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Abstract

This paper describes the hardware implementation of

the Generalized Pro�le Search algorithm using online
arithmetic and redundant data representation. This is

part of the GenStorm project, aimed at providing a

dedicated computer for biological sequence processing

based on recon�gurable hardware using FPGAs. The

serial evaluation of the result made possible by a redun-

dant data representation leads to a signi�cant increase
of data throughput in comparison with standard non

redundant data coding.

1 Introduction

In the context of the various genome sequencing
projects, we are concerned with the hardware imple-

mentation of speci�c algorithms which intend to �nd

structural or control units of elementary physiological

processes in gene and protein sequences. The method

used consists of two distinguishable but operationally

interdependent components. The �rst one is a descrip-
tor of such units of elementary physiological processes

which is called motif; the second is a search method

used to locate instances of a already de�ned motif in

a particular sequence. In a typical application, a new

sequence of unknown function is compared against a

database of many known motifs. There are several
methods used to model a particular motif. They are

based, for example, on weight-matrices [1], on regular

expressions [13] or on Hidden Markov Models [3].

This article will focus on the Generalized Pro�le de-

�ned by the Bioinformatic Group of the Swiss Insti-

tute for Experimental Cancer Research (ISREC) [4][5].
This technique has several advantages: it is su�ciently

general to combine the majority of motif techniques de-

veloped earlier, the method has been mathematically

and unambiguously de�ned and, software tools acces-

sible by network are available and are used by the sci-

enti�c community on a daily routine. A Generalized

Pro�le is described using a well de�ned syntax [6] and
the process to evaluate if a given sequence contains a

subsequence corresponding to a given pro�le has also

been de�ned. The result is the pfscan utility freely

available by ftp 1 and the Pro�leScan WWW Server 2.

We propose an hardware implementation of the pf-

scan utility in order to improve the response time of-

fered. This implementation target the GenStorm ma-

chine [7], a FPGA-based accelerator for biological se-
quence processing. GenStorm is far to be the �rst

hardware accelerator designed this kind of application.

Several machines have been developed. Some systems

are using custom non-reprogrammable VLSI chip de-

sign enabling some degree of parameterization like the

BioSCAN [8], the P-NAC machines [9], or the ma-
chine proposed by D. Lavenier [10], or the Fast Data

Finder from Paracel3. Other systems are using FPGAs

as main processing units, for example, the SPLASH

machine [11] and the SPLASH2 machine [12], or the

Bioccelerator developed by Compugen4. But none

of them implements algorithm to process sequences
against Generalized Pro�les. Furthermore, the com-

plexity of the algorithm they implement is lower than

the complexity of the Generalized Pro�le Search algo-

rithm. To obtain signi�cative performance improve-

ment, we use serial operators and a redundant data

format.

In the �rst part of this paper, we will briey de-

scribe the Generalized Pro�les and how to apply them
on a query sequence. Then we will deal with the map-

ping of the problem in a systolic architecture and we

will present an implementation of the algorithm us-

ing classical data representation and processing. Next,

we introduce the online arithmetic and the redundant

data representation. We present a new implementation
using them and compare the two solutions.

1
http://www.isrec.isb-sib.ch/ftp-server/pftools

2
http://www.isrec.isb-sib.ch/software/PFSCAN form.html

3
http://www.paracel.com

4
http://www.compugen.co.il



2 Generalized Pro�le

2.1 De�nition

The de�nition of a Generalized Pro�le and the com-

plete mathematical description of the process of align-

ing such pro�le with a query sequence is given in [5].

A General Pro�le is intended to model a family of se-

quences or subsequences (Figure 1). In a biological
context, the characters involved are called residues and

are nucleotides or amino-acids. As suggested by the �g-
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Figure 1: A Generalized Pro�le as a model of several

sequences.

ure, the structure of a Generalized Pro�le consists of
an alternating sequence of match (M/D) and insert (I)

nodes, called the pro�les positions, starting and ending

with an insert position. The number of node depends

directly of the sequences modeled by the pro�le. Sev-

eral parameters, called scores, are associated to each

position. Each match position is associated to the fol-
lowing score values:

� m(a): Match score for character a,

� d: Delete extension score,

and each insertion position is associated to the follow-

ing score values :

� i(a): Insert score for residue a,

� b: Initiation score at position y,

� e: Termination score at position y,

� t1::16: 16 Transition scores.

where a is a residue of the query sequence and y is its

position.

The value of these parameters are computed during a
modeling phase where the pro�le is tuned to represent

a given family of sequences the best as possible. This

article does not deal with evaluation of the parameters

themselves and it is supposed that such pro�le is al-

ready available. Actually, the known protein pro�les

are listed in the PROSITE database [13].

2.2 Alignment between a Generalized Pro�le

and a sequence

We can verify if a query sequence or one of its subse-

quences corresponds to the family modeled by a given

Generalized Pro�le. This can be achieved by comput-

ing the best alignment between the pro�le and the se-
quence. The method involved uses the same principles

that the alignment between two sequences using the

Smith and Waterman algorithm [14]. The evaluation

of the best alignment between a Generalized Pro�le

and a sequence will use a dynamic programming opti-

mization process to maximize the value of the score as-
sociate to each possible alignment. The Figure 2 gives

an example of such alignment. An insert position is

placed between each match position.

I I I I I I I I I

AAGC CCCTTTT---
M/DM/D M/D M/D M/D M/D M/D M/D

Figure 2: Alignment of a Generalized Pro�le against a

sequence.

We can calculate the score associated to an align-

ment. It depends of the score values associated with

each position of the pro�le and the query sequence. To

evaluate the alignment score, we simply run through
the pro�le, from the left to the right, and add every

signi�cant position score as following:

� Each match position is placed in front of one

residue of the query sequence or in front of one

dash, respectively to account for the correspon-

dence between one character of the sequence with

one expected by the pro�le at the current posi-
tion or to signify that the query sequence has a

deleted character compared to what is expected

by the pro�le. In the �rst case, the match score

m(a) depending of the character a is added to the

pro�le score and in the other, the delete extension

score d is added.

� An insert position is placed between each match

position. If it is the �rst position of the align-

ment the initiation score b is added to the pro�le

score. If it is the last position of the alignment,

the ending score e is added to the pro�le score.

An insertion score i(a) is added for each character
inserted between the two characters associated to

the adjacent match positions. In addition, a tran-

sition score t1::16 is added to the calculated pro�le

score to quantify the transition between matching,

inserting or deleting phases as well as the begin-

ning and the ending step in the alignment process.



This transition score will be de�ned more precisely

below.

An alignment can be represented by a path through
a table as on Figure 3. A valid path begins at any

dot and is composed of dots whose coordinates are

equal or greater than coordinates of the preceding.

The Figure 4 gives a closer view of such dot. It in-

cludes 8 nodes, 4 inputs and 4 outputs. Six nodes

(M; I;D;M+; I+D+) are associated with the path
through the table between the beginning and termi-

nating node. The nodes B and E+ are respectively

the node associated with the initiation and the ending

of a path. In other words, we get in a path through the

node B and get out through the node E+. All edges

are weighted with the score value associated with the
corresponding pro�le M=D or I node.
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Figure 3: Alignment as a path through a table.

We can compute the score for an alignment between

a Generalized Pro�le and a sequence by following one
path in the table of Figure 3 and adding up the scores

corresponding to the edge weights: the initiation score,

the match score or the delete score for each match posi-

tion, a transition score and, if necessary, an insert score

for each insert position, and the termination score.

To compute the optimal alignment score, we use
a dynamic programming method, derived from Smith

and Waterman [14] and described in [5], to evaluate ex-

haustively the score associated with all possible paths.

For a pro�le of length n and a query sequence of length

m, we evaluate the score of all paths and we chose the

one resulting in the highest value. If we de�ne s(V )
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Figure 4: A close view of a insert and a match positions

and the related scores.

as the best score from the initiation of the path to a

vertex V , V 2 fB;M; I;D;E+;M+; I+;D+
g, then the

highest score is given by

Smax = max
06x<n;06y<m

[s(Ex;y)] (1)

.

The local score s(Vx;y) with V 2 fB;M; I;D;Eg

de�ned in [5] can be represented with the dataow di-
agram of Figure 5 if we consider the following:

� V 2 fB;M; I;D;Eg,

� vx(ax; y) 2 fex(y);mx(ay); ix(ay); dxg ,

� ay and y respectively as the current residue and

its position in the query sequence,

� b0;tB;V
= bex + tB!V;x,

� by;tB;V
= bix + tB!V;x,

�

s(Mx;y) = �1 if x = 0 or y = 0,

s(Ix;y) = �1 if x = 0 ,

s(Dx;y) = �1 if y = 0.

This completely de�nes the process of �nding the

best alignment between a pro�le and a query sequence.

We are therefore ready to describe its hardware imple-

mentation.

3 Mapping of the problem to a sys-

tolic architecture

We intend to implement the optimal score evaluation

process with a systolic architecture. A systolic archi-

tecture is a parallel architecture using several similar
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Figure 5: Dataow diagram of local score computation.

processing elements (PEs) locally connected and ex-

changing their data synchronously. This architecture

is well suited for this kind of dynamic programming

based pattern matching problem [15] [16].

To obtain PEs with identical functionalities and with

a minimal number of interconnections, they have to

include the vertices B;M; I;D;E+;M+; I+;D+. We

will also need to include the computation associated

with the outgoing edges of these vertices. Therefore,

the data circulating between the PEs correspond to the
values s(I), s(M), s(D) and the partial evaluation of

s(E). Once the smallest PE has been de�ned, we can,

if need be, group several of them in a larger one. The

two possible values of s(Bx;y) are locally memorized

and only depend on the position of the PE. The Smax

value is a global maximum which is the result of local
maximum computation inside each PE. The result of

this computation, the local maximum, is transmitted

through the local connection between PEs.

Therefore, the implementation of the calculation of

optimal alignment score between a sequence and a Gen-

eralized Pro�le has the same structure than the simpler

problem of aligning two sequences [11]. We can use the
uni-dimensional architecture described in [12] which

uses a linear network of processing elements, each as-

signed to the evaluation of a pro�le position. If the

number of PEs is smaller than the pro�le length, the se-

quence has to ow several time through the PEs which

are successively initialized with the next set of pro�le
position parameters. The resulting line-architecture

adapted to the Generalized Pro�le Search evaluation

is given in Figure 6.

As explained above, the value s(I), s(M), s(D) and

the partial evaluation of s(E) are transmitted between

the PEs, along with the current residue and some con-
trol signals.

� Since the s(Ix;y) value ows horizontally, its value

is kept inside the same PE, and, after a delay cycle,

is used as input for the I vertex.

� Since s(Dx;y) value ows vertically, its value is sent

directly to the next PE as input to the D vertex

and is used for the next cycle.

� Since s(Mx;y) value ows diagonally, its value is

sent to the next PE and is used as input to the M

vertex two cycles later.

� The maximum operator computes partial values

of the Smax global maximal score.

The controller responsible of the initialization of the

PEs, the transfer of the input data, the output of re-

sulting values, and the segmentation of sequences if the

problem is too large for the number of processors, is not

described here.

4 Architecture of the GenStorm ma-

chine

The GenStorm architecture is composed by several
cards linked together by a VME bus: a SPARC VME

card, a dedicated disk controller, and one or sev-

eral computing card(s)[7]. The SPARC card, running

UNIX operating system, is the main controller of the

machine. It con�gures the computing cards, controls

the data content of the disks and their formatting,
starts a calculation and reads the result, and allows

network clients access to the calculator. This network

capability also allows the client to remotely recon�gure

the GenStorm machine.

The architecture of the calculation cards, called

Genome, is shown in the Figure 7. Its general struc-
ture is similar to a lot of other existing cards since we

did focus on the target application part of the problem

and use a corresponding standard architecture. This

card contains nine FPGAs of the Xilinx XC4000 fam-

ily, eight processing units (PUs) and one controller unit

(CU), a VME interface, and memory blocks. Each PU
is connected to a local memory (512KB) and to its

neighbours with a 30 bit-wide local connection. The

CU is connected to two of the PU and to the memory

blocks. It is responsible for the control of the memory

blocks, i.e. for ensuring a correct sharing of the mem-

ory blocks between the Genome card and the VME bus
and for the generation of interruption. The card is de-

signed to carry out the subdivision of large query in

hardware without communication with the host. That

property is its main originality.

5 Parallel implementation of the

score evaluation

In the rest of this document, we will focus on the imple-

mentation of the datapath of the processing elements

and, in particular, the local score calculation. The
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global score calculation consists simply of reading in

the ow of local maxima and memorizing the current
value if it is larger than the preceding one.

The proposed scheduling is mainly based on input

port timing constraints. Since we aim at achieving

the highest possible throughput, the scheduling does
not take into consideration FPGAs resource constraints

and we suppose we can use a device as big as we need.

The resulting scheduling is shown in Figure 8. In

this �gure, the grayed operators and registers corre-
spond to the dataow for the local score evaluation.

More precisely, they correspond to the computation

of the s(Ex;y),s(Ix;y),s(Mx;y), and s(Dx;y) values, as

in Figure 5, where respectively V 2 fE;M; I;Dg and

vx(ax; y) 2 fex(y);mx(ay); ix(ay); dxg. This grey sub-

dataow corresponds therefore to four sub-dataows
giving four distinct results, each memorized in one of

the striped registers.

We observe that the score calculation can be carried

out in 6 clock cycles and uses the resources described

in Table 1.

Resource Qty Input Reuse Desc.

Adder 4 2 4 Adder

Max2 4 2 3 Max

Sel2 4 2 1 Select

Table 1: Resources used during score calculation.

The Input and Reuse columns in Table 1 are used to

calculate the quantity and the size of the multiplexer

needed to select the input value of the corresponding
operator. The resources needed to memorize the pro�le

parameters in each PE are the following:

� twenty-six 8-bit registers for transfer, initialisation

and termination scores,

� two 20x8-bit memory for match and insert scores,

� one 10-bit query sequence character counter,

The local score computation has been implemented
in VHDL following the schedule presented above. It

has been compiled with the Synopsys synthesizer with

an input/output port size of 28 bits, a score size of 16

bits, a pro�le parameter size of 8 bits, and a sequence

length size of 10 bits. All values are integers. This con-

�guration is realistic and can be used in the everyday
life of a biology laboratory. The target is the Xilinx

XC4000 family, since they are used on the GenStorm

machine. The results are given in Table 2.

We can observe that the score calculation is very re-

source intensive. This is a result of the parallelism used

in the selected schedule. The four local score calcula-
tions are carried out in parallel, which involves the use

of four adders and four maximum operators. This last

operation used most of the resource and is very time

consuming.

From the result of the synthesis, we can estimate

the performance of our system. The longest datapath
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delay is 238 ns with a Xilinx speed grade of -6, which is

a very slow device but currently used on the processing

card. This path corresponds to the path through the

maximum operator which is a critical component of the

implementation. Nevertheless, even with a slow device,
one computing card of the GenStorm machine using a

parallel implementation of the score calculation is able

to compare more than 5.6 millions pro�le positions by

second on a GenStorm card which include 8 PEs. This

is to compare to the average of 600 thousand pro�le

positions by second evaluated by a SPARC 20 machine.
The system has been designed to support 16 cards.

resource Quantity

FG Function Generator 1132

Number of Flip Flops: 607

Total Number of CLBs: 620

Table 2: Resource used by the local score calculation

after VHDL synthesis.

6 Online operators

Even if the speedup of the parallel implementation of

the score calculation is promising, we were targeting

better results. In order to increase the throughput, we

needed to make a better use of pipelining. We took the

radical decision to use serial operators which will give
us a bit-level pipelining. This is possible thanks to the

ability of these operators to output the �rst bit of the

result before to have received all its inputs.

Online operators use algorithms which satisfy the

\online" property [17]. This implies that to generate

the jth digit of the result, it is necessary and su�-

cient to have the operands available up to the (j+ �)th

digit, where the index di�erence � is a small positive

constant. It is necessary to accumulate � initial dig-

its of the operands in order to produce the �rst digit

of the result. Subsequently, one digit of the result is

produced upon receiving one digit of each operands. �

is called the online delay which is misleading since it
corresponds to a latency. An online operator can also

be characterized by � , the clock period, i.e. the time

needed by the signal to cross through the longest path

of the circuit (Figure 9).

Serial data Transmission may be executed least sig-

ni�cant digit �rst (LSDF) or most signi�cant digit �rst

(MSDF). Algorithms for LSDF transmission seem to
be more natural because they correspond to classical

\paper and pencil" methods [18]. However, this ap-

proach has several disadvantages. Operations such as

division, square root, or simply the maximum operator

produce outputs in MSDF form. Therefore a sequence

involving these operations cannot be performed with-

x i + δ y i + δ

r i

O n - L i n e
O p e r a t o r

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 0 0

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8N o t  v a l i d

τ

δ

Figure 9: Online operator associated with its online

delay �.

out large delays between successive operators to trans-

form these outputs to LSDF form (Figure 10). When
we use redundant number representation, all operators

can produce their outputs in MSDF and formatting is

not necessary anymore.
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Since the � value associated with each operator is

small compared to the number of bit of their operands,

it is possible to start the second of two successive op-

erations before the �rst is completed. This property

enables bit-level pipelining. For example, in Figure 11,
the �rst bit of the result is evaluated after four clock

cycles.
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6.1 Redundant representation

To perform an operation like the addition with the
most signi�cant digit �rst, we need a data represen-

tation which does not need carry propagation. A so-

lution is to use a redundant number system. In a con-

ventional number representation with an integer radix

r > 1, each digit is allowed to assume exactly r val-

ues: 0; 1; :::; r � 1. In a redundant representation with
the same radix r each digit is allowed to assume more

than r values. Both positive and negative digit val-

ues are allowed for this purpose. Redundancy in the

number representation allows, for example, a method

of fast addition and subtraction in which each sum (or

di�erence) digit is the function only of the digits in two
or three adjacent digit positions of the operands. The

time duration of the operation is independent of the

length of the operands.

There is several di�erent type of redundant data rep-

resentation as for example the borrow-save representa-

tion described in [19] or the signed-digit representation

described by A. Avizienis in [20]. In our current im-
plementation, we use the last one which consists in a

positional, constant radix representations of algebraic

values

Z =

nX
i=1

zir
n�i; (2)

in which the digits zi assume one of the following set

of values

�a;�(a� 1); :::;�1; 0; 1; :::; a � 1; a (3)

1

2
(ro + 1) 6 a 6 ro � 1 or

1

2
re + 1 6 a 6 re � 1

(4)

where ro is an odd integer ro > 3, and re is an even

integer re > 4. The redundancy of a signed-digit repre-

sentation is minimal when a = 1

2
(ro+1) or a = 1

2
re+1,

and the redundancy is maximal when a = ro � 1 or

a = re � 1. For our �rst implementation, we have cho-

sen r = 4 and a = 3.
From this representation, we can de�ne the addition

and the maximum operators we need for the imple-

mentation of General Pro�le Search. Other operators

such the multiplication and the division can be found

in [17].

6.2 Signed-digit adder

The arithmetic operations of totally-parallel addition

and subtraction of two digits two numbers X and Y

S =

nX
i=1

sir
n�i; (5)

X =

nX
i=1

xir
n�i; Y =

nX
i=1

yir
n�i; (6)

where si; xi; yi 2 f�r+1; :::� 1; 0; 1; :::; r� 1g, n is the

number of digits, is de�ned as following:

si = ti + wi; (7)

with ti and wi de�ned as following:

zi + yi = rti�1 + wi: (8)

The Figure 12 shows the organization of the adder in

its parallel form. We can observe the absence of carry

propagation. The Figure 13 is the corresponding online

adder. As said earlier, the operands ow through the
operator with the MSB �rst. The online delay � is

equal to 1.

z i - 1

z i

y i - 1

y i

z i + 1

y i + 1

w i - 1

w i

t i - 1

t i

w i + 1

t i + 1

t i - 2

s i - 1

s i

s i + 1

+
-

+
-

+
-

Figure 12: Parallel version of the signed-digit adder.

The value ti is called transfer digit by Avizienis as

opposed to carry since it can assume both positive and

negative values and it is never propagated past the �rst

adder position on the left. The reader can �nd the



z i + 1

y i + 1 w i + 1

t i

s i

+
- w i

Figure 13: Online version of the signed-digit adder.

complete discussion in Avizienis' article [20] as well as

conversion procedures between conventional (sign and

magnitude) representation to a signed-digit represen-

tation of the same radix r > 2.

6.3 Online maximum operator

We want to evaluate the following function of two input

values A and B :

Y =MAX(A;B) (9)

where A,B, and Y are integer values represented in

signed-digit number system:

Y =

nX
i=1

yir
n�i; (10)

A =

nX
i=1

air
n�i; B =

nX
i=1

bir
n�i; (11)

where yi; ai; bi 2 f�r + 1; ::: � 1; 0; 1; :::; r � 1g, n is
the number of digits. Let us denote Ai, Bi, Yi, the

numbers constituted by the most i signi�cant digits of

A, B, Y :

Yi =

iX
j=1

yjr
n�j ; (12)

Ai =

iX
j=1

ajr
n�j ; Bi =

iX
j=1

bjr
n�j; (13)

and let us require that after the i-th step (for any i =

1; 2; :::; n) :

Yi =MAX(Ai; Bi) (14)

This last condition allows us to evaluate i digits of

Y knowing i digits of A and B. Let us de�ne Ri as

Ri = rRi�1 + ai � bi; (15)

then

yi+1 =

8>>><
>>>:

ai+1 if Ri+1 > 0 and Ri > 0

ai+1 + rRi if Ri+1 > 0 and Ri < 0

bi+1 � rRi if Ri+1 < 0 and Ri > 0

bi+1 if Ri+1 6 0 and Ri 6 0

;

(16)

By de�ning R0 = 0, a0 = 0 and b0 = 0, Equations 15
and 16 give the recursion to evaluate all the digits of

Y = MAX(A;B). The Figure 14 gives us a represen-

tation of the corresponding hardware implementation.

The online delay � is equal to 0.

a i + 1

b i + 1 y i + 1

R i + 1 R i

Figure 14: Online version of the maximum operator.

6.4 Normalization

In the general case, if we add two n-digit numbers A

and B, the result S will be (n+1)-digit long. Each addi-

tion/subtraction can add one digit, not only as the re-

sult of possible overow or underow but also because
of the redundant representation itself [21]. For exam-

ple, using a radix 4 signed-digit, the number 22 can be

represented by the number 122, adding one digit. This

property can become an issue if we successively evalu-

ate many additions, as it is the case in the Generalized

Pro�le Search algorithm.
We have to ensure that any result has the same num-

ber of bits than the operands thanks to a normaliza-

tion operator. If a value can not be represented with

the available number of digit as a result of underow

or overow, this operator will respectively output the

smallest or the largest de�ned value.
Let us consider a radix-r signed-digit representation

and a number of digits equal to n. Let us consider

the n + 1-digit number A =
Pn+1

i=1
air

n+1�i to be

normalized. The resulting value Y = NORM(A) =Pn

i=1
yir

n�i is a n-digit number de�ned by

Y =

8><
>:

�rn + 1 if �rn > A

A if �rn < A < rn

rn � 1 if rn 6 A,

(17)

where yi and ai 2 f�r + 1; :::� 1; 0; 1; :::; r � 1g.

Clearly, the trivial case where a1 = 0 results in ai =

yi+1 for i = 1; 2; :::; n. If a1 < 0 then A < 0 and we



have to ensure that A is not smaller than the smallest

representable n-digit number. Similarly, if a1 > 0 then

A > 0 and we have to ensure that A is not greater than

the largest representable n-digit number. We can write

these conditions as following :

Y =

8><
>:

MAX(�rn + 1; A) if a1 < 0

A if a1 = 0

MIN(rn � 1; A) if a1 > 0

(18)

This normalization process can be implemented with

a maximum and a minimum operator. Only two cases

need conversion and have to be considered based on

the value of the most signi�cant bit a1 of the number

A. If the most signi�cant bit is negative, then A is neg-

ative and the result of the normalization process is the
largest value between A and the smallest representable

value. If the most signi�cant bit is positive then A is

positive and the result is the smallest value between A

and the largest representable value (Equation 18).

7 Serial implementation of the score

calculation

We have all the elements to build an signed-digit online

implementation of the score evaluation. The Figure 15

is an attempt to represent such implementation. A reg-

ister is placed between each operator to reduce cycle

length. The height of the operator is proportional to

their online delay plus a unit value corresponding to
the added registers. The online delay � of the score

evaluation corresponds to the delay to obtain the �rst

digit of the s(Dx;y) value and is equal to 5. The im-

plementation uses a signed-digit representation with a

radix r = 4. In order to work with the same score value

range than the parallel implementation which uses bi-
nary representation, we have to use scores with mini-

mum 8 digits in base 4.

After implementation in VHDL and synthesis, we
can also estimate the performance of the online version

of the score evaluation. The longest path delay is about

23 ns with the same Xilinx device, that is an order

of magnitude faster than the parallel implementation.

Because of the serial ow of data, 9 clock cycles are

needed compared to 6 previously. Nevertheless, the
online implementation is able to compare more than

38 millions pro�le positions by second on a GenStorm

card which include 8 PEs, that is a speed-up of about

7 on the parallel implementation.

The online implementation uses 10 percent less CLBs

than the parallel one. This is due to the high number

of FIFOs which have been synthesized without taking

advantage of the optimized Xilinx library.

8 Conclusion

In this paper, we have described the Generalized Pro�le

Search and we have shown that it can be implemented
with a systolic architecture on GenStorm, a FPGA-

based computer dedicated to sequence processing. We

have proposed two implementations, the �rst one using

classical parallel operators and the second one using se-

rial operators and a di�erent data representation called

signed-digit number.
We have demonstrated that the online solution has

a speed up of 7 on the parallel implementation with

some gain in area consumption. This result shows that

the serial operation enabled by the redundant number

representation is an advantageous strategy to improve

the performance of datapaths on a FPGAs. The se-
rial evaluation of the result, which seems counter pro-

ductive at �rst view, leads to spectacular performance

improvement thanks to bit-level pipelining and the re-

duction of routing complexity. This method is very

promising as an online implementation exists for every

usual operators.
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