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A FOURTH-ORDER ACCURATE FINITE-VOLUME METHOD WITH

STRUCTURED ADAPTIVE MESH REFINEMENT FOR SOLVING

THE ADVECTION-DIFFUSION EQUATION∗

QINGHAI ZHANG† , HANS JOHANSEN‡ , AND PHILLIP COLELLA‡

Abstract. We present a fourth-order accurate algorithm for solving Poisson’s equation, the heat
equation, and the advection-diffusion equation on a hierarchy of block-structured, adaptively refined
grids. For spatial discretization, finite-volume stencils are derived for the divergence operator and
Laplacian operator in the context of structured adaptive mesh refinement and a variety of boundary
conditions; the resulting linear system is solved with a multigrid algorithm. For time integration, we
couple the elliptic solver to a fourth-order accurate Runge–Kutta method, introduced by Kennedy
and Carpenter [Appl. Numer. Math., 44 (2003), pp. 139–181], which enables us to treat the nonstiff
advection term explicitly and the stiff diffusion term implicitly. We demonstrate the spatial and
temporal accuracy by comparing results with analytical solutions. Because of the general formulation
of the approach, the algorithm is easily extensible to more complex physical systems.
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1. Introduction. The advection-diffusion equation governs numerous physical
processes. Morton [17] lists ten sample applications ranging from semiconductor sim-
ulation to financial modelling. He also observes that “Accurate modelling of the
interaction between convective and diffusive processes is the most ubiquitous and
challenging task in the numerical approximation of partial differential equations.”
This observation is partly due to the fact that algorithms and analysis tend to be
very different in the two limiting cases of elliptic and hyperbolic equations. Also,
even for very simple initial and boundary conditions, the true solution may contain
multiple length-scales that vary drastically across the spatial domain; see (3.1) in [18]
for such an example.

A finite-volume (FV) formulation is often preferred for applications where con-
servation is a primary concern. In its simplest form, the FV formulation is derived
by applying the divergence theorem over the cells of a regular computational grid:

(1.1)
1

hD

∫

Vi

∇ · �Fdx =
1

h

D
∑

d=1

(

〈Fd〉i+ 1
2
ed − 〈Fd〉i− 1

2
ed

)

,

where a face-averaged quantity is defined as

(1.2) 〈Fd〉i+ 1
2
ed ≡

1

hD−1

∫

A
i+1

2
ed

Fd dA.
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Here h denotes the uniform mesh spacing, i ∈ Z
D a cell multi-index, and ed ∈ Z

D

the vector with its dth component equal to one and all other components zero. Let
1l ∈ Z

D be the vector whose elements are all equal to one; then Vi = [ih, (i + 1l)h]
denotes a grid cell, and Ai− 1

2
ed = [ih, (i+1l− ed)h] and Ai+ 1

2
ed = [(i+ ed)h, (i+1l)h]

denote the two faces of cell Vi along the dth dimension.
The relationship (1.1) is exact; approximations are obtained from replacing the

integrals over faces (1.2) by quadratures. Traditionally, FV methods have been based
on using the midpoint rule for the face integrals, which leads to a second-order accu-
rate discretization. More recently, there has been increasing interest in using methods
based on higher-order accurate FV methods of this form, with quadratures using the
midpoint rule plus corrections computed using the transverse derivatives of the fluxes,
or, for the case of fluxes that are linear functions of the unknowns, using deconvolution
of face-averages from cell averages, following the ideas in [8, 21]. This has been done
for Poisson’s equation [1], for hyperbolic problems on mapped grids [7], and for non-
linear hyperbolic conservation laws on locally refined grids [14]. For time-dependent
problems, a method-of-lines approach has been employed, using the high-order dis-
cretization methods in space and the classical explicit fourth-order accurate Runge–
Kutta method in time. In this paper, we demonstrate that the approach described
above can be used for advection-diffusion problems based on a semi-implicit time
discretization. In particular, we use a fourth-order accurate additive Runge–Kutta
method described in [12], treating the advection terms explicitly and the diffusion
terms implicitly, with the spatial discretization performed on locally refined grids.
The resulting method is fourth-order accurate, with a time-step stability constraint
required only for the explicitly treated advection term.

2. FV formulation. The advection-diffusion equation is defined as

(2.1)
∂φ

∂t
= −∇ · (uφ) + νΔφ+ f,

where the constant diffusivity ν, the velocity field u = u(x, t), and the forcing term
f = f(x, t) are known a priori. To generate an FV discretization, we average (2.1)
over each control volume, Vi, and apply the divergence theorem as in (1.1) to obtain
a system of ordinary differential equations (ODEs) on Z

D:

(2.2a)
d 〈φ〉i
dt

= Ladv(〈φ〉 , t)i + Ldiff(〈φ〉)i + 〈f〉i ,

(2.2b) Ladv(〈φ〉 , t)i = −
1

h

D
∑

d=1

(

〈udφ〉i+ 1
2
ed − 〈udφ〉i− 1

2
ed

)

,

(2.2c) Ldiff(〈φ〉)i = ν 〈Δφ〉i =
ν

h

D
∑

d=1

(

〈

∂φ

∂xd

〉

i+ 1
2
ed

−

〈

∂φ

∂xd

〉

i− 1
2
ed

)

,

where a cell-averaged quantity is defined as

(2.3) 〈q〉i ≡
1

hD

∫

Vi

q(x, t)dx.

Note that (2.2a)–(2.2c) are still exact relationships with no discretization error.
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In our notation, a subscript of the form 〈·〉i indicates a cell-averaged quantity
defined by (2.3), while 〈·〉i± j

2
ed indicates a face-averaged quantity defined by (1.2).

The differences between the three quantities account for much of the complexity of
fourth-order FV methods that is unnecessary in second-order methods. Typically,
O(h4) FV stencils (acting on averages) are different from corresponding finite differ-
ences (of point values), because of higher-order derivatives that must be included.
Appendix A lists the commonly used formulas and derives specific ones used here.

2.1. Spatial discretization. The FV formulations of the two operators, (2.2b)
and (2.2c), requires face-averaged quantities to be approximated from cell-averaged
ones. The connection between cell-averaged quantities and face-averaged quantities
for higher-order FV hyperbolic discretizations was established in [8]. For fourth-order
accuracy, we use simple differences to approximate face-averaged values from cell-
averaged values (derived in Appendix A):

(2.4) 〈φ〉i+ 1
2
ed =

7

12

(

〈φ〉i + 〈φ〉i+ed

)

−
1

12

(

〈φ〉i−ed + 〈φ〉i+2ed

)

+O(h4) ,

(2.5)

〈

∂φ

∂xd

〉

i+ 1
2
ed

=
1

12h

(

15 〈φ〉i+ed − 15〈φ〉i − 〈φ〉i+2ed + 〈φ〉i−ed

)

+O(h4).

The discrete FV approximations of the operators, (2.2b) and (2.2c), are derived
by substituting (2.4) and (2.5) and adding additional terms for face averages of the
product, 〈φud〉. See Appendix B for the complete derivation. The resulting discrete
FV approximations act only on cell-averaged quantities:

Ladv(〈φ〉 , t)i = −
1

h

D
∑

d=1

∑

±=+,−

(

±〈φ〉i± 1
2
ed 〈ud〉i± 1

2
ed(2.6a)

±
h2

12

∑

d′ �=d

(

G⊥
d′φ
)

i± 1
2
ed

(

G⊥
d′ud

)

i± 1
2
ed

)

+O(h4),

(2.6b)
(

G⊥
d′q
)

i± 1
2
ed =

1

2h

(

〈q〉i± 1
2
ed+ed′ − 〈q〉i± 1

2
ed−ed′

)

,

(2.7) 〈Δφ〉i =
1

12h2

(

−30D 〈φ〉i +
D
∑

d=1

∑

±=+,−

(

16 〈φ〉i±ed − 〈φ〉i±2ed

)

)

+O(h4).

Note that (2.6) is the same formula as was used in [7, 14], while (2.7) is different from
the fourth-order “Mehrstellen” stencil derived in [1], which requires a correction to
the leading error term that is not generally applicable to variable coefficient problems.

Since the discrete divergence is calculated from face averages as in (1.1), a face
average over any interior edge participates in the calculation exactly twice: once for
the cell at the lower side and once for the cell at the higher side. Hence the sum of
discrete divergence over the whole computational domain vanishes if the corresponding
fluxes (normal velocity or gradient) sum up to zero over the domain boundary. This
defines the conservation property of the FV formulation.
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2.2. Boundary conditions. At nonperiodic domain boundaries, “ghost cells”
are used with the standard interior stencils to evaluate the advection and Laplacian
operators. For example, let 〈φ〉i denote the cell-averaged scalar of the interior cell
abutting a high-side boundary, and let 〈φ〉i+ed & 〈φ〉i+2ed denote those of the two
ghost cells to be calculated. In the case of Dirichlet boundary conditions, we specify
〈φ〉i+ 1

2
ed = 〈g〉i+ 1

2
ed and use an extrapolation based on the integrals of interpolating

polynomials; this leads to the following ghost cell formulas for the fourth-order case:

(2.8a) 〈φ〉i+ed =
1

3

(

−13 〈φ〉i + 5 〈φ〉i−ed − 〈φ〉i−2ed + 12 〈g〉i+ 1
2
ed

)

+O(h4),

(2.8b) 〈φ〉i+2ed =
1

3

(

−70 〈φ〉i + 32 〈φ〉i−ed − 7 〈φ〉i−2ed + 48 〈g〉i+ 1
2
ed

)

+O(h4).

A fifth-order interpolation leads to
(2.9a)

〈φ〉i+ed =
1

12

(

−77 〈φ〉i + 43 〈φ〉i−ed − 17 〈φ〉i−2ed + 3 〈φ〉i−3ed + 60 〈g〉i+ 1
2
ed

)

+O(h5)

〈φ〉i+2ed =
1

12

(

−505 〈φ〉i + 335 〈φ〉i−ed − 145 〈φ〉i−2ed + 27 〈φ〉i−3ed + 300 〈g〉i+ 1
2
ed

)

(2.9b)

+O(h5).

Similarly, for Neumann-type boundary conditions we specify 〈 ∂φ
∂xd

〉i+ 1
2
ed = 〈g〉i+ 1

2
ed ,

and a fourth-order interpolation yields

(2.10a) 〈φ〉i+ed =
1

11

(

9 〈φ〉i + 3 〈φ〉i−ed − 〈φ〉i−2ed + 12 〈g〉i+ 1
2
ed

)

+O(h4),

(2.10b) 〈φ〉i+2ed =
1

11

(

−30 〈φ〉i + 56 〈φ〉i−ed − 15 〈φ〉i−2ed + 48 〈g〉i+ 1
2
ed

)

+O(h4),

while a fifth-order interpolation yields
(2.11a)

〈φ〉i+ed =
1

10

(

5 〈φ〉i + 9 〈φ〉i−ed − 5 〈φ〉i−2ed + 〈φ〉i−3ed + 12 〈g〉i+ 1
2
ed

)

+O(h5),

(2.11b)

〈φ〉i+2ed =
1

10

(

−75 〈φ〉i + 145 〈φ〉i−ed − 75 〈φ〉i−2ed + 15 〈φ〉i−3ed + 60 〈g〉i+ 1
2
ed

)

+O(h5).

We use fourth-order formulas (2.8) and (2.10) for the advection operator, and fifth-
order formulas (2.9) and (2.11) for the Laplacian operator.

2.3. Nested refinement. The uniform grid discretization above can also be
extended to structured adaptive mesh refinement (AMR), i.e., a locally refined, nested
hierarchy of rectangular grids. Our notation is based on previous O(h2) structured
AMR work (see [13]), but we will reiterate parts of the notation for the purpose of
explaining the present algorithm.

On a family of nested discretizations of a rectangular domain {Γl}lmax

l=0 , Γl ⊂ Z
D,

control volumes V l
i = [ihl, (i+1l)hl] are represented with multi-indices i ∈ Γl, with hl
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denoting the uniform mesh spacing and nl
ref = hl−1/hl the refinement ratio between

levels Γl and Γl−1. To relate geometric regions and variables on different levels of the
hierarchy to one another, we define a coarsening operator for indices,

Cnl
ref
(i) =

(⌊

i1

nl
ref

⌋

, . . . ,

⌊

iD

nl
ref

⌋)

.

Similarly, we define the refining operator as C−1
nl
ref

(Γl−1) = Γl.

At any given point in time, our computed solution will be defined on the compu-
tational domain {Ωl}lmax

l=0 , Ωl ⊂ Γl, Cnl
ref
(Ωl) ⊂ Ωl−1, Ω0 = Γ0. The Ωl’s are assumed

to satisfy “proper nesting” conditions: that C−1
nl
ref

(Cnl
ref
(Ωl)) = Ωl (coarsening or refin-

ing levels does not change the region covered), and that there are at least sn points
in any direction in Ωl separating C

nl+1

ref

(Ωl+1) (the finer level coarsened to l) from

C−1
nl
ref

(Ωl−1)− Ωl (the coarser level refined to l). In the case of periodic domains, this

condition is assumed to hold with respect to the periodic extensions of the grids. In
the present work, we assume sn = 3 to support the interpolation stencils below.

The primary dependent variables on each level are defined only on the part of Ωl

not covered by finer grids:

(2.12a) φcomp = {φl}lmax

l=0 , φl : Ωl
valid → R,

(2.12b) Ωl
valid = Ωl − C−1

n
l+1

ref

(Ωl+1), Ωcomp =

lmax
⋃

l=0

Ωl
valid.

We generalize the definitions of the operators Ldiff, Ladv to operate on φcomp, but
with the flux calculations modified to account for the changes in grid resolution at
refinement boundaries. First, we extend the φl’s to all of Ωl by averaging down from
the finer levels:

(2.13) 〈φ〉li =
1

(nl
ref)

D

∑

j∈C−1

nl
ref

({i})

〈φ〉l+1
j on C

n
l+1

ref

(Ωl+1), l = lmax − 1, . . . , 0 .

Then, for each level, we compute approximate values of 〈φ〉 over control volumes
outside of Ωl to facilitate the evaluation of Ladv and Ldiff on all of Ωl

valid. The
constrained least-squares approach described in [14] is adopted to derive these “coarse-
fine” interpolation stencils.

Specifically, we interpolate O(hP+1)-order accurate values for j ∈ C−1
nl
ref

({i}) by

computing a polynomial interpolant of the form

(2.14) Pi(x) =
∑

p:pd≥0, p1+···+pD≤P

apx
p, xp =

D
∏

d=1

xpd

d ,

subject to the constraint that the coarse 〈φ〉l are the averages of fine values 〈φ〉l+1
j as

required by (2.13). The coefficients ap are computed as the least-squares approxima-
tion to an overdetermined system of linear equations 〈φ〉j = 〈Pi〉j, j ∈ N (i), where

N (i) is a collection of nearby points in Ωl. The number of the chosen points ex-
ceeds the number of terms in the sum in (2.14); the points must also be chosen so
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〈F1〉2i− 1
2
e1

〈F1〉2i+e2− 1
2
e1

�� 〈F1〉i+ 1
2
e1

〈F2〉i− 1
2
e2

〈F2〉i+ 1
2
e2

Fig. 2.1. Two-dimensional (2D) refluxing example for the two-level divergence operator. Cell i
is marked by ◦. Its coarse-fine interface χ−(i− 1

2
e1) =

{

2i− 1
2
e1, 2i+ 1l− 3

2
e1

}

is marked by thick
line segments.

that the resulting linear system is of maximal rank and, when appropriately scaled,
well-conditioned.

For computing the fluxes in Ladv, we use the fourth-order accurate stencil (P = 3)
to fill ghost cell values, as used in [14]. For computing the fluxes in Ldiff, we use a
generalization of the same stencil that is fifth-order accurate (P = 4). For example,
the stencil away from the domain boundary is

(2.15) N (i) = i+

(

[−1l, 1l]
⋃

(

⋃

±=+,−

D
⋃

d=1

{±2ed + sed
′

: d′ 	= d, s = 0,±1}

))

.

See [22] for a more general approach.
As in [13], after the fluxes on all the levels are computed in this fashion, we replace

the fluxes on faces of level l control volumes that are adjacent to Ωl+1 by the average
of the fluxes at level l + 1. Figure 2.1 illustrates an example with D = 2, d = 1,
i ∈ Ωl

valid, and i− ed ∈ Cnl
ref
(Ωl+1

valid): the flux computed with the uniform grid stencils

in (2.2b) and (2.2c) is replaced with

(2.16) 〈Fd〉
l
i− 1

2
ed =

1

(nl
ref)

D−1

∑

il+1− 1
2
ed∈χ−

〈Fd〉
l+1
il+1− 1

2
ed ,

where χ− =
[

inl
ref −

1
2e

d, (i + 1l− ed)nl
ref − 1l + 1

2e
d
]

.

3. Time integration. Using the nested refinement spatial discretization de-
scribed above, we obtain a system of ODEs,

(3.1)
d 〈φ〉comp

dt
= Ladv(〈φ〉

comp , t) + Ldiff(〈φ〉
comp) + 〈f(t)〉 ,

and then use the “method of lines” to advance all of the discrete variables 〈φ〉comp in
the AMR hierarchy.
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Our approach is to use an additive, implicit-explicit Runge–Kutta method in-
troduced by Kennedy and Carpenter [12] for convection-diffusion-reaction equations.
In particular, we select ARK4(3)6L[2]SA, a six-stage, fourth-order accurate, L-stable
method, with an explicit treatment for the advection operator Ladv and source term
f and an implicit treatment for the diffusion term Ldiff. Although this method has
been shown to suffer from the well-known problem of order reduction in the stiff limit
[12, 15], it does have a good region of stability for the explicit terms, as shown in the
next section.

We integrate (3.1) by setting 〈φ〉(1) = 〈φ〉n, and then we calculate the five subse-

quent stage values 〈φ〉(s), s = 2, 3, 4, 5, 6, by solving

(3.2)
(

I −ΔtγLdiff

)

〈φ〉comp,(s) = 〈φ〉n +ΔtL̃,

where

L̃ =

s−1
∑

j=1

a
[E]
s,j

(

Ladv

(

〈φ〉comp,(j)
, t(j)

)

+ 〈f〉 (t(j))
)

+

s−1
∑

j=1

a
[I]
s,jLdiff

(

〈φ〉comp,(j)
)

,

t(s) = tn+csΔt, and γ = a
[I]
s,s is a constant for all stages. The coefficients {a

[E]
i,j }, {a

[I]
i,j},

{bj}, {cj} are defined in [12]; for completeness they are also provided in Appendix C
as decimal values [20].

At each intermediate stage s = 2, 3, 4, 5, 6, we must solve the Helmholtz-type lin-
ear system (3.2), with its right-hand side explicitly calculated from values of previous
stages. As discussed in [19, p. 441], the negation of the fourth-order discrete operator
〈Δφ〉 defined in (2.7) is of essentially positive type [3], which carries the essential prop-
erties of M-matrices such as positive definiteness. Consequently, the Helmholtz-type
operator

(

I − ΔtγLdiff

)

also has eigenvalues of positive real parts; this can be veri-
fied by Fourier analysis. A standard multigrid method with Gauss–Seidel red-black
relaxation [4] is employed in solving (3.2), with a V-cycle performed on each level of
the AMR hierarchy. In the fourth-order case, writing the results of the red relaxation
directly to the black points is incorrect, since the stencil as defined by (2.7) involves
both red and black points. Instead we use an auxiliary storage to hold the results of
the red relaxation in preparation for the ensuing black relaxation. As confirmed by
the numerical tests in section 5, this works well for both the Laplacian operator and
the Helmholtz-type operator.

Once all six stage values are known, the final calculation,

(3.3) 〈φ〉n+1 = 〈φ〉(6) +Δt
6
∑

j=1

(

bj − a
[E]
6,j

)(

Ladv

(

〈φ〉(j) , t(6)
)

+ 〈f〉 (t(6))
)

,

provides the next time step value of 〈φ〉n+1
, and the time integration procedure is

repeated.
As the solution evolves in time, we allow the adaptive mesh grid hierarchy to

evolve as well. At the end of each time step, the grid hierarchy can be refined to track
emerging new features and/or coarsened to reduce computational expense. Typically
the cells to be changed are “tagged” according to the evaluation of certain criteria;
these criteria, specified by the user, are usually based on physical quantities or esti-
mated errors. This dynamic grid generation is done in the standard fashion described
in [2, 13], by averaging down from finer grids to coarser grids as the former disappear,
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and interpolating conservatively from coarser grids to newly refined regions. The
principal difference in the present AMR algorithm is the higher-order, conservative
coarse-fine interpolation and its supporting multigrid-based solver, as described above
and in section 2.3.

4. Analysis. In this work, solution error refers to the difference between the
true and the computed solutions. In contrast, truncation error relates to approximat-
ing the advection and Laplacian operators, and it is caused by replacing continuous
operators with discrete finite-difference stencils in forming the ODE system (3.1).

4.1. Error analysis. Away from the coarse-fine interface and nonperiodic phys-
ical domain boundaries, the truncation errors for these two operators are both O(h4);
cf. (2.6) and (2.7). However, as discussed in the previous section, fourth- and fifth-
order coarse-fine interpolations of the solution 〈φ〉 are used, respectively, for evalu-
ating the advection and diffusion operators near the coarse-fine interface. Hence the
truncation error of both operators is O(h3) for control volumes near the coarse-fine
interface. A similar statement holds for a nonperiodic physical domain boundary, due
to the extrapolation formulas in section 2.2. These observations are consistent with
the discussion in Appendix B that the truncation error is O(h3) at the coarse-fine
interface due to refluxing. Nonetheless, we expect the 1-norm of the truncation error
to be O(h4), since the truncation error is O(h3) only on a set of codimension 1.

For Poisson’s equation, it is well known [10] that the accuracy of the solution error
with respect to the ∞-norm is one order higher than that of the truncation error, so
long as the lower-order truncation error is restricted to a set of codimension 1. As
for diffusion processes with large higher-order derivatives and high Reynolds number
(Re ≥ 105), the lower-order truncation errors on a set of codimension 1 might lead
to solution errors of the same order [24, sect. 2]. However, since this work aims to
address moderately stiff problems (with moderate to large ν), we expect the solution
errors to be fourth-order accurate for all norm types.

4.2. Stability analysis. Using discrete Fourier analysis, we can convert the
ODE system (3.1), with constant velocity u and 〈f〉 = 0 on a periodic domain, to a
system of decoupled ODEs of the form

(4.1)
dy

dt
= λy =

(

λd + iλa
)

y,

where λd, iλa are the eigenvalues of the diffusion and advection operators:

(4.2a) λd = −4
ν

h2

D
∑

d=1

sin2
θd
2

(

1 +
1

3
sin2

θd
2

)

,

(4.2b) λa =
|ud,max|

h

D
∑

d=1

sin θd

(

1 +
2

3
sin2

θd
2

)

,

with θd ∈ (0, π). Note that in deriving (4.2) we have repeatedly applied the trigono-
metric identities cos θ = 1− 2 sin2 θ

2 and sin θ = 2 sin θ
2 cos

θ
2 . The maximum value of

the scaled advection eigenvalue is then estimated as

(4.3) (λaΔt)max = CrD

(

sin θ0 +
2

3
sin θ0 sin

2 θ0
2

)

max

≈ 1.37222DCr,
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(a) overview (b) near the origin

Fig. 4.1. Stability region of the proposed advection-diffusion solver on the complex plane: (a) for
λ̄a ∈ [0, 15], λ̄d ∈ [−80, 0], and (b) detailed view of λ̄a ∈ [0, 5], λ̄d ∈ [−2, 1].

where the Courant number is defined as

(4.4) Cr =
|ud,max|Δt

h
.

Generally, the stability function of the group of Runge–Kutta methods (see [6])
in section 3 is

(4.5) R(λ̄d + iλ̄a) =
det

(

I − λ̄dA[I] − iλ̄aA[E] + (λ̄d + iλ̄a)1l⊗ bT
)

det
(

I − λ̄dA[I] − iλ̄aA[E]
) ,

where λ̄a = λaΔt, λ̄d = λdΔt, the vector b and the matrices A[E], A[I] are the ARK
coefficients in Appendix C.

The stability region |R(z)| < 1 of ARK4(3)6L[2]SA is plotted in Figure 4.1.
Subplot (a) shows that the maximum stable Courant number increases as diffusion
becomes stronger; subplot (b) shows that in the absence of diffusion, the scaled ad-
vection eigenvalue should be less than 4. Together with (4.3), the range of stable
Courant numbers for our method is thus estimated as

(4.6) Cr ≤
2.91

D
.

The above condition is the stability condition for pure advection and is verified by
numerical experiments. In the case of strong diffusion, the stability condition might
be much more lenient. Furthermore, when time-step size is changed adaptively to
control error, which is commonly done with Runge–Kutta methods, (4.6) might be
removed as superfluous.

Strictly speaking, the stability analysis in this section applies only to single level
grids since Fourier analysis does not generalize to multiple levels; however, no insta-
bilities are observed in any of our AMR tests so long as (4.6) is satisfied.

5. Results. In this section we demonstrate fourth-order convergence on test
problems for Poisson’s equation and the advection-diffusion equation with forcing
terms, and for an adaptive mesh and nontrivial advection velocity. The first problem
is for Poisson’s equation, while all others are for the advection-diffusion equation.
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Fig. 5.1. A static locally refined grid hierarchy for Problem 1. The coarsest level (ℓ = 0) covers
the problem domain [0, 1]D. The light gray area represents the intermediate level (ℓ = 1), which is
decomposed by the dashed lines into seven rectangles, all of which range from 3/8 to 5/8 in the third
dimension. The finest level (ℓ = 2), represented by the dark gray square, is obtained by shrinking
Ω1

5 to half of its length in each dimension.

5.1. Problem 1: Composite sinusoidal waves. We first address a test prob-
lem similar to one in [1] for Poisson’s equation on the problem domain [0, 1]D with
the exact solution

(5.1) φ(x) =
∑

k

D
∏

d=1

sin(kπxd),

where {k} is a set of even integers representing different frequencies. Since the AMR
Laplacian operator may depend on data from both coarser and finer levels, we use a
static, three-level grid layout with a refinement ratio of nref = 2, as shown in Figure
5.1. The right-hand side of Poisson’s equation is initialized exactly by using an ana-
lytical expression for 〈Δφ〉i derived from (5.1). The values of Dirichlet and Neumann
boundary conditions in section 2.2 are calculated from sixth-order quadratures using
the exact solution.

The truncation error and solution error are shown in Tables 5.1 and 5.2. Across
different types of boundary conditions, there are no differences in errors or convergence
rates. As discussed in section 4.1, although the truncation error of Poisson’s equation
is of third order, the solution can still be fourth-order accurate, even in the ∞-norm
sense. In addition, Figure 5.2 demonstrates satisfactory multigrid convergence, using
only two relaxation pre- and postsweeps during the multigrid V-cycle across the locally
refined grid hierarchy.

5.2. Problem 2: Traveling sinusoidal waves. For this test, we use an expres-
sion of the form φ =

∏

d sin(kdxd−udt) as an exact solution to the advection-diffusion
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Table 5.1

Truncation and solution errors of the AMR elliptic solver applied to Problem 1 in two and three
dimensions, with periodic boundary conditions and wave numbers {k} = {2, 4}. The static locally
refined hierarchy is shown in Figure 5.1.

Base grid h 1/64 Rate 1/128 Rate 1/256 Rate 1/512

2D truncation L∞ 3.57e-01 2.97 4.56e-02 2.99 5.73e-03 3.00 7.17e-04
2D solution L∞ 1.59e-05 4.14 9.00e-07 3.97 5.74e-08 3.98 3.63e-09
3D truncation L∞ 6.84e-01 3.00 8.56e-02 3.00 1.07e-02 3.00 1.34e-03
3D solution L∞ 1.68e-05 3.98 1.06e-06 4.00 6.66e-08 4.00 4.16e-09

Table 5.2

Truncation and solution errors of the AMR elliptic solver applied to Problem 1 in two dimen-
sions, with Dirichlet- or Neumann-type boundary conditions and wave numbers {k} = {2, 4}. The
static locally refined hierarchy is shown in Figure 5.1.

Base grid h 1/64 Rate 1/128 Rate 1/256 Rate 1/512
Dirichlet

Truncation L∞ 3.80e-01 2.97 4.86e-02 2.99 6.10e-03 3.00 7.64e-04
Truncation L1 1.46e-02 3.99 9.22e-04 4.00 5.76e-05 3.97 3.68e-06
Solution L∞ 1.50e-05 4.05 9.11e-07 3.98 5.78e-08 3.99 3.64e-09
Solution L1 4.40e-06 4.00 2.74e-07 3.98 1.73e-08 3.99 1.09e-09

Neumann
Truncation L∞ 3.80e-01 2.97 4.86e-02 2.99 6.10e-03 3.00 7.64e-04
Truncation L1 1.14e-02 4.00 7.10e-04 4.00 4.42e-05 3.96 2.84e-06
Solution L∞ 1.72e-05 4.09 1.01e-06 3.94 6.61e-08 3.97 4.21e-09
Solution L1 4.83e-06 3.93 3.17e-07 3.97 2.02e-08 3.99 1.28e-09
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(a) 2D
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(b) 3D

Fig. 5.2. Multigrid convergence for Problem 1. The horizontal and vertical axes are the number
of iterations and base-10 logarithm of max-norm of the residual, respectively. +, ×, ◦, � represent
the four grids from coarsest to finest.

equation with constant velocity, with corresponding forcing term in (2.1) as

f(x, t) =

(

∑

d

νk2d

)

∏

d

sin(kdxd − udt)(5.2)

+
∑

d

⎧

⎨

⎩

ud (kd − 1) cos(kdxd − udt)
∏

d′ �=d

sin(kd′xd′ − ud′t)

⎫

⎬

⎭

.
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Table 5.3

Solution error and convergence rates for traveling waves test, Problem 2, on fixed two-level
grids with periodic boundary conditions.

Base grid h 1/32 Rate 1/64 Rate 1/128

2D L∞ 1.20e-03 3.97 7.71e-05 3.99 4.87e-06
2D L1 7.27e-06 3.95 4.72e-07 3.98 2.99e-08
2D L2 8.59e-06 3.95 5.56e-07 3.98 3.52e-08
3D L∞ 2.36e-03 3.93 1.55e-04 3.98 9.80e-06
3D L1 1.10e-06 3.94 7.21e-08 3.98 4.56e-09
3D L2 1.43e-06 3.94 9.29e-08 3.98 5.87e-09

Table 5.4

Solution error and convergence rates for traveling waves test, Problem 2, on fixed two-level grids,
with Dirichlet and Neumann boundary conditions applied to the low-side and high-side boundaries,
respectively.

Base grid h 1/32 Rate 1/64 Rate 1/128

2D L∞ 1.00e-03 3.96 6.44e-05 3.99 4.06e-06
2D L1 2.16e-04 3.95 1.39e-05 3.96 8.93e-07
2D L2 3.07e-04 3.96 1.97e-05 3.97 1.25e-06
3D L∞ 2.53e-03 4.00 1.58e-04 4.02 9.75e-06
3D L1 4.55e-04 3.97 2.90e-05 4.00 1.82e-06
3D L2 6.43e-04 3.96 4.12e-05 3.99 2.59e-06

On a unit domain [0, 1]D, we use a static locally refined hierarchy consisting of two
levels, with the fine level covering [ 14 ,

3
4 ]

D, and nref = 4. In both 2D and three-
dimensional (3D) domains, the initial condition is calculated as the exact average 〈φ〉i
evaluated at t0 = 0, which is then advanced to te = 1 with the time step chosen
such that Cr = 1.0. The other parameters are ν = 0.01, u = (1.0, 0.5, 0.25), and
k = (2π, 4π, 6π). Errors are calculated between the computed and analytic solutions;
Tables 5.3 and 5.4 indicate fourth-order convergence of the solution in all norms and
for all types of boundary conditions.

5.3. Problem 3: Gaussian patch in solid body rotation. Given the exact
solution to the heat equation,

(5.3) φ(x, t) =

(

t

t0
+ 1

)−D
2

exp

(

−
|r− rc|2

4ν(t+ t0)

)

,

where rc is center of the patch, we can construct a solution to the advection-diffusion
equation with the velocity field defined by solid body rotation. Although solid body
rotation does not satisfy periodic boundary conditions, for short times the solution
is near zero at the velocity discontinuity, and we can consider it an approximate
solution. Choosing t0 = −r20/(4ν ln(ǫ)) for ǫ ≈ 10−16 guarantees that φ is less than
10−16 beyond r0 = 0.10, and that φ = 1 at the center of the patch at t = 0.

With the unit square [0, 1]2 as the periodic domain, we adaptively refine the mesh
by nref = 4 in the cells satisfying | 〈φ〉i | ≥ 10−6 on level 0 to create level 1, and with
| 〈φ〉i | ≥ 10−3 on level 1 to create level 2. At the end of each time step, these cells
are organized into finer-level patches, allowing them to move and grow in time as
the solution advects and diffuses. The initial setup is shown in Figure 5.3(a); the
center of the solid body rotation is at (0, 1/2) with angular velocity |ω| = 2π. The
initial patch is centered at (r, θ) = (1/2,−π/6) relative to the center of rotation, with
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(a) initial setup

(b) final result

Fig. 5.3. Initial setup and final results for Problem 3, a Gaussian patch in solid body rota-
tion. On the three-level adaptive hierarchy, light blue and black boxes represent level 1 and level 2,
respectively.
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Table 5.5

Solution errors and convergence rates for Problem 3, a Gaussian profile in solid body rotation,
with a dynamic three-level adaptive hierarchy using nref = 4.

Base grid h 1/64 Rate 1/128 Rate 1/256

Solution L∞ 9.38e-07 4.15 5.27e-08 4.41 2.48e-09
Solution L1 7.99e-10 4.15 4.49e-11 4.03 2.76e-12
Solution L2 2.18e-09 4.16 1.23e-10 4.11 7.09e-12

Table 5.6

AMR performance for the solid body rotation test. The single-level case has a uniform grid
size of h = 1

4096
. The AMR hierarchy contains three levels with nref = 4, and the grid size on

the coarsest level is 1
256

. CPU time is from 64 cores on Hopper Cray XE6 (http://www.nersc.gov/
systems/hopper-cray-xe6/), a supercomputer at NERSC (National Energy Research Scientific Com-
puting Center).

Case CPU time (seconds) Peak memory usage (MB)
Single-level grids 166818 4757.4
Three-level AMR 12486 222.7

initial radius r0 = 0.10, beyond which the solution is initialized to zero. The Courant
number based on the grid size of the finest level is 1.0 for all tests, and the numerical
Reynolds number, ReN , is ‖ud‖maxhmin/ν ≈ 0.1 for ν = 0.03, based on the finest
level hmin = 1/4096. Figure 5.3(b) shows the resulting solution for h = 1/256 at time
te = 1/12, when the patch is centered at (1/2, 1/2). The error between the discrete
and exact solutions is shown in the convergence study in Table 5.5; again, the results
are fourth-order accurate in all norms.

We also compare the performance of AMR to that of a single level in Table 5.6,
where the three-level AMR uses far fewer computational resources than the single-
level grids; for example, the CPU time consumed by AMR is only 7.48% of that
consumed by the single-level grids. As for the overhead incurred by message passing
in parallel computing, our results show that it does influence the ratio of CPU time
of AMR to that of the single grids, but not significantly, as the aforementioned ratio
drops to 7.06% for four-core runs. Indeed, AMR tends to benefit less from a large
number of cores than single-level grids do. Generally, the relative savings of AMR on
computational resources depend drastically on problem-specific aspects such as the
refinement ratio, the refinement criteria, and the number of levels. Hence the reader
should not regard the results in Table 5.6 as universal estimates but rather just one
particular example of the economy of AMR.

5.4. Problem 4: Gaussian patch in vortex shear. For this problem, we use
a steady, divergence-free velocity field

(5.4) u(x, y) = aV
(

sin2(πx) sin(2πy),− sin(2πx) sin2(πy)
)

,

where aV = 0.1 is a scaling parameter. See Figure 16 in [23] for a rendering of this
velocity field.

On a periodic domain of the unit square [0, 1]2, the advection-diffusion equation is
advanced from t0 = 0 to te = 1/aV on three successively refined adaptive hierarchies
with three levels and nref = 4, so that finest-level resolutions are 1/512, 1/1024, and
1/2048. The tagging criterion is the same as that used in section 5.3 and the Courant
number is 1.0 based on the maximum velocity ‖ud‖max. Note that this “absolute-
value” tagging criterion is not intrinsic to our algorithm but is merely an example of
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various possible criteria. In our implementation, a user can customize this criterion
according to the specific application.

The test is also carried out on a single-level grid with uniform grid size of 1/4096;
the results on this fine grid are then used as the “best” solution for calculating errors
on the adaptive hierarchies. Based on this single-level grid, the numerical Reynolds
number is ReN = ‖ud‖maxhmin/ν ≈ 2.44 × 10−2 for ν = 0.001. This parameter is
chosen on purpose to test the stiff stability of the ARK4(3)6L[2]SA scheme. Two
snapshots of the solution on the finest adaptive hierarchy are shown in Figure 5.4, at
t = 2 and te = 10, and the corrected convergence results are shown in Table 5.7.

Let hi (i = 1, 2, . . . , N) denote the grid size of the finest level in the ith hierarchy
and N the total number of successively refined AMR hierarchies. Let r = hi/hi+1 be
the hierarchy refinement ratio. To calculate the convergence rate p from numerical
results of these hierarchies, we first write

φh = φExact + aph
p +O(hp+1),

where the coefficient ap is independent of h. Standard Richardson extrapolation
estimates the convergence rate via differences between successive hierarchies:

(5.5) p ≈ logr
‖φhi

− φhi+1
‖

‖φhi+1
− φhi+2

‖
.

Alternatively, a variant of Richardson extrapolation estimates the convergence rates
by treating the finest solution as the “exact” solution. Define

(5.6a) Ei = ‖φhi
− φhmin

‖, i = 1, 2, . . . , N,

(5.6b) ei =
Ei−1

Ei

=
rp(N−i+2) − 1

rp(N−i+1) − 1
, i = 2, . . . , N,

where the grid size of the exact solution is hmin = hN/r, and ei is the computed error
ratio of two successive hierarchies. Equation (5.6b) can be solved for rp, and then p.
For i = N and i = N − 1, we have

(5.7) p ≈ logr(eN − 1), p ≈ logr

(√

e2N−1 + 2eN−1 − 3 + eN−1 − 1
)

− 1.

The difference between the estimated convergence rates by (5.5) and (5.7) is negligible
in the asymptotic range, but might be substantial if the grid sizes are not small enough.

In this test, N = 3, r = 2, and we first compute the solution error by (5.6a) and
then the convergence rates by (5.6b) and (5.7). As shown in Table 5.7, the resulting
convergence rates are 4 or greater. Note that the error estimate at the finest grid is
eight orders of magnitude smaller (10−8) than the maximum solution value, which
with the convergence rate would indicate that the convergence is in the asymptotic
range. For the coarsest grid, h = 1/512, the rates are greater than the asymptotic
fourth order, which might be an indication of ARK4(3)6L[2]SA losing accuracy due
to stiffness of the system at the largest time step of the coarsest grid, as discussed
in [12, 15]. At the coarser grid resolution and time step, the solution is slightly
underresolved due to the rapid diffusion of the Gaussian peak.
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(a) Problem 4 solution at t = 2

(b) Problem 4 solution at t = te = 10

Fig. 5.4. Solution for Problem 4 at two time instances on a three-level adaptive hierarchy. The
initial condition is a Gaussian blob, the same as that shown in Figure 5.3(a) except that its center
is located at (1/2, 3/4). As it diffuses, the advection velocity stretches and shears the solution at (a)
t = 2 and (b) t = 10. Light blue and black boxes represent level 1 and level 2, respectively.
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Table 5.7

Solution error (5.6a) and estimated convergence rates (5.7) of Problem 4 at te = 10 with
hmin = 1/4096.

Finest grid h 1/512 Rate 1/1024 Rate 1/2048

Solution L∞ 5.75e-06 5.19 1.58e-07 4.06 8.89e-09
Solution L1 1.51e-08 5.01 4.71e-10 4.04 2.71e-11
Solution L2 2.36e-08 5.05 7.11e-10 4.04 4.06e-11

6. Conclusions and future research. We have presented a fourth-order accu-
rate algorithm for solving the advection-diffusion equation with AMR. The algorithm’s
AMR-enabled multigrid solver is general and can be applied to Poisson’s equation and
the heat equation in two and three dimensions, with a variety of boundary conditions,
without modification. Although the spatial discretization was chosen to be fourth-
order accurate, the algorithm—based on approximating fluxes using quadratures—is
general and can be extended to higher orders in space and applied across a variety of
generalized mixed hyperbolic, elliptic, and parabolic equations. The uniqueness of our
approach lies in the combination of fourth-order FV stencils, AMR, the ARK time
integrator, and multigrid solvers, all of which are general and capable of handling
variable-coefficient problems and are fundamental components of solvers for more
complicated PDEs.

Our immediate research concern is a fourth-order accurate adaptive algorithm
for solving the incompressible Navier–Stokes equations, using a projection algorithm
such as a generalization of the one in [13]. For periodic domains, we expect this to
be a straightforward task; see [11, 16] for related work. However, in the presence of
solid-wall boundaries, the lack of commutativity between the Laplacian operator and
the Hodge projection operator is a nontrivial technical barrier [5] to be overcome in
extending the present method to that case. In addition, we will need to adapt the
method in [14] to support refinement in time and robust limiters near discontinuities.

Appendix A. From cell-averaged to face-averaged quantities.

Face-averaged and cell-averaged quantities can be expressed in terms of point
values with second-order correction terms:

(A.1) 〈φ〉i+ 1
2
ed = φi+ 1

2
ed +

h2

24

∑

d′ �=d

∂2φ

∂x2
d′

∣

∣

∣

∣

∣

∣

i+ 1
2
ed

+O(h4)

and

(A.2) 〈φ〉i = φi +
h2

24

D
∑

d=1

∂2φ

∂x2
d

∣

∣

∣

∣

∣

i

+O(h4),

where φi+ 1
2
ed and φi denote the point values at the center of Ai+ 1

2
ed and Vi, respec-

tively.
The derivation is as follows. Let

(A.3) Φ(x) =

∫ x

ξ

φ(x′) dx′

denote an indefinite integral with its lower limit ξ fixed. The average of φ over the
interval [i− 1

2 , i+
1
2 ]h can be obtained by

(A.4) h 〈φ〉i = δΦi(y) = Φi+ 1
2
− Φi− 1

2
= Φ

((

i+
1

2

)

h

)

− Φ

((

i−
1

2

)

h

)

.
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The first fundamental theorem of calculus yields

(A.5) φ(x) =
∂Φ

∂x
.

Taylor expansions of Φi+ 3
2
, Φi− 1

2
, Φi+ 5

2
, Φi− 3

2
at (i+ 1

2 )h yield

(A.6)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1
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⎢

⎣
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⎢

⎢

⎢

⎢

⎣

∂Φ
∂x

∂2Φ
∂x2

∂3Φ
∂x3

∂4Φ
∂x4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

i+ 1
2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δΦi+1

−δΦi

δΦi+1 + δΦi+2

−δΦi−1 − δΦi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+O(h5).

Hence

(A.7)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

hφ

h2 ∂φ
∂x

h3 ∂2φ
∂x2

h4 ∂3φ
∂x3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

i+ 1
2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
3 − 2

3 − 1
12

1
12

4
3

4
3 − 1

12 − 1
12

−1 1 1
2 − 1

2

−4 −4 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δΦi+1

−δΦi

δΦi+1 + δΦi+2

−δΦi−1 − δΦi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+O(h5).

Constructing an auxiliary matrix

(A.8) M =

⎡

⎢

⎢

⎣

1
−1

−1 1
1 −1

⎤

⎥

⎥

⎦

and adding M−1M into the middle of the right-hand side of (A.7), we have

(A.9)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φ

h∂φ
∂x

h2 ∂2φ
∂x2

h3 ∂3φ
∂x3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

i+ 1
2

= P(4)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

〈φ〉i+1

〈φ〉i

〈φ〉i+2

〈φ〉i−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+O(h4),

where the fourth-order interpolation matrix P(4) is

(A.10) P(4) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7
12

7
12 − 1

12 − 1
12

5
4 − 5

4 − 1
12

1
12

− 1
2 − 1

2
1
2

1
2

−3 3 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The above procedures can be easily generated to higher-order accuracies; e.g., the
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fifth-order interpolation matrix is

(A.11) P(5) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

49
60

9
20 − 13

60 − 1
20

1
30

5
4 − 5

4 − 1
12

1
12 0

− 9
4

1
2

3
2

1
4 − 1

4

−3 3 1 −1 0

7 −4 −4 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where the additional column is associated with 〈φ〉i+3. Note that the formulas of

fourth order and fifth order coincide for ∂φ
∂x

.
In a multidimensional space, averaging the first row of (A.9) over all other dimen-

sions yields (2.4). Using the second row of (A.11) and averaging an equation similar
to (A.9) yield (2.5).

Appendix B. Discrete advection and Laplacian operators.

We denote the cell center of Vi by xi =
(

i+ 1
21l
)

h, and the face centers by

xi± 1
2
ed = xi ±

h
2e

d. Let xc = xi+ 1
2
ed be the center of Ai+ 1

2
ed . Then the Taylor series

of a function φ about xc can be expressed using standard multi-index notation [9]:

(B.1) φ(x) =
∑

|j|≤3

1

j!
(x− xc)

j φ(j)(xc) +O(h4) =
∑

|j|≤3

1

j!
η
jφ(j)(xc) +O(h4) ,

where η = x− xc, so that ηd = 0 and |η| ≈ O(h) on Ai+ 1
2
ed .

Then the convolution of two functions φ, ψ : RD → R is

φ(x)ψ(x) =

⎛

⎝

∑

|j|≤3

1

j!
η
jφ(j)(xc)

⎞

⎠

⎛

⎝

∑

|k|≤3

1

k!
η
kψ(k)(xc)

⎞

⎠+O(h4)

=
∑

k:|k|≤3

1

k!
η
k
∑

j:j≤k

(

k

j

)

φ(j)(xc)ψ
(k−j)(xc) +O(h4),

and the average over Ai+ 1
2
ed (dropping indices on A and evaluation at xc) is

1

hD−1

∫

A

φψ dx =
1

hD−1

∫

A

∑

k:|k|≤3

1

k!
η
k
∑

j:j≤k

(

k

j

)

φ(j)ψ(k−j) dx+O(h4)

=
∑

k:|k|≤3

1

k!

(

1

hD−1

∫

A

η
k dx

)

∑

j:j≤k

(

k

j

)

φ(j)ψ(k−j) +O(h4) .

Note that if k is odd in any component or kd 	= 0, then the contribution of the integral
of ηk is 0. Hence, the only nonzero terms come from the choices of k = 0, j = 0 and
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k = 2ed
′

, j = 0, ed
′

, 2ed
′

with d′ 	= d. Thus,

1

hD−1

∫

A

φψ dx

= φψ +
h2

24

∑

d′ �=d

(

φ(2ed′ )ψ + ψ(2ed′ )φ
)

+
h2

12

∑

d′ �=d

(

φ(ed′ )ψ(ed′ )
)

+O(h4)

=

(

φ+
h2

24

∑

d′ �=d

φ(2ed′ )

)(

ψ +
h2

24

∑

d′ �=d

ψ(2ed′)

)

+
h2

12

∑

d′ �=d

(

φ(ed′ )ψ(ed′ )
)

+O(h4)

= 〈φ〉i+ 1
2
ed 〈ψ〉i+ 1

2
ed +

h2

12

∑

d′ �=d

(

φ(ed′ )ψ(ed′ )
)

+O(h4) ,

where we have used (A.1) to convert the first two terms in parentheses to face-averaged
quantities.

The last term, representing the product of “transverse gradients,” can be approx-
imated with

G⊥
d′φ

∣

∣

i+ 1
2
ed =

1

2h

(

〈φ〉i+ 1
2
ed+ed′ − 〈φ〉i+ 1

2
ed−ed′

)

=
∂φ

∂xd′

∣

∣

∣

∣

i+ 1
2
ed

+O(h2) ,

leading to O(h4) overall for the average flux formula:
(B.2)

〈φψ〉i+ 1
2
ed = 〈φ〉i+ 1

2
ed 〈ψ〉i+ 1

2
ed+

h2

12

∑

d′ �=d

(

G⊥
d′φ
∣

∣

i+ 1
2
ed G⊥

d′ψ
∣

∣

i+ 1
2
ed

)

+C3(xi+ 1
2
ed)h4+O(h5).

Substituting ud for ψ yields the discrete advection operator in (2.6a); the O(h4)
accuracy in (2.6a) is due to the cancellation caused by the symmetry of the difference
stencils, i.e., C3(xi+ 1

2
ed)− C3(xi− 1

2
ed) = O(h).

As for the discrete Laplacian operator, we identify �F = ∇φ in (1.1) to obtain

(B.3) 〈Δφ〉i =
1

h

D
∑

d=1

(

〈

∂φ

∂xd

〉

i+ 1
2
ed

−

〈

∂φ

∂xd

〉

i− 1
2
ed

)

.

From the second row of the fifth-order interpolation matrix (A.11), we have

〈

∂φ

∂x

〉

i+ 1
2
ed

=
1

12h

(

15 〈φ〉i+ed−15 〈φ〉i−〈φ〉i+2ed+〈φ〉i−ed

)

+C4

(

xi+ 1
2
ed

)

h4+O(h5),

which leads to an equation identical to (2.7):

〈Δφ〉i =
1

12h2

D
∑

d=1

(

16 〈φ〉i+ed + 16 〈φ〉i−ed − 30 〈φ〉i − 〈φ〉i+2ed − 〈φ〉i−2ed

)

+O(h4),

where we have used the fact that

C4(xi+ 1
2
ed)− C4(xi− 1

2
ed) = h

∂C4

∂xd

∣

∣

∣

∣

xi

+O(h3).

From the derivation, it is clear that the fourth-order truncation error of (2.6) and
(2.7) depends on the cancellation of the leading error functions C3 and C4. However,
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for a coarse cell close to the coarse-fine interface where the coarse flux is replaced by
the average of the fine fluxes, the truncation error is only third-order accurate due to
the lack of this cancellation.

Appendix C. ARK4 coefficients. Kennedy and Carpenter [12] studied a group
of implicit-explicit Runge–Kutta schemes from third- to fifth-order accurate with the
following form:

(C.1)

c[E] A[E]

(

b[E]
)T

(b̂[E])T

=

0 0 0 0 · · · 0 0

2γ 2γ 0 0 · · · 0 0

c3 a
[E]
31 a

[E]
32 0 · · · 0 0

...
...

...
...

. . .
...

...

cs−1 a
[E]
s−1,1 a

[E]
s−1,2 a

[E]
s−1,3 · · · 0 0

1 a
[E]
s,1 a

[E]
s,2 a

[E]
s,3 · · · a

[E]
s,s−1 0

b1 b2 b3 · · · bs−1 γ

b̂1 b̂2 b̂3 · · · b̂s−1 b̂s

,

(C.2)

c[I] A[I]

(

b[I]
)T

(b̂[I])T

=

0 0 0 0 · · · 0 0

2γ γ γ 0 · · · 0 0

c3 a
[I]
31 a

[I]
32 γ · · · 0 0

...
...

...
...

. . .
...

...

cs−1 a
[I]
s−1,1 a

[I]
s−1,2 a

[I]
s−1,3 · · · γ 0

1 b1 b2 b3 · · · bs−1 γ

b1 b2 b3 · · · bs−1 γ

b̂1 b̂2 b̂3 · · · b̂s−1 b̂s

.

The coefficients of the particular method used in this work, ARK4(3)6L[2]SA,
are, in decimal form [20], γ = 0.25, c[E] = c[I] = c, b[E] = b[I] = b,

c = (0.0, 0.5, 0.332, 0.62, 0.85, 1.0)T ,

b1 = 0.15791629516167136,

b2 = 0,

b3 = 0.18675894052400077,

b4 = 0.6805652953093346,

b5 = −0.27524053099500667,
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a
[E]
31 = 0.221776,

a
[E]
32 = 0.110224,

a
[E]
41 = −0.04884659515311857,

a
[E]
42 = −0.17772065232640102,

a
[E]
43 = 0.8465672474795197,

a
[E]
51 = −0.15541685842491548,

a
[E]
52 = −0.3567050098221991,

a
[E]
53 = 1.0587258798684427,

a
[E]
54 = 0.30339598837867193,

a
[E]
61 = 0.2014243506726763,

a
[E]
62 = 0.008742057842904185,

a
[E]
63 = 0.15993995707168115,

a
[E]
64 = 0.4038290605220775,

a
[E]
65 = 0.22606457389066084,

a
[I]
31 = 0.137776,

a
[I]
32 = −0.055776,

a
[I]
41 = 0.14463686602698217,

a
[I]
42 = −0.22393190761334475,

a
[I]
43 = 0.4492950415863626,

a
[I]
51 = 0.09825878328356477,

a
[I]
52 = −0.5915442428196704,

a
[I]
53 = 0.8101210538282996,

a
[I]
54 = 0.283164405707806.
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