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Abstract 

A method for analyzing the linear complexity of nonlinear filterings of 
PN-sequences that  is based on the Discrete Fourier Transform is presented. 
The  method makes use of “Blahut’s theorem”, which relates the linear 
complexity of an N-periodic sequence in G P ( P ) ~  and the Hamming weight 
of its frequency-domain associate. To illustrate the power of this approach, 
simple proofs are given of Key’s bound on  linear complexity and of a 
generalization of a condition of Groth and Key for which equality holds 
in this bound. 

1 Introduction 
Fourier transforms in a Galois field play an important role in the study and 
processing of GF(q)-valued signals, particularly in coding theory. By revisiting 
many topics by way of the frequency-domuzn, deeper understanding and alter- 
native encoding and decoding techniques can be found (Blahut [l]). 

By exploiting “Blahut’s theorem” ~ which states that the linear complexity 
of an N-periodic sequence in C F ( g ) N  and the Hamming weight of its frepency- 
domain associate are equal, we use Discrete Fourier Transform (DFT) techniques 
here to study the linear complexity of nonlinear filterings of PN(pseudo-noise)- 
sequences. To illustrate the power of this approach, we give a simple and trans- 
parent proof of a generalization of a result of Groth [a] and Key [3]. 

Groth applied second-order boolean functions to  the stages of an LFSR with 
a primitive connection polynomial. No stage was allowed to be used more than 
once. But Groth, as well as Key [3]. as pointed out by Riieppel [7], “limited 
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himself to consider only those sequences which are available at, the stages of an 
LFSR, in particular he allowed only phase differences of at  most the length of 
LFSR. Rut when t>he speed of the LFSR is taken as an  additional parameter, this 
theory must be extended to allow arbitrary phase differences. Hiit then even the 
result of Key's which might be considered as his most solid one, namely, that a 
2nd order product of 2 distinct phases of the same sequence never degenerates, 
is no longer true." Using the DFT method that we develop in section 4, we show 
that Key's non-degeneration result always holds when the length of the LFSR 
is a prime; the restrictions imposed by Groth and Key on the phase differences 
are unnecessary in this case. 

We will discuss only the binary case q = 2 in this paper, but the Discrete 
Fourier Transform properties hold i n  the general case and all our results readily 
generalize t,o any finite field. 

2 Period and Linear Complexity of Sequences 
The linear cornple,xity, C(S), of the sequence S = s o ,  s1, . . . , si E Fl F an arbi- 
trary field, is the length L of t.he shortest linear feedback shift-register (LFSR) 
that can generate S when the first L digits of S are initially 1oa.ded in the regis- 
ter. Equivalently, the linear complexity is defined to be the smallest nonnegative 
integer L such that there exist, coefficients c1, c2, . . . , c~ in  E' such that 

s3 f C l S j - 1  + I .  I + CL"-I, = 0 , j 2 L . 

Linear complexity is very useful i n  the study of stream ciphers; a. nccessary 
condition for security of a running-key generator is that it produce a sequence 
with large linear complexity. 

The sequence S will be called N-periodic if N is a positivc integer such that 
si = S ~ + N  for all i 2 0 .  If we characterize a periodic, scquence S = S O ,  s] , . . . by 
its D-transform 

S(D) = so + SlD + s2132 + . ' ' , 
then it is well known [5] that 

where 
C ( D ) =  1 + c l D + c 2 U 2 + . . . + c ~ D L ,  C L # O  

and 
deg P ( D )  < deg C ( D )  . 

The polynomial G(D)  is the connection pvlynoriiial of an LFSR of length L that  
generates S when its initial state is [so, ~ 1 , .  ' .  , S L - ~ ] .  If gcd(P(D) ,  C ( D ) )  = 1, 
then this is the unique shortest LFSR that can generate the sequence 5 . 
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3 The Discrete Fourier Transform (DFT) 

3.1 Definition of the DFT 
We write aN to denote the N-tuple [ ~ ~ ~ a l , ~ . ~ , a ~ - ~ ]  E F N  where F is an 
arbitrary field. Under the assumption that hhere exists a primitive N-th root of 
unity w in the field F, the Discrete Fourier Transform (DFT) of a time-domain 
N-tuple aN = [ao, a l , .  . , aN-11 is defined to be the frequency-domain N-tuple 
AN = [Ao, A l , .  . .  AN-^], where the components of AN are given by 

N - 1  

A~ = C ai& f o r  j = 0, I , .  . . N - I .  
i = O  

The sequence aN can be recovered from AN by the inverse DFT in the manner 

where 

N* = { N modulo p , if the characteristic of F is a prime p . 
N , if the characteristic of F is 0 . 

The components of the N-tuples aN and AN can be used as coefficients to  form 
two polynomials a ( X )  and A ( X )  in the indeterminant X whose degrees are at 
most N - 1, namely 

a ( X )  = a0 + a1X + azX2 + ' I .  + ary -1xN- I  

A ( X )  = Ao + A1X + A z X 2  + . ' + A N - l X N - l  . 
In this polynomial representation, the DFT relations can be wrilten simply as 

1 
N *  

A, = u ( d )  and u3 = - A ( w - ' )  f o r  j = 0 ,1 ,  ' .  . ( N  - 1). 

3.2 Properties of the DFT 
The following properties of the DFT are valid in any field F containing a prim- 
itive N-th root of unity w .  Proofs may be found in [l]. A double parenthesis 
(0) about an integer denotes that this integer should be taken modulo N .  

3.2.1 The Shifting Property 

Assume that the time-domain N-tuple bN = [bo, b l ,  . . , b ~ - l ]  is formed by 
shifting the N-tuple aN = [ao, a l ,  . . ,  U N - ~ ]  cyclically to  the left by k positions, 
i.e., 

bi = U ( ( i + k ) )  f o r  i = 0,1, ' ' . N  - 1, 
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then the components of the frequency-domain N-tiiplc BN are given by 

B, = f o r  i = 0 , 1 , .  . ./v - 1. 

Equivalently, 
B ( X )  = A(w-'XX) . 

3.2.2 The Corivoliition Property 

If the time-domain N-tuple cN = [c", c1,. . ' ,  C N - ~ ]  is given by the component- 
wise product c; = ai.bi (i = 0,1 ,  . . .  N - 1) of N-tuples aN and hN, then the 
frequency-domain N-tJuplc C"' = [Go, C1, . . , G N - ~ ]  can be found by cyclically 
convolving the N-tuples AN and BN in the riianner 

(17. - 7 C A ( ( j - k l l B k  j - - N  

N - 1  1 
fo7.j = 0 , 1 ,  . . .  N - 1 . 

k = O  

Equivalently, 
I 

N 
C ( X )  = T A ( X ) B ( X )  mod XN - 1. 

3.2.3 The Conjugacy Constraints Property 

Let the elements of the frequency-domain N-tuple AN belong t o  the finite field 
GF(q") where N divides qm - 1, which condition is necessary and sufficient to  
ensure that  GF(p") contains primitive N-th roots of unity. Then the elements 
of the time-domain N-tuple a"' belong to Ihe subfield G F ( q )  if and only if the 
elements of the frequency-domain N-tuple sa.tisfy the conjugacy constraints: 

Aq = A((,j)) 0 5 j < N 3 

Note that the set of indices { ( ( q j ) )  1 0 5 j < N }  is a cyclotomic coset modulo 
N and that, its cardinality must be a divisor of N .  

3.2.4 Blahut's Theorem 

Consider the frequency-domain vcctor S N  = [So, S1,. . . , SN-~] associated with 
the time-domain vector s"' = [so,  s1, . . . , S N - ~ ]  by the DFT defined by a prirni- 
tive N-th root of unity w in F .  Then, for w = a-',  

N - 1  N - 1  s '=-c' siw-'3 - c siaaj 
N *  i=o S = O  

N' 3 

holds for all j 2 0 since replacing j by j + N leaves the sum unchanged. Thus 
the D-transform of SX is 

~ m N - 1  
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S,#O 

Because the root,s of the denominator polynomials are (Y-' = w' for those i such 
that 0 5 i < N and Si # 0,  these roots are all distinct. Thus, letting w(.)  
denote the Hamming weight (i.e., the number of nonzero components) of the 
enclosed N-tuple), we have 

where 
N -  1 

C ( D )  = n (1 - (Yi D) (1) 

has degree w ( S N ) ,  where deg P ( D )  < degC(D) and gcd(P(D),  C(I1)) = I 
By ( 1 ) and the last corriment in section 2 we now have 

L(S)  = W ( S N ) ,  ( 2 )  

which relationship we will refer as Blahut's Theorem, since, as has been pointed 
out in [6], this relation was implicitly used by Blahut. 

Example 3.1: 
Let F = G F ( 2 )  and let S = S O ,  sl, s2, . . be the characteristic phase of the 
PN-sequence defined by the primitfive element a of GF(23)  whose ininimuni 
polynomial is h ( X )  = X3 + X + 1, i.e., S is defined by 

s .  ~ r"l- ai 
2 -  ( ) l  ; > o  

where ' [ ' T  is the trace operator from GF(23)  to G F ( 2 ) ,  i.e., T r ( a )  = N + 
a' + cy4. Then i = 1 , 0 , 0 , 1 , 0 , 1 ,  1 , 1 , 0 , 0 , .  - -. The sequcncc j. is periodic 
of period N = 7 and is generated by the LFSR with connection polynomial 
C ( D )  = D3 + D2 + 1 and initial state [1,0,0]. Consider now the time-domain 
vector sN = [ l ~  0, 0 ,  1 , 0 , 1 , 1 ]  arid its associated frequency-domain vector S N  = 
[SO, 5'1, .  . , S N - ~ ]  for the DFT defined by the primitive element w = a-l .  Then 
Sj = s ( w j ) ,  for 0 5 j < N ,  where s ( X  j = 1 + X 3  + X 5  + X 6  is the time-domain 
polynomial. Hence S N  = [ 0 , 1 , 1 , 0 , 1 , 0 , 0 ]  and the frequency-domain polynomial 
is S ( X )  = X + X 2  + X4,  which is a so-called linearized polynomial [4]. 
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4 PN-Sequences and their linearized polyno- 
mials 

Suppose that a is a primitive element of GF(2L)  whose minimum polynomial 
is h ( X )  = X L  + clXL-'  + . . . + C L .  Then the characteristic phase of the PN- 
sequence defined by h ( X )  is the sequence S such that 

(3) 
2 L - l  

S ; = T T ( a ~ ) = C Y + a z + . . . + a  , i > o .  

The sequence S is generated by the LFSR with connection polynomial C ( D )  = 
1 + c ~ D  + . . .+  C L D ~  and initial state [ S O , S ~ ; . . , S L - ~ ] .  Observe that C ( D )  
is the reciprocal polynomial of h ( X ) ,  so w = a-' is (primitive and) a root of 

Thus 
C ( D ) .  

C ( D )  = H(1- aZD) 
Z€C 

where C = {1 ,2 ,4 ,  . . . , 2L-1} is the main cyclotomic coset modulo 2L - 1. It 
follows from ( 3) and the inverse DFT relation 

1 
N s, = (--)S(GZ) = S(d) 

S ( X )  1 x + X 2  + x4 + .  . . + x2'-I 

that 

5 Second Order Nonlinear Filterings of PN- 
sequences 

Let S = so, s1, s2, . . be the characteristic phase of a PN-seqiience generated by 
a maximal-length LFSR of length L and let N = 2L - 1. Let & denotje the 
shifted version si-1, si, si+l , .  . . for i = 1 , .  . . ,  N (in particular S = 51). Note 
that, for 1 5 i 5 L ,  Si is the sequence tha.t, one would observe at the i-th stage 
of the LFSR when the LFSR was clocked repeatedly. Let s; E GF(2)N be the 
binary vector corresponding to the first period of Si. Let wZ(i) denote the Ham- 
ming weight of the radix-:! form of the integer i. 

We are interested in the linear complexity of sequences Z obtained by the 
product of the sequences produced from two different initial states of the max- 
imal LFSR. Lel f = &Sj be the Hadarnard product of Si arid S j , i  # j ,  i.e., 
the bit-by-bit product of these two sequences. A s  was shown in section 4, 
definirig the DFT by w = a-' associates the frequency-domain polynomial 
S(X) = X + X 2  + X4 + . . .  + X Z L - '  with 51 . The shifting property 3.2.1 
applied to Sk, k 2 1, shows that the frequency-domain polynomial associated 
with Sxk, k 2 I ,  is S ( a k - ' X ) ,  where a is the primitive element of G F ( 2 L )  used 
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to  define the characteristic phase S of the YN-sequence and w = N-' is used to  
define DFT. 

We use the riotation Sk H S ( W ~ - ~ X . )  for t,he association given by the DFT. 
Then, for two distinct phases (say, j > i) 9, and Z j  of SX we have Si H S ( L U ~ - ' X )  
and gj H S ( a j - ' X ) .  The convolution property (3.2.2), because N *  = 1, gives 

i= SZSj +-+ '"(X) = s("-1x)s(cy~-~x) m.od X N  - 1 . 

The linearized polynomial S(cui- 'X) has noIi-zero coeficients precisely for those 
powers e of X such that 7u2(c)  = 1 and 1 5 c < 2 L .  The product S ( & ' X ) S ( d - ' X )  
thus has its potentially non-zero coefficients for those powers e of X such that 
w a ( e )  = 1 or wz(e) = 2 and 1 5 e < 2 L .  By Blahut's Theorem, the linear com- 
plexity of the sequence Z is just the number of non-zero coefficients of T ( X ) .  
Because N = - 1, all elements of a cyclotomic coset rriodulo N have the 
same Hamming weight, since their L-bit radix-:! forms differ by just a cyclic 
shift. Thus 

'/'(,Y) = c 7;xe 
e E I a  

wherc 1 2  is the union of the cyclotomic coscts C, with 1 5 wa(s) 5 2. [ For 
example, for N = 7, C, = { 1 ~ 2,4}  and = {3,6,5} are the only cyclotomic 

cosets mod N with weights 1 and 2 .  ] Thus, becnnse t,here are ( j )  integers i ,  
1 5 i < 2 L ,  such that w ~ ( Z )  = j ,  we have irrirriediately the bound 

L 

L 
C ( G j )  i + (2), 

which is Key's bound for second order filtering [3]. 
To find C(i) exact#ly, it follows from the c,onjugacy constraints property 

(3.2.3) that  it is enough to  compute the coefficient 're for those e that are repre- 
sentatives of the cyclotomic cosets modulo N .  We now examine the coefficierits 
1,  where e = 1 and e = 2e1 + 1, 1 5 e l  < I , ,  which are the representatives of 
the cyclotomic coset of weight 1 arid those of weight 2. If we make the change 
of variables Y = aZ-'X. then 

I 1  

' [ ' (a- '+'Y)  = S(Y)S(aJ- iY ' )  mod Y N  - 1 .  

Define the coefficients Ai, i E C, by 

where C is the main coset, modulo N ,  i.e., C = { 1 , 2 , 4 ,  I . . , 2L-1}. 

The coefficient of Y in S(Y)S (aJ - 'Y )  mod YN - 1 and in T(cY-~+'Y) is 

A2L-' = (A1)2L-1 = ( L ~ J - ~ ) ' ~ - '  # 0 and T1(ydi+', 
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respectively. For the cosets of weight 2 ,  
we consider the coefficient of Y2e1+1 in S(Y)S (aJ - 'Y )  mod YN - 1 and in 
T(a-'+lY),  which is 

This implies that 7; is non zero. 

We conclude that '16=,+1 will be zero if and only if A 1  = aj-' # 1 is a zero of 
the polynomial X"" + X ,  which happens if and only if e l  divides L and el  > 1 

We have proved the following result: 

Proposition 1 Let Si and s'j, 1 5 i < j < 2 L  - 1 be distinct phases of the same 
sequence .5 whose minimal polynomial h ( X )  E G F ( 2 ) [ X ]  is primitive and has 
degree L ,  L a prime. Let a E GF(2L)  denote a root of h ( X ) ,  and let t = S i S j  
be the Hadamard product of dhe two distinct phases. Then 

L 
L(T) = + (2) 

The above arguments show in general that  any sum of Hadamard products 
of order n of the sequences Si, i = 1 ' 2 ,  . . . , N , is a sequence f for which T ( X )  
has (n) potentially non-zero coefficients. Thus  t^ has linear complexity a t  most 

(n). The linear complexity of a sequence f obtained by k-th order nonlinear 
filtering of s' then satisfies 

L 

L 

which is Key's general bound. 

6 Conclusion 

We have given a method for analyzing the linear complexity of nonlinear filter- 
ings of PN-sequcnces that is based on thc Discrete Fourier Transform. 
As an application to show the usefulness of our approach, we gave a simple proof 
of Key's upper bound on linear complexity of nonlinearly filtered PN-sequences 
and we further showed that Key's result, viz. that products of two distinct 
phases of the same PN-sequence of period 2L - 1 always have the maximum 

possible linear complexity (1) + (2)  for such products when L is prime; tmhe re- 
strictions on phase differences imposed by t,his author for this nondegeneracy of 
linear complexity are unnecessary. 

L L  
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