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Event-distributions inform scientists about the variability and dispersion of repeated

measurements. This dispersion can be understood from a complex systems perspective,

and quantified in terms of fractal geometry. The key premise is that a distribution’s
shape reveals information about the governing dynamics of the system that gave rise

to the distribution. Two categories of characteristic dynamics are distinguished: additive
systems governed by component-dominant dynamics and multiplicative or interdependent

systems governed by interaction-dominant dynamics. A logic by which systems governed

by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse
power-law samples is discussed. These mixtures are described by a so-called cocktail

model of response times derived from human cognitive performances. The overarching

goals of this article are twofold: First, to offer readers an introduction to this theoretical
perspective and second, to offer an overview of the related statistical methods.
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distributions, fractal analysis

Many biological, physiological, and psychological phenomena

display time evolving dynamics among their governing processes.

Very often these dynamics are straightforwardly observable, as in

the back-and-fourth limb movements that are typical of human

gait. The most successful and transparent contemporary models

of human gait originated in the mathematics of harmonic oscil-

latory systems such as the driven-pendulum (e.g., Haken et al.,

1985; Kugler and Turvey, 1987). The late 15th century research

on pendulum behavior was originally motivated by a need for

reliable clocks (e.g., Huygens, 1673/1986). The resulting math-

ematical framework was subsequently adapted to the problem

of biological locomotion (among other things). The new appli-

cation was accommodated by the straightforward observation

that, like the pendulum of a clock, both human and animal gaits

exhibit relatively regular oscillatory movements (e.g., von Holst,

1939/1973). Clearly, gait’s accessibility to measurement facilitated

progress in this domain.

Unlike locomotor activity, however, the dynamic evolution

of other biological and behavioral systems is, for various rea-

sons, relatively opaque, or simply unobservable. For instance,

time evolving dynamics likely support cognitive activity, but

those dynamics are more difficult to measure. Worse yet, many

stochastic processes entail statistical independence across time.

In these cases, scientists may only have access to distribu-

tions of measurements that characterize either the same or

categorically similar events. They can be utterly disconnected

events, related by identity only, not by an obvious adjacent

connection in time or space. Thus, a typical outcome mea-

sure might index event durations, frequencies, magnitudes, or

similar variables. Examples include earthquake magnitudes, com-

puter network traffic, war durations, and countless others.

Nevertheless, the shapes of the event-distributions that arise in

many systems are often quite lawful. Perhaps the best-known

example is when they conform to a Gaussian probability density

function.

This article is motivated by the insight that the shape of

probability distributions of events reveals information about the

dynamics that govern a system’s output. The approach leverages

the fact that the essential nature of the dynamics that govern many

natural stochastic systems can be understood without specific

knowledge of the components that comprise the system itself

(Holden et al., 2009; Holden and Rajaraman, 2012). Inferences

about dynamics follow from the statistical behavior of random

variables in conjunction with contemporary narratives regarding

the behavior of complex systems (Montroll and Shlesinger, 1982;

West and Deering, 1995).

To be sure, the methods we describe reveal less complete

dynamic information than the methods customarily used in

conjunction with observable dynamics, such as phase-space

reconstruction. Nevertheless, they do yield enough informa-

tion to categorize systems in terms of a straightforward taxon-

omy that distinguishes between component-dominant dynamics

and interaction-dominant dynamics. The event-distributions of

component-dominant systems reflect the activity of isolable

system components, their time-course, functional details, plus

unsystematic additive sources of noise (e.g., Sternberg, 1969;

Simon, 1973; Lewontin, 1974). By contrast, the event distri-

butions of interaction-dominant systems reflect emergent, irre-

ducible coordination and coupling among the processes that

govern the system (e.g., Pattee, 1973; Jensen, 1998). Dynamics

are determined by the category of component interactions in the

sense that if a given category of system dynamics is in place then

particular categories of outcome distributions are a necessary

consequence.
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Over the course of this article, we present several methods

for analyzing and interpreting distributions of observations in

terms of their implications for a measured system’s dynamic prop-

erties. Our entry point is a fractal perspective on distributions

that augments the traditional Euclidean geometry that underpins

conventional approaches to distribution fitting and parameter

estimation. We illustrate how to compute the fractal dimension

of an empirical distribution, how to estimate the scaling expo-

nent of an inverse power-law distribution, and finally discuss how

to apply maximum likelihood techniques to fit a promising “cock-

tail” mixture model of response time distributions from cognitive

performances.

FRACTAL DISTRIBUTION METHODS

The traditional approach to the characterization of distributions

is framed within the context of Euclidian geometry and the stan-

dard “signal plus noise” theory of measurement error that was

largely perfected by the mid-20th century (Stigler, 1986). It is a

powerful and useful framework. Arguably, however, many natu-

ral systems live on the boundary of its assumptions, or sometimes

simply fail to conform to its assumptions. The present goal is

to illustrate how distribution analysis can be broadened and

enhanced by the inclusion of concepts from fractal geometry. We

begin by reviewing the concept of dimension, and generalize the

intuitions of the standard Euclidian integer dimension to include

the fractal concept of non-integer dimension.

FRACTAL DIMENSION

Regular objects, conforming to classical Euclidean geometry, can

be characterized by their Euclidean dimension. A punctate obser-

vation is a zero-dimensional point; a dimensionless location

on a one-dimensional line of measurement. A line is a one-

dimensional object; a smooth surface has a dimension of two,

and a cube three. Euclidian objects are homogeneous and uni-

form, breaking them into scaled-down but geometrically identical

pieces, reveals their dimension.

If the sides of a cubic decimeter are measured in cubic centime-

ters; that is, if they are scaled down by a factor of 10, then exactly

1000 cubic centimeters will fit in the original cubic decimeter

because 1000 = 103. Thus the Euclidean dimension of the orig-

inal cube is exactly three. In the same vein, if the sides of a

squared decimeter are measured in squared centimeters, 100 =
102 squared centimeters fit in the original squared decimeter, and

the Euclidean dimension of the original surface is two. Finally, if a

line of one decimeter length is measured in centimeters, 10 = 101

centimeters fit in the original line and the Euclidean dimen-

sion is one (see Figure 1). This mapping even works for points,

1 = 100, a point cannot be rescaled or divided, and is therefore a

zero-dimensional object.

Another way to measure an object’s dimension is by determin-

ing its topological dimension. Topological dimension in rooted

in the idea of connectedness among points in a set. It is com-

puted by determining the dimension of the object required to

separate any part of the original set from the rest, plus one. For

instance, a line has a topological dimension of one because it can

be segmented by a single point that has zero dimension. In fact,

regular objects such as curves, surfaces, and solids each have an

FIGURE 1 | Depicts the rescaling relationships of a cube, surface, and a

line that determine a regular object’s Euclidean dimension.

integer topological dimension of 1, 2, and 3, respectively—values

that equal their Euclidean dimension (Bassingthwaighte et al.,

1994; Falconer, 2003). Both the Euclidean and the topological

dimension take only integer values.

Euclidean geometry, while characteristic of many human arti-

facts, is an exception to the rule for natural objects. The geometry

of most natural objects is highly irregular. Idealized fractal objects

are typically comprised of nested copies of the whole object. Their

dimension may fall in between the integer Euclidean values. The

fractal dimension of an object effectively indexes the relative irreg-

ularity or space-filling properties of an object. Imagine a piece

of thread held taught between two hands, the thread resembles a

straight line with Euclidean (and topological) dimension of one.

The thread begins to occupy space when it is weaved back and

forth, as in a loom, for instance, and the tighter the weave, the

more closely it approximates a two dimensional object, cloth. It

can be said to “leak” into the next higher, 2nd Euclidean dimen-

sion, and thus corresponds to a non-integer fractal dimension.

Ours is an admittedly intuitive treatment of fractal dimen-

sion. It is a complex mathematical topic and the most formal

definition of a fractal concerns a comparison of an object’s topo-

logical dimension with its space filling properties, as indexed

by yet another measure of dimension called the Hausdorff–

Besicovitch (H–B) dimension. A set for which the H–B dimension

strictly exceeds its topological dimension is a fractal (Mandelbrot,

1977). A more inclusive proposal, also put forward by Benoit

Mandelbrot, is that “a fractal is a shape that is made of parts similar

to the whole in some way” (Feder, 1988).

The take-home point is that objects can be fractal, and are

characterized by a non-integer fractal dimension. These facts

apply to sets of repeated observations of the self-same process.

If repeated measurements of the same object or process always

yield exactly the same result, then the measurement converges to a

zero-dimensional point—a value commensurate with any obser-

vation’s Euclidean or topological dimension. However, repeated

measurements of natural systems rarely yield sets of identical out-

comes. Instead, they almost inevitably vary from observation to

observation.

It is this variability or uncertainty in repeated but categorically

identical measurements that yields dispersion over the x-axis of
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a dependent measure in an experiment. In this way, the set of

measured points begins to “fill” an interval and approximate the

one-dimensional x-axis of measurement. Just as a more tightly

woven piece of thread better approximates a plane, a variable col-

lection of zero-dimensional points roughly approximates a line.

Other things equal, such as sample size, a more dispersed distri-

bution will occupy a broader interval and leak further into the

domain of the line than a less variable distribution. As such, a

distribution’s interval-filling properties are indexed by its fractal

dimension.

One way to estimate the fractal dimension of a distribution is

entailed in the common relative entropy statistic. First, generate a

histogram of the observations across a fixed interval on the x-axis

of measurement. The maximum potential range of the observa-

tions should define the interval. Once the interval is divided into

a convenient number of smaller intervals or bins, the observed

frequency in each bin is transformed into a probability, by divid-

ing each bin count by the total number of observations. Next the

Shannon information (Shannon and Weaver, 1949) is computed

across all bins, and divided by the maximum possible entropy—

the negative base-2 log of one divided by the total number of

bins B.

FDre = −
∑

pilog2pi

−log2(1/B)
(1)

Equation 1. The fractal dimension based on the relative entropy

statistic (FDre) as a function of the probability pi of finding

observations in bin i, and B, the total number of bins.

Equation 1 computes the fractal dimension based on the rel-

ative entropy statistic, the probability of finding observations in

each bin, and the number of bins. The relative entropy statistic

measures the relative “evenness” of the distribution; a value of one

indicates a uniform distribution where the probability weights

evenly cover the measurement interval. Values progressively less

than one indicate progressively more “clumpiness” (Seuront,

2010). It can be directly interpreted as a fractal dimension, the

degree to which the collection of zero-dimensional points repre-

senting the observations leaks into the next higher first Euclidean

dimension. Effectively, increases in the variability of the mea-

surements equate with increases in the fractal dimension of the

measurements. Figure 2 displays the FDre and probability den-

sities of four probability distributions that will be discussed in

this article, alongside the uniform distribution, which marks the

maximum relative entropy, and FDre of one.

On one hand, using relative entropy as a measure of the frac-

tal dimension is a fairly course grained method for assessing or

comparing the dispersion among distributions. Parametric vari-

ability statistics are more sensitive. On the other hand, it is largely

assumption free. It is most useful for empirical distributions that

are not particularly orderly. For instance, distributions that do

not appear to conform to a shape that might indicate a standard

probability density function could be reasonably adopted as a

model. We now consider the more specialized cases where empir-

ical distributions conform to familiar, idealized shapes of defined

probability density functions. We provide an introduction to

a general taxonomy of random variables that distinguishes the

characteristic mode of interactions that give rise to observables.

Again, the key focus is characteristic patterns of variability.

SUPERPOSITION vs. INTERDEPENDENCE

The central theme of statistical physics is that the macro-

scopic behavior of a system reflects the microscopic arrange-

ments of its constituent parts (Bruce and Wallace, 1989).

Characteristic system dynamics originate in the relationships

among the processes that comprise a system. Our introduc-

tion briefly distinguished two broad taxonomies of characteristic

system dynamics: component-dominant dynamics and interaction-

dominant dynamics. They each entail distinct system transactions,

superposition, and interdependence, respectively. We now explain

how component-dominant dynamics arise.

The term applies to systems that are governed by the activity

of largely isolable processes, themselves, their time-course, and

their functional details (plus unsystematic noise). Relatively weak

interactions among causal processes insure that perturbations

affect components locally, unsystematically, and individually. As

such, the effects of systematic perturbations can be localized to

individual components—that is a consequence and a benefit of

encapsulated design. Weak and additive cross-process transac-

tions insure that the components, themselves, dominate system

output. Systems that express component-dominant dynamics are

consistent with Simon’s (1973) nearly decomposable systems, since

they entail minimal linkages across time-scales and minimal

within-timescale feedback. Component-dominant dynamics rep-

resent a key prerequisite for a successful reductive analysis of a

system. They are presumed in the application of standard linear

Gaussian statistical techniques such as ANOVA and regression.

COMPONENT-DOMINANT DYNAMICS

The standard Gaussian distribution represents an archetypal out-

come or end state for systems that are comprised of components

whose effects dominate their time evolution. The dispersion or

variability around the mean of a Gaussian distribution emerges

from the combined, additive influence of innumerable weak,

accidental, and mutually independent factors (Gnedenko and

Khinchin, 1962; Hays, 1994). Each influence or perturbation

affects the outcome, if ever so slightly. Since the factor’s effects

are independent and unsystematic they cancel each other’s influ-

ence as often as they reinforce each other, in the long run. Thus,

Gaussian distributions emerge from systems whose observables

are subject to vast arrays of relatively weak, additive, and inde-

pendently acting perturbations: component-dominant systems.

In effect, the dynamics of superposition simply restate Laplace’s

Central Limit Theorem. If the assumptions of the theorem are

met, then a Gaussian distribution will result. In that case, the dis-

tribution’s mean is the only real piece of information imparted by

the entire distribution.

The standard exponential distribution represents a different

expression of component-dominant dynamics. Its probability

density is p(x) = (1/λ)e−x where x is the axis of measurement. An

exponential distribution often signifies processes that conform to

stochastic “counting” or a bottlenecked queuing process. It repre-

sents a steady, reliable accrual process that is characterized by the

mean (λ) of the distribution. The exponential distribution is thus
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FIGURE 2 | Five model distributions with approximately equal mean

and variance and the corresponding fractal dimension FDre based on

the relative entropy computed using 10 bins. The top four distributions

(Gaussian, exponential, lognormal, and inverse power-law) are ordered

according to two broad taxonomies of characteristic system dynamics:

component-dominant dynamics and interaction-dominant dynamics (see

text for details). The uniform distribution is included to define the upper

boundary for FDre . The fractal dimension gauges the relative variability

of the respective distributions; the more evenly dispersed, the larger the

FDre .

a typical example of a distribution resulting from a component-

dominant process; its properties are fully described by the average

rate 1/λ. The exponential is an expression of additive perturba-

tion in time, as the exponential arises when events have a constant

average rate per interval of time, and conform to a Poisson dis-

tribution, which, in turn, can be approximated by a Gaussian

distribution. As with the Gaussian, exponential variability arises

from unsystematic additive influences and its mean is the key

piece of information imparted by the distribution.

If an exponential rate parameter is sufficient to characterize a

process then it could, in principle, be identified and discriminated

from other processes with different characteristic rate parame-

ters or distribution functions. System outputs that conform to

an exponential support a hypothesis that component processes

themselves, dominate a system’s transactions and observed vari-

ability. Next, we introduce an alternative case, in which the

system dynamics are dominated by reciprocal, interdependent,

and multiplicative transactions among processes.

INTERACTION-DOMINANT DYNAMICS

Understanding how a system’s components interact takes prior-

ity over identifying the components themselves. This is because

one must first determine whether the components can, in princi-

ple, be recovered before one goes looking for their signatures in

event-distributions, for example (Uttal, 1990; Van Orden et al.,

2003, 2005). Interaction-dominant dynamics are associated with

systems that entail tightly coupled processes spanning a wide

range of temporal or spatial scales, including fractal systems.
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They refer to systems that entail multiplicative and/or interde-

pendent feedback transactions among the processes that govern

the system’s dynamics. Just as component-dominant dynamics

are associated with additivity, and the Gaussian distribution,

interaction-dominant dynamics are also consistent with specific

categories of distributions.

An inverse power-law distribution is a so-called heavy-tailed

distribution; the heavy tail represents large magnitude, but rare

events (Clauset et al., 2009). Thus, it expresses a salient positive

skew. If the extreme right tail of an event distribution decays as

a power function, then the probability of observing a particular

event magnitude, p(x), is the inverse of the x value itself, raised

to the scaling exponent α (alpha) that is p(x) ≈ x−α. The formal

mathematical equation of the inverse power-law probability den-

sity function is p(x) = b · x−α, where b is a positive constant. The

scaling exponent α quantifies the rate of decay of the distribu-

tion’s tail. In scientific papers, α is normally reported as a positive

number, derived from the equivalence of x−α and 1/xα. It is cru-

cial to understand that it indexes a completely different property

of data than the scaling exponent α of 1/f α or 1/f noise (e.g.,

Holden, 2005); the former characterizes the shape of a distribu-

tion, the latter describes long-range fractal patterns of correlation

across successive observations. They are statistically independent

patterns.

Inverse power-law distributions describe phenomena that

range from the distribution of online music sales to earthquake

magnitudes and citations of scientific publications (Anderson,

2006; Bak, 1996; Redner, 1998). Neurophysiological processes

also express power law behavior. For instance, the distribution

of endogenous EEG and MEG oscillations are inversely power-

law distributed (Linkenkaer-Hansen et al., 2001). Similarly,

fMRI measurements of human brains, under untasked condi-

tions, reveal scale-free power-law coordination—correlated rela-

tional networks of a given average size, that span approxi-

mately three orders of magnitude in their observed frequency

(Fraiman et al., 2009). Circular, interdependent feedback trans-

actions likely govern systems that express inverse power-law

scaling.

Power law behavior is symptomatic of self-organizing physi-

cal systems poised near a critical point (Bak, 1996; Jensen, 1998).

One of several model systems for studying the behavior of self-

organized and critical systems is a simple rice pile. Actual rice pile

experiments use an apparatus that makes detailed measurements

of rice grain activity, as kernels are continuously added to and

exit the pile (see Figure 3). Initially, small, localized piles emerge

within the larger pile. As the local piles grow, avalanches unfold.

At a critical point, a holistic coordinative balance emerges through-

out the system. The balance is governed by two competing sources

of constraint: friction and inertia (Jensen, 1998). From that point

on, the rice pile maintains a time-invariant organization, even in

the face of the constant perturbation induced by the intermit-

tent clusters of inflowing and avalanching rice. Notably, while

the classic lore surrounding this phenomenon concerned sand

piles, it is in fact long-grain rice rather than sand that entails the

proper ratio between friction and inertia to express the character-

istic behaviors associated with self-organized criticality (cf. Frette

et al., 1996).

FIGURE 3 | An example experimental setup used to study the

dynamics of one-dimensional rice piles. The first experimental

confirmation that self-organized criticality occurs in granular systems was

reported by the Cooperative Phenomena Group at the University of Oslo

(Frette et al., 1996). Rice kernels were slowly fed into the pictured device.

High-resolution photographs and tracer grains were used to track grain

transport. As predicted, the distribution of avalanche magnitudes was

consistent with an inverse power-law distribution (Image reprinted with

permission from the Cooperative Phenomena Group, University of Oslo).

When a rice pile is in a critical regime the effects of perturba-

tion are no longer proportional to the size of the perturbation—

adding one new grain might result in no change, a tiny avalanche,

or a large avalanche, affecting the entire pile. In the long run, small

avalanches occur frequently and occasional very large avalanches

unfold, all the while the pile maintains a time-invariant aver-

age height and slope. An inverse power-law distribution neatly

summarizes the relationship between the avalanche magnitudes

(indexed by grain counts) and their frequency of occurrence.

More generally, scale-invariance, as indicated by power law

scaling, is characteristic of many complex systems near a critical

point. Scale-invariance may be observed with respect to tempo-

ral or spatial variables (or both), but in each case similar changes

unfold at all time (or length) scales of the system. Of course,

power law scaling alone is not sufficient to establish criticality.

For instance, mathematical fractals routinely yield scaling rela-

tions, but they are fully deterministic systems of equations. So,

while they are iterative systems and exploit feedback, they are

not open physical or biological systems. Formally established self-

organized critical systems entail nonlinear, far-from equilibrium
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dynamics, with identified system control parameters that gov-

ern qualitative state changes (phase transitions) in the system’s

observables (order parameters, e.g., see Bruce and Wallace, 1989;

Nicolis, 1989). That said, self-organization and critical behavior

are generally accepted as plausible working hypotheses with the

observation of non-trivial scaling in complex biological systems

(e.g., Bak and Paczuski, 1995; Bak, 1996).

A striking outcome of research on critical phenomena is the

concept of universality—while the physical details of various

critical systems vary widely, their behavior near their respective

critical points is highly similar. Model rice piles are dynamic crit-

ical phenomena and express scale invariance and time-invariant

organization. Equilibrium critical phenomena, such as a super-

conducting phase transition, arise in certain conductive materials

and express scale invariant coordination near the critical temper-

ature at which electrical resistance vanishes in a superconducting

phase transition. The physical details of rice piles and supercon-

ductive materials could hardly be more distinct. Nevertheless,

member systems of both categories of critical phenomena exhibit

universalities, such as critical exponents, characteristic frac-

tal dimensions, and scale-free spatial and temporal correlation

functions.

By way of summary, the model rice pile system only reaches

a critical state when certain grain size and smoothness require-

ments are met. For instance, if one adds a constraint that changes

the balance between inertia and friction so that one or the other

term dominates the interactions, the empirical consequences of

feedback are minimized, and the rice pile converges on a charac-

teristic relaxation time. Systems in which the effects of feedback

are negligible but that are still governed by multiplicative interac-

tions exhibit lognormal instead of power law dispersion (Farmer,

1990; Holden and Rajaraman, 2012).

Lognormal distributions are found in various systems in

chemistry, biology, ecology, and economics. In biology and

ecology, multiplicative processes describe population and organ-

ism growth (Preston, 1948, 1962; Koch, 1966; May, 1981;

Magurran, 1988). Proportional amplification yields accelerating

growth. Thus, Nishiura (2007) discussed the lognormal distri-

bution as a model for the incubation times of viral infections.

Similarly, normally distributed economic growth rates yield a log-

normal distribution of future investment values because growth

operators are multiplicative.

A lognormal distribution arises from pure multiplicative inter-

actions among independent random variables. The Central Limit

Theorem established that the sum of many independent random

variables yields a Gaussian distribution. A lognormal distribution

becomes Gaussian after a logarithmic transform of the mea-

sured variable. Summing the logarithms of two or more numbers

and then taking the antilog of the sum, yields their cumulative

product. This fact offers a route to generalize the Central Limit

Theorem to multiplicative interactions among independent ran-

dom variables. Processes that generate a lognormal distribution

directly are analogue to processes that generate a normal distri-

bution. Just as the sum of many independent random variables

yields a Gaussian distribution, the product of many independent

random variables yields a lognormal distribution (Koch, 1966;

Ulrich and Miller, 1993).

One may envision a loose continuum of ideal distributions

spanning the general taxonomy of component-dominant and

interaction-dominant dynamics (e.g., Montroll and Shlesinger,

1982; West and Deering, 1995). At one extreme, there is the

Gaussian distribution, a signature of weak unsystematic additive

interactions among independent, random variables. At the other

extreme, there is the heavy-tailed inverse power-law, the signature

distribution of interdependent feedback dynamics. The mod-

erately skewed lognormal stands between these two extremes;

it arises from multiplicative interactions among independent

variables.

Admittedly, the distributions we discuss, depicted in Figure 4,

represent a tiny subset of the full catalogue of ideal statistical

distributions available to scientists. However, no matter their

original form, variables conforming to the majority of com-

mon statistical distributions are attracted to the Gaussian shape

in the case of unsystematic summation, the lognormal in the

case of unsystematic multiplication, and the power law in the

case of amplification contingent on interdependent feedback

operations. Since complex systems likely entail many processes,

operating across many time scales, the subset of distributions

discussed here represent a plausible entry point for scientific

investigation.

We illustrated how the characteristic shapes of ideal distri-

butions supply clues about the dynamics governing a complex

system. Dynamics governing a system are determined by the

transactions among the processes that compose the system. The

shapes of distributions of repeated measurements from a system

reveal information about the nature of those transactions. Note

that inferences regarding the relation between signature dynamics

and a distribution’s shape are not necessarily invertible. If the said

FIGURE 4 | The plots depict the cumulative distributions (left), and

probability density (right) functions of four ideal distributions

that signal either component-dominant or interaction-dominant

dynamics. The Gaussian and exponential distributions are symptomatic

of component-dominant dynamics while the lognormal and inverse

power-law distributions are symptomatic of interaction-dominant

dynamics. To the extent that the shapes of empirical distributions resemble

these various ideal shapes, they likely reveal information about the

governing dynamics of the system that gave rise to the distribution.
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dynamics govern the interactions of the underlying processes, the

various shapes are an unavoidable consequence. However, there

are any number of ad-hoc ways to contrive the shapes of these

distributions. Fortunately, few natural systems represent ad-hoc

contrivances.

EXAMPLE STATISTICAL TECHNIQUES

This section intersperses example distribution analyses with a bit

of practical advice for conducting and using distribution analy-

ses, especially for response time data. We emphasize a complex

systems perspective on the phenomena we discuss. We do not

claim that a complexity perspective is the only legitimate per-

spective one could take on these topics. There are, however, many

sources that one may consult for conventional narratives on these

topics. Complexity theory is a relative newcomer to the physio-

logical, behavioral, and social sciences and offers a promising new

perspective on human cognition.

HISTOGRAM METHODS

This section overviews histogram-based techniques for character-

izing power law distributions. The details and relative strengths of

these techniques are well characterized in extant references. We

strongly encourage readers to consult Newman (2005), Perline

(2005), Clauset et al. (2009), and Brown and Liebovitch (2010),

for more complete treatments of rank-frequency, histogram, and

related methods for characterizing power laws.

The rank-frequency plot is among the earliest techniques rou-

tinely used to identify and characterize power law distributions

(e.g., Zipf, 1935/1972). The relation between rank and word

frequency is the method’s namesake, but variables other than fre-

quency can be depicted instead. These plots sort items in terms of

their use, or popularity, a ranking measure, in conjunction with

a measure of magnitude. For instance, one could rank items in a

retail store in terms of best to worst sellers, and also record their

price or how often each item is sold (e.g., see Anderson, 2006).

Figure 5 depicts English words with respect to how often they

appear in printed text, according to the word frequency counts

of Brysbaert and New (2009). The plot illustrates Zipf ’s Law, an

inverse power-law relation between usage rank and frequency of

words in written text (Zipf, 1935/1972). The plot’s x-axis tracks

the relative ranking of the words on a logarithmic scale and the

y-axis similarly represents a logarithmic transform of frequency.

When the points in a double-logarithmic rank-frequency plot lie

on a straight line, the density is likely a power law (Perline, 2005;

Brown and Liebovitch, 2010).

The mathematical properties of logarithms allow a bivariate

linear regression analysis to be used to estimate the distribution’s

scaling exponent. Recall that the general form of the tail of an

inverse power-law rank-frequency plot is p(x) = bx−α, where b is

a positive constant and α the scaling exponent. Taking the nat-

ural logarithm of both sides of this equation yields ln(p(x)) =
ln(b) − αln(x). This denotes a linear relation on double logarith-

mic axes with slope −α, and scaling exponent α. Thus, a scaling

exponent can be roughly estimated from the slope of the distribu-

tion’s heavy tail on double-logarithmic scales. A fractal dimension

FDrf , related but not isomorphic to FDre, can be estimated as 1/α

(Mandelbrot, 1977; Seuront, 2010).

FIGURE 5 | This plot depicts the Zipf’s Law relation between the

frequency of occurrence of words in the SUBTLEXUS database and the

usage rank for approximately 8000 of the most common words

(Brysbaert and New, 2009). The SUBTLEXUS database is based on a total

of 51 million words that were made available as part of the Elexicon project

(http://elexicon.wustl.edu/). Displayed on log-log axes, the rank-frequency

relation approximates a straight line, indicating a power law.

Real languages, whether sampled from specific texts, whole

languages, and even translated ancient texts, express Zipf ’s law

(Seuront, 2010). Some authors speculated the pattern is inevitable

and claimed it even emerged in randomly assembled letter

strings or meaningless text (Miller and Chomsky, 1963). Despite

these historical claims, randomly assembled letter strings do

not express Zipf ’s Law. In fact, careful recent simulations and

statistical analyses revealed that random texts do not accurately

correspond to the expected power law, but real texts do express

power laws (Ferrer-i-Cancho and Elvevåg, 2010). Ferrer-i-Cancho

and colleagues observed that real texts are constrained by con-

text and meaning, not just by prior character probabilities. They

conjectured that the law-like relation between usage rank and

frequency results from these competing constraints. Zipf himself

speculated that the pattern in language emerges as a consequence

of the competing requirements to facilitate a diversity of expres-

sions while preserving simplicity of use. In any case, Zipf ’s Law

appears to reflect the expression of a universal principle of natural

language.

Rank-frequency plots are useful tools for computing scaling

exponents and estimating a fractal dimension from a distribution

of measurements. However, they lack many statistical advan-

tages offered by continuous distribution functions. For example,

empty histogram bins become problematic under a logarithmic

transform because the log of zero is undefined.

One way to address the empty bin issue, especially with smaller

sample sizes, while maintaining the histogram approach, is to

adopt logarithmically spaced histogram bins. Figure 6 depicts the

outcome of a free-recall semantic memory experiment (Nash,

2012). Participants were asked to recall as many animals as
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FIGURE 6 | Depicts the outcome of a free-recall semantic memory

session for a single participant from Nash (2012). The upper plot

displays the normalized frequency as a function of the inter-recall interval on

log-log axes. The relationship is approximately linear, indicating a power law.

The lower plot displays the inter-recall-intervals as a function of the

utterance number, the raw data used to generate the histogram.

possible in a 20-min time span. The key dependent measure was

the inter-recall-interval (IRI), the elapsed time between the par-

ticipants successive recall utterances. This paradigm yields data

sets that are comprised of perhaps 150–250 observations—a rel-

atively small sample in the domain of power law distributions.

Increasing the histogram bin widths logarithmically renders even

these relatively small datasets open to statistical characteriza-

tion (Sims et al., 2007). Measurements can then be characterized

and contrasted with alternative distributions, such as an expo-

nential. The IRI distributions are consistent with a power law

description and often yield scaling exponent values between 1

and 3 (Rhodes and Turvey, 2007; Nash, 2012). As such they

are commensurate with a particular subtype of power law dis-

tribution called a Lévy distribution that is implicated in animal

foraging activity (Sims et al., 2012, see also Edwards et al.,

2012).

PROBABILITY DENSITY METHODS

We now discuss techniques that use kernel density smoothing

and maximum likelihood estimation rather than histogram bin-

ning and regression fits to characterize empirical distributions.

Textbox 1 provides the basics on the Gaussian kernel density

estimator; it is a common technique and we adopt it in the

examples that follow. The goal is to characterize distributions

in terms of standard probability density functions. Our partic-

ular focus is on a parametric lognormal and inverse power-law

mixture density function, designed to approximate pronuncia-

tion and response time distributions that arise from standard

laboratory-based cognitive tasks.

As such, our example analyses focus on one particular category

of measurements: human response time distributions derived

from cognitive tasks. There are many types of response time tasks.

Different tasks seek to uncover the functional details of vari-

ous categories of perceptual and cognitive activities; examples

include word recognition, reading, decision-making, perceptual

categorization, and many others. Despite this variety of cogni-

tive activity, most tasks similarly impose discrete trials, and each

trial presents a single stimulus. Participants are timed as they per-

form each elementary cognitive act. Once they respond, often

with a button press signaling a specific response, the timer stops.

Thus, response time is the interval of time that elapses between

the onset of a stimulus and the collection of a response in a

laboratory-based cognitive task.

We focus on response time data from a mental rotation task.

On each trial of the task, a single character from the set 2, 5, 7, G, J,

and R was presented. The characters’ rotation ranged from 0◦ to

180◦ in 60◦ increments. The stimuli were presented in random

order, on half the trials in a normal orientation, and on the other

half, mirror-reversed. Participants pressed one key if the char-

acter was presented in its normal orientation and another when

mirror-reversed, as quickly and accurately as possible.

Broadly speaking, for this and related paradigms, statisti-

cal analyses reveal approximately constant increases in mean

response time, as a function of both the rotation and orienta-

tion factors. This outcome was originally put forward as evidence

that an analogue cognitive process literally rotates a mental rep-

resentation of each character back to the normal orientation, at

a constant rate, to accomplish the orientation judgment (e.g.,

Cooper and Shepard, 1973; Cooper, 1975; Shepard and Metzler,

1988).

Next, we present novel analyses, conducted on a subset of

response time data collected as part of a Master’s thesis project

(Ruzicka, 2005). Figure 9 depicts kernel smoothed response time

probability densities for the normally oriented, 60◦ and 120◦

rotated characters as straight, dashes and dotted black lines,

respectively. The plotted distributions represent correct individ-

ual response times, aggregated across 17 of 27 total participants.

The 17 participants were selected because they each achieved

overall error rates of 10% or less. The density function shapes

make it clear that mean response time increases as a function

of rotation. However, the density functions express complex
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Textbox 1 | Characterizing empirical distributions with Gaussian kernel density estimators.

Kernel density estimation is an empirical distribution smoothing technique. The bars of a histogram are comprised of small rectangular
“kernels” that each represents an individual data point. A kernel density uses the same logic, but in place of the standard rectangle, it
substitutes a small probability density curve to represent each point. A Gaussian kernel is perhaps the most common kernel, but any
continuous and smooth density function can be used. The value of each data point is defined as the mean of each kernel. The standard
deviation around the kernel’s mean is used for smoothing, it can be set arbitrarily, but is usually set automatically in reference to the
variability of the data set. Large kernel standard deviations yield wide kernels and lots of smoothing; small standard deviations yield
narrow kernels and very little smoothing. At each point on the x-axis the values resulting from the kernel function are summed. Clustered
regions of data contribute to larger sums, while sparse regions contribute little to the sums across the x-axis. The outcome is then
normalized to occupy unit area and yields a continuous and smooth empirical density function. Notably, the density function inherits the
properties of the kernels, such as differentiability (see Silverman, 1986; Van Zandt, 2000, 2002). The basic steps for generating a Gaussian
kernel density function are as follows:

Step 1. Let x1, x2, . . . ,xn be a set of data points perhaps a sample drawn from a population with unknown density f. The kernel density
estimate, f-hat is given by Equation 2, where the kernel, K, is the function of a continuous distribution.

f̂h(x) = 1

nh

n
∑

i=1

K

(

x − xi

h

)

(2)

Equation 2. Kernel density estimate of a sample x1,x2, . . . ,xn, drawn from an unknown distribution f.

K (x) = 1√
2π

e− 1
2 x2

(3)

Equation 3. The standard Gaussian probability density function.

Step 2. Equation 3 is the standard Gaussian density function, substituting this function for K in Equation 2 results in the Gaussian kernel
density estimator:

f̂h(x) = 1

nh

n
∑

i=1

1√
2π

e− 1
2

(

x − xi

h

)2

(4)

Equation 4. Gaussian kernel density estimation for a sample x1,x2, . . . ,xn, drawn from an unknown distribution f. In this equation, the x

variable refers to the location on the x-axis of measurement, and xi refers to an individual data point and h is the smoothing parameter. It
is worth noting that FDre can be computed from a kernel density function. In this case the B in Equation 1 is simply the number of points
on the x-axis for which the kernel density was computed.

changes in shape: increasing rotation results in more variable

and skewed distributions, as if they were progressively stretched.

Now we introduce a distribution function that describes these

response time distributions in terms of a probabilistic mixture of

lognormal and power law samples.

THE COCKTAIL MODEL

The cocktail model was originally conceived as a description

of individual participant’s pronunciation times derived from

the speeded naming task (see Holden et al., 2009; Holden

and Rajaraman, 2012). Pronunciation time is the elapsed time

required to begin speaking a word into a microphone, once

a printed target word is presented on a computer screen in a

speeded naming task. As such, pronunciation time is a subtype

of response time.

Stochastic systems yield distributions of measurements and in

any reasonably complex biological system innumerable imme-

diate and historical constraints attenuate measurement variabil-

ity. In a cognitive act, constraints arise from a participant’s

idiosyncratic personal history, their present state of body and

mind, and task-imposed (environmental) constraints (Hollis

et al., 2009; Van Orden et al., 2012). On any given trial in an

experiment the laboratory protocol delineates task constraints,

but a vast array of additional idiosyncratic constraints are

also sampled. Relevant constraints serve to cohere and stabi-

lize a given cognitive activity. Most important, if the system

is governed by interaction-dominant dynamics, at minimum,

probabilistically sampled constraints are expected to influence

the observable multiplicatively, yielding lognormal behavior.

Competing constraints or the absence of sufficient constraints

may amplify variability in interdependent feedback dynamics,

yielding power law behavior. The end result is likely to be a mix-

ture of samples that indicate a continuum of relative dynamic

stability.

Since lognormal patterns of variability arise from relatively

homogenous multiplicative interactions, lognormal samples rep-

resent more stable interactions among the processes and con-

straints governing a given act. By contrast, power law distribu-

tions emerge in the context of more balanced competition among

constraints, or more weakly constrained transactions among gov-

erning processes. For instance, interdependence and power law

behavior is associated with highly context sensitive near-critical

physical systems. The cocktail model attempts to capture this

continuum as straightforward mixtures of lognormal and inverse

power-law samples. Thus, for any given fit to empirical data, the

lognormal and power law samples are mixed in fixed proportions,
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just as the various liquids in a cocktail are mixed in fixed

proportions.

The shape and location of the cocktail distribution are con-

trolled by four free parameters: a lognormal mean and standard

deviation (�LN and σ), a power law scaling exponent (α) and a

power law weight parameter (ρPL), see Table 1. Three additional

parameters refer to the relative proportions of lognormal samples

in the front and back-end of the distribution (ρFLN and ρBLN ),

and the onset threshold of the power law (�PL). Their values,

however, are fully determined by the free parameters to insure

a smooth, continuous, and legitimate density and distribution

function. Some of the relationships among the cocktail model

parameters are described in Table 1. Additional details regard-

ing the model’s parameters and its full derivation can be found

in Holden and Rajaraman (2012).

There are several ways to approximate or fit a model dis-

tribution to an empirical distribution. For instance, one could

compute a nonparametric Gaussian kernel estimate of the sample

distribution and then use non-linear least squares to approxi-

mate the distribution’s parameters. A more common approach

is to use search algorithms that compute maximum likelihood

estimates of the model’s parameters. Van Zandt (2000; 2002)

provides an accessible introduction to both the methods and

the statistical properties of a number of standard response time

models.

The goal of maximum likelihood estimation is to adjust a

model’s parameters, such as the cocktail distribution, so that the

overall probabilities under the density curve are maximized. The

essentials of the algorithm are straightforward. First, a guess is

made for each parameter. There are numerous ways to make an

initial guess, ranging from “eyeballing” the distribution to gen-

erating quantitative estimates based on special transformations

of empirical statistics. Next, the probability density is computed

at each point on the x-axis of measurement representing all

observations. A point-estimate of the probability is returned for

each observation. The sum of the natural logarithm of each prob-

ability is computed, yielding a summed log-likelihood value. The

bigger this number, the more likely it is to observe the sample,

given the model and its specific parameter settings. Computerized

search algorithms are then used to iteratively explore the param-

eter space for even larger log-likelihood values, until an apparent

maximum value is reached. The search stage of the process rep-

resents an entire statistical sub-discipline, and we do not discuss

it here (see Press et al., 1992). Some search algorithms, instead

of maximizing the summed log-likelihood, minimize the nega-

tive summed log-likelihood. Matlab scripts that accomplish this

procedure for the cocktail model can be downloaded from: http://

homepages.uc.edu/~holdenjn/.

The left column of plots in Figure 7 display kernel density

estimates of the same empirical mental rotation distributions

depicted in Figure 9, now as solid black lines on three sepa-

rate plots. Maximum likelihood fits of the cocktail mixture are

depicted as white lines plotted behind the empirical density func-

tions. The model reasonably captures the empirical distributions.

All three distributions generated reliable fits (based on the 2-step

bootstrapped K–S test described in Textbox 3). Given that the

cocktail model was developed to describe the shapes of individual

participant’s pronunciation time distributions, its apparent suc-

cess at describing response time distributions aggregated across

different individuals is encouraging.

Nevertheless, an aggregation approach requires that indi-

viduals contribute relatively homogeneous distributions to the

aggregate or omnibus distribution. Otherwise, one risks either

successfully fitting a statistical artifact, a set of individual distri-

butions that are not individually consistent with cocktail mix-

tures, but when combined appear as such. The alternative risk is

unsuccessfully approximating an idiosyncratic aggregate of distri-

butions despite the fact that individually, they can be legitimately

Table 1 | Parameters of the cocktail distribution.

Parameter Description Details

�LN The mean of the lognormal portion of the

cocktail mixture distribution.

�LN tracks the location of the lognormal portion of the cocktail distribution along

the x-axis of measurement. It is expressed in natural-log units. (See details in

Textbox 2 on transformation to linear units).

σ The standard deviation of the lognormal

portion of the cocktail distribution.

σ describes the dispersion of the lognormal portion of the cocktail mixture

distribution and is depicted on a natural-log scale (see also Textbox 2).

α The scaling exponent of the inverse power-law

portion of the cocktail distribution.

α characterizes the dispersion of the power law portion of the cocktail

distribution. It describes the decay in the slow tail of the distribution. Plausible

values of α range from 1 to about 10, values outside this range are suspect, and

likely indicate a poor fit.

ρPL The relative weight of the power law

distribution in the tail of the cocktail

distribution.

ρPL indicates the portion of the mixture attributed to the power law portion of the

cocktail distribution. ρFLN , ρBLN together indicate the portion of the distribution

attributable to the lognormal. ρFLN corresponds to the portion of the lognormal

that falls to the left of �LN and ρBLN captures the portion right of the �LN . All

together, the three portions must sum to 1, the area under the density curve.

ρFLN , ρBLN , �PL The relative weight proportions of the

lognormal distribution in the front (FLN) and

back end (BLN) of the distribution, and the

onset threshold of the power law.

The values of these three parameters are constrained by the values of the four

free parameters to ensure a smooth and continuous legitimate probability

density function.
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Textbox 2 | Transforming �LN and σ to a linear-unit mean and standard deviation.

The lognormal mean �LN and standard deviation σ parameters of the cocktail distribution characterize the lognormal portion of the mixture
distribution. They are both defined in natural log units, however. Typically, distributions are characterized by their mean (M) and standard
deviation (SD) in linear units, and it is useful the transform �LN and σ values into the linear domain. Equations 5 and 6 specify the relation
between the M and SD on linear scales and the parameters µ and σ of a lognormal distribution, as specified in the logarithmic domain.
They transform the lognormal cocktail parameters into measured units, such as response time. For example, �LN = 6.2 and σ = 0.15
corresponds to a mean response time of 498 ms (SD = 75 ms). Note these values will differ from the empirical mean and standard
deviation. Empirical statistics include all the data, and will likely be larger than the �LN , and σ that describe only the lognormal portion of
the distribution.

M = e
µ+

(

σ2

2

)

(5)

SD = e
µ+

(

σ2

2

)
√

eσ2 − 1 (6)

Equations 5 and 6. The mean and standard deviation on linear scales, as a function of the logarithmic parameters µ and σ of a lognormal
distribution.

described as cocktail mixtures. For instance, when the partici-

pants that generated error rates greater than 10% were included

in the aggregate distribution, the cocktail model failed to fit all but

the 0◦ condition. Quite often, there are many ways to perform a

task poorly, and very few ways to perform it well. Thus, including

all the participants’ responses in the empirical distribution likely

introduced multiple categories of performance, and the omnibus

distribution became too heterogeneous to be successfully approx-

imated by a single cocktail distribution. Similarly, neither of the

two aggregate 180◦ distributions (normal and mirror-reversed)

was successfully approximated by the cocktail model. Naturally,

these potential pitfalls apply to all model distributions, not just

the cocktail distribution (Estes and Maddox, 2005).

In any case, the cocktail distribution is a statistically reasonable

description of the three example rotation response time distri-

butions. Examining how the cocktail parameters tend to change

across conditions offers insight into how a given manipulation

affects performance dynamics. For instance, if the power law pro-

portion increases at the expense of the lognormal proportions,

then the manipulation plausibly increases the likelihood of inter-

dependent dynamics. Conversely, if the proportion parameters

controlling the power law tend to decrease, and/or the alpha

parameter increases, the manipulation may stabilize cognitive

dynamics.

Of course, more complex and idiosyncratic patterns of change

are possible as well. Several parameters might change as a function

of differences across individuals or across conditions. Effectively,

the cocktail parameters fall into two broad categories: parame-

ters that control location (�LN and �PL) and parameters that

control variability and skew (σ, α, ρFLN , ρBLN , and ρPL). This is

important to keep in mind when interpreting parameter changes.

Occasionally, a fitting operation will return an extremely large

power law threshold (�PL) or scaling exponent (α). A large dis-

crepancy between this threshold and the lognormal mean may

indicate a gap in the empirical distribution, possibly resulting

in a spurious local likelihood minimum. Similarly, scaling expo-

nent values greater than 10 or so are an indication that the

power law is likely superfluous to the fit. In that case, a pure log-

normal or another model may be more appropriate. Excepting

wishful thinking, we know of no viable rationale that identifies the

model’s individual parameters with specific cognitive functions or

activities.

It is important to recognize that the cocktail model is descrip-

tive, and that it relies on a reverse inference regarding the relation

between dynamics and their expression in measurements. This

reverse inference is common in scientific enterprises, an iden-

tical logic yields the routine conclusion that if a Gaussian is

observed, the system’s dynamics are additive. Given that scientists

lack a-priori knowledge about how any given cognitive manipu-

lation actually impacts neurophysiological dynamics, there really

is no guarantee that one can make sense of observed parameter

changes for the cocktail model, or other models.

RESCALING

One specific empirical pattern the cocktail model is capable of

elucidating is a rescaling relation. All the location and variability

parameters are defined in the logarithmic domain (an exception is

the power law threshold, but one can simply compute its natural

log for a rescaling test). Rescaling is indicated if location changes,

in the logarithmic domain, are the only reliable differences that

appear among the model’s parameters in contrasts across a given

set of conditions. These contrasts can be conducted with the

help of bootstrap resampling techniques (Efron and Tibshirani,

1991).

Figure 8 depicts the outcome of a rescaling test completed for

the normally oriented 0◦, 60◦, and 120◦ rotations. Each density

function represents 300 bootstrapped (resampled) replications of

the cocktail fit. The bootstrapped parameter distributions can

be treated as standard errors for each corresponding parameter.

Parameter distributions that overlap within each other’s lower 2.5

and upper 97.5 percentiles are not likely different, distributions

that are segregated beyond these thresholds are likely different.

The plots for each parameter illustrate that only the lognor-

mal mean and the power law threshold are reliably segregated.

(Arguably, σ trended up slightly, as did the 120◦ ρPL parameter).

Progressive increases that exclusively affect the location param-

eters are consistent with a rescaling of the distributions. The

bootstrap analyses indicate that the 60◦ distribution is a near
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FIGURE 7 | The plots depict three example empirical response time

distributions taken from a mental rotation task presented in Ruzicka

(2005). Each plot depicts the probability density function of an empirical

pronunciation time distribution aggregated over 17 participants. In each plot,

the black line represents a kernel-smoothed empirical probability density

function. Maximum likelihood fits of the Cocktail model are depicted in white,

behind the empirical density functions. The three left-hand plots represent

the response time distributions for normally oriented and 0◦, 60◦, and 120◦

rotated characters on linear axes. The three right-hand plots depict the same

empirical and ideal cocktail distributions on double logarithmic axes, and

make the power law decay of the distributions’ tails more apparent. All three

conditions can be reasonably approximated by the cocktail distribution.

exact rescaled copy of the baseline 0◦ distribution. This implies

multiplying the 0◦ distribution by a constant will approximate the

shape of the 60◦ distribution.

One interpretation of rescaling is that an increase in the rota-

tion angle yields a less stable incarnation of the same basic

dynamic organization that governs the orientation judgment in

the normal condition. In a sense, increasing the rotation effec-

tively weakens the constraints that enable participants to make

the orientation judgment, leading to a proportional weakening

in the dynamic interdependencies supporting the performance.

Thus, increasing the rotation angle dilates the dynamics that

support the act in a manner that resembles “zooming in” on a

self-similar fractal object by requiring additional dynamic flow to

disambiguate normal and mirror-reversed orientations, relative

to the 0◦ baseline.

An accurate description of the 120◦ distribution required

slight increases in �PL and the proportion of power law sam-

ples, over and above a pure rescaling operation. If one assumes

that discriminating orientations is more difficult when characters

are increasingly rotated, then a plausible working hypothesis

is that rotation progressively destabilizes this cognitive activ-

ity. Multiplicative compensation is sufficient to overcome the

perturbations induced by the 60◦ rotation. However, less con-

strained interdependent power law dynamics become more
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Textbox 3 | Goodness of fit.

The cocktail distribution-fitting code returns four free cocktail parameters and three additional determined parameters. However, goodness
of fit must then be assessed in some manner. There are many procedures available to complete these tests. One technique is the so-called
Kolmogorov–Smirnov test for comparing a sample distribution with a reference probability distribution. For each point on the x-axis, the
difference (D) is computed as the absolute value of the difference between the empirical and the model distribution. The maximum of
those differences is the D statistic. If the best-fitting parameters were used to define the model distribution, then a Monte Carlo technique
is recommended to evaluate the plausibility of the fit. Clauset et al. (2009), described one such method: First, a synthetic dataset is
generated using the best-fit model parameters. Second, the synthetic dataset is itself fitted with the model, and then D is computed with
respect to the synthetic dataset and its own best-fit parameters. The resulting D value is then retained. This 3-step procedure is repeated
2500 times, resulting in a distribution of 2500 D values. Significance (a p-value) is computed as the proportion of synthetic datasets with
D larger than the D resulting from a contrast to the empirical dataset and its own best-fit model. If the significance value is small (e.g.,
p < 0.1), few synthetic datasets yielded a larger D than the empirical dataset, and the empirical distribution is not likely a member of the
population described by the model. If the significance value is large (e.g., p > 0.1), many synthetic datasets yielded a larger D than the
empirical dataset and the empirical distribution is a plausible, but not necessary candidate member of the population described by the
model.

This resampling procedure is very sensitive, and one must carefully evaluate the impact of routine statistical procedures and other
artifacts, such as data censoring and measurement noise, on the outcome of any goodness of fit procedure. For example, simulations that
added Gaussian noise with SD equal to 1% (5 ms) of the average variability of a true synthetic cocktail distribution revealed that the Clauset
et al. (2009) 3-step Monte Carlo method ruled out the cocktail as a plausible model 66% of the time. By contrast, a 2-step version of the
procedure, that omitted a best-fit of the synthetic data (step 2), ruled out the cocktail model as plausible 20% of the time with the addition
of 5% (32 ms) Gaussian noise. Cognitive activity is known to entail intrinsic and extrinsic sources of noise (Diependaele et al., 2012). On
the other hand, the 2-step procedure is recognized as biased in favor of a fitted model, relative to the Clauset et al. 3-step approach. One
potential safeguard is to focus on relative goodness of fit judgments, by using identical techniques on a few candidate models. Then each
model is subject to the same procedures. Statistical mimicking and over-fitting are long recognized issues in the modeling literature and,
so far, no one-size-fits-all solution has emerged. Nevertheless, this issue can be ameliorated somewhat by focusing on candidate models
that are motivated theoretically and corroborated by independent sources of evidence (Van Zandt and Ratcliff, 1995).

FIGURE 8 | Each plot depicts the bootstrapped distribution for each of

five parameters of the cocktail model. The outcomes for the 0◦, 60◦, and

120◦ conditions are depicted as solid, dashed, and dotted lines, respectively.

The bootstrapping procedure randomly resamples the empirical response

time distributions 300 times, with replacement. The model is fit to each

resampled data set and the resulting distribution of parameter values for each

of the three mental rotation conditions are depicted in plots. Identical

analyses of the mirror-reversed conditions indicated the 120◦ distribution as a

rescaled version of the 0◦ and 60◦ distribution which, themselves were nearly

identical.
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FIGURE 9 | The left-hand plot depicts the outcome of three rescaling

simulations. Synthetic cocktail response times were generated based on

the fitted parameters for the baseline 0◦ condition (solid black line). Kernel

smoothed densities for 22 replications of the synthetic distribution are

depicted as white points, plotted behind the empirical 0◦ density. Rescaled

synthetic 60◦ distributions were generated by first computing the natural

logarithm for each synthetic baseline 0◦ distribution, after which, a

constant of 0.061 was added to each value. Likewise a constant of 0.173

was added to duplicate the baseline synthetic data and mimic the 120◦

distribution. These two values represent the difference between the 0◦

�LN parameter and the same parameter for the 60◦ and 120◦ distributions

(see Table 2). The antilog of each synthetic distribution was then

computed, thus yielding a rescaled model for both the empirical 60◦ and

120◦ distributions. The rescaled synthetic 60◦ and 120◦ distributions are

both plotted as white points behind the empirical distributions (dashed

line, and open circles, respectively). In this case, the pure multiplicative

operation properly located the synthetic distributions, but the synthetic

120◦ distribution was more peaked at the mode than the empirical

distribution (see arrow). Additional simulations revealed that a larger �PL

and proportion of power law samples, in addition to the multiplicative

operation, were required to approximate the empirical 120◦ distribution, as

depicted in the right-hand plot.

Table 2 | Cocktail parameters corresponding to the three example empirical response time distributions taken from a letter rotation task in

Figure 7.

�LN σ α ρPL �PL p-value

Normal Rotation 6.44 0.14 3.35 0.56 657 0.27

60 Degrees 6.50 0.15 3.21 0.55 702 0.39

120 Degrees 6.62 0.16 3.29 0.61 793 0.24

The lognormal location parameter, (�LN ) was used to capture the bulk of the observed shape changes across the three conditions, in a rescaling test. Goodness of

fit was computed using the 2-step bootstrap procedure described in Textbox 3.

likely with increased character rotation. Apparently, in this

case, cognitive dynamics unfold near a point of qualitative

change.

The dynamic patterns observed in these conditions unfold in

a manner that is reminiscent of near-critical systems that are

approaching critical points. As such, we speculate that rescaling

may represent a minimum boundary of change as task difficulty,

broadly construed, increases in the face of a relatively skilled per-

formance. At some point the manipulation overwhelms the key

constraints supporting the performance, and a cognitive system

must either make do with ambiguous, unreliable, or strongly

competing constraints, or perhaps it must reorganize and entrain

with alternative reliable sources of constraint. Clearly additional

research on this topic is needed, and we continue to pursue these

issues in our laboratory.

CONCLUSION

In a sense, this article has now come full circle. It began with

an overview of the fractal geometry. The crux concept of a frac-

tal is the notion of nesting and self-similarity—fractal objects

are said to be composed of rescaled copies of the whole object.

We now see that, at least for the narrowly circumscribed men-

tal rotation data, the response time distributions can be plausibly

described as rescaled copies of each other. Not all cognitive effects

can be expected to fit into such a neat package. One more typically

observes changes in shape representing variability increases that

are larger and well beyond the limits circumscribed by a rescaling

hypothesis.

Ideal mathematical fractals are typically generated through

iteration—the repeated application of the same rule. This is an

example of a single process that extends across multiple scales.
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Additional paths to scaling are available to physical and biological

systems. Short-range interactions facilitate the emergence of

multi-scale entrainment among rice grains in a rice pile and

in so-called dynamic critical systems (e.g., Bruce and Wallace,

1989; Bak, 1996; Jensen, 1998). Model self-organizing physi-

cal systems, such as rice piles, tend to be comprised of many

relatively simple homogenous elements. By contrast, complex

organisms, such as human beings, entail heterogeneous physio-

chemical and neurophysiological processes and constraints that

span a range of temporal and spatial scales. Nevertheless, these

processes must somehow coordinate to support and sustain an

organism across space and time. As we explained, the fractal

scaling expressed in event distributions derived from biological

systems, and related empirical patterns, are likely symptomatic

of the dynamics governing this multiscale coordinative activ-

ity (Bassingthwaighte et al., 1994; Turvey, 2007; Holden and

Rajaraman, 2012).
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