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A contact model for rough surfaces based on the fractal theory is proposed in the present work. Firstly, the deformation of the
material is divided into four stages: elastic deformation, the �rst elastoplastic deformation, the second elastoplastic deformation,
and full plastic deformation. And the variation of material hardness is considered when analyzing the contact characteristics of a
single asperity within the �rst and second elastoplastic deformation stages. Secondly, the size distribution function of contact spots
at di�erent frequency levels is derived. And the expressions of asperity critical frequency levels are rederived. Lastly, the feasibility
and credibility of the proposed model are veri�ed by comparison with other contact models and experimental data. �e results
show that when the variation of the material hardness is considered, the contact area of a single asperity in the �rst elastoplastic
deformation stage becomes larger, while the contact area of a single asperity in the second elastoplastic deformation stage becomes
smaller. Moreover, the critical asperity frequency levels of the rough surface are not constant, but the variables are related to the
total real contact area of the rough surface and decrease as the real contact area increases. �e proposed model is a modi�cation
and improvement of the existing fractal contact models, which can lead to a more accurate relationship between the contact load
and the total real contact area of the rough surface.

1. Introduction

�e aero-engine external piping system is mainly used for
the transmission of fuel, lubricating oil, hydraulic oil, and air
and is an important part of the external accessory device
[1–3]. Hundreds of pipelines are installed on an aero-engine.
Due to their heat resistance and corrosion resistance, tube
connectors in the form of metal-to-metal seals (i.e., no
dedicated sealing component used) are often used for the
connection between pipelines [4]. Tube connectors are the
weakest link of the pipeline system’s sealing performance,
and tube connector sealing failure has become one of the
pipeline system’s main failure modes [4–6]. Once the metal-
to-metal seals are out of work, leakage will be formed. Both
stability and reliability of the aero-engine will be a�ected.

�e metal-to-metal seal is performed by a direct-metal/
metal-tight contact of rough surfaces as shown in Figure 1.
Although it is simple in structure, the sealing behavior of a
metal-to-metal seal is a�ected by a variety of factors [7–11],
among which the surface topography, which usually has a
microstructure given by machining processes, is thought to
be one of the most important factors [12–14]. Clearly, en-
gineering materials are known to have rough surfaces, and
the full control of surface topography at all scales during
manufacturing processes is still out of reach [9]. When two
rough surfaces come into contact, the topography of the
surface leads to imperfect contact and makes the real contact
area only a fraction of the nominal area [4, 15]. Noncontact
areas communicate with each other to form leakage chan-
nels. �us, the research on leakage mechanism and sealing
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performance of metal-to-metal seals involves the resulting
geometry of contact between the rough surfaces. Accurately
characterizing the contact state and extracting the rela-
tionship between the contact load and the real contact area
of the two sealing surfaces are necessary for the study of the
leakage mechanism and sealing performance of metal-to-
metal seals [6, 16–18].

(e research on the contact problem of rough surfaces
started as early as the Coulomb’s friction proposed by the
French engineer Coulomb [19] in 1781. Hertz [20] gave an
analytical solution to the contact problem of frictional
elastomers in 1882, which opened up the study of modern
contact mechanics. Subsequently, researchers have proposed
a variety of contact models to describe the contact behavior
of rough surfaces. (ese models mainly include numerical
contact models, statistical contact models, and fractal
contact models [15, 21–25]. (e numerical contact models
generally use digital technology (i.e., SEM, AFM, and STM)
to obtain the specific parameters of the surface topography
and use the finite element method to simulate the contact
behavior of two rough surfaces. (e advantage of numerical
contact models is that they can obtain simulation results that
are closer to the actual situation. But they might require, in
general, a large and dense grid, and the computational ef-
ficiency might be unacceptable [18]. Statistical contact
models use statistical parameters to characterize the rough
surfaces. (e GW contact model proposed by Greenwood
[26] in 1966 is a typical representative of the statistical
contact models, and subsequent scholars have improved the
GW model from different aspects [27, 28]. (e advantage of
statistical contact models is that their expressions are simple
and clear, which greatly simplifies the derivation of the
contact equation between rough surfaces and is conducive to
rapid contact analysis between rough surfaces. However, the
statistical contact models all simplified the characterizations
of the surface topography to various degrees, which con-
sequently caused a large error between the calculated and the
actual results. Engineering surfaces are found to have fractal
characteristics [29, 30]. When fractal parameters instead of
statistic parameters are adopted to characterize rough sur-
faces, there is no need to make too many assumptions about
the surface topography, and the fractal characteristics of
rough surfaces can be preserved [31–35]. As a result,

although there are some skeptical opinions on the fractal
approaches [36], contact models based on fractal theory have
received more and more attention from researchers.
Bhushan and Bhushan [37] proposed one of the first fractal
contact models (MB model) based on the fractal theory and
Weierstrass-Mandelbrot (WM) function in 1991. Komvo-
poulos and Komvopoulos [38, 39] believed that the trun-
cated area of an asperity should not be equal to its real
contact area. (ey presented an improved contact model
(WK model) in which the deformation mode of an asperity
is divided into three stages: elastic deformation, elastoplastic
deformation, and full plastic deformation. Considering the
elastoplastic deformation of asperities, Komvopoulos and
Komvopoulos [40] established a 3D fractal contact model
(YK model) for rough surfaces, which is suitable for both
isotropic and anisotropic surfaces. (e MB model predicts
that the asperity first deforms plastically and then elastically
during the loading process. (is conclusion is contrary to
classical contact mechanics and contradicts people’s intui-
tive feelings. However, it has never been challenged until
Etsion and Etsion [41] published their work (ME model) in
2007. In the ME model, the concept of critical asperity
frequency level was proposed for the first time. Subse-
quently, the ME model was developed into a complete
contact model by Huang and Huang (MHmodel) [42]. Yuan
et al. [43] proposed a revised contact model (YC model)
based on the MBmodel and the MEmodel. Based on the YC
model, Yuan et al. have successively proposed a loading-
unloading contact model for rough surfaces [35, 44], as well
as a normal contact stiffness model for joint surfaces [45].

(e YC model has solved several deficiencies of the MB
model and played a significant role in promoting the re-
search of contact modeling based on the fractal theory.
However, the elastic critical frequency level of the YC model
is derived on the condition that the asperity height is not
greater than itself critical interference. (e consequence of
this condition in the YC model is that the variation of the
critical frequency levels with the total real contact area of the
rough surface is not taken into account. In addition, most
fractal contact models do not consider the variation of
material hardness with deformation. (e variation of ma-
terial hardness has a vital influence on the mechanical
properties of the asperities on the rough surface [46], and it
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Figure 1: A schematic showing the flow of sealing medium through the sealing interface of metal-to-metal seal.
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hence affects the contact characteristics of the entire rough
surface.

(erefore, the main purpose of this paper is to propose a
fractal contact model considering the variation of the critical
asperity levels as well as the variation of the material
hardness to extract the relationship between the contact load
and the total real contact area of the rough surface. (e
present work will lay the foundation for the subsequent
analysis of the sealing performance of static metal seals.

2. Theory and Method

2.1.)eWMFunction. An engineering surface profile often
appears random, multiscale, and disordered. (e mathe-
matical properties of such a profile are as follows: it is
continuous, nondifferentiable, and statistically self-affine
[37]. It is found that the WM function satisfies all these
properties and is often used to create 2D rough surface
profiles. (e WM function is given as [37]

z(x) � G
(D− 1)

􏽘

∞

n�nmin

cos 2πc
n
x( 􏼁

c
(2− D)n

, 1<D< 2, c> 1, (1)

where z(x) represents the height of the profile along with the
x direction. D and G are fractal parameters, representing
fractal dimension and characteristic length scale (roughness
parameter), respectively. cn determines the frequency
spectrum of the surface roughness, and n indicates the
frequency level of the asperities. Generally, in order to meet
the requirements for high spectral density and phase ran-
domization, c is taken as 1.5. nmin indicates the low cut-off
frequency of the profile.

2.2. )e Contact of a Single Asperity. (e idea of contact
modeling based on the fractal theory is to obtain the “contact
area-contact load” relationship of the entire rough surface
through integration based on the “contact area-contact load”
relationship of a single asperity. (erefore, the first step is to
obtain the “contact area-contact load” relationship of a
single asperity.

2.2.1. )e Existing Elastic Microcontacts. According to the
WM function, the profile of the fractal asperity at a certain
level n before deformation is [37]

zn(x) � G
D− 1

l
2− D
n cos

πx

ln
􏼠 􏼡, −

ln

2
<x<

ln

2
, (2)

where ln represents the length scale of the asperity of level n;
that is, the base diameter of the asperity of level n, ln � 1/cn.

(e asperity height is [37]

δn � zn(0) � G
D− 1

l
2− D
n . (3)

(e contact between two rough surfaces can be sim-
plified to an equivalent rough surface in contact with a rigid
flat surface [42]. Figure 2 shows the relationship between the
geometric parameters when a fractal asperity is in contact

with a rigid smooth surface. According to Figure 2, the
interference ωn of the asperity with a length scale ln is

ωn � δn − d � G
D− 1

l
2− D
n − d, (4)

where d is the separation distance between the rigid flat
surface and the equivalent rough surface. If the surface
height z(x, y) follows the Gaussian distribution, separation
distance d can be obtained by the relationship [37]

Ar

Aa

�
1
���
2π

√ 􏽚
∞

d/σ
exp − x

2/2􏼐 􏼑dx �
1
2
erfc

d
�
2

√
σ

􏼠 􏼡, (5)

where Ar, Aaare the total real contact area and the nominal
contact area, respectively. erfc(x) represents the comple-
mentary error function.

According to the Hertz theory [37], the contact area and
contact load of the asperity within the elastic deformation
stage can be obtained as

an � πRnωn, (6)

fne �
4
3

ER
1/2
n ω3/2

n , (7)

where Rn is the radius of curvature at the asperity summit,
Rn � |1/|d2zn/dx2|x�0| � lDn /π

2GD− 1. E is the equivalent
elastic modulus, 1/E � 1 − ]21/E1 + 1 − ]22/E2, and E1, E2, ]1,
and ]2 are elastic modulus and Poisson’s ratios of the two
rough surfaces. According to equations (6) and (7), the
relationship between contact load and real contact area of a
single asperity within the elastic deformation stage is
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Figure 2: (e contact between a fractal asperity at level n and a rigid
smooth plane, where ln, lnr, and lnt are the base diameter, the real
contact diameter, and the truncation diameter, respectively [43].
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fne �
4Eπ1/2GD− 1

3l
D
n

a
3/2
n . (8)

2.2.2. )e Existing Condition for Initial Yield. (e internal
stress of the asperity increases with the increase of the
contact load or contact interference. An initial yield point
will eventually be generated inside the asperity due to ex-
cessive stress. (e interference corresponding to the initial
yield point is termed as the critical interference ωnec, and is
given as [47]

ωnec �
πKH

2E
􏼒 􏼓

2
Rn. (9)

where K is the hardness factor of the softer material and is
given by K � 0.454 + 0.41]. H denotes the hardness of the
softer material and is given by H � 2.8Y, and Y is the yield
strength of the softer material. (e elastic critical contact
area of the asperity anec can be obtained as [43]

anec � πRnωnec �
1
π

KH

2E
􏼒 􏼓

2 lDn
GD− 1􏼠 􏼡

2

. (10)

According to equations (7), (9), and (10), we can get the
expression of the elastic critical contact load of the asperity
fnec, which is

fnec �
2
3

KHanec. (11)

2.2.3.)e Revised Elastoplastic Microcontacts. As the load or
interference of the asperity increases, the plastic part inside
the asperity will gradually expand to the contact surface, and
an annular plastic part will be formed on the contact surface,
while the rest of the contact surface surrounded by the
plastic region remains elastic deformation. (is transition
stage, with the transition interference ratio of
1<ωn/ωnec ≤ 6(anec < an ≤ anepc), is known as the first elas-
toplastic deformation stage. (e first elastoplastic critical
contact area anepc and the first elastoplastic contact load
fnep1 of the asperity are derived by Yuan et al. [43] based on
the ME model, which are

anepc � 7.1197anec, (12)

fnep1 �
2
3

KH × 1.1282a
− 0.2544
nec a

1.2544
n . (13)

In the first elastoplastic deformation stage, the hardness
of the material will change with the deformation rather than
remaining a constant value [25]. According to equations
(12)∼(13), we assume that the material hardness within the
first elastoplastic deformation stage HG1(an) satisfies the
following relationship:

HG1 an( 􏼁 � c11Y
an

anec

􏼠 􏼡

c12

, anec < an ≤ anepc􏼐 􏼑, (14)

where c11, c12are the parameters need to be solved.
Equation (14) should satisfy two boundary conditions:

HG1 anec( 􏼁 � pem anec( 􏼁, (15)

HG1 anepc􏼐 􏼑 � pepm1 anepc􏼐 􏼑, (16)

where pem(an) is the average contact pressure of the asperity
in the elastic deformation stage, which is given by
pem(an) � fne/an. Hence, pem(anec) can be obtained as
pem(anec) � (2/3)KH asperity in the first elastoplastic de-
formation stage and is given by pepm1(an) � fnep1/an.
Substituting equation (14) and equation pem(anec) � KH

into equation (15) yields c11Y � (2/3)KH. (us, the pa-
rameter c11 can be obtained as

c11 �
28
15

K. (17)

Substituting equations (12)–(14) and (17) into equation
(16) yields

2
3

KH ×(7.1197)
c12 �

2
3

KH × 1.1282a
− 0.2544
nec 7.1197anec( 􏼁

0.2544
.

(18)

And parameter c12 can be obtained as

c12 �
ln 1.1282 × 7.11970.2544

􏼐 􏼑

ln(7.1197)
. (19)

(erefore, the contact load of a single asperity in the first
elastoplastic deformation stage is revised as

fnep1′ � HG1 anep1􏼐 􏼑 · anep1 �
28
15

KYa
− c12
nec a

c12+1
n . (20)

If the contact load or interference further increases, the
plastic part of the asperity gradually expands to envelop the
shrinking elastic core. According to Etsion and Etsion [48],
the transition interference ratio of this stage is
6<ωn/ωnec ≤ 110(anepc < an ≤ anpc). Some researchers named
this stage the second elastoplastic deformation stage. (e
second elastoplastic critical contact area anpc and the second
elastoplastic contact load fnep2 of the asperity are also given
by Yuan et al. [43]:

anpc � 205.3827anec, (21)

fnep2 �
2
3

KH × 1.4988a
− 0.1021
nec a

1.1021
n . (22)

(e hardness of the material will also change with the
deformation in the second elastoplastic deformation stage
[25]. Similarly, we assume that the material hardness within
the second elastoplastic deformation stage HG2(an) satisfies
the following relationship:
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HG2 an( 􏼁 � c21Y
an

anec

􏼠 􏼡

c22

, anepc < an ≤ anpc􏼐 􏼑, (23)

where c21 and c22 are the two parameters need to be solved.
And equation (23) should also satisfy two boundary

conditions:

HG2 anepc􏼐 􏼑 � pem1 anepc􏼐 􏼑, (24)

HG2 anpc􏼐 􏼑 � pepm2 anpc􏼐 􏼑, (25)

where pepm2(an) is the average contact pressure of the as-
perity in the second elastoplastic deformation stage and is
given by pepm2(an) � fnep2/an.

Substituting equations (12), (13), and (23) into equation
(24) yields

c21Y(7.1197)
c22 �

2
3

KH × 1.1282 ×(7.1197)
0.2544

. (26)

Substituting equations (21), (22), and (23) into equation
(25) yields

c21Y(205.3827)
c22 �

2
3

KH × 1.4988 ×(205.3827)
0.1021

.

(27)

According to equations (26) and (27), parameter c22 can
be expressed as

c22 �
ln(1.4988) + 0.1021 ln(205.3827) − ln(1.1282) − 0.2544 ln(7.1197)

ln(205.3827) − ln(7.1197)
. (28)

And parameter c21 can be obtained as

c21 � K ×
28
15

× 1.1282 ×(7.1197)
0.2544− c22 . (29)

(erefore, the contact load of a single asperity in the
second elastoplastic deformation stage is revised as

fnep2′ � HG2 anep2􏼐 􏼑 · anep2

� K ×
28
15

× 1.1282 ×(7.1197)
0.2544− c22Ya

− c22
nec a

1+c22
n .

(30)

2.2.4. )e Existing Plastic Microcontacts. When
ωn/ωnec > 110(an > anpc), the asperity undergoes full plastic
deformation. (e contact area and contact load of the as-
perity in this deformation stage are [43]

an � 2πRnωn,

fnp � Han.
(31)

For the sake of clarity, Figure 3 shows the deformation
law of a single asperity with the fractal asperity frequency
level n, as well as the relationship between each critical
contact area.

2.3. )e Revised Size Distribution Function of Contact Spots.
In the MB model, the size distribution function of contact
spots is defined as [37]

n(a) �
D

2
al

D

2 a
−

D + 2
2 , 0< a< al, 1<D< 2( 􏼁,

(32)

where al denotes the largest contact area of asperity. And the
total real contact area is [37]

Ar � 􏽚
al

0
n(a)ada �

D

2 − D
al. (33)

According to equation (2), the period of asperity at
frequency level n is Tn � 2π/2πcn, and the period of asperity
at frequency level n + 1 is Tn+1 � 2π/2πcn+1. (erefore,
Tn+1/Tn � 1/c. Hence, we can obtain the relationship be-
tween the size distribution function of the asperity at fre-
quency level n and the size distribution function of the

fne(an)

The first elastoplastic
deformation:

0

The second elastoplastic
deformation:

fnep1'(an)

anec anepc anpc

an

fnep2'(an) fnp(an)
Plastic deformation:Elastic deformation:

Figure 3: (e diagram of the deformation law of a single asperity and the relationship between each critical contact area.
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asperity at frequency level n + 1, which is nn+1(a) � cnn(a).
Letting the size distribution function of the asperity at the
initial frequency level nmin be nnmin

(a) � Mn(a), then the
contact spot size distribution function at each frequency
level can be obtained as

nn(a) � Mc
n− nminn(a), nmin ≤ n≤ nmax( 􏼁, (34)

whereM is a parameter that needs to be solved. According to
equations (33) and (34), the total real contact area of as-
perities at each frequency level is

Anr � 􏽚
anl

0
nn(a)ada �

MD

2 − D
c

n− nminanl, (35)

where anl is the largest contact area of contact spots at
frequency level n. According to the geometry relationship
shown in Figure 2, we assume that the largest contact spot of
frequency level nmin is the largest contact spot of the entire
rough surface, i.e., anminl � al. And we assume that the re-
lationship between the largest contact spots of two adjacent
frequency levels is a(n+1)l/anl � 1/c2. (en, the largest con-
tact area of the asperity at any frequency level would be
anl � (1/c2(n− nmin))al. (us equation (35) can be reexpressed
as

Anr �
M

c
n− nmin

D

2 − D
al �

M

c
n− nmin

Ar. (36)

And the relationship between anl and Ar can be obtained
as

anl �
2 − D

D

1
c

n− nmin( 􏼁
2Ar. (37)

(e parameter M can be determined according to the
relationship Anminr + Anmin +1r + · · · + Anmaxr � Ar. Substituting
equation (36) into it yields
M � (1 − (1/c))/(1 − (1/c)nmax− nmin+1).

2.4. )e Revised Critical Asperity Frequency Levels. For a
certain frequency level n, the relationship between the in-
terference ωn and the asperity height δn is ωn ≤ δn [46]. If the
height of an asperity is less than its elastic critical inter-
ference, inelastic deformation occurs. (us, the condition of
elastic deformation for an asperity given by the YC model is
δn ≤ωnec [43]. However, according to Etsion and Etsion [41],
the condition for elastic deformation of an asperity should
be ωn ≤ωnec, which indicates that the asperity occurs elastic
deformation when the interference is not greater than its
critical interference. Etsion and Etison [41] further derived
the inequality used to solve the elastic critical length scale
lec(or the elastic critical asperity frequency level nec), which is
1 − cos[πlnt/(2ln)]≤ [KH/(2E)] · (ln/G)D− 1

􏽮 􏽯
2
. Unfortu-

nately, we cannot get the analytical solution of lec according
to this inequality, nor can we get an analytical solution of nec

according to the relationship ln � 1/cn.
Now, we reanalyze the conditions for judging the elastic

deformation of the asperity. At a mean surface separation
distance d, if the largest interference of the asperity at
frequency level n is not greater than its critical interference,

all of the contact asperities at frequency level n deform
elastically. (us, the condition we give to judge the elastic
deformation of the asperity is

ωnl ≤ωnec, (38)

where ωnl is the largest interference of the contact spot at
frequency level n. According to equation (6), equation (39)
can be re-written as

anl ≤ anec. (39)

Substituting equations (10) and (37) into the above
inequality, the elastic critical frequency level can be obtained
from the following equation:

2 − D

D

1
c

nec− nmin( 􏼁
2Ar �

1
π

KH

2E
􏼒 􏼓

2 1
c
2necD

1
G
2(D− 1)

. (40)

According to the above inequality, the elastic critical
frequency level nec is not only related to the material pa-
rameters H, E and the topography parameters D, G but also
related to the total real contact area of the two rough surfaces
Ar. Similarly, the first elastoplastic critical frequency level
nepc and the second elastoplastic critical frequency level npc

can be obtained from the following two equations:

2 − D

D

1
c

nepc− nmin( 􏼁
2Ar � 7.1197

1
π

KH

2E
􏼒 􏼓

2 1
c
2nepcD

1
G
2(D− 1)

,

2 − D

D

1
c

npc − nmin( 􏼁
2Ar � 205.3827

1
π

KH

2E
􏼒 􏼓

2 1
c
2npcD

1
G
2(D− 1)

.

(41)

According to equations (41)∼(43), the equations used to
calculate the critical frequency levels nec, nepc, npc are not
only related to the material parameters H, E and topography
parametersD, G, but also related to the total real contact area
of the rough surface Ar. As the given parameter Ar changes,
so do the calculation results of the critical frequency levels
nec, nepc, npc. (at is, the critical frequency levels nec, nepc, npc

variate with the change of the Ar value. However, in the
equations for calculating the critical frequency levels given
by the YCmodel, the critical frequency levels are only related
to the material parameters and topography parameters, and
the influence of the total real contact area Ar on the critical
frequency levels is not considered.

2.5. )e Revised Real Contact Area and Contact Load of the
Rough Surface. When the asperity frequency level ranges
from nmin to nec, i.e., nmin ≤ n≤ nec, only elastic deformation
takes place. And the real contact area Ar1 and contact load
Fr1 are obtained as

Ar1 � Are � 􏽘

nec

n�nmin

􏽚
anl

0
Mc

n− nminn(a)ada,

Fr1 � Fre � 􏽘

nec

n�nmin

􏽚
anl

0
fneMc

n− nminn(a)da.

(42)

6 Advances in Materials Science and Engineering



When the asperity frequency level belongs to
nec < n≤ nepc, elastic or the first elastoplastic deformation can
take place. (e real contact area Ar2 is obtained as

Ar2 � Are + Arep1 � 􏽘

nepc

n�nec+1
􏽚

anec

0
Mc

n− nminn(a)ada

+ 􏽘

nepc

n�nec+1
􏽚

anl

anec

Mc
n− nminn(a)ada.

(43)

And the contact load Fr2 is obtained as

Fr2 � Fre + Frep1 � 􏽘

nepc

n�nec+1
􏽚

anec

0
fneMc

n− nminn(a)da

+ 􏽘

nepc

n�nec+1
􏽚

anl

anec

fnep1′Mc
n− nminn(a)da.

(44)

When the asperity frequency level is nepc < n≤ npc, elastic
deformation, the first elastoplastic deformation, or the
second elastoplastic deformation will occur. (e real contact
area Ar3 is evaluated as

Calculating the smallest and
largest frequency level,

nmin, nmax according to the
sampling length L and

instrument resolution Ls

Total contact load Fr (Equation (53))

End

For n = nmin : 1: nmax

If nmin ≤ n ≥ nec If nec < n ≤ nepc If nepc < n ≤ npc If npc < n ≤ nmax

Critical contact areas of the
asperities anec, anepc, anpc

(Equation (10), (12), (21))

The largest contact area
of the asperities anl

(Equation (38))

Critical asperity frequency levels
nec, nepc, npc

 (Equation (41)~(43))

Begin

Input fractal parameters
D, G

Input material parameters
E, H, v

Input variable Ar

Contact load and real
contact area for elastic

deformation
(Equation(44)~(45))

Contact load and real contact
area for elastic deformation,

and the first elastoplastic
deformation

(Equation(46)~(47))

Contact load and real contact
area for elastic deformation,

the first elastoplastic
deformation, and the second

elastoplastic deformation
(Equation(48)~(49))

Contact load and real contact area
for elastic deformation, the first
elastoplastic deformation, the

second elastoplastic deformation,
and full plastic deformation

(Equation(50)~(51))

Figure 4: Flowchart for extracting the relationship between the total real contact area and contact load.

Table 1: Equivalent rough surface parameters.

Parameters Values
Equivalent elastic modulus E 7.2 × 1010 N/㎡
Poisson’s ratio ] 0.17
Initial hardness H 5.5 × 109 N/㎡
Profile scale parameter G 1 × 10− 9 ∼ 1 × 10− 6 m
Fractal dimension D 1<D< 2
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%

Ar3 � Are + Arep1 + Arep2 � 􏽘

npc

n�nepc+1
􏽚

anec

0
Mc

n− nminn(a)ada + 􏽘

npc

n�nepc+1
􏽚

anepc

anec

Mc
n− nminn(a)ada

+ 􏽘

npc

n�nepc+1
􏽚

anl

anepc

Mc
n− nminn(a)ada,

. (45)

And the contact load Fr3 is evaluated as

%

Fr3 � Fre + Frep1 + Frep2 � 􏽘

npc

n�nepc+1
􏽚

anec

0
fneMc

n− nminn(a)da + 􏽘

npc

n�nepc+1
􏽚

anepc

anec

fnep1′Mc
n− nminn(a)da

+ 􏽘

npc

n�nepc+1
􏽚

anl

anepc

fnep2′Mc
n− nminn(a)da,

. (46)

When the asperity frequency level belongs to
npc < n≤ nmax, all of the four types of deformation can take
place. (e real contact area Ar4 is calculated as

Ar4 � Are + Arep1 + Arep2 + Arp � 􏽘

nmax

n�npc+1
􏽚

anec

0
Mc

n− nminn(a)ada + 􏽘

nmax

n�npc+1
􏽚

anepc

anec

Mc
n− nminn(a)ada,

+ 􏽘

nmax

n�npc+1
􏽚

anpc

anepc

Mc
n− nminn(a)ada + 􏽘

nmax

n�npc+1
􏽚

anl

anpc

Mc
n− nminn(a)ada

. (47)

And the contact load Fr4 is estimated as
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Figure 5: Comparison of the proposedmodel and theMBmodel on the critical contact areas and the largest contact area at different asperity
frequency levels (Ar/Aa � 0.4).
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Fr4 � Fre + Frep1 + Frep2 + Frp � 􏽘

nmax

n�npc+1
􏽚

anec

0
fneMc

n− nminn(a)da + 􏽘

nmax

n�npc+1
􏽚

anepc

anec

fnep1′Mc
n− nminn(a)da

+ 􏽘

nmax

n�npc+1
􏽚

anpc

anepc

fnep2′Mc
n− nminn(a)da + 􏽘

nmax

n�npc+1
􏽚

anl

anpc

fnpMc
n− nminn(a)da.

(48)
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(e detailed calculation results of the real contact area
and contact load for the rough surface are provided in
Appendix A. (e total real contact area and contact load of
all asperity levels are estimated by

Ar � Ar1 + Ar2 + Ar3 + Ar4.

Fr � Fr1 + Fr2 + Fr3 + Fr4.
(49)

(e nondimensional forms of Ar and Fr are defined as
[43]

A
∗
r �

Ar

Aa

,

F
∗
r �

Fr

AaE
,

(50)

where the nominal contact area Aa is given by Aa � L2,
L � 1/cnmin . For the sake of clarity, the flowchart of the
solution procedure for extracting the relationship between
the total real contact area and contact load is shown in
Figure 4.

3. Results and Discussion

In order to obtain the contact parameters, the equivalent
rough surface parameters [40, 46, 49] used in the present
work are shown in Table 1. Let the topography parameters be
G � 2.5 × 10− 9 m, D � 1.5. Let the sampling length and the
resolution be L � 0.5 × 10− 4 m (L � 1/cnmin ),
Ls � 1.5 × 10− 9m (Ls � 1/cnmax ), respectively. (e nominal
contact area, the range of asperity frequency levels, and the
critical asperity frequency levels, hence, can be calculated as
Aa � L2 � 0.25 × 10− 8m2, nmin � 24, nmax � 50, nec � 32,
nepc � 37, npc � 45. It should be noted that parametersD and
G refer to the fractal parameters of the equivalent rough
surface, which can be calculated from the topography pa-
rameters of the two contact surfaces. (e calculation pro-
cedure is given in Appendix B.

Figure 5 shows the comparison of the proposed model
and the MB model on the critical contact areas and the
largest contact area at different asperity levels. (e value of
nondimensional total real contact area A∗r (A

∗
r � Ar/Aa) is

0.4. It is can be seen from Figure 5 that the value of critical
contact areas (anec, anepc, anpc) and the largest contact area
anl of the present work decrease with the increase of fre-
quency level n. And when n is taken as a specific value, the
relationship between anec, anepc and anpc of the present work
is anec < anepc < annc. Moreover, in the present work, the
largest contact area is smaller than the elastic critical contact
area when the value of n belongs to [0, 32]. (e largest
contact area is larger than the elastic critical contact area and
smaller than the first elastoplastic critical contact area if the
asperity level n belongs to [33, 37]. (e largest contact area is
larger than the first elastoplastic critical contact area and
smaller than the second elastoplastic critical contact area if
the asperity level n belongs to [38, 45]. (e largest contact
area is larger than the second elastoplastic critical contact
area if the asperity level n belongs to [46, 50]. However, the
largest contact area anl and the elastic critical contact area

anec of the MB model do not change with the increase of n.
And the largest contact area of theMBmodel is always larger
than its elastic critical contact area. In addition, Figure 5 also
shows the relationship between the asperity frequency level
and the critical contact areas in the YC model. And the
relationships between n and critical contact areas in the YC
model are the same as those in the proposed model. (e
analytic expression of anl is not given by the YCmodel, so we
cannot give a comparison of anl between the proposedmodel
and the YC model in Figure 5.

(e relationships between the fractal dimension D and
the critical asperity frequency levels of the proposed model
are shown in Figure 6. Figure 6 also shows the changing
trend of critical asperity frequency levels with fractal di-
mension D in the YC model. (e characteristic length scale
is G � 2.5 × 10− 9m, and the nondimensional total real
contact area A∗r is 0.4. It should be noted that, to facilitate
comparison, the critical frequency level is set to be 0 if it is
not within the range of nmin and nmax. Figure 6 indicates that
the elastic critical level, elastoplastic critical level, and plastic
critical level all increase with the increase of fractal di-
mension in both the proposed model and the YC model.
Moreover, the relationship between nec, nepc and npc in the
proposedmodel is the same as that in the YCmodel, which is
nec < nepc < npc. In addition, when D is taken as a specific
value, the critical levels calculated by the proposed model are
larger than the critical levels of the same type calculated by
the YC model. (e reason for this difference is that the
method of solving the elastic critical level in the proposed
model is different from that in the YCmodel.(e conditions
for the proposed model and the YCmodel to solve the elastic
critical level are ωnl ≤ωnec and δn ≤ωnec, respectively. And
the asperity interference will not be greater than its height,
i.e., ωnl ≤ δn, so the value of nec calculated by the YC model is
smaller than that calculated by the proposed model. It is also
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Figure 8: (e contact load-contact area relationship of a single
asperity in the first elastoplastic deformation stage (n � 33,
Ar/Aa � 0.4).
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due to the same reason that the value of nepc and npc cal-
culated by the YCmodel are smaller than those calculated by
the proposed model.

(e relationships between nondimensional total real
contact area A∗r and the critical asperity frequency levels of
the proposed model and the YC model are presented in
Figure 7. Figure 7 indicates that the critical frequency levels
of the proposed model decrease with the increase of A∗r
value. However, as the A∗r value increases, the critical fre-
quency levels of the YC model remain unchanged.
According to equations (41)∼(43), the asperity critical fre-
quency levels of the proposed model are related to the total
real contact area of the rough surface, and the values of n and

the total real contact area Ar are negatively correlated.
(erefore, the critical frequency levels in the proposed
model decrease with the increase of A∗r . (e influence of the
total real contact area on the asperity critical frequency levels
is not considered in the YCmodel, and the change of A∗r will
consequently not affect the calculation results of the critical
frequency levels.

Figure 8 shows the “contact load–contact area” rela-
tionships of a single asperity both with and without con-
sidering the variation of material hardness within the first
elastoplastic deformation stage. (e frequency level n is 33,
and the value of A∗r is 0.4. According to Figure 8, whether the
variation of the material hardness is considered or not, the
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Figure 9: Relationships between the material hardness and the contact area of a single asperity within the first elastoplastic deformation
stage. .td.jin Bool Technology Co. (a)D � 1.5, Ar/Aa � 0.4. (b)n � 33, G � 2.5 × 10− 9, Ar/Aa � 0.4. (c)n � 33, D � 1.5, Ar/Aa � 0.4.
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“contact load–contact area” relationship of a single asperity
shows the same trend; that is, the contact area increases with
the increase of contact load. In addition, the contact area
with the consideration of material hardness variation is
larger than that without the consideration of material
hardness variation with the same contact load. And the
difference between them gradually shrinks as the contact
load increases.

According to the previous analysis, the material hardness
within the first elastoplastic deformation stage can be
expressed as a function of the contact area of a single as-
perity. Figure 9(a) presents the relationships between the
material hardness and the contact area of a single asperity for
different values of n. It is can be seen from Figure 9(a) that
the material hardness in the first elastoplastic deformation
stage increases with the increase of contact area. And when
the contact area is taken as a fixed value, the larger the value
of n, the larger the material hardness. Figure 9(b) shows that
when the contact area is taken as a fixed value, the smaller
the value of D, the larger the material hardness. Figure 9(c)
demonstrates that when the contact area is taken as a fixed
value, the larger the value of G, the larger the material
hardness.

(e “contact load–contact area” relationships of a single
asperity with and without the consideration of material
hardness variation within the second elastoplastic defor-
mation stage are shown in Figure 10. (e asperity frequency
level is 38, and the value of A∗r is 0.4. In the second elas-
toplastic deformation stage, regardless of whether the var-
iation of material hardness is considered or not, the contact
area increases with the increase of contact load. And the real
contact area without considering the variation of material
hardness is larger than the contact area considering the
variation of material hardness for the same contact load.
Moreover, as the contact load increases, the difference be-
tween the contact areas tends to increase.

Figure 11 shows the relationship between the material
hardness and the contact area of a single asperity for dif-
ferent values of asperity level n, fractal dimension D, and
roughness parameter G in the second elastoplastic defor-
mation stage. Similar to the first elastoplastic deformation
stage, the material hardness increases as the contact area of a
single asperity increases. Moreover, the influences of dif-
ferent values of asperity level, fractal dimension, and
roughness parameter on the relationship between the
contact area and material hardness are the same as those in
the first elastoplastic deformation stage.

Figure 12(a) indicates the comparison of the proposed
model and the MB model on the relationship between
nondimensional total contact load F∗r and nondimensional
total real contact area A∗r for different roughness parameters.
(e comparison of the proposed model and the MB model
on the relationship between nondimensional total real
contact area A∗r and the fraction of elastic contact area for
different roughness parameters is shown in Figure 12(b). In
order to obtain reasonable comparison results, some surface
topography parameters and material parameters are given,
such as D � 1.5, Y/E � 0.01. It is can be seen from
Figure 12(a) that, in the MB model, as G/

���
Aa

􏽰
increases, the

F∗r value required to produce a specific A∗r value increases.
(e same changing trend is also found in the presented
model. In addition, the F∗r value of the proposed model
required to produce a particular A∗r value is less than that of
the MB model. Figure 12(b) indicates that, in the MBmodel,
the fraction of elastic contact area increases as A∗r increases.
(is is the contradiction between theMBmodel and classical
contact mechanics. Classical contact mechanics believes that
as the real contact area increases, the contact load increases,
which means that more asperities will undergo inelastic
deformation. As a result, the fraction of elastic contact area
should decrease. In addition, it is can be obtained from
Figure 12(b) that the fraction of elastic contact area in the
MB model decreases with the increase of G/

���
Aa

􏽰
. In the

proposed model, the fraction of elastic contact area is ap-
proximately equal to 1, and it hardly changes with the
change of A∗r value. It does not change with the change of
G/

���
Aa

􏽰
value either.

Figure 13(a) shows the comparison of the present model
and the MB model on the relationship between nondi-
mensional total contact load F∗r and nondimensional total
real contact area A∗r for different values of D. Figure 13(a)
indicates that, in the MB model, the F∗r value required for a
particular A∗r value decreases with the increase of D when D

belongs to [1.1, 1.5]. When D is between 1.5 and 1.9, as the
value of D increases, the F∗r value required to produce a
specific A∗r value increases. However, in the proposedmodel,
the F∗r value needed for a specific A∗r value decreases as the
value of D increases within the global value range of D.
Furthermore, it is also can be seen from Figure 13(a) that the
F∗r value corresponding to the same A∗r value in the pro-
posed model is less than that in the MB model when the
fractal dimension takes the same value. Figure 13(b) indi-
cates that, in the MB model, the fraction of elastic contact
area is 0 when D � 1.1, which means that no asperity de-
forms elastically. And when D � 1.5 and D � 1.9, the

Variation of materiral hardness is considered
Variation of materiral hardness is not considered

0 0.2 0.4 0.6 0.8 1 1.2

Contact load of a single asperity in
the second elastoplastic deformation stage (f/N)

×10–5

×10–5

×10–15

×10–15

0

0.5

1

1.5

2

2.5

3

3.5

Co
nt

ac
t a

re
a o

f a
 si

ng
le

 as
pe

rit
y 

(a
/m

2 )

0.9 1 1.1

2.6
2.8

3
3.2

Figure 10: (e contact load-contact area relationship of a single
asperity in the second elastoplastic deformation stage (n � 38,
Ar/Aa � 0.4).
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fraction of elastic contact area increases with the increase of
A∗r value. As mentioned above, this phenomenon is contrary
to classical contact mechanics, while in the presented model,
whenD � 1.1, the fraction of elastic contact area decreases as
A∗r value increases. (is trend of change is consistent with
classical contact mechanics. When D takes the value of 1.5
and 1.9, the fraction of elastic contact area in the presented
model hardly changes with the increase of A∗r value and is
approximately equal to 1. In addition, the fraction of elastic
contact area in the proposed model is greater than that in the
MB model when the fractal dimension takes the same value.
It should be noted that the YC model does not give the
calculation formula of the largest contact area of the asperity
anl at frequency level n, which makes it impossible for us to

program the YC model. (us, we do not give a comparison
between the proposed model and the YC model regarding
the Ar/Aa ∼ Fr/(AaE) relationship and the Are/Ar ∼ Ar/Aa

relationship. Nevertheless, the idea of contact modeling on
rough surfaces in reference [43] still has a vital reference
significance.

Figure 14 presents the comparison results of the pro-
posed model and other contact models with experimental
data on the relationship between the nondimensional total
contact load and the nondimensional total real contact area.
In order to ensure the reliability of the comparison results,
some parameters used in the present work are the same as
those adopted by the MB model and the YC model, i.e.,
D � 1.49, G/

���
Aa

􏽰
� 1 × 10− 10, Y/E � 0.05. It should be
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Figure 11: Relationships between the material hardness and contact area of a single asperity within the second elastoplastic deformation
stage. (a)D � 1.5, G � 2.5 × Ar/Aa � 0.4. (b)n � 38, G � 2.5 × 10− 9, Ar/Aa � 0.4. (c)n � 38, D � 1.5, Ar/Aa � 0.4.
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noted that the critical contact areas of the proposed model
are scale-dependent. (erefore, the values of the critical
contact areas are related to the sampling length and the
resolution of the measuring instrument. Different sampling
lengths and instrument resolutions will result in different
critical contact areas, which will lead to the change in the

relationship between nondimensional total contact load F∗r
and nondimensional total real contact area A∗r . Figure 14(a)
shows the comparison results for nmin � 67, nmax � 90. At
lower loads, the MB model is in good agreement with the
experimental data. Under the same load within the lower
loads, the results of the proposed model and the YC model
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nondimensional total real contact area and (b) on the relationship between nondimensional total real contact area and the fraction of elastic
contact area for different fractal dimensions (nmax � 24, nmax � 50, G/

���
Aa

􏽰
� 1.5, Y/E � 0.01).

14 Advances in Materials Science and Engineering



are larger than the experimental data, and the proposed
model is closer to experimental data than the YC model. At
higher loads, the MB model deviates seriously from the
experimental results. (e explanation given by Majumdar
and Bushan is that the interaction of asperities is not
considered. However, both the proposed model and the YC
model are close to the experimental values at higher loads
and are better than the results of the GWmodel. Figure 14(b)
indicates that the contact areas of the proposed model and
the YC model are larger than the experimental value for the
same load at lower loads, and the YC model is closer to the
experimental results. At higher loads, the results of the
proposed model and the YC model are less than the ex-
perimental values, and the proposed model is in better
agreement with the experimental results. In addition, it can
be seen from Figures 14(a) and 14(b) that, in the entire
loading range, the agreement between the proposed model
and the experimental data is better than that of other models.

4. Conclusions

An improved fractal contact model considering the variation
of the critical asperity levels as well as the variation of the
material hardness is proposed in the present work. (e main
conclusions are as follows:

(1) (e real contact area of a single asperity obtained by
considering the variation of material hardness is
greater than that without considering the variation of
material hardness within the first elastoplastic de-
formation stage, while in the second elastoplastic
deformation stage, the real contact area of a single
asperity considering the variation of material
hardness is less than that without considering the
variation of material hardness.

(2) (e size distribution functions of the contact spots at
different frequency levels are derived. (e expres-
sions of asperity critical frequency levels are reder-
ived. (e results show that the critical asperity levels
are not constant values, but variable values related to
the total real contact area of the rough surface and
decrease with the increase of the total real contact
area.

(3) (e proposed model is a modification and im-
provement of the existing fractal contact models,
which can lead to a more accurate relationship be-
tween the contact load and the total real contact area
of the rough surface.

(e proposed model is helpful for the analysis of the
sealing performance of static metal seals under different
contact pressures in our subsequent studies.

Nomenclature

al: Area of the largest contact spot
an: Contact area of a single asperity at frequency

level n

anec: Elastic critical contact area of the asperity at
frequency level n

anepc: First elastoplastic critical contact area of the
asperity at frequency level n

anl: Area of the largest contact spot at frequency level
n

anpc: Second elastoplastic critical contact area of the
asperity at frequency level n

Aa: Nominal contact area of the rough surface
Anr: Real contact area of the asperities at frequency

level n

Ar: Real contact area of the rough surface
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Figure 14: Comparison of the proposed model and other contact models with experiment data. (a)nmin � 67, nmax � 90.
(b)nmin � 70, nmax � 90.
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Ar1: Real contact area of the rough surface for
nmin ≤ n≤ nec

Ar2: Real contact area of the rough surface for
nec < n≤ nepc

Ar3: Real contact area of the rough surface for
nepc < n≤ npc

Ar4: Real contact area of the rough surface for
npc < n≤ nmax

A∗r : Nondimensional total real contact area of the
rough surface

d: Separation distance between the rigid flat surface
and the equivalent rough surface

D: Fractal dimension of the surface profile
E: Equivalent elastic modulus
fne: Contact load of a single asperity at frequency

level n within the elastic deformation stage
fnec: Elastic critical contact load of the asperity at

frequency level n

fnep1: Contact load of a single asperity at frequency
level n within the first elastoplastic deformation
stage

fnep1′: Contact load of a single asperity at frequency
level n within the first elastoplastic deformation
stage considering the variation of material
hardness

fnep2: Contact load of a single asperity at frequency
level n within the second elastoplastic
deformation stage

fnep2′: Contact load of a single asperity at frequency
level n within the second elastoplastic
deformation stage considering the variation of
material hardness

fnp: Contact load of a single asperity at frequency
level n within the full plastic deformation stage

Fr: Contact load of the rough surface
Fr1: Contact load of the rough surface for

nmin ≤ n≤ nec

Fr2: Contact load of the rough surface for
nec < n≤ nepc

Fr3: Contact load of the rough surface for
nepc < n≤ npc

Fr4: Contact load of the rough surface for
npc < n≤ nmax

F∗r : Nondimensional total contact load of the rough
surface

G: Fractal roughness parameter
H: Hardness of the softer material
HG1(an): Hardness of the softer material within the first

elastoplastic deformation stage
HG2(an): Hardness of the softer material within the second

elastoplastic deformation stage
K: Hardness factor of the softer material
ln: Length scale of the asperity or contact spot at

frequency level n

L: Length scale of the asperity or contact spot at
frequency level nmin (i.e., the sampling length,
L � lnmin

)
Ls: Length scale of the asperity or contact spot at

frequency level nmax (i.e., the instrument
resolution, L � lnmax

)
n: Fractal asperity frequency level
nec: Elastic critical frequency level
nepc: First elastoplastic critical frequency level
npc: Second elastoplastic critical frequency level
n(a): Size distribution function for all level contact

spots
nn(a): Size distribution function for the asperities at

frequency level n

pea(an): Average contact pressure of the asperity in the
elastic deformation stage

pepa1(an): Average contact pressure of the asperity in the
first elastoplastic deformation stage

pepa2(an): Average contact pressure of the asperity in the
second elastoplastic deformation stage

Rn: Radius of curvature of the asperity at frequency
level n

Y: Yield strength of the softer material
δn: Height of an asperity at frequency level n

c: Scaling parameters for the Weierstrass-
Mandelbrot function

ωn: Interference of an asperity at frequency level n

ωnec: Elastic critical interference of the asperity at
frequency level n

ωnl: Largest interference of the asperity at frequency
level n

Appendix

A. Detailed Calculation Results of Real Contact
Area and Contact Load for the Rough Surface

A.1. When the Asperity Frequency Level Belongs to
nmin ≤ n≤ nec. (e real elastic contact area Are and elastic
contact load Fre are evaluated as

Are � 􏽘

nec

n�nmin

􏽚
anl

0
Mc

n− nminn(a)ada �
MD

2 − D
􏽘

nec

n�nmin

c
n− nminanl,

(A.1)

Fre

�
MD

3 − D
􏽘

nec

n�nmin

4Eπ1/2GD− 1

3 1/cn
( 􏼁

D
c

n− nmina
3/2
nl .

(A.2)

A.2. When the Asperity Frequency Frequency Level Belongs to
nec < n≤ nepc. (e real elastic contact area Are and the real
first elastoplastic contact area Arep1 are evaluated as
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Are � 􏽘

nepc

n�nec+1
􏽚

anec

0
Mc

n− nminn(a)ada �
MD

2 − D
􏽘

nepc

n�nec+1
c

n− nmina
(2− D)/2
nec a

D/2
nl , (A.3)

Arep1 � 􏽘

nepc

n�nec+1
􏽚

anl

anec

Mc
n− nminn(a)ada �

MD

2 − D
􏽘

nepc

n�nec+1
c

n− nmina
D/2
nl a

(2− D)/2
nl − a

(2− D)/2
nec􏼐 􏼑. (A.4)

And the elastic contact load Fre and the first elastoplastic
contact load Frep1 are evaluated as

Fre � 􏽘

nepc

n�nec+1
􏽚

anec

0
fneMc

n− nminn(a)da �
MD

3 − D
􏽘

nepc

n�nec+1

4Eπ1/2
G

D− 1

3 1/cn
( 􏼁

D
c

n− nmina
(3− D)/2
nec a

D/2
nl , (A.5)

Frep1

�
1.8667KYMD

2c12 − D + 2
􏽘

nepc

n�nec+1
c

n− nmin a
− c12
nec a

c12+1
nl − a

(2− D)/2
nec a

D/2
nl􏽨 􏽩.

(A.6)

A.3. When the Asperity Frequency Level Is nepc < n≤ npc. (e real elastic contact area Are, the real first elastoplastic
contact area Arep1, and the real second elastoplastic contact
area Arep2 are evaluated as

Are � 􏽘

npc

n�nepc+1
􏽚

anec

0
Mc

n− nminn(a)ada �
MD

2 − D
􏽘

npc

n�nepc+1
c

n− nmina
(2− D)/2
nec a

D/2
nl , (A.7)

Arep1 � 􏽘

npc

n�nepc+1
􏽚

anepc

anec

Mc
n− nminn(a)ada �

MD

2 − D
􏽘

npc

n�nepc+1
c

n− nmina
D/2
nl a

(2− D)/2
nepc − a

(2− D)/2
nec􏼐 􏼑, (A.8)

Arep2 � 􏽘

npc

n�nepc+1
􏽚

anl

anepc

Mc
n− nminn(a)ada �

MD

2 − D
􏽘

npc

n�nepc+1
c

n− nmina
D/2
nl a

(2− D)/2
nl − a

(2− D)/2
nepc􏼐 􏼑. (A.9)

And the elastic contact load Fre, the first elastoplastic
contact load Frep1, and the second elastoplastic contact load
Frep2 are evaluated as

Fre � 􏽘

npc

n�nepc+1
􏽚

anec

0
fneMc

n− nminn(a)da �
MD

3 − D
􏽘

npc

n�nepc+1

4Eπ1/2
G

D− 1

3 1/cn
( 􏼁

D
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n− nmina
(3− D)/2
nec a

D/2
nl , (A.10)

Frep1 � 􏽘

npc

n�nepc+1
􏽚

anepc

anec

fnep1′Mc
n− nminn(a)da

�
1.8667KYMD

2 + 2c12 − D
􏽘

npc

n�nepc+1
c

n− nmina
− c12
nec a

1+c12−
D

2
nepc − a

1+c12−
D

2
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⎞⎟⎟⎟⎟⎟⎟⎟⎠a

D/2
nl ,

(A.11)
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Frep2

�
28
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× 1.1282 ×(7.1197)
0.2544− c22
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(A.12)

A.4. When the Asperity Frequency Level Belongs to
npc < n≤ nmax. (e real elastic contact area Are, the real first
elastoplastic contact area Arep1, the real second elastoplastic

contact area Arep2, and the real full plastic contact area Arp

are evaluated as

Are � 􏽘

nmax

n�npc+1
􏽚

anec

0
Mc

n− nminn(a)ada �
MD

2 − D
􏽘
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n�npc+1
c

n− nmina
(2− D)/2
nec a

D/2
nl , (A.13)

Arep1 � 􏽘
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n�npc+1
􏽚

anepc
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D/2
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Arep2 � 􏽘

nmax

n�npc+1
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MD
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􏽘
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(2− D)/2
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D/2
nl , (A.15)

Arp � 􏽘
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n�npc+1
􏽚

anl

anpc

Mc
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MD

2 − D
􏽘
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(2− D)/2
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D/2
nl . (A.16)

And the elastic contact load Fre, the first elastoplastic
contact load Frep1, the second elastoplastic contact load
Frep2, and the full plastic contact load Frp are evaluated as

Fre � 􏽘

nmax

n�npc+1
􏽚

anec

0
fneMc

n− nminn(a)da �
MD

3 − D
􏽘
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nl , (A.17)
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Frp � 􏽘
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anl
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fnpMc
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B. Calculation Procedure for the Fractal
Parameters D and G of Equivalent
Rough Surface

At present, there are many methods for calculating fractal
parameters of fractal rough surfaces, and the structure
function method is more commonly used [4]. For a fractal
rough surface profile, the structure function is

S(τ) �〈[z(x + τ) − z(x)]
2〉 � 􏽚

+∞

− ∞

P(ω) e
jωτ

− 1􏼐 􏼑dω,

(B.1)

where τ is an arbitrary increment of x. 〈 〉 refers to spatial
average. P(ω) is the power spectrum of WM function. (e
discrete power spectrum of WM function can be approxi-
mated by a continuous spectrum, which is given by [50]

P(ω) �
G
2(D− 1)

2 ln c

1
ω5− 2D

. (B.2)

Substituting equation (B.2) into equation (B.1) yields

S(τ) �〈[z(x + τ) − z(x)]
2〉 �
Γ(2D − 3)sin [(2D − 3)π/2]

(4 − 2D)ln c
G
2(D− 1)τ4− 2D

� Cτ4− 2D
, (B.3)

where C � Γ(2D − 3)sin[(2D − 3)π/2](4 − 2D)ln cG2(D− 1),
and Γ(x) is the second type Euler Gamma function. Using
the log algorithm on both sides of equation (B.3) yields

lg[S(τ)] � lg(C) +(4 − 2D)lg(τ). (B.4)

(erefore, there is a linear relationship between lg[S(τ)]

and lg(τ). (e fractal dimension D can be obtained from the
conversion relation between D and the slop of the line k

D �
4 − k

2
. (B.5)

(e relationship between parameter C and the intercept
of the line on the ordinate B is C � 10B. (e characteristic
length scale G thus can be obtained as

G � (4 − 2D) · 10B
· ln cΓ(2D − 3) · sin

(2D − 3)π
2

􏼢 􏼣􏼨 􏼩

1/2(D− 1)

. (B.6)

When rough surface 1 comes into contact with rough
surface 2, the structure function of the equivalent rough
surface profile is given by [45].

Se(τ) � S1(τ) + S2(τ), (B.7)

where S1(τ) and S2(τ) are the structure functions of the
profile of the rough surface 1 and the rough surface 2, re-
spectively. (us, the fractal parameters D and G of the
equivalent rough surface can be estimated according to
equations (B.4)∼(B.6).

Subscripts

a: Apparent or nominal
c: Critical
e: Elastic
l: Largest
m: Mean or average
p: Plastic
r: Real
s: Smallest.
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