which we set l = a and u = b. This gives us European
option prices, so we compute highly accurate reference values (accurate up to the eighth
decimal place) by the European option pricing method from [7]. Since only a limited number
of reference values are found in the literature, we use this special case to study the error
convergence.

Three tests are extracted from [3], one relatively easy case, with q > 0, and two significantly
more difficult cases for which q ∈ [−1, 0]:

• Test No. 1 (q = 0.6): η = 0.5, λ = 5, ν̄ = 0.04, T = 1.
• Test No. 2 (q = −0.84): η = 0.5, λ = 0.5, ν̄ = 0.04, T = 1.
• Test No. 3 (q = −0.96): η = 1, λ = 0.5, ν̄ = 0.04, T = 10.

The computer used is a standard laptop with an Intel(R) 2.2GHz CPU and a 4-GB memory.
The program is written in MATLAB.

Numerical methods for early-exercise or barrier options are usually either based on finite
differences for PDEs [11] or on tree-based methods [13, 4]. Results with these techniques have,
however, not yet been published for these parameter sets.

Other parameters to determine the values of the put (α = −1) include

ρ = −0.9, ν0 = 0.04, S0 = 100, K = 100, r = 0,

and we do not consider dividend payment here.
First, we analyze the error convergence in J for the Heston pricing methods with the

Gauss–Legendre quadrature rule. We prescribe the predefined truncation error tolerances,
TOL, in log-variance dimension as 10−4, 10−6, and 10−8, respectively. The number of moni-
toring dates is set to 12, and for N we choose N = 27.

The results in Table 1 demonstrate that when N and J are sufficiently large (like N =
J = 27), the truncation error, governed by “TOL,” dominates the overall error. For small
values of TOL (like TOL ≤ 10−6) and N being fixed, a very fast error convergence in J is
obtained (and the computational complexity is quadratic in J).

From the experiments of Test No. 1, we can conclude that for q > 0 highly accurate results
are obtained within a fraction of a second.
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Table 1
Convergence in J for Test No. 1 (q = 0.6) with N = 27, M = 12; the European option reference value is

7.5789038982.

Fourier cosine expansion plus Gauss–Legendre rule

(J = 2d) TOL = 10−4 TOL = 10−6 TOL = 10−8

d Time(sec) Error Time(sec) Error Time(sec) Error

4 0.12 −7.51 10−3 0.12 1.02 10−2 0.12 1.41
5 0.43 −3.95 10−3 0.42 −1.85 10−5 0.40 2.99 10−5

6 1.69 −3.95 10−3 1.59 −1.54 10−5 1.54 −6.41 10−6

7 6.88 −3.95 10−3 7.07 −1.34 10−5 6.49 −6.32 10−7

We continue with the difficult test cases for which q → −1. Especially for these difficult
parameter sets the composite trapezoidal rule (as well as the composite Simpson rule) is
not appealing, as it requires very large values of J to achieve the desired accuracy. The
Gauss–Legendre rule can, however, produce satisfactory results for relatively small values
of J . Therefore, we illustrate the results obtained by the Gauss–Legendre rule in log-variance
dimension in Table 2.

Table 2
Convergence in J as q → −1; Fourier cosine expansion plus Gauss–Legendre rule, N = 28, M = 12,

TOL = 10−7; the European reference values are 6.2710582179 (Test No. 2) and 13.0842710701 (Test No. 3).

Test No. 2 (q = −0.84) Test No. 3 (q = −0.96)
(J = 2d) Time(sec) Time(sec)

d Total Init. Loop Error Total Init. Loop Error

6 3.03 2.85 0.18 5.63 3.11 2.93 0.18 −22.7
7 13.3 12.78 0.56 6.89 10−3 12.1 11.55 0.53 −8.51 10−2

8 56.4 52.32 4.07 −2.12 10−5 55.7 51.74 4.00 −1.60 10−3

Compared to Test No. 1, the absolute errors in Tests No. 2 and No. 3 are larger for
the same N and the same J . When q → −1, the left-side tail of the log-variance density
function tends to converge slower to zero. As a result, the truncation range in the log-variance
dimension is set very wide (by Newton’s method) to reach the same tolerance level, TOL. The
wider the truncation range, the larger the values of J required for the same level of accuracy.
However, the error convergence in J is still reasonably fast.

The results presented in Table 2 indicate that, as q approaches −1, the initialization step
dominates the overall computational time, in particular the expensive computation of the
Bessel function. The computations in the main loop of the pricing algorithm cost less than
8 percent of the total time.

We also check the propagation of the error through time. For this, we fixed N and J
and measured the error convergence for increasing values of M (presented in Table 3). We
employ somewhat different values for J here to indicate that it does not need to be a power
of 2. The results confirm that the local error grows only very slowly for q > 0 and somewhat
faster for q ∈ [−1, 0]. The overall error can be further reduced by setting larger values for
J and/or N . Doubling parameter M corresponds to doubling CPU time in the main loop,
which is in accordance with the error analysis.
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Table 3
Error propagation in M ; COS + Gauss–Legendre, TOL = 10−7; N = 27, J = 100 for Test No. 1 and

N = 28, J = 300 for Test No. 2.

M
Test 10 20 40

No. 1 (q = 0.6) −2.14 10−6 −3.13 10−6 −4.92 10−6

No. 2 (q = −0.84) −2.56 10−5 −2.71 10−5 −7.02 10−4

6. Numerical results for Bermudan options. We will now consider Bermudan options
and use Algorithm 1 to price them. With increasing values for the number of exercise dates,
M , the prices of Bermudan options converge towards the equivalent American options. The
M time lattices can be viewed as a discretization in time.

Tree-based methods that are used to price American options using M time steps thus
return prices of the equivalent Bermudan options with M exercise dates. The same holds for
other pricing methods: If M time steps are used in a path simulation for American options,
then the price of a Bermudan option with M early-exercise dates is computed.

This insight enables us to take a reference value from the American option pricing literature
here, with our choice of parameterM resembling the number of time steps used in a tree-based
or Monte Carlo method.

Two parameter test sets are used here. One is chosen in the PDE-based finite differences
literature, for example in [11], with q > 0; and the second is with q ∈ [−1, 0], inspired by
results with a tree-based method in [13]. The reference value for the first test case is available
and accurate up to the sixth digit; see [11]. For the latter test, Bermudan reference values
are not available. So we provide our results, which may serve as a reference test for future
computations by other pricing methods.

The most commonly used test parameters for American options under the Heston dynam-
ics in the literature read as follows:

• Test No. 4 (q = 0.98): S0 = {8, 9, 10, 11, 12}, K = 10, T = 0.25, r = 0.1, λ = 5,
η = 0.9, ν̄ = 0.16, ν0 = 0.0625, and ρ = 0.1.

This gives q > 0, so that a very accurate and efficient pricing performance is expected. Results
are presented in Table 4, where CPU time is measured for five different values of S0 computed
simultaneously. The convergence of the Bermudan options to the American option reference
values is clearly visible.2

A negative correlation coefficient, ρ, is often observed in market data. A test example for
a Bermudan put with this parameter and q ∈ [−1, 0] was given in [13], where the parameters
were set as follows:

• Test No. 5 (q = −0.47): S0 = {90, 100, 110}, K = 100, T = 0.25, r = 0.04, λ = 1.15,
η = 0.39, ρ = −0.64, ν̄ = 0.0348, and ν0 = 0.0348.

However, reference values were not available in the paper, so that we provide our results as a
reference in Table 5.

2Although it is not our main concern in this paper, one can obtain American option prices much more
rapidly by extrapolating prices of Bermudan options with small values of M . Details are given in [12, 8].
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Table 4
Errors of Test No. 4 (q = 0.98); COS + Gauss–Legendre; N = 27, J = 27, and TOL = 10−7, plus

reference values.

S0 8 9 10 11 12 Time (sec)

Ref. val. 2.000000 1.107621 0.520030 0.213677 0.082044 Total Init. Loop

M = 10 −1.80 10−2 −4.79 10−3 −2.85 10−3 −1.31 10−3 −5.18 10−4 6.9 6.34 0.57
M = 20 −9.54 10−3 −2.39 10−3 −1.40 10−3 −6.65 10−4 −2.78 10−4 7.5 6.36 1.13
M = 40 −5.14 10−3 −1.07 10−3 −5.50 10−4 −2.54 10−4 −1.22 10−4 8.9 6.57 2.32
M = 80 −2.83 10−3 −2.86 10−4 2.75 10−5 5.42 10−5 −8.43 10−7 14.1 7.35 6.70

Table 5
Results of Test No. 5 (q = −0.47); COS + Gauss–Legendre; N = 28, J = 28, and TOL = 10−7.

S0 Time (sec)
M 90 100 110 Total Init. Loop

20 9.9783714 3.2047434 0.9273568 68.9 58.2 10.7
40 9.9916484 3.2073345 0.9281068 81.9 59.3 22.6
60 9.9957789 3.2079202 0.9280425 93.2 59.4 33.8

7. Conclusions. In this paper, we have presented a robust and efficient approach for
pricing Bermudan and discretely monitored barrier options under Heston’s stochastic volatility
model with a Fourier-based method. The near-singular problem in the left-side tail of the
Heston variance density has been dealt with by a change of variables to the log-variance
domain. A discrete pricing formula is derived by applying a Fourier series expansion technique
to the log-stock dimension and a quadrature rule to the log-variance dimension. By means of
an error analysis we have determined the various sources for the errors, which are verified by
numerical experiments.

The pricing method exhibits a fast error convergence. Furthermore, the method is robust
w.r.t. parameter variations. For pricing early-exercise options for which the parameters in
the Heston model satisfy the Feller condition, the new solution method gives highly accurate
option prices within a fraction of a second. The challenge was, however, to price options in
case the Feller condition was not satisfied. The computation of the Bessel functions in the
initialization step of the algorithm dominates the overall computation time in that case. The
error convergence is then also highly satisfactory. Choosing approximately 128 points in the
log-stock and in the log-variance dimension is usually sufficient for an error reduction of the
order 10−4, even if the Feller condition is not satisfied.

The method presented here may serve as a reference technique, which can also be used for
other, more elaborate, stochastic volatility models, like Heston models with stochastic interest
rates, as long as the ChF or the probability density function of the joint density of the state
variables involved can be determined.

REFERENCES

[1] D. E. Amos, A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order,
Sandia National Laboratory Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM,
1985.

D
ow

nl
oa

de
d 

02
/0

7/
13

 to
 1

31
.1

80
.1

30
.1

98
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FOURIER METHOD FOR BERMUDAN OPTIONS UNDER HESTON 463

[2] D. E. Amos, Algorithm 644: A portable package for Bessel functions of a complex argument and non-
negative order, ACM Trans. Math. Software, 12 (1986), pp. 265–273.

[3] L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model, J. Comput.
Finance, 11 (2008), pp. 1–42.

[4] N. Beliaeva and S. Nawalkha, A Simple Approach to Pricing American Options under the Heston
Stochastic Volatility Model, working paper, 2010; available online from http://ssrn.com/abstract=
1107934.

[5] M. Broadie and O. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion
processes, Oper. Res., 54 (2006), pp. 217–231.

[6] J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure of interest rates, Econo-
metrica, 53 (1985), pp. 385–407.

[7] F. Fang and C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine
series expansions, SIAM J. Sci. Comput., 31 (2008), pp. 826–848.

[8] F. Fang and C. W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine
series expansions, Numer. Math., 114 (2009), pp. 27–62.

[9] W. Feller, Two singular diffusion problems, Ann. of Math. (2), 54 (1951), pp. 173–182.
[10] S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and

currency options, Rev. Financ. Stud., 6 (1993), pp. 327–343.
[11] K. Ito and J. Toivanen, Lagrange multiplier approach with optimized finite difference stencils for pricing

American options under stochastic volatility, SIAM J. Sci. Comput., 31 (2009), pp. 2646–2664.
[12] R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee, A fast and accurate FFT-based method for
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