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Abstract

We present a fractional-order model for the COVID-19 transmission with

Caputo–Fabrizio derivative. Using the homotopy analysis transform method (HATM),

which combines the method of homotopy analysis and Laplace transform, we solve

the problem and give approximate solution in convergent series. We prove the

existence of a unique solution and the stability of the iteration approach by using

fixed point theory. We also present numerical results to simulate virus transmission

and compare the results with those of the Caputo derivative.
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1 Introduction

Corona viruses are a large family of viruses that have a distinctive corona or ‘crown’ of

sugary-proteins, and because of their appearance, they were called corona viruses in 1960.

Viruses that cause common cold diseases and fatal diseases, such as Middle East respi-

ratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), are

from the corona viruses family. Detailed investigations found that corona viruses are trans-

mitted between animals and people, for instance, SARS-CoV andMERS-CoV were trans-

mitted fromcivet cats and dromedary camels to humans, respectively. Also, several known

corona viruses that have not yet infected humans are circulating in animals.

COVID-19, whichwas first identified in theWuhan city, is a new strain that has not been

previously identified in humans. Snakes or bats have been suspected as a potential source

for the outbreak, though other experts currently consider this unlikely. Fever, cough, short-

ness of breath, and breathing difficulties are the initial symptoms of this infection. In the

next steps, the infection can cause pneumonia, severe acute respiratory syndrome, kidney

failure, and even death.

The study of disease dynamics is a dominating theme for many biologists and mathe-

maticians (see, for example, [1–10]). It has been studied by many researchers that frac-

tional extensions of mathematical models of integer order represent the natural fact in a
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very systematic way such as in the approach of Akbari et al. [11], Baleanu et al. [12–24],

and Talaee et al. [25]. In this paper, we use the new fractional Caputo–Fabrizio derivative

[26] to express the mathematical modeling for simulating the transmission of COVID-

19. Recently, many works related to the fractional Caputo–Fabrizio derivative have been

published (see, for example, [21, 23, 24, 27–30]). The Caputo–Fabrizio fractional deriva-

tive is also used to study the dynamics of diseases (see, for example, [31–34]). Mathe-

matical models are used to simulate the transmission of corona virus (see, for example,

[35, 36]). Amathematicalmodel for the transmission of COVID-19was presented byChen

et al. [37]. In this work, we investigate this model by using the Caputo–Fabrizio fractional

derivative.

Now, we recall some fundamental notions. The Caputo fractional derivative of order η

for a function f via integrable differentiations is defined by CDηf (t) = 1
Γ (n–η)

∫ t

0
f (n)(s)

(t–s)η–n+1
ds,

where n = [η] + 1. Our second notion is a fractional derivative without singular kernel

which was introduced by Caputo and Fabrizio in 2015 [26]. Let b > a, f ∈ H1(a,b), and

η ∈ (0, 1). The Caputo–Fabrizio derivative of order η for a function f is defined by

CFDηf (t) =
M(η)

(1 – η)

∫ t

a

exp

(

–η

1 – η
(t – s)

)

f ′(s)ds,

where t ≥ 0, M(η) is a normalization function that depends on η and M(0) =M(1) = 1. If

f /∈H1(a,b) and 0 < η < 1, this derivative can be presented for f ∈ L1(–∞,b) as

CFDηf (t) =
ηM(η)

(1 – η)

∫ b

–∞

(

f (t) – f (s)
)

exp

(

–η

1 – η
(t – s)

)

ds

(see [38]). Let n ≥ 1 and η ∈ (0, 1). The fractional derivatives CFDη+n of order η + n are

defined by CFDη+nf (t) := CFDη(Dnf (t)) [28]. The Laplace transform of the Caputo–Fabrizio

derivative is defined by L[CFD(η+n)f (t)](s) =
sn+1L[f (t)]–snf (0)–sn–1f ′(0)–···–f (n)(0)

s+η(1–s)
, where 0 < η ≤ 1

andM(η) = 1 [38].

The Riemann–Liouville fractional integral of order η with Re(η) > 0 is defined by

Iηf (t) = 1
Γ (η)

∫ t

0
(t – s)η–1f (s)ds [28]. The fractional integral of Caputo–Fabrizio is defined

by CFIηf (t) = 2(1–η)
(2–η)M(η)

f (t) + 2η
(2–η)M(η)

∫ t

0
f (s)ds (0 < η < 1) [38]. The Sumudu transform is

derived from the classical Fourier integral ([39–41]). Consider the set

A =

{

F : ∃λ,k1,k2 ≥ 0,
∣

∣F(t)
∣

∣ < λ exp

(

t

kj

)

, t ∈ (–1)j × [0,∞)

}

.

The Sumudu transform of a function f ∈ A is defined by

F(u) = ST
[

f (t);u
]

=
1

u

∫ ∞

0

exp(–t/u)f (t)dt
[

u ∈ (–k1,k2)
]

for all t ≥ 0, and the inverse Sumudu transform of F(u) is denoted by f (t) = ST–1[F(u)]

[40]. The Sumudu transform of the Caputo derivative is given by

ST
[

cD
η
t f (t);u

]

= u–η

[

F(u) –

m
∑

i=0

uη–i
[

cDη–if (t)
]

t=0

]

,
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where (m – 1 < η ≤ m) [39]. Let F be a function such that its Caputo–Fabrizio fractional

derivation exists. The Sumudu transform of F with Caputo–Fabrizio fractional derivative

is defined by ST(CF0 D
η
t )(F(t)) =

M(η)
1–η+ηu

[ST(F(t)) – F(0)] [42].

2 Amathematical model for the transmission of COVID-19 with

Caputo–Fabrizio fractional derivative

Chen and colleagues have proposed a transmission network model to simulate possible

transmission from the source of infection (possibly bats) to human infection [37]. They

assumed that the virus was transmitted among the bats’ population, and then transmitted

to an unknown host (probably wild animals). Then hosts were hunted and sent to the

seafood market, which was defined as the reservoir or the virus. People exposed to the

market got the risks of the infection. In the presented model, people were divided into

five groups: susceptible people (S), exposed people (E), symptomatic infected people (I),

asymptomatic infected people (A), and removed people (R) including recovered and dead

people. COVID-19 in the reservoir was denoted as (W). This model was presented as

follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS
dt

= Λ –mS – βpS(I + κA) – βwSW ,

dE
dt

= βpS(I + κA) + βwSW – (1 – δ)ωE – δω′E –mE,

dI
dt
= (1 – δ)ωE – (γ +m)I,

dA
dt

= δω′
pE – (γ ′ +m)A,

dR
dt

= γ I + γ ′A –mR,

dW
dt

= µI +µ′A – εW ,

where

Λ = n×N , N refer to the total number of people and n is the birth rate,

m: the death rate of people,

βp: the transmission rate from I to S,

κ : the multiple of the transmissible of A to that of I ,

βw: the transmission rate fromW to S,

δ: the proportion of asymptomatic infection rate of people
1
ω
: the incubation period of people,

1
ω′ : the latent period of people,
1
γ
: the infectious period of symptomatic infection of people,

1
γ ′ : the infectious period of asymptomatic infection of people,

µ: the shedding coefficients from I toW ,

µ′: the shedding coefficients from A toW ,
1
ε
: the lifetime of the virus inW .

Also, the initial conditions are S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0,W (0) =W0.

We moderate the system by substituting the time derivative by the Caputo–Fabrizio

fractional derivative in the Caputo sense [26]. With this change, the right- and left-hand

sides will not have the same dimension. To solve this problem, we use an auxiliary param-

eter ρ , having the dimension of sec., to change the fractional operator so that the sides

have the same dimension [43]. According to the explanation presented, the COVID-19
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transmission fractional model for t ≥ 0 and η ∈ (0, 1) is given as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
ρ1–η

CFD
η
t S(t) = Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t),

1
ρ1–η

CFD
η
t E(t) = βpS(t)(I(t) + κA(t)) + βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t),

1
ρ1–η

CFD
η
t I(t) = (1 – δ)ωE(t) – (γ +m)I(t),

1
ρ1–η

CFD
η
tA(t) = δω′

pE(t) – (γ ′ +m)A(t),

1
ρ1–η

CFD
η
t R(t) = γ I(t) + γ ′A(t) –mR(t),

1
ρ1–η

CFD
η
tW (t) = µI(t) +µ′A(t) – εW (t),

(1)

where the initial conditions are S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0,W (0) =W0. In the

next section we investigate the existence and uniqueness of the solution for system (1) by

fixed point theorem.

3 Existence of a unique solution

In this section, we show that the system has a unique solution. For this purpose, employing

the fractional integral operator due to Nieto and Losada [38] on the system (1), we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S(t) – S(0) = (ρ1–η)CFI
η
t [Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)],

E(t) – E(0) = (ρ1–η)CFI
η
t [βpS(t)(I(t) + κA(t)) + βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t)],

I(t) – I(0) = (ρ1–η)CFI
η
t [(1 – δ)ωE(t) – (γ +m)I(t)],

A(t) –A(0) = (ρ1–η)CFI
η
t [δω

′
pE(t) – (γ ′ +m)A(t)],

R(t) – R(0) = (ρ1–η)CFI
η
t [γ I(t) + γ ′A(t) –mR(t)],

W (t) –W (0) = (ρ1–η)CFI
η
t [µI(t) +µ′A(t) – εW (t)].

Using the definition of Caputo–Fabrizio fractional integral [38], we obtain

S(t) – S(0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

Λ –mS(t) – βpS(t)
(

I(t) + κA(t)
)

– βwS(t)W (t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

Λ –mS(y) – βpS(y)
(

I(y) + κA(y)
)

– βwS(y)W (y)
]

dy,

E(t) – E(0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

βpS(t)
(

I(t) + κA(t)
)

+ βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

βpS(y)
(

I(y) + κA(y)
)

+ βwS(y)W (y)

– (1 – δ)ωE(y) – δω′E(y) –mE(y)
]

dy,

I(t) – I(0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

(1 – δ)ωE(t) – (γ +m)I(t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

(1 – δ)ωE(y) – (γ +m)I(y)
]

dy, (2)
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A(t) –A(0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

δω′
pE(t) –

(

γ ′ +m
)

A(t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

δω′
pE(t) –

(

γ ′ +m
)

A(t)
]

dy,

R(t) – R(0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

γ I(t) + γ ′A(t) –mR(t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

γ I(y) + γ ′A(y) –mR(y)
]

dy,

W (t) –W (0) =
2(1 – η)ρ1–η

(2 – η)M(η)

{

µI(t) +µ′A(t) – εW (t)
}

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

µI(y) +µ′A(y) – εW (y)
]

dy.

For convenience, we consider

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P1(t,S) = Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t),

P2(t,E) = βpS(t)(I(t) + κA(t)) + βwS(t)W (t) – (1 – δ)ωE(t) – δω′E(t) –mE(t),

P3(t, I) = (1 – δ)ωE(t) – (γ +m)I(t),

P4(t,A) = δω′
pE(t) – (γ ′ +m)A(t),

P5(t,R) = γ I(t) + γ ′A(t) –mR(t),

P6(t,W ) = µI(t) +µ′A(t) – εW (t).

Theorem 3.1 The kernel P1 satisfies the Lipschitz condition and contraction if the follow-

ing inequality holds:

0 <m + βpl1 + βwl2 ≤ 1.

Proof Consider functions S(t) and S1(t), then

∥

∥P1

(

t,S(t)
)

– P1

(

t,S1(t)
)
∥

∥

=
∥

∥–m
(

S(t) – S1(t)
)

– βpI(t)
(

S(t) – S1(t)
)

– βwW (t)
(

S(t) – S1(t)
)
∥

∥

≤ m
∥

∥S(t) – S1(t)
∥

∥ + βp

∥

∥I(t)
∥

∥

∥

∥S(t) – S1(t)
∥

∥ + βw

∥

∥W (t)
∥

∥

∥

∥S(t) – S1(t)
∥

∥

≤
(

m + βp

∥

∥I(t)
∥

∥ + βw

∥

∥W (t)
∥

∥

)
∥

∥S(t) – S1(t)
∥

∥

≤ (m + βpl1 + βwl2)
∥

∥S(t) – S1(t)
∥

∥.

Let λ1 =m+βpl1 +βwl2, where l1 = ‖I(t)‖ and l2 = ‖W (t)‖ are bounded functions, then we

have

∥

∥P1

(

t,S(t)
)

– P1

(

t,S1(t)
)
∥

∥ ≤ λ1

∥

∥S(t) – S1(t)
∥

∥.

Thus, the Lipschitz condition is fulfilled for P1. In addition, if 0 <m+βpl1 +βwl2 ≤ 1, then

P1 is a contraction. �
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Similarly, P2, P3, P4, P5, P6 satisfy the Lipschitz condition as follows:

∥

∥P2

(

t,E(t)
)

– P2

(

t,E1(t)
)
∥

∥ ≤ λ2

∥

∥E(t) – E1(t)
∥

∥,
∥

∥P3

(

t, I(t)
)

– P3

(

t, I1(t)
)∥

∥ ≤ λ3

∥

∥I(t) – I1(t)
∥

∥,
∥

∥P4

(

t,A(t)
)

– P4

(

t,A1(t)
)
∥

∥ ≤ λ4

∥

∥A(t) –A1(t)
∥

∥,
∥

∥P5

(

t,R(t)
)

– P5

(

t,R1(t)
)
∥

∥ ≤ λ5

∥

∥R(t) – R1(t)
∥

∥,
∥

∥P6

(

t,W (t)
)

– P6

(

t,W1(t)
)
∥

∥ ≤ λ6

∥

∥W (t) –W1(t)
∥

∥.

On consideration of P1, P2, P3, P4, P5, P6, we can write equation (2) as follows:

S(t) = S(0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P1(t,S) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P1(y,S)
)

dy,

E(t) = E(0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P2(t,E) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P2(y,E)
)

dy,

I(t) = I(0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P3(t, I) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P3(y, I)
)

dy,

A(t) = A(0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P4(t,A) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P4(y,A)
)

dy,

R(t) = R(0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P5(t,R) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P5(y,R)
)

dy,

W (t) =W (0) +
2(1 – η)ρ1–η

(2 – η)M(η)
P6(t,W ) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P6(y,W )
)

dy.

Thus, consider the following recursive formula:

Sn(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P1(t,Sn–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P1(y,Sn–1)
)

dy,

En(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P2(t,En–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P2(y,En–1)
)

dy,

In(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P3(t, In–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P3(y, In–1)
)

dy,

An(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P4(t,An–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P4(y,An–1)
)

dy,

Rn(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P5(t,Rn–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P5(y,Rn–1)
)

dy,

Wn(t) =
2(1 – η)ρ1–η

(2 – η)M(η)
P6(t,Wn–1) +

2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P6(y,Wn–1)
)

dy,

where S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), A0(t) = A(0), R0(t) = R(0),W0(t) =W (0).

Now, we consider

H1n = Sn(t) – Sn–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P1(t,Sn–1) – P1(t,Sn–2)
]
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+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P1(y,Sn–1) – P1(y,Sn–2)
]

dy,

H2n = En(t) – En–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P2(t,En–1) – P2(t,En–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P2(y,En–1) – P2(y,En–2)
]

dy,

H3n = In(t) – In–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P3(t, In–1) – P3(t, In–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P3(y, In–1) – P3(y, In–2)
]

dy,

H4n = An(t) –An–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P4(t,An–1) – P4(t,An–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P4(y,An–1) – P4(y,An–2)
]

dy,

H5n = Rn(t) – Rn–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P5(t,Rn–1) – P5(t,Rn–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P5(y,Rn–1) – P5(y,Rn–2)
]

dy,

H6n =Wn(t) –Wn–1(t)

=
2(1 – η)ρ1–η

(2 – η)M(η)

[

P6(t,Wn–1) – P6(t,Wn–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P6(y,Wn–1) – P6(y,Wn–2)
]

dy.

Given the above equations, one can write

Sn(t) =

n
∑

j=0

H1j(t), En(t) =

n
∑

j=0

H2j(t), In(t) =

n
∑

j=0

H3j(t),

An(t) =

n
∑

j=0

H4j(t), Rn(t) =

n
∑

j=0

H5j(t), Wn(t) =

n
∑

j=0

H6j(t).

(3)

According to H1n’s definition and using the triangular inequality, we have

∥

∥H1n(t)
∥

∥ =
∥

∥Sn(t) – Sn–1(t)
∥

∥

=

∥

∥

∥

∥

2(1 – η)ρ1–η

(2 – η)M(η)

[

P1(t,Sn–1) – P1(t,Sn–2)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P1(y,Sn–1) – P1(y,Sn–2)
]

dy

∥

∥

∥

∥
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≤
2(1 – η)ρ1–η

(2 – η)M(η)

∥

∥P1(t,Sn–1) – P1(t,Sn–2)
∥

∥

+
2ηρ1–η

(2 – η)M(η)

∥

∥

∥

∥

∫ t

0

[

P1(y,Sn–1) – P1(y,Sn–2)
]

dy

∥

∥

∥

∥

.

P1 satisfies the Lipschitz condition, therefore

∥

∥Sn(t) – Sn–1(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ1‖Sn–1 – Sn–2‖ +

2ηρ1–η

(2 – η)M(η)
λ1

∫ t

0

‖Sn–1 – Sn–2‖dy.

Thus we get

∥

∥H1n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ1

∥

∥H1n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ1

∫ t

0

∥

∥H1n–1(y)
∥

∥dy. (4)

It can be shown that similar results are obtained for Hin, i = 2, 3, 4, 5, 6, as follows:

∥

∥H2n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ2

∥

∥H2n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ2

∫ t

0

∥

∥H2n–1(y)
∥

∥dy,

∥

∥H3n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ3

∥

∥H3n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ3

∫ t

0

∥

∥H3n–1(y)
∥

∥dy,

∥

∥H4n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ4

∥

∥H4n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ4

∫ t

0

∥

∥H4n–1(y)
∥

∥dy, (5)

∥

∥H5n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ5

∥

∥H5n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ5

∫ t

0

∥

∥H5n–1(y)
∥

∥dy,

∥

∥H6n(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ6

∥

∥H6n–1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ6

∫ t

0

∥

∥H6n–1(y)
∥

∥dy.

According to the above result, we show that system (1) has a solution.

Theorem 3.2 The fractional COVID-19 model (1) has a system of solutions if there exist

ti, i = 1, 2, 3, 4, 5, 6, such that

2(1 – η)ρ1–η

(2 – η)M(η)
λi +

2ηρ1–η

(2 – η)M(η)
λiti ≤ 1.

Proof Assume that functions S(t), E(t), I(t), A(t), R(t),W (t) are bounded. We have shown

that kernels Hin, i = 1, 2, 3, 4, 5, 6, satisfy the Lipschitz condition. By using the recursive

method and the results of (4) and (5), we obtain

∥

∥H1n(t)
∥

∥ ≤
∥

∥S(0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ1 +

2ηρ1–η

(2 – η)M(η)
λ1t

]n

,

∥

∥H2n(t)
∥

∥ ≤
∥

∥E(0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ2 +

2ηρ1–η

(2 – η)M(η)
λ2t

]n

,

∥

∥H3n(t)
∥

∥ ≤
∥

∥I(0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ3 +

2ηρ1–η

(2 – η)M(η)
λ3t

]n

,

∥

∥H4n(t)
∥

∥ ≤
∥

∥A(0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ4 +

2ηρ1–η

(2 – η)M(η)
λ4t

]n

,
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∥

∥H5n(t)
∥

∥ ≤
∥

∥R(0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ5 +

2ηρ1–η

(2 – η)M(η)
λ5t

]n

,

∥

∥H6n(t)
∥

∥ ≤
∥

∥W (0)
∥

∥

[

2(1 – η)ρ1–η

(2 – η)M(η)
λ6 +

2ηρ1–η

(2 – η)M(η)
λ6t

]n

.

Thus, functions (3) exist and are smooth. We claim that the above functions are the solu-

tions of system (1). To prove this claim, we assume

S(t) – S(0) =H1n(t) –G1n(t), E(t) – E(0) =H2n(t) –G2n(t),

I(t) – I(0) =H3n(t) –G3n(t), A(t) –A(0) =H4n(t) –G4n(t),

R(t) – R(0) =H5n(t) –G5n(t), W (t) –W (0) =H6n(t) –G6n(t).

We have

∥

∥G1n(t)
∥

∥ =

∥

∥

∥

∥

2(1 – η)ρ1–η

(2 – η)M(η)

[

P1(t,S) – P1(t,Sn–1)
]

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

[

P1(y,S) – P(y,Sn–1)
]

dy

∥

∥

∥

∥

≤
2(1 – η)ρ1–η

(2 – η)M(η)

∥

∥P1(t,S) – P1(t,Sn–1)
∥

∥

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

∥

∥P1(y,S) – P(y,Sn–1)
∥

∥dy

≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ1‖S – Sn–1‖ +

2ηρ1–η

(2 – η)M(η)
λ1‖S – Sn–1‖t.

By repeating this process, we obtain

∥

∥G1n(t)
∥

∥ ≤

[

2(1 – η)ρ1–η

(2 – η)M(η)
+

2ηρ1–η

(2 – η)M(η)
t

]n+1

λn+1
1 q.

By taking limit on recent equation as n tends to infinity, we obtain ‖G1n(t)‖ → 0. By the

same way, we get ‖Gin(t)‖ → 0, i = 2, 3, 4, 5, 6, and this completes the proof. �

To prove the uniqueness of solution, we assume that system (1) has another solution

such as S1, E1, I1, A1, R1,W1. Then

∥

∥S(t) – S1(t)
∥

∥

=

∥

∥

∥

∥

2(1 – η)ρ1–η

(2 – η)M(η)

(

P1(t,S) – P1(t,S1)
)

+
2ηρ1–η

(2 – η)M(η)

∫ t

0

(

P1(y,S) – P1(y,S1)
)

dy

∥

∥

∥

∥

≤
2(1 – η)ρ1–η

(2 – η)M(η)

∥

∥P1(t,S) – P1(t,S1)
∥

∥ +
2ηρ1–η

(2 – η)M(η)

∫ t

0

∥

∥P1(y,S) – P1(y,S1)
∥

∥dy.

According to the Lipschitz condition of S, we get

∥

∥S(t) – S1(t)
∥

∥ ≤
2(1 – η)ρ1–η

(2 – η)M(η)
λ1

∥

∥S(t) – S1(t)
∥

∥ +
2ηρ1–η

(2 – η)M(η)
λ1t

∥

∥S(t) – S1(t)
∥

∥.
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Thus

∥

∥S(t) – S1(t)
∥

∥

(

1 –
2(1 – η)ρ1–η

(2 – η)M(η)
λ1 –

2ηρ1–η

(2 – η)M(η)
λ1t

)

≤ 0. (6)

Theorem 3.3 The solution of COVID-19 fractional model (1) is unique if the following

condition holds:

(

1 –
2(1 – η)ρ1–η

(2 – η)M(η)
λ1 –

2ηρ1–η

(2 – η)M(η)
λ1t

)

≥ 0. (7)

Proof From condition (7) and equation (6), we conclude that

∥

∥S(t) – S1(t)
∥

∥

(

1 –
2(1 – η)ρ1–η

(2 – η)M(η)
λ1 –

2ηρ1–η

(2 – η)M(η)
λ1t

)

= 0.

So ‖S(t) – S1(t)‖ = 0, then S(t) = S1(t). In the same way, we can show that

E(t) = E1(t), I(t) = I1(t), A(t) = A1(t), R(t) = R1(t), W (t) =W1(t).

The proof is complete. �

4 Stability analysis by fixed point theory

Using the Sumudu transform, we obtain a special solution to the COVID-19 model and

then prove the stability of the iterative method using fixed point theory. At first, we apply

the Sumudu transform on both sides of equations in model (1), then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ST( 1
ρ1–η

CFD
η
t S(t)) = ST(Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)),

ST( 1
ρ1–η

CFD
η
t E(t)) = ST(βpS(t)(I(t) + κA(t)) + βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t)),

ST( 1
ρ1–η

CFD
η
t I(t)) = ST((1 – δ)ωE(t) – (γ +m)I(t)),

ST( 1
ρ1–η

CFD
η
tA(t)) = ST(δω′

pE(t) – (γ ′ +m)A(t)),

ST( 1
ρ1–η

CFD
η
t R(t)) = ST(γ I(t) + γ ′A(t) –mR(t)),

ST( 1
ρ1–η

CFD
η
tW (t)) = ST(µI(t) +µ′A(t) – εW (t)).

We conclude from the Sumudu transform definition of the Caputo–Fabrizio derivative

the following:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M(η)
1–η+ηu

(ST(S(t)) – S(0)) = ρ1–ηST(Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)),

M(η)
1–η+ηu

(ST(E(t)) – E(0)) = ρ1–ηST(βpS(t)(I(t) + κA(t)) + βwS(t)W (t) – (1 – δ)ωE(t)

– δω′E(t) –mE(t)),

M(η)
1–η+ηu

(ST(I(t)) – I(0)) = ρ1–ηST((1 – δ)ωE(t) – (γ +m)I(t)),

M(η)
1–η+ηu

(ST(A(t)) –A(0)) = ρ1–ηST(δω′
pE(t) – (γ ′ +m)A(t)),

M(η)
1–η+ηu

(ST(R(t)) – R(0)) = ρ1–ηST(γ I(t) + γ ′A(t) –mR(t)),

M(η)
1–η+ηu

(ST(W (t)) –W (0)) = ρ1–ηST(µI(t) +µ′A(t) – εW (t)).
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If we rearrange the above inequalities, then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ST(S(t)) = S(0) + 1–η+ηu
M(η)

ρ1–ηST[Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)],

ST(E(t)) = E(0) + 1–η+ηu
M(η)

ρ1–ηST[βpS(t)(I(t) + κA(t)) + βwS(t)W (t) – (1 – δ)ωE(t)

– δω′E(t) –mE(t)],

ST(I(t)) = I(0) + 1–η+ηu
M(η)

ρ1–ηST[(1 – δ)ωE(t) – (γ +m)I(t)],

ST(A(t)) = A(0) + 1–η+ηu
M(η)

ρ1–ηST[δω′
pE(t) – (γ ′ +m)A(t)],

ST(R(t)) = R(0) + 1–η+ηu
M(η)

ρ1–ηST[γ I(t) + γ ′A(t) –mR(t)],

ST(W (t)) =W (0) + 1–η+ηu
M(η)

ρ1–ηST[µI(t) +µ′A(t) – εW (t)].

We obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sn+1(t) = Sn(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[Λ –mSn(t) – βpSn(t)(In(t) + κAn(t))

– βwSn(t)Wn(t)]},

En+1(t) = En(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[βpSn(t)(In(t) + κAn(t)) + βwSn(t)Wn(t)

– (1 – δ)ωEn(t) – δω′En(t) –mEn(t)]},

In+1(t) = In(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[(1 – δ)ωEn(t) – (γ +m)In(t)]},

An+1(t) = An(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[δω′
pEn(t) – (γ ′ +m)An(t)]},

Rn+1(t) = Rn(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[γ In(t) + γ ′An(t) –mRn(t)]},

Wn+1(t) =Wn(0) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[µIn(t) +µ′An(t) – εWn(t)]}.

(8)

The approximate solution of system (1) is as follows:

S(t) = lim
n→∞

Sn(t), E(t) = lim
n→∞

En(t), I(t) = lim
n→∞

In(t),

A(t) = lim
n→∞

An(t), R(t) = lim
n→∞

Rn(t), W (t) = lim
n→∞

Wn(t).

4.1 Stability analysis of iteration method

Consider the Banach space (G,‖ · ‖), a self-map T on G, and the recursive method qn+1 =

φ(T ,qn). Assume that Υ (T) is the fixed point set of T which Υ (T) 
= ∅ and limn→∞ qn =

q ∈ Υ (T). Suppose that {tn} ⊂ Υ and rn = ‖tn+1 – φ(T , tn)‖. If limn→∞ rn = 0 implies that

limn→∞ tn = q, then the recursive procedure qn+1 = φ(T ,qn) is T-stable. Suppose that our

sequence {tn} has an upper boundary. If Picard’s iteration qn+1 = Tqn is satisfied in all these

conditions, then qn+1 = Tqn is T-stable.

Theorem 4.1 ([44]) Let (G,‖ · ‖) be a Banach space and T be a self-map of G satisfying

‖Tx – Ty‖ ≤ B‖x – Tx‖ + b‖x – y‖

for all x, y ∈G where B ≥ 0 and 0≤ b < 1. Suppose that T is Picard T-stable.

According to (8), the fractional model of COVID-19 (1) is connected with the subse-

quent iterative formula. Now consider the following theorem.
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Theorem 4.2 Suppose that T is a self-map defined as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T(Sn(t)) = Sn+1(t)

= Sn(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[Λ –mSn(t)

– βpSn(t)(In(t) + κAn(t)) – βwSn(t)Wn(t)]},

T(En(t)) = En+1(t)

= En(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[βpSn(t)(In(t) + κAn(t))

+ βwSn(t)Wn(t) – (1 – δ)ωEn(t) – δω′En(t) –mEn(t)]},

T(In(t)) = In+1(t) = In(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[(1 – δ)ωEn(t) – (γ +m)In(t)]},

T(An(t)) = An+1(t) = An(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[δω′
pEn(t) – (γ ′ +m)An(t)]},

T(Rn(t)) = Rn+1(t) = Rn(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[γ In(t) + γ ′An(t) –mRn(t)]},

T(Wn(t)) =Wn+1(t) =Wn(t) + ST–1{ 1–η+ηu
M(η)

ρ1–ηST[µIn(t) +µ′An(t) – εWn(t)]}.

This iterative recursive is T-stable in L1(a,b) if the following conditions are achieved:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 – (m + βpM3 + βpM4 + βwM6)f1(η) – βpM1f2(η) – βpκM1f4(η) – βwM1f4(η)) < 1,

(1 + βpM1f5(η) + (βpM3 + βpκM4 + βwM6)f6(η) + βpκM1f7(η) + βwM1f8(η)

– ((1 – δ)m + δω′ +m)f9(η)) < 1,

(1 + (1 – δ)ωf10(η) – (γ +m)f11(η)) < 1,

(1 + δω′
pf12(η) – (γ ′ +m)f13(η)) < 1,

(1 + γ f14(η) + γ ′f15(η) –mf16(η)) < 1,

(1 +µf17(η) +µ′f18(η) – εf19(η)) < 1.

Proof To prove that T has a fixed point, we compute the following inequalities for (i, j) ∈

N ×N :

T
(

Si(t)
)

– T
(

Sj(t)
)

= Si(t) – Sj(t) + ST–1

{

1 – η + ηu

M(η)
ρ1–ηST

[(

Λ –mSi(t) – βpSi(t)
(

Ii(t) + κAi(t)
)

– βwSi(t)Wi(t)
)

–
(

Λ –mSj(t) – βpSj(t)
(

Ij(t) + κAj(t)
)

– βwSj(t)Wj(t)
)]

}

=
(

Si(t) – Sj(t)
)

+ ST–1

{

1 – η + ηu

M(η)
ρ1–ηST

[

–
(

m + βpIj(t) + βpκAj(t) + βwWj(t)
)(

Si(t) – Sj(t)
)

– βpSi(t)
(

Ii(t) – Ij(t)
)

– βpκSi(t)
(

Ai(t) –Aj(t)
)

– βwSi(t)
(

Wi(t) –Wj(t)
)]

}

.

By applying norm on both sides, we obtain

∥

∥T
(

Si(t)
)

– T
(

Sj(t)
)
∥

∥

=

∥

∥

∥

∥

(

Si(t) – Sj(t)
)
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+ ST–1

{

1 – η + ηu

M(η)
ρ1–ηST

[

–
(

m + βpIj(t) + βpκAj(t) + βwWj(t)
)(

Si(t) – Sj(t)
)

– βpSi(t)
(

Ii(t) – Ij(t)
)

– βpκSi(t)
(

Ai(t) –Aj(t)
)

– βwSi(t)
(

Wi(t) –Wj(t)
)]

}
∥

∥

∥

∥

≤
∥

∥Si(t) – Sj(t)
∥

∥

+ ST–1

{

1 – η + ηu

M(η)
ρ1–ηST

[
∥

∥–
(

m + βpIj(t) + βpκAj(t) + βwWj(t)
)(

Si(t) – Sj(t)
)
∥

∥

+
∥

∥–βpSi(t)
(

Ii(t) – Ij(t)
)
∥

∥ +
∥

∥–βpκSi(t)
(

Ai(t) –Aj(t)
)
∥

∥

+
∥

∥–βwSi(t)
(

Wi(t) –Wj(t)
)
∥

∥

]

}

. (9)

Since the solutions have the same roles, we can consider

∥

∥Si(t) – Sj(t)
∥

∥ ∼=
∥

∥Ei(t) – Ej(t)
∥

∥ ∼=
∥

∥Ii(t) – Ij(t)
∥

∥ ∼=
∥

∥Ai(t) –Aj(t)
∥

∥

∼=
∥

∥Rn(t) – Rm(t)
∥

∥ ∼=
∥

∥Rn(t) – Rm(t)
∥

∥. (10)

From equations (9) and (10), we get

∥

∥T
(

Si(t)
)

– T
(

Sj(t)
)
∥

∥

≤
∥

∥Si(t) – Sj(t)
∥

∥

+ ST–1

{

1 – η + ηu

M(η)
ρ1–ηST

[
∥

∥–
(

m + βpIj(t) + βpκAj(t) + βwWj(t)
)(

Si(t) – Sj(t)
)
∥

∥

+
∥

∥–βpSi(t)
(

Si(t) – Sj(t)
)
∥

∥ +
∥

∥–βpκSi(t)
(

Si(t) – Sj(t)
)
∥

∥

+
∥

∥–βwSi(t)
(

Si(t) – Sj(t)
)
∥

∥

]

}

. (11)

Si, Ei, Ii, Ai, Ri,Wi are bounded because they are convergent sequences, then for all t there

existMi, i = 1, 2, 3, 4, 5, 6, such that

‖Si‖ <M1, ‖Ei‖ <M2, ‖Ii‖ <M3, ‖Ai‖ <M4,

‖Ri‖ <M5, ‖Wi‖ <M6, (i, j) ∈N ×N .
(12)

From equations (11) and (12), we get

∥

∥T
(

Si(t)
)

– T
(

Sj(t)
)
∥

∥

≤
[

1 – (m + βpM3 + βpM4 + βwM6)f1(η) – βpM1f2(η) – βpκM1f4(η) – βwM1f4(η)
]

×
∥

∥Si(t) – Sj(t)
∥

∥, (13)
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where fi are functions from ST–1[ 1–η+ηu
M(η)

ρ1–ηST[∗]]. Similarly, we will obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖T(Ei(t) – T(Ej(t))‖

≤ [1 + βpM1f5(η) + (βpM3 + βpκM4 + βwM6)f6(η) + βpκM1f7(η)

+ βwM1f8(η) – ((1 – δ)m + δω′ +m)f9(η)]‖Ei(t) – Ej(t)‖,

‖T(Ii(t) – T(Ij(t))‖ ≤ [1 + (1 – δ)ωf10(η) – (γ +m)f11(η)]‖Ii(t) – Ij(t)‖,

‖T(Ai(t) – T(Aj(t))‖ ≤ [1 + δω′
pf12(η) – (γ ′ +m)f13(η)]‖Ai(t) –Aj(t)‖,

‖T(Ri(t) – T(Rj(t))‖ ≤ [1 + γ f14(η) + γ ′f15(η) –mf16(η)]‖Ri(t) – Rj(t)‖,

‖T(Wi(t) – T(Wj(t))‖ ≤ [1 +µf17(η) +µ′f18(η) – εf19(η)]‖Wi(t) –Wj(t)‖,

(14)

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 – (m + βpM3 + βpM4 + βwM6)f1(η) – βpM1f2(η) – βpκM1f4(η) – βwM1f4(η)) < 1,

(1 + βpM1f5(η) + (βpM3 + βpκM4 + βwM6)f6(η) + βpκM1f7(η) + βwM1f8(η)

– ((1 – δ)m + δω′ +m)f9(η)) < 1,

(1 + (1 – δ)ωf10(η) – (γ +m)f11(η)) < 1,

(1 + δω′
pf12(η) – (γ ′ +m)f13(η)) < 1,

(1 + γ f14(η) + γ ′f15(η) –mf16(η)) < 1,

(1 +µf17(η) +µ′f18(η) – εf19(η)) < 1.

Thus the T-self mapping has a fixed point. Also, we show that T satisfies the conditions

in Theorem 4.1. Consider that (13), (14) hold, we assume

B = (0, 0, 0, 0, 0, 0),

b =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 – (m + βpM3 + βpM4 + βwM6)f1(η) – βpM1f2(η) – βpκM1f4(η) – βwM1f4(η)),

(1 + βpM1f5(η) + (βpM3 + βpκM4 + βwM6)f6(η) + βpκM1f7(η) + βwM1f8(η)

– ((1 – δ)m + δω′ +m)f9(η)),

(1 + (1 – δ)ωf10(η) – (γ +m)f11(η)),

(1 + δω′
pf12(η) – (γ ′ +m)f13(η)),

(1 + γ f14(η) + γ ′f15(η) –mf16(η)),

(1 +µf17(η) +µ′f18(η) – εf19(η)).

So, all the conditions of Theorem 4.1 are satisfied and the proof is complete. �

5 Numerical method

In this section, we apply the homotopy analysis transformmethod (HATM) to implement

the fractional model (1) appropriately. Notice that HATM is a well-developed mixture of

the standard Laplace transform technique [45] and the homotopy analysismethod (HAM)

[46]. To solve model (1) by HATM, first we apply the Laplace transform in the following
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way:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L[ 1
ρ1–η

CFD
η
t S(t)](s) = L[Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)],

L[ 1
ρ1–η

CFD
η
t E(t)](s) = L[βpS(t)(I(t) + κA(t)) + βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t)],

L[ 1
ρ1–η

CFD
η
t I(t)](s) = L[(1 – δ)ωE(t) – (γ +m)I(t)],

L[ 1
ρ1–η

CFD
η
tA(t)](s) = L[δω′

pE(t) – (γ ′ +m)A(t)],

L[ 1
ρ1–η

CFD
η
t R(t)](s) = L[γ I(t) + γ ′A(t) –mR(t)],

L[ 1
ρ1–η

CFD
η
tW (t)](s) = L[µI(t) +µ′A(t) – εW (t)],

which results in

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sL(S)–S(0)
s+η(1–s)

= ρ1–ηL[Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)],

sL(E)–E(0)
s+η(1–s)

= ρ1–ηL[βpS(t)(I(t) + κA(t)) + βwS(t)W (t)

– (1 – δ)ωE(t) – δω′E(t) –mE(t)],

sL(I)–I(0)
s+η(1–s)

= ρ1–ηL[(1 – δ)ωE(t) – (γ +m)I(t)],

sL(A)–A(0)
s+η(1–s)

= ρ1–ηL[δω′
pE(t) – (γ ′ +m)A(t)],

sL(R)–R(0)
s+η(1–s)

= ρ1–ηL[γ I(t) + γ ′A(t) –mR(t)],

sL(W )–W (0)
s+η(1–s)

= ρ1–ηL[µI(t) +µ′A(t) – εW (t)].

Then we get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L(S) – S0
s
– s+η(1–s)

s
ρ1–ηL[Λ –mS(t) – βpS(t)(I(t) + κA(t)) – βwS(t)W (t)] = 0,

L(E) – E0
s
– s+η(1–s)

s
ρ1–ηL[βpS(t)(I(t) + κA(t)) + βwS(t)W (t) – (1 – δ)ωE(t)

– δω′E(t) –mE(t)] = 0,

L(I) – I0
s
– s+η(1–s)

s
ρ1–ηL[(1 – δ)ωE(t) – (γ +m)I(t)] = 0,

L(A) – A0
s
– s+η(1–s)

s
ρ1–ηL[δω′

pE(t) – (γ ′ +m)A(t)] = 0,

L(R) – R0
s
– s+η(1–s)

s
ρ1–ηL[γ I(t) + γ ′A(t) –mR(t)] = 0,

L(W ) – W0
s
– s+η(1–s)

s
ρ1–ηL[µI(t) +µ′A(t) – εW (t)] = 0.

(15)

Using the homotopy method, we define

N1

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

Λ –mφ1(t;q) – βpφ1(t;q)φ3(t;q) + κφ4(t;q)) – βwφ1(t;q)φ6(t;q)
]

,

N2

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

βpφ1(t;q)
(

φ3(t;q) + κφ4(t;q)
)

+ βwφ1(t;q)φ6(t;q)

– (1 – δ)ωφ2(t;q) – δω′φ2(t;q) –mφ2(t;q)
]

,

N3

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

(1 – δ)ωφ2(t;q) – (γ +m)φ3(t;q)
]

,
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N4

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

δω′
pφ2(t;q) –

(

γ ′ +m
)

φ4(t;q)
]

,

N5

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

γφ3(t;q) + γ ′φ4(t;q) –mφ5(t;q)
]

,

N6

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

= L
[

µφ3(t;q) +µ′φ4(t;q) – εφ6(t;q)
]

.

Then the deformation equations become

(1 – q)L
[

φ1(t;q) – S0(t)
]

= qhH(t)N1

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

(1 – q)L
[

φ2(t;q) – E0(t)
]

= qhH(t)N2

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

(1 – q)L
[

φ3(t;q) – I0(t)
]

= qhH(t)N3

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

(1 – q)L
[

φ4(t;q) –A0(t)
]

= qhH(t)N4

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

(1 – q)L
[

φ5(t;q) – R0(t)
]

= qhH(t)N5

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

(1 – q)L
[

φ6(t;q) –W0(t)
]

= qhH(t)N6

(

φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),φ5(t;q),φ6(t;q)
)

,

where q ∈ [0, 1] denotes an embedding parameter; φi(t;q), i = 0, 1, are unknown functions;

S0, E0, I0, A0, R0, W0 are initial guesses; L[·] is the Laplace operator; H(t) 
= 0 is an auxil-

iary function, and h 
= 0 is a nonzero auxiliary parameter. Clearly, for q = 0 and q = 1, we

have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ1(t; 0) = S0(t), φ1(t; 1) = S(t),

φ2(t; 0) = E0(t), φ2(t; 1) = E(t),

φ3(t; 0) = I0(t), φ3(t; 1) = I(t),

φ4(t; 0) = A0(t), φ4(t; 1) = A(t),

φ5(t; 0) = R0(t), φ5(t; 1) = R(t),

φ6(t; 0) =W0(t), φ6(t; 1) =W (t).

Thus, increasing q from zero to one varies the solution (φ1(t;q),φ2(t;q),φ3(t;q),φ4(t;q),

φ5(t;q),φ6(t;q)) from (S0(t),E0(t), I0(t),A0(t),R0(t),W0(t)) to (S(t),E(t), I(t),A(t),R(t),

W (t)). Now, we expand φi(t;q) (i = 1, 2, 3, 4, 5, 6) in the Taylor series with regard to q.
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This procedure yields

φ1(t;q) = S0 +

∞
∑

n=1

Sn(t)q
n, φ2(t;q) = E0 +

∞
∑

n=1

En(t)q
n,

φ3(t;q) = I0 +

∞
∑

n=1

In(t)q
n, φ4(t;q) = A0 +

∞
∑

n=1

An(t)q
n,

φ5(t;q) = R0 +

∞
∑

n=1

Rn(t)q
n, φ6(t;q) =W0 +

∞
∑

n=1

Wn(t)q
n,

where

Sn(t) =
1

n!

∂nφ1(t;q)

∂qn

∣

∣

∣

∣

q=0

, En(t) =
1

n!

∂nφ2(t;q)

∂qn

∣

∣

∣

∣

q=0

,

In(t) =
1

n!

∂nφ3(t;q)

∂qn

∣

∣

∣

∣

q=0

, An(t) =
1

n!

∂nφ4(t;q)

∂qn

∣

∣

∣

∣

q=0

,

Rn(t) =
1

n!

∂nφ5(t;q)

∂qn

∣

∣

∣

∣

q=0

, Wn(t) =
1

n!

∂nφ6(t;q)

∂qn

∣

∣

∣

∣

q=0

.

(16)

If the auxiliary function H(t), the auxiliary parameter h, and the initial guesses are

properly chosen, then series (16) converges at q = 1, as proved by Liao [46]. Thus, we

get

S(t) = S0 +

∞
∑

n=1

Sn(t), E(t) = E0 +

∞
∑

n=1

En(t),

I(t) = I0 +

∞
∑

n=1

In(t), A(t) = A0 +

∞
∑

n=1

An(t),

R(t) = R0 +

∞
∑

n=1

Rn(t), W (t) =W0 +

∞
∑

n=1

Wn(t).

In addition, we can express the mth order deformation equation by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L[Sn(t) – χnSn–1(t)] = hHT1,n
�(Sn–1),

L[En(t) – χnEn–1(t)] = hHT2,n
�(En–1),

L[In(t) – χnIn–1(t)] = hHT3,n
�(In–1),

L[An(t) – χnAn–1(t)] = hHT4,n
�(An–1),

L[Rn(t) – χnRn–1(t)] = hHT5,n
�(Rn–1),

L[Wn(t) – χnWn–1(t)] = hHT6,n
�(Wn–1),

(17)
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where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T1,n( �Sn–1(t)) = L[Sn–1(t)] –
S0
s
(1 – χn) –

s+α(1–s)
s

ρ1–ηL[Λ –mSn–1(t)

– βpSn–1(t)(In–1(t) + κAn–1(t)) – βwSn–1(t)Wn–1(t)],

T2,n( �En–1(t)) = L[En–1(t)] –
E0
s
(1 – χn)

– s+α(1–s)
s

ρ1–ηL[βpSn–1(t)(In–1(t) + κAn–1(t))

+ βwSn–1(t)Wn–1(t) – (1 – δ)ωEn–1(t) – δω′En–1(t) –mEn–1(t)],

T3,n( �In–1(t)) = L[In–1(t)]

– I0
s
(1 – χn) –

s+α(1–s)
s

ρ1–ηL[(1 – δ)ωEn–1(t) – (γ +m)In–1(t)],

T4,n( �An–1(t)) = L[An–1(t)] –
A0
s
(1 – χn)

– s+α(1–s)
s

ρ1–ηL[δω′
pEn–1(t) – (γ ′ +m)An–1(t)],

T5,n( �Rn–1(t)) = L[Rn–1(t)] –
R0
s
(1 – χn)

– s+α(1–s)
s

ρ1–ηL[γ In–1(t) + γ ′An–1(t) –mRn–1(t)],

T6,n( �Wn–1(t)) = L[Wn–1(t)] –
W0
s
(1 – χn)

– s+α(1–s)
s

ρ1–ηL[µIn–1(t) +µ′An–1(t) – εWn–1(t)],

(18)

and

χn =

⎧

⎨

⎩

0, n≤ 1,

1, n > 1.

Applying the inverse Laplace transform to equation (17), we obtain

Sn(t) = χnSn–1(t) + hHL–1
[

T1,n(Sn–1)
]

, En(t) = χnEn–1(t) + hHL–1
[

T2,n(En–1)
]

,

In(t) = χnIn–1(t) + hHL–1
[

T3,n(In–1)
]

, An(t) = χnAn–1(t) + hHL–1
[

T4,n(An–1)
]

,

Rn(t) = χnRn–1(t) + hHL–1
[

T5,n(Rn–1)
]

, Wn(t) = χnWn–1(t) + hHL–1
[

T6,n(Wn–1)
]

.

Solving these equations for different values of n = 1, 2, 3, . . . , we derive

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S1(t) = –hHρ1–η(1 + α(t – 1))(Λ –mS0(t) – βpS0(t)(I0(t) + κA0(t)) – βwS0(t)W0(t))

= –hHM1ρ
1–η(1 + α(t – 1)),

E1(t) = –hHρ1–η(1 + α(t – 1))(βpS0(t)(I0(t) + κA0(t)) + βwS0(t)W0(t)

– (1 – δ)ωE0(t) – δω′E0(t) –mE0(t)) = –hHM2ρ
1–η(1 + α(t – 1)),

I1(t) = –hHρ1–η(1 + α(t – 1))((1 – δ)ωE0(t) – (γ +m)I0(t))

= –hHM3ρ
1–η(1 + α(t – 1)),

A1(t) = –hHρ1–η(1 + α(t – 1))(δω′
pE0(t) – (γ ′ +m)A0(t))

= –hHM4ρ
1–η(1 + α(t – 1)),

R1(t) = –hHρ1–η(1 + α(t – 1))(γ I0(t) + γ ′A0(t) –mR0(t))

= –hHM5ρ
1–η(1 + α(t – 1)),

W1(t) = –hHρ1–η(1 + α(t – 1))(µI0(t) +µ′A0(t) – εW0(t))

= –hHM6ρ
1–η(1 + α(t – 1)),
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where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M1 = Λ –mS0(t) – βpS0(t)(I0(t) + κA0(t)) – βwS0(t)W0(t),

M2 = βpS0(t)(I0(t) + κA0(t)) + βwS0(t)W0(t) – (1 – δ)ωE0(t) – δω′E0(t) –mE0(t),

M3 = (1 – δ)ωE0(t) – (γ +m)I0(t),

M4 = δω′
pE0(t) – (γ ′ +m)A0(t),

M5 = γ I0(t) + γ ′A0(t) –mR0(t),

M6 = µI0(t) +µ′A0(t) – εW0(t).

Finally, the solutions of system (1) are obtained as follows:

S(t) = S0(t) + S1(t) + S2(t) + · · · ,

E(t) = E0(t) + E1(t) + E2(t) + · · · ,

I(t) = I0(t) + I1(t) + I2(t) + · · · ,

A(t) = A0(t) +A1(t) +A2(t) + · · · ,

R(t) = R0(t) + R1(t) + R2(t) + · · · ,

W (t) =W0(t) +W1(t) +W2(t) + · · · .

5.1 Convergency of HATM for FDEs

In the following, we discuss the convergence of HATM by presenting and proving the

following theorem.

Theorem 5.1 Let
∑∞

n=0 Sn(t),
∑∞

n=0 En(t),
∑∞

n=0 In(t),
∑∞

n=0An(t),
∑∞

n=0 Rn(t), and
∑∞

n=0Wn(t) be uniformly convergent to S(t), E(t), I(t), A(t), R(t), and W (t), respectively,

where {Sn(t),En(t), In(t),An(t),Rn(t),Wn(t)} ∈ L(R+) are produced by the mth order de-

formation (17). Also, assume that
∑∞

n=0(
CFDα

t Sn(t)),
∑∞

n=0(
CFDαEn(t)),

∑∞
n=0(

CFDαIn(t)),
∑∞

n=0(
CFDαAn(t)),

∑∞
n=0(

CFDαRn(t)),
∑∞

n=0(
CFDαWn(t)) are convergent.Then S(t), E(t), I(t),

A(t), R(t),W (t) are the exact solutions of system (15).

Proof By assuming that
∑∞

n=0 Sn(t) is uniformly convergent to S(t), we can clearly state

lim
n→∞

Sn(t) = 0, for all t ∈ R+. (19)

Since Laplace is a linear operator, we have

k
∑

n=1

L
[

Sn(t) – χnSn–1(t)
]

=

k
∑

n=1

[

LSn(t) – χnLSn–1(t)
]

= LS1(t) +
(

LS2(t) – LS1(t)
)

+ · · · +
(

LSk(t) – LSk–1(t)
)

= LSk(t). (20)
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Figure 1 Plots of approximate solutions of susceptible parameter S and exposed parameter E for different

values of η = 1, 0.9, 0.8, 0.7, 0.6, 0.5

Thus, from (19) and (20) we derive

∞
∑

n=1

L
[

Sn(t) – χnSn–1(t)
]

= lim
k→∞

LSk(t) = L
(

lim
k→∞

Sk(t)
)

= 0.

Hence,

hH

∞
∑

n=1

T1,n

(

�Sn–1(t)
)

=

∞
∑

n=1

L
[

Sn(t) – χnSn–1(t)
]

= 0.

Since h 
= 0, H 
= 0, this yields
∑∞

n=1T1,n(�Sn–1(t)) = 0. Similarly, we can prove

∞
∑

n=1

T2,n

(

�En–1(t)
)

= 0,

∞
∑

n=1

T3,n

(

�In–1(t)
)

= 0,
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Figure 2 Plots of approximate solutions of asymptomatic infected parameter A and symptomatic infected

parameter I for different values of η = 1, 0.9, 0.8, 0.7, 0.6, 0.5

∞
∑

n=1

T4,n

(

�Rn–1(t)
)

= 0,

∞
∑

n=1

T5,n

(

�Vn–1(t)
)

= 0,

∞
∑

n=1

T6,n

(

�Vn–1(t)
)

= 0.

Now, from (18) we get

0 =

∞
∑

n=1

{

L
[

Sn–1(t)
]

–
S0

s
(1 – χn) –

s + α(1 – s)

s
ρ1–ηL

[

Λ – nSn–1(t)

– βpSn–1(t)
(

In–1(t) + κAn–1(t)
)

– βwSn–1(t)Wn–1(t)
]

}

= L

[

∞
∑

n=1

Sn–1(t)

]

–
S0

s

∞
∑

n=1

(1 – χn) –
s + α(1 – s)

s
ρ1–ηL

[

∞
∑

n=1

(

Λ – nSn–1(t)
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Figure 3 Plots of approximate solutions of removed parameter R and COVID-19 reservoir parameter W for

different values of η = 1, 0.9, 0.8, 0.7, 0.6, 0.5

– βpSn–1(t)
(

In–1(t) + κAn–1(t)
)

– βwSn–1(t)Wn–1(t)
)

]

= L
[

S(t)
]

–
S0

s
–
s + α(1 – s)

s
ρ1–ηL

[

Λ – nS(t) – βpS(t)
(

I(t) + κA(t)
)

– βwS(t)W (t)
]

.

Therefore S(t) is the exact solution of system (15). Similarly, we can prove that E(t), I(t),

A(t), R(t), andW (t) are the exact solutions of system (15), and the proof is complete. �

6 Numerical results

In this section, we present a numerical simulation for the transmission model of COVID-

19 (1) by using the homotopy analysis transformmethod (HATM). To this end, we assume

that the total population is N = 100, and since the birth rate for China in 2020 is about

11.46 births per 1000 people, then Λ = n×N = 1.146. According to the news released by

the World Health Organization, the death rate is 3.4 percent and the incubation period
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Figure 4 Plots of the results of Caputo derivative and Caputo–Fabrizio derivative for S, E with η = 0.96

of COVID-19 is 14 days. Of course, the new Chinese study, which has yet to be peer-

reviewed, suggests that the incubation period for the virus could be as long as 24 days.

Because the information is changing and due to the lack of complete information on

many parameters related to the transmission of this virus, we had to consider some of the

coefficients hypothetically. In this simulation, according to the news, we have chosen the

parameters as βp = 0.0025, βw = 0.001, κ = 0.05, δ = 0.25, ω = 0.071, ω′ = 0.1, γ = 0.047,

γ ′ = 0.1, µ = 0.003, µ′ = 0.001, ε = 0.033, and the initial values are S0 = 35, I0 = 25, R0 = 0,

E0 = 25, A0 = 10,W0 = 5.

In Figures 1–3, we show the three-term solution of homotopy analysis transform

method (HATM) with the auxiliary parameter h = –1 and the auxiliary function H = 1

corresponding to proposed model (1) for different values of η and modification param-

eter ρ = 0.99. Figures 1 and 2 show that the number of susceptible and exposed people

increases first with a birth rate of 1.146. And then, with COVID-19 infection, the popu-

lation of these two groups declines, and the population of the symptomatic and asymp-

tomatic infected people increases. Figure 3 shows that the population of the out-group,
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Figure 5 Plots of the results of Caputo derivative and Caputo–Fabrizio derivative for A, I with η = 0.96

i.e., the recovered and the dead, also increases with time. The amount of virus in the

reservoir also decreases first and then increases as people enter the reservoir from the

two infected groups. We put the Caputo fractional derivative in model (1) instead of the

Caputo–Fabrizio fractional derivative and solved the new model similarly and obtained

the results of the two derivatives for η = 0.96. Then, in Figs. 4–6, we compared these results

for system (1). We observe that the difference between the results of these two derivatives

increases with time.

7 Conclusion

In this paper, we investigate a model of the COVID-19 transmission in different groups of

people using the Caputo–Fabrizio fractional derivative. Using the fixed point theorem, we

prove a unique solution for the system. The resulting differential system is solved using

the homotopy analysis transform method (HATM), and we obtain approximate solutions

in convergent series. With the numerical results, we present a simulation for COVID-19,

which shows the rapid transmission of the virus to different groups of people. We com-
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Figure 6 Plots of the results of Caputo derivative and Caputo–Fabrizio derivative for R, W with η = 0.96

pared the results of the Caputo–Fabrizio fractional derivative with those of the Caputo

derivative.
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