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ABSTRACT

A finite difference model for elastic waves is introduced. The model is

based on the first order system of equations for the velocities and

stresses. The differencing is fourth order accurate on the spatial

derivatives and second order accurate in time. The model is tested on a

series of examples including the Lamb problem, scattering from a plane

interfaces and scattering from a fluld-elastic interface. The scheme is shown

to be effective for these problems. The accuracy and stability is insensitive

to the Poisson ratio. For the class of problems considered here we find that

• the fourth order scheme requires from two-thlrds to one-half the resolution of

a typical second order scheme to give comparable accuracy.
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Introduction

In this paper we introduce and validate a fourth order accu-

• rate finite difference scheme for the computation of waves in an elas-

tic medium. The method is based on the first order system for the

linearized velocities and stresses. The numerical scheme is a fourth

order accurate version of the MacCormack scheme (see Gottlieb and

Turkel, 1976) which has been shown to be effective for acoustic wave

propagation (Maestrello et. al., 1981).

In this paper we consider only the heterogeneous formulation,

where variable, possibly discontinuous, elastic parameters are used

and the equation is differenced over the entire computational domain.

For a discussion of the differences between the heterogeneous formu-

lation and the homogeneous formulation in which interface conditions

are explicitly imposed we refer to (Kelly et. al., 1976). In (Kelly

et. al., 1976) a second order accurate scheme for the coupled system

of wave equations obtained from the displacement formulation of elas-

todynamics is introduced. We refer to this as the (2-2) scheme since

it is second order accurate in time and second order accurate in

space. This scheme is commonly used in seismological applications and

we will directly compare the proposed fourth order scheme with the

(2-2) scheme. The proposed scheme is second order accurate in time

and fourth order accurate in space. It will be referred to as a (2-4)

scheme.

• The first order system has been used previously to compute

elastic waves. The reader is referred to (Clifton, 1967), (Madariaga,

1976), (Virieux and Madriaga, 1982) and (Emerman et. al., 1982) for a

discussion of some schemes that have been used previously. All of the

above schemes are only second order accurate in space and are there-



fore distinctly different from the scheme proposed here. It is possi-

ble to extend the (2-2) scheme of (Kelly et. al., 1976) to make the

spatial differences fourth order accurate. This is similiar to the

derivation of fourth order accurate schemes for the wave equation (see

for example (Alford et. al., 1974)). Such a fourth order accurate

scheme has been used for acoustic and S-H wave propagation (see for

example (Frankel and Clayton, 1984)). The extension to the system of

coupled wave equations for an elastic medium is somewhat more compli-

cated, due to the presence of the mixed derivatives but in practice

would be relatively straightforward.

As far as we are aware, no such (2-4) scheme has been studied

for elastic wave propagation. A major source of difficulty is in

obtaining a stable implementation of the free surface condition which

is of sufficient accuracy to maintain the overall fourth order accura-

cy of the scheme ( see (Oliger, 1976) for a discussion of the impor-

tance of the numerical approximation of boundary conditions). The

need to approximate one-sided derivatives for the free surface condi-

ton is a major numerical difference between elastodynamlcs and acous-

tics where the pressure release boundary conditon does not involve

spatial derivatives. The scheme proposed here, for which the stresses

are dependent variables, permits a stable and accurate implementation

of the free surface condition even for large Poisson ratios (see below

).

A higher order accurate scheme (in fact infinite order accu-

rate ) has been proposed by (Kosloff et. al., 1984). This method is

based on the Fourier pseudo-spectral method and requires a periodic

extension of the computational domain. The comparison between this

method and the (2-4) scheme proposed here remains to be c_rried out,



in particular for realistic size seismological models involving dis-

continuous elastic parameters.

The proposed (2-4) scheme is based on operator splitting whe-

re the two-dimensional equations are solved first in one dimension and

then in the second. The concept of operator splitting and the details

of the (2-4) scheme are discussed in the next section. We then pres-

ent numerical examples for the Lamb problem, scattering from a hori-

zontal interface and scattering from a fluid-elastic interface. We

finally present our conclusions.



NUMERICAL SCHEME

This section is divided into four parts. In part A we dis-

cuss the formulation of linear elastodynamics as a first order system

for the velocities and stresses. In part B, the numerical scheme is

described. In part C, we consider the choice of timestep and in part

D the boundary conditions are described.

A. Formulation

The equations of linear isotropic elastodynamics in Cartesian

coordinates are

put = Tll,x + Tl2,y

= +

PVt TI2,x _22,y

Tll,t = (I + 2_)ux + _Vy (i)

r22,t = _Ux + (I + 2_)Vy

_12,t = _(Vx + Uy).

In equation (i) u and v are the horizontal and vertical velocities

respectively, rij are the components of stress tensor. The elastic

parameters are the density p and the Lame constants _ and _. The com-

pressional and shear wave speeds Cp and Cs are given by

2 (1 + 2.)

Cp
P (2)

Cs2 = p

and Cp > Cs.

Associated with these speeds there are the spatial wave-

lengths _p=Cp/f, _s=Cs/f where f is a characteristic frequency. Hence
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c

13> 1 (3)
c

s s

• The Poisson ratio is given by

v = 1 s/ P
_ C2 "C2 (4)

so that

Cp2
= 2(l-v) (5)

C2 l-2v "
s

For seismic problems it is frequently assumed that v is

around 0.25 and thus that Cp/Cs=v/3. It then follows that the shear

wavelengths are about 60% smaller than the compressional wavelengths.

Therefore the spatial resolution requirements must be based on the

shorter shear wavelengths. In addition there exist interface and sur-

face waves which generally have smaller wavelengths than the shear

waves. There are applications where these waves are not generally

considered to be important• Nevertheless, it is necessary to resolve

these waves sufficiently well to prevent a spurious transfer of energy

into other wave modes. We also do not want numerical dispersion for

these waves to interfere with the generation and interpretation of the

waves of interest. In some cases, e.g. weathering layers, the Poisson

ratio can be considerably larger that 0.25. This further accentuates

the difference in resolution requirements between shear and compres-

sional waves.

For convenience we write equation (i) in vector form

• + BW (6)
Wt = AWx y

r12)T and the matrices A and B are given by
where W (u,v, TII, ¢22'
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We can also write equation (6) as a symmetric system

E0Wt = A0Wx + B0Wy (7)

where

i 0 0 0 O_

p o o o

i 0 )`+2_ --. 0

E0 = ()`+2.)2--.2 ()`+2.)2--.2

0 0 -" ),+2. 0
(X+2_)2--_2 ()`+2.)2--_2

o o o o ;

O0 O0ilAo = 0 0 0

0 0 0

1 0 0
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B0 = 0 0 0

" 1 0 0

0 0 0

We note that the matrices E A0 and B0 do not commute.

Since p, _, _ are independent of time, E0 is also independent of time.

The matrices A0 and B0 are also independent of the spatial

coordinates. It follows that equation (7) can be be written in the

general form

Ut = fx + hy (8)

where the vector U is E0W and the functions f and h are A0W and B0W

respectively. Equations of the form of (8) are called

divergence-free. We will develop a numerical scheme for equations of

this form. Since equation (7) was obtained from equation (6) by line-

ar manipulations the resulting scheme will be valid for equation (6).

The numerical code is based on equation (6).

B. Numerical Algorithm

The numerical algorithm will be based on the method of dimen-

sional splitting (Strang, 1968). In this method, the two-dimensional

equation (6) is updated for one timestep by first solving the equation

in the x-direction and then in the y direction. For the next timestep

the order of the x and y updates is reversed. In order to advance the

solution from time level n to level n+2 we use the formula

Wn+2 = LxLyLyLxWn; (9)

Lx,Ly represent the solution to the one dimensional problems



Wt = AWx

(10)
Wt = BWy

respectively.

It follows from equation (8) that to advance the solution one

timestep we solve equation (6) using only the terms involving the

x-derivatives. We then use these new values for the dependent vari-

ables and solve equation (6) using only the terms involving the

y-derivatives. This gives the solution at time level n+l. To update

to the next time level we repeat the procedure but reverse the order

of the x and y updates. By reversing the order the resulting scheme

is second order accurate in time.

The use of operator splitting has the following advantages.

(a) The maximum allowed timestep is governed by

the associated one-dimensional equations.

The allowed timestep is larger than

i for unsplit schemes.

(b) split schemes are particularly well suited to

multi-processing (see Schenck et. ai.,1985)).

For example in the first step all

the x updates for each line y = constant can

be done independently.

(c) split schemes tend to have smaller phase

errors than schemes (Turkel, 1974).

The proposed scheme can be implemented without splitting if desired •

(see (Gottlieb and Turkel, 1976)).

We need to specify a one-dimensional scheme for the operators



Lx and Ly. We use a scheme that is second order in time and fourth

order in space (Gottlieb and Turkel, 1976). For the equation

= (ii)
• Ut fx

• we use

Ui U9 + At fn _ f_) _ (fn _ fn= i _-_ (7( i+l i+2 i+l))

(12)

At
un+l 1 (U_ + U i + (7(_i --f ) --(_i 1 --_ )))i+l = 2 6Ax i--i -- i--2

alternating with a symmetric variant. In equation (12) the subscript

'i' denotes the spatial grid point and the superscript 'n' denotes the

time level. The resulting scheme is stable when applied to equati'on

(6) provided

At < .67 . (13)
n--xCp _

The ratio on the left hand side of equation (13) will be called the

CFL number.

The scheme described by equation (12) together with operator

splitting has been applied successfully to a variety of wave propa-

gation problems. The reader is referred to (Maestrello et. al., 1981)

for an application to the computation of acoustic disturbances in a

jet. As far as we are aware, split schemes have not yet been applied

to elasto-dynamic problems. The scheme based on equation (12) is dis-

sipative and damps the high frequencies (Gottlieb and Turkel, 1976).

It has a greatly reduced truncation error compared to second order

schemes.

The order of accuracy in time is second order. Hence, one

achieves true fourth order accuracy only if At = 0(_x2). _hus in gen-
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eral the timestep must be smaller than the maximum timestep allowed by

stability (equation (13)) in order to prevent the errors due to the

second order accuracy in time from dominating the truncation error.

In elastic wave propagation, however, it is possible to choose a

timestep near that allowed by stability. This is due to the differ- I

ence in size between the compressional and shear velocities. We have

verified this by extensive numerical experiments and provide a justi-

fication of this immediately below.

C. Choice of Timestep

In elasticity the spatial resolution and the timestep are

chosen according to two different considerations. This is because of

the existence of two different characteristic speeds. In general, the

spatial resolution is based on the shear velocity while the stability

restriction , equation (13), is based on the larger compressional

velocity. This allows larger timesteps without losing temporal accu-

racy.

In order to see this let f be a characteristic frequency of

the problem so that the associated compressional and shear wavelengths

satisfy equation (3). Assume that we could completely decouple the

compressional and shear waves and use a different mesh size for each

wave type that is appropriate to obtain a specified accuracy. The

timesteps for each wave type would then be determined by

At K

_Xp Cp
(14)

At K

_xs Cs

where K is the CFL number. For the scheme described in equation (12)

the maximum value of K allowed by stability is 0.67. In order to
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reduce temporal errors by reducing the timestep, K is reduced. It

follows from equation (14) that

• Ax C
--2 = _R (15)
Ax C

s s

This is simply a statement that a smaller mesh is required to resolve

shear waves. In practice we must use the same mesh, AXs, for both

compressional and shear waves. Since the timestep for the system is

based only on Cp according to equation (13) we have

K'Ax

At = s (16)
Cp

where K' is the CFL number used in the actual computation. Comparing

equation (14) with equation (16) we find that

KC

K' = ---2. (17)
Cs

According to equation (17) the CFL number that is actually used in the

code (K') is equal to the CFL number based on temporal accuracy (K)

multiplied by Cp/Cs(~{3). Hence we should choose the timestep to be

about 60% larger than the timestep that would give acceptable results

for the compressional and shear waves decoupled. It is clear from

this argument that the compressional waves will generally be oversam-

pled but this is unavoidable for any scheme that solves the equation

(i).

It follows from the discussion above that the spatial mesh

• size is governed by the shear velocity while the explicit timestep

restriction due to stability is governed by the larger compressional

velocity. This is essentially the case for all explicit finite dif-

ference schemes. For a scheme that is second order accurate in both
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space and time, the optimal timestep is usually the maximum allowed by

stability. For a scheme that is second order accurate in time and

fourth order accurate in space the optimum time step is typically

smaller than that allowed by stability. This is in order to prevent

the second order temporal errors from dominating the truncation error.

However when the explicit timestep restriction itself forces a small

timestep, the (2-4) scheme can be run at or near its stability limit

and the temporal errors will be negligible. The use of operator

splitting then permits a larger timestep as indicated above.

As the Poisson ratio increases the ratio of the compressional

velocity to the shear velocity becomes larger. The corresponding

timestep forced by the stability restriction can become much small_r

than that required for accuracy. We have found that for a Poisson

ratio around 0.3 the (2-4) scheme can be run at its stability limit

(equation (13)) with little degradation in accuracy. For very high

Poisson ratios, implicit schemes such as that proposed by (Emerman et.

al., 1982) would become more efficient since they would permit times-

teps that are not restricted by stability. In practice this must be

balanced against the additional work per timestep required by implicit

schemes. This discussion highlights a difference between elasticity

and acoustics or S-H wave propagation that makes (2-4) schemes more

efficient in the elastic case. The discussion would be applicable to

acoustic wave propagation only if the computational model included

wide variations in the size of the acoustic velocity.

The numerical experiments using this (2-4) scheme were per-

formed in a rectangular region

0_X_Ll; -L2_YS0. (18)

A Cartesian mesh with Ax=Ay is always used independent of the shape of
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the interfaces. It requlres 112 floating point operations per grid

point (multiplications and adds) to advance the solution from t to

t+_t (ignoring boundary calculations). The simplicity of the algo-

rithm and the mesh makes it easy to treat many different applications.

• Changes in geometry or even in the equations do not introduce any sig-

nificant complications.

D. Boundary Conditions

The interior scheme, given by equation (12) requires the use

of two points in every direction from the point being advanced. At

boundaries some numerical boundary treatment must be introduced

because the boundary point does not have enough neighbors to implement

the scheme. In addition, there are physical boundary conditions that

must be imposed.

In each sweep all boundary fluxes are defined at points out-

side of the computational domain by a third order extrapolation. For

example, for the scheme defined by equation (12) if i=n is a boundary

point we define,

fn+l = 4fn -6fn-I + 4fn-2 - fn-3
(19)

fn+2 = 4fn+l --6fn+ 4fn--i--fn--2

The extrapolated fluxes fn+l and fn+2 are used to complete the forward

predictor. Other boundaries are treated similarly. The third order

extrapolation given by equation (17) enables us to compute a solution

at the boundary which maintains the overall fourth order accuracy of

the scheme. It is shown in (Oliger, 1976) that the accuracy obtained

• from fourth order accurate interior schemes can be significantly

degraded if a third order accurate boundary treatment is n(xtused.
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It remains to impose the correct physical boundary conditions

which are necessary to complete the specification of the ini-

tial boundary value problem given by equation (i) in the region given

by equation (18) In typical calculations there are two types of

boundaries. The upper boundary, y=0, is a free surface along which

the appropriate conditions are 712=z22=0. Since the scheme is a cen-

tered scheme we must calculate the other variables u, v, rll by some

other means. We calculate these variables by extrapolation based on

characteristic variables.

Based on a one dimensional analysis (i.e. neglecting x deriv-

atives) the quantity

R1 = {p-_ u + r12 (20)

is convected toward the boundary with velocity CS'

R2 = V'(_+ 2_)p v + T22 (21)

is convected toward the boundary with velocity Cp and

R3 = (k + 2.)TII--.T22 (22)

moves with zero normal velocity. We specify RI, R2, R3 by the values

obtained from the interior scheme with the boundary fluxes extrapo-

lated using equation (19). This combined with the free surface condi-

tions r22=r12=0 enables us to obtain all of the dependent variables.

(For problems with a surface source, the above procedure is carried

out with r22 and z12 equa! to the prescribed forces). The use of

one-dimensional characteristic variables was shown in (Gottlieb et.

al., 1982) to enhance the stability of the boundary treatment, we

have found that the specification of the zero characteristic R3 is

necessary when the Poisson ratio is large or when the material is
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highly anisotropic.

In addition to the free surface there are three other bounda-

" ties; x=0, x=L1 and y=-L2. These are all artificial boundaries and

appropriate absorbing boundary condition must be imposed. We use the

one-dimensional characteristics given by equations (20-22) (or the

analogue obtained by neglecting y derivatives when the boundary is the

line x = constant ) and impose the boundary condition that the incom-

ing characteristic variable is zero. This characteristic condition is

the same as the viscous boundary condition proposed by (Lysmer and

Kuhlemeyer, 1969). Using the first order system (equation (i)) it

becomes a Dirichlet condition which can be implemented very easily.

These conditions are exact for compressional and shear waves impinging

normally on the boundary. Since they are based on one-dimensional

characteristics they do not absorb Rayleigh waves. The Rayleigh wave

reflection can be ameliorated by burying the source or by making a

subsidiary calculation of the free space problem with just the upper

layer of the model and subtracting that solution from the computed

solution. We are investigating more satisfactory solutions to this

problem.

In (Clayton and Engquist, 1977) boundary conditions based on

paraxial approximations to elastic waves were introduced. The first

order condition in (Clayton and Engquist, 1977) is equivalent to the

characteristic condition in one dimension but differs in two dimension

because of the replacement of the shear stress by a displacement. The

higher order paraxial boundary conditions are theoretically more

• effective absorbers as the waves deviate from normal incidence. (Co-

hen et. al., 1981) have found that these higher order boundary condi-
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tions are not significantly more effective than the viscous boundary

conditions and we have not found pernicious reflections in the exam-

ples considered in the next section. None of these boundary condi-

tions accounts for the cylindrical decay of the compressional and

shear waves. A family of boundary conditions which account for the

cylindrical decay of acoustic waves is described in (Bayliss and Turk-

el, 1980).
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NUMERICAL RESULTS

In this section we present some numerical examples which

illustrate the advantages of the finite difference scheme described

above. In the first example we consider the Lamb problem for a sur-

face line source. Specifically we take

T22 = f(t)_ (X) (23)

on the free surface. The functional form of the source is

4 -2(t-ts)2/°2 -2(ts/°))2
f(t) = 2 (e -e ) (t-ts).(24)

a

The material properties were chosen so that the compressional speed

was 7000 ft./sec., the shear speed was 4000 ft./sec, and the density

was taken as 1.0. The parameters of the source were o = .017 sec and

the time shift (tS) was 0.285 sec. The spatial delta function was

modelled by the discrete function which is zero except at the location

of the source where it is equal to I/h (h is the grid size).

The coupled wave equation for the elastic displacements can

also be considered as coupled wave equations for the elastic veloci-

ties provided we use a source that is the derivative of equation (24).

Using the parameters described above the peak frequency of the deriva-

tive of the source is approximately 26.5 Hertz. We compared the sol-

ution with the exact solution (Miklowitz, 1978) and with solutions

obtained from the (2-2) scheme (Kelly et. al., 1976). A second order

accurate implementation of the free surface condtion was used (B. Nair

private communication).

In Figures la and ib we compare the horizontal velocity u at

a receiver location of 100 ft. from the source. We compare the exact

solution with results from the finite difference calculations using a
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mesh size of 10 ft. It is apparent that the (2-4) scheme is more

accurate. In refining the grid we found that the (2-2) scheme with 5

ft. spacing gave a solution that was comparable to the (2-4) scheme

with 10 ft. spacing. This is exhibited in Figure ic.

In Figure 2 we demonstrate the effect of increasing the Pois-

son ratio. The parameters are the same except that the compressional

velocity is increased to 16000 ft./sec, giving a Poisson ratio of

0.4667. The results demonstrate that the (2-4) scheme is stable and

that there is little loss in accuracy as the Poisson ratio increases.

The implementation of the free surface condition which we used with

the (2-2) scheme was not stable at this Poisson ratio. We did not

test the implementation of (Ilan and Loewenthal, 1976) which appears

to be more stable at higher Poisson ratios.

We next demonstrate the accuracy of the numerical scheme on

body waves reflected from an interface. We consider a surface source

of the above form and an interface 400 ft. below the free surface. At

the interface the velocities jump to 12000 ft./sec. (compressional)

and 8000 ft./sec. (shear). The density is kept constant.

We have found that for a given source and mesh size the Ray-

leigh waves tend to be significantly less accurate than the body

waves. There are several reasons for this. The Rayleigh waves tend

to be a higher order derivative than the body waves (see Miklowitz,

1978) and thus there is more energy in the higher frequencies. In

addition, the Rayleigh wave profiles are steep in the normal direction

thus requiring more resolution. The accuracy is also sensitive to

the treatment of the free surface condition. Finally Rayleigh waves

propagate parallel to the grid and many schemes tend to be least accu-

rate for waves that propagate parallel to the grid.
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For some problems in seismology the reflected body waves are

more important than the Rayleigh waves. In order to asses

.the accuracy of the two schemes on the body waves we compared sol-

utions on the free surface obtained with both numerical schemes. The

time intervals were chosen so as not to include the Rayleigh wave.

Mode converted arrivals and multiple reflections off the free surface

did occur during the chosen time interval. In order to enhance the

separation of the arrivals, the duration of the source pulse was

reduced by setting o = .0125 sec.

The programs were run with grid refinement until no further

changes were visible. It was found that the (2-4) scheme with a mesh

size of 5 ft. could be taken as the exact solution. A comparision for

the horizontal velocity u at a receiver location of i00 ft. is shown

in Figures 3a and 3b. In Figure 3a we compare the solution obtained

with the (2-4) scheme with a mesh size of 5 ft. to the solution

obtained with the (2-4) scheme and a mesh size Of 7.5 ft. It is

apparent that the solutions agree closely, with the major source of

errors being a slight amplitude attenuation in the later arrivals. In

contrast, we compare in Figure 3b the (2-2) scheme with a mesh size of

7.5 ft. to the (2-4) scheme with a mesh size of 5.0 ft. The second

order solution is quite inaccurate, exhibiting both amplitude errors

and additional lobes characteristic of numerical dispersion.

In order to assess the properties of the two schemes for

waves propagating at wider angles to the grid we make the same compar-

ison in Figures 4a and 4b for a receiver location at 800 ft. The same

• conclusion can be drawn. In Figure 4c we compare the (2-4) scheme and

the (2-2) scheme both with mesh sizes of 5 ft. It can be inferred

that the second order scheme with a mesh size of 5 ft. is comparable
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in accuracy to the fourth order scheme with a mesh size of 7.5 ft.

In summary the results for this model demonstrate that both

schemes perform worst for waves propagating nearly parallel to the

grid. The (2-4) scheme is less anisotropic. For models of this size

and sources of the form of equation (24) body waves require roughly

two-thirds less resolution in each dimension with the (2-4) scheme

than with the (2-2) scheme for comparable accuracy. Rayleigh waves

require roughly half the resolution. The accuracy and stability of

the (2-4) scheme does not appear to be sensitive to Poisson ratio. We

have obtained results for problems with curved interfaces, including

models which allow caustic formation. The conclusions for these cases

are similiar to those already presented.

In our final example we consider the problem of Rayleigh wave

scattering from a fluid. The geometry is shown in Figure 5. For sim-

plicity, the Rayleigh wave is generated by a surface source in the

elastic region. The acoustic fluid is treated by Setting the shear

modulus to zero and differencing across the interface. The free sur-

face condition is replaced by a pressure release boundary condition

over the fluid.

This problem is designed to demonstrate that the scheme is

accurate and stable at a fluid-elastic interface. We refer to (Steph-

en, 1983) for a discussion of the numerical difficulties that can be

expected at a fluid-elastic interface. The source function is the

same as for the first example. In Figure 6 we plot a snapshot of the

vertical velocity at t = 0.35 sec. The impinging Rayleigh wave gener-

ates an interfacial wave which travels along the fluid-elastic inter-

face and a wave which travels throught the fluid. The slow velocity

of the interfacial wave governs the resolution requirements of the
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problem. Body waves are generated at the interface and propagate away

from the fluid.

In order to assess the accuracy of the computation, we exam-4

ine time traces of the horizontal velocity for different grids. We

choose a receiver location at 1500 ft. so that interference by the

slow interfacial wave can be seen. In Figures 7a and 7b the solution

with grid sizes of 4 and 6 ft. are compared with the solution obtained

with a grid size of 2.5 ft. The solution does not change if the grid

is refined further. It is apparent that the solution converges as the

grid is refined. We have not run this case with the (2-2) scheme but

based on the results presented above we expect that the (2-2) scheme

would require substantially more resolution to obtain a solution o{

comparable accuracy. Considerably more resolution is required than

for the corresponding Lamb problem. This is primarily because of the

slow velocity of the interfacial wave. The computations were stable

provided the CFL number (see above ) was reduced to 0.5.

This computation, together with others that we have made,

demonstrates that there are no stability problems in applying the

scheme at a fluid-elastic interface. The change to a pressure release

boundary condition over the fluid provides a further test of the

robustness of the scheme. We have repeated this computation with the

Poisson ratio in the elastic region increased to 0.4667 and again no

instabilities were found. Although the resolution requirements in

this problem are governed by a slow interfacial wave, we have examined

body waves reflected from a fluid-elastic interface and found no

degradation in accuracy compared to a corresponding elastic-elastic

interface. The numerical scheme provides a simple and robust method

to compute scattering from curved fluid-elastic interfaces.
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CONCLUSION

The numerical results presented here clearly demonstrate the

improvements in accuracy that can be obtained from the use of fourth

order accurate differences to compute elastic waves. We have tested

the scheme on a variety of problems involving wave scattering from

curved interfaces, fluid-elastic interfaces and regions of high Pois-

son ratio. The results presented here are representative of the

improvements due to the fourth order differencing.

The scheme presented here permits an accurate and robust

implementation of the free surface condition. For body waves, with

sources of the same form as equation (24), we have found that from

13-16 points per shear wavelength, based on the peak frequency of the

derivative of the source, is required for reasonable accuracy. This

is for models approximately 20-30 wavelengths in size. Larger models

require more resolution per wavelength. This is shown mathematically

by (Kreiss and Oliger, 1973) and demonstrated numerically by (Stephen,

1982). Resolution requirements grow at a much slower rate with fourth

order differencing (Kreiss and Oliger, 1973). Considerably more

resolution is required to approximate Rayleigh waves than body waves.

The scheme is suitable for vector computers. A sustained

rate of 56 MFLOPS (Million Floating Point Operations Per Second) can

be obtained on a Cray I-S. On a Cray XMP/48 using only one processor

a rate of 83 MFLOPS can be obtained. Using all four processors rather

than one a sustained rate of 328 MFLOPS can be obtained. The improve-

ment in using four processors rather than one is 3.95. (The authors

are grateful to Michael Booth of Cray Research Inc. for assistance in

adapting the program to run on multi-processors). Schemes based on °

operator splitting are particularly well suited to multi-processlng.
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For example during an x update each line y=constant can be given to a

separate processor. A further discussion of this can be found in

(Schenck et. al., 1985). A benchmark problem with a grid of 701x301

and run for 2560 timesteps, required 660 seconds on the Cray I-S and

116 seconds on the XMP/48. (This run and all of the other cases dis-

cussed here used an expanding grid as suggested by (Boore, 1972)).

There are applications where the explicit imposition of

interface conditions may be more efficient than the heterogeneous for-

mulation. For example, models with localized regions of low velocity

would require significant oversampling unless different grids were

used in different regions. The scheme described here appears to be

applicable to a wide variety of problems of seismological interest.

It could also be used with the explicit imposition of interface condi-

tions (homogeneous formulation) provided interface conditions of suf-

ficient accuracy were imposed.
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FIGURE CAPTIONS

• l.a Comparison of exact solution to the Lamb problem (solid curve)

to solution obtained with (2-4) scheme using a grid size of

i0 ft. (dotted curve). Horizontal velocity (u) plotted at a

receiver location 100 ft. from the source.

1.b Comparison of exact solution to the Lamb problem (solid curve)

to solution obtained with (2-2) scheme using a grid size of

i0 ft. (dotted curve). Horizontal velocity (u) plotted at a

receiver location 100 ft. from the source.

l.c Comparison of exact solution to the Lamb problem (solid curve)

to solution obtained with (2-2) scheme using a grid size of

5 ft. (dotted curve). Horizontal velocity (u) plotted at a

receiver location 100 ft. from the source.

2 Comparison of exact solution to the Lamb problem (solid curve)

to solution obtained with (2-4) scheme using a grid size of

i0 ft. (dotted curve). Horizontal velocity (u) plotted at a

receiver location 100 ft. from the source. Poisson ratio is

0.4667.

3.a Comparison of reflected body waves. Solid curve is (2-4) scheme

using a mesh size of 5 ft. Dotted curve is obtained from (2-4)

scheme using a mesh size of 7.5 ft. Horizontal velocity (u)

• plotted at a receiver location 100 ft. from the source.
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3.b Comparison of reflected body waves. Solid curve is (2-4) scheme

using a mesh size of 5 ft. Dotted curve is obtained from (2-2)

scheme using a mesh size of 7.5 ft. Horizontal velocity (u)

plotted at a receiver location 100 ft. from the source.

4.a Comparison of reflected body waves. Solid curve is (2-4) scheme

using a mesh size of 5 ft. Dotted curve is obtained from (2-4)

scheme using a mesh size of 7.5 ft. Horizontal velocity (u)

plotted at a receiver location 800 ft. from the source.

4.b Comparison of reflected body waves. Solid curve is (2-4) scheme

using a mesh size of 5 ft. Dotted curve is obtained from (2-2)

scheme using a mesh size of 7.5 ft. Horizontal velocity (u)

plotted at a receiver location 800 ft. from the source.

4.c Comparison of reflected body waves. Solid curve is (2-4) scheme

using a mesh size of 5 ft. Dotted curve is obtained from (2-2)

scheme using a mesh size of 5 ft. Horizontal velocity (u)

plotted at a receiver location 800 ft. from the source.

5 Model for problem of Rayleigh wave scattering from fluid.

6 Snapshot of vertical velocity (v) obtained for problem of

Rayleigh wave scattered from fluid. Time is 0.35 sec

7.a Comparison of solutions obtained for problem of Rayleigh wave

scattering from fluid. Solid curve is obtained with grid size

of 2.5 ft. Dotted curve had grid size of 6 ft. Horizontal
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velocity (u) plotted at receiver location 1500 ft. from source.

. 7.b Comparison of solutions obtained for problem of Rayleigh wave

scattering from fluid. Solid curve is obtained with grid size
a

of 2.5 ft. Dotted curve had grid size of 4 ft. Horizontal

velocity (u) plotted at receiver location 1500 ft. from source.
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