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Abstract: Smoking is a social trend that is prevalent around the world, particularly in places of
learning and at some significant events. The World Health Organization defines smoking as the most
important preventable cause of disease and the third major cause of death in humans. In order to
analyze this matter, this study typically emphasizes analyzing the dynamics of the fractional order
quitting smoking model via the Caputo-Fabrizio differential operator. For the numerical solution
of the considered model, the Laplace transform with the Adomian decomposition method (LADM)
and Homotopy perturbation method (HPM) is applied, and the comparison of both the achieved
numerical solutions is presented. Moreover, numerical simulation for the suggested scheme has been
presented in various fractional orders with the aid of Matlab and the numerical results are supported
by illustrative graphics. The simulation reveals the aptness of the considered model.

Keywords: smoking model; Caputo-Fabrizio fractional derivative; Laplace transform; Adomian
decomposition method; Homotopy perturbation method (HPM); numerical simulations
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1. Introduction

Mathematical biology is a wide-ranging field with several applications. In this field,
researchers are focusing on the portrayal of different types of diseases with controls in
the form of mathematical models. In 1909, Brownlee [1] took the initiative for the growth
of the field of mathematical biology and the emphasis was on the theory of fortuitous.
Furthermore, in 1912, he presented the basic laws for epidemic spreading [2]. In 1927,
Kermark and McKendrik [3] discussed the minutiae of the epidemic study. Later, many
researchers discoursed different models of various other diseases; see [4–7]. On the other
hand, one of the social habits that are spreading all over the world speedily as an infectious
disease is smoking. Smoking is the process by which people inhale the smoke of tobacco
containing particles and gas or simply [8,9]. Smoking is the practice in which smoke is
taken into the mouth and then released utilizing pipes or cigars. Columbus was the first
one who introduced smoking in Europe in the sixteenth-century [10], but before and after
this date, many other exotic species were offered, with great contrary effects on ecosystems
and effect on human habits [11,12]. Nicot spread tobacco as a cash crop in England; he
was the first who used it as a business, and that is why the word nicotine derived from
his name. Smoking can root different kinds of diseases together with mouth cancer, lung
cancer, larynan, heart diseases, vascular diseases, respiratory diseases, and many other
diseases that are injurious to human health [13–15].
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Nowadays, smoking is one of the foremost health problems in the world. According
to the world health organization (WHO) report on the smoking, epidemic [16], smoking
kills numerous people in their most active life. More than 5 million deaths in the world
are caused due to the effect of smoking on different organs of the human body, which
may increase to up to 8 million people per year by 2030 [17,18]. The chance of heart attack
is 70% more in smokers equated to the persons who are not smoking. Smokers have a
10% higher incidence rate of lung cancer than that nonsmokers. The life of smokers is
10 to 13 years shorter than that of non-smokers. Mathematician tries to control smoking
for securing the life expectancy of an individual. To give the best illustration of cigarette
smoking phenomena, mathematicians tried to make different effective smoking models.
The different smoking models were proposed by several authors. For the first time in
the year of 1997, Castillo-Garsow [19] outlined a mathematical model for smoking and
divide the total population into three different classes (potential smokers, chain smokers
and permanently quit smokers). In 2007, Ham [20] documented the different stages and
procedures of smoking among students through a survey in different vocational-technical
schools in Korea. In 2008, Sharomi and Gumel [14] improved their model to present a
new temporarily quit smokers class. Zaman [21] extended the model by presenting a new
occasional smokers class and offered a dynamical interaction in an integer order. Several
others presented the smoking models in integer and fractional order. Erturk [22] studied
a giving up smoking model associated with the Caputo fractional derivative. Zeb [23]
examined a fractional giving up smoking. Alkhudhari [24] analyzed the global dynam-
ics of mathematical equations describing smoking. Khalid [25] described the fractional
mathematical model of giving up smoking and many others.

We can utilize mathematical modeling to prevent the spread of tobacco smoking
because it has been used as a significant tool for pandemic grasp in recent decades. The
susceptible-exposed-infected-recovered (SEIR) is a general model. Therefore, the model
under consideration for this study is described as follows:

dX(t)
d(t)

= λ− β1X(t)H(t) + α Y(t)− µ X(t),

dH(t)
dt

= β1X(t)H(t)− β2H(t)J(t)− (λ1 + µ)H(t),
dJ(t)

dt
= β2H(t)J(t)− (ω + λ2 + µ)J(t)),

dY(t)
dt

= ω J(t)− (γ + µ + α)Y(t),
dZ(t)

dt
= γ Y(t)− µ Z(t).

(1)

We divided the total population into five classes, where X(t) is susceptible smokers,
H(t) is the snuffing (ingestion) class, J(t) is irregular smokers, Y(t) is regular smokers, and
Z(t) is quit smokers, respectively, at a time t. The whole description of the parameters used
in the model (1) is given in the Table 1 mbelow:

Table 1. Description of the model parameters.

Notation Description of the Parameters

λ The frequency of recruitment (birth or migration)
β1 The rate of the vulnerable population transitions to the snuffing class
β2 The Rate of snuffing becomes an irregular smokers
ω Rate of irregular smokers turning to a regular smoker
γ Departing rate
µ Rate of natural death
α Rate of recovery

λ1 Rate of snuffing class deaths because of smoking
λ2 Rate of death due to smoking



Fractal Fract. 2022, 6, 623 3 of 18

In the last few decades, several biological models were studied in detail with the
thought of classical derivatives, including [26–33]. Since in recent years fractional calculus
has fascinated great attention from researchers and various features of the said subject are
under consideration for research. This is because of the reality that fractional derivative is
an important tool to explain the dynamical behavior of various physical systems [34,35].
The specialty of these differential operators is their non-local physiognomies which do not
exist in the integer order differential operators [36,37]. As a fact, fractional order models are
more accurate and practical than the classical integer order models [38–40]. Fractional order
derivative produces a better degree of freedom in these models. Arbitrary order derivatives
are powerful tools for the discretion of the dynamical behavior of various bio-materials
and systems [41–43]. This is why there are different fractional derivatives; Riemann
and Liouville, and Caputo operators are the most conservative examples in traditional
practice. Caputo [44] presented a fractional derivative that permits the conventional initial
and boundary conditions allied with the real-world problem. Although the aforesaid
derivatives show more accuracy in describing real phenomena compared to the integer-
order derivatives, their kernel functions yield singularities which result in a multitude of
computational deficiencies. Moreover, to examine fractional mathematical models outside
of the traditional Caputo derivative notion, several methodologies, such as iterative and
numerical methods, have been applied [45].

In a recent effort, a new derivative that is non-singular and comprises an exponential
law kernel has latterly been brought into operation by Caputo and Fabrizio [46], and aptly
titled after them as Caputo-Fabrizio (CF) derivative. Losada and Nieto [47] presented
the fractional integral corresponding to the newly offered fractional derivative and ana-
lyzed some related fractional differential equations. The classical fractional derivatives,
specifically the Caputo and Riemann derivatives, have their constraint as their kernel is
singular which causes complications in fractional order derivatives. Since the kernel is
employed to define the memory effect of the physical system, it is obvious that as a result
of this weakness, both derivatives cannot exactly describe the full effect of the memory.
Generally, it is not simple for non-linear fractional differential equations to obtain their gen-
eral solutions. Therefore, the new type of non-singular derivatives of fractional order has
been found more suitable for studying thermal problems instead of ordinary derivatives.
Moreover, it is evident from the research which has been carried out pursuant to these
advancements in recent years that these fractional derivatives provide scientists a good
chance to describe diverse problems. To overwhelm this condition, various methods are
outlined in the existing literature to determine the approximate solutions for the nonlinear
systems [48]. Runge Kutta methods were widely employed in handling mathematical anal-
ysis [49]. The Homotopy perturbation method (HPM), Laplace Adomian decomposition
method (LADM), and method of difference have been widely used to deal with both linear
and non-linear fractional order differential equations [50–54]. Therefore, inspired by the
applicability of these non-singular derivatives, we aim to further analyze the smoking
model in view of the fractional concept and to explicate this problem in a better and more
effective manner.

In the present study, to obtain a better understanding of the qualitative analysis as
well as the numerical iterative analysis of the proposed model, the revised form of the
model (1) in the sense of Caputo-Fabrizio fractional derivative (CFFD) is considered which
is described as follows:

CFDp
t (X)(t) = λ− β1X(t)H(t) + α Y(t)− µ X(t),

CFDp
t (H)(t) = β1X(t)H(t)− β2H(t)J(t)− (λ1 + µ)H(t),

CFDp
t J(t) = β2H(t)J(t)− (ω + λ2 + µ)J(t),

CFDp
t (Y)(t) = ω J(t)− (γ + µ + α)Y(t),

CFDp
t (Z)(t) = γ Y(t)− µ Z(t),

(2)
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subject to the initial conditions:

X(0) = m1, H(0) = m2, J(0) = m3, Y(0) = m4, Z(0) = m5.

The goal of this work is to investigate the dynamical behavior of the smoking mathe-
matical model with the help of the Caputo-Fabrizio differential operator and makes use of
the utilities of fractional calculus. The Laplace transform with the Adomian decomposition
method and the Homotopy perturbation method are employed to achieve the approximate
solution of the considered model. As well as the comparison of the obtained results of
both techniques is presented which shows the identical character. Moreover, the numerical
solutions are facilitated with the aid of MATLAB and the graphical representation of each
compartment is shown in arbitrary fractional order.

The distribution of this paper is ordered as follows: We start with some fundamental
results and definitions in Section 2. In Section 3, the analytical solution of the suggested
model utilizing the Laplace Adomian decomposition approach and the Homotopy per-
turbation method is estimated. The numerical simulations to validate and backing the
analytical findings of the aforementioned sections are performed. In Section 4, the com-
parison of both numerical solutions achieved from the aforementioned schemes is shown
graphically and the obtained numerical simulation results are briefly discussed. Finally,
the concluding remarks of this study are given in Section 5.

2. Analytical Preliminaries

This section is devoted to certain essential terminologies and fractional calculus results
in line with [55,56].

Definition 1. Let f ∈ H1[0, α], α > 0, p ∈ (0, 1), then the Caputo-Fabrizio fractional derivative
of the function f (t) is described as follows:

CFDp
t [ f (t)] =

M(p)
1− p

∫ t

0
f ′(x)exp[−p

t− x
1− p

] dx,

where M(p) represents the normalization function and M(0) = M(1) = 1.

Definition 2. The Caputo-Fabrizio fractional integral with p ∈ (0, 1) for a function f is describes
as follows:

CF Ip
t [ f (t)] =

1− p
N(p)

+
p

N(p)

∫ t

0
f (x) dx, t ≥ 0.

Definition 3. The general formula for the Laplace Transform of Caputo-Fabrizio fractional deriva-
tive is described as follows:

L[CFDp
t [ f (t)] =

sL[ f (t)]− f (0)
s + p(1− s)

, s ≥ 0.

Definition 4. The homotopy perturbation method (HPM) is a semi-analytical technique for the
solution of linear and nonlinear ordinary as well as partial differential equations and systems. A
system of paired linear and nonlinear differential equations may also be estimated via this approach.
One clear advantage of using the HPM compared to decomposition would be that it can handle
nonlinear problems without the requirement for Adomian’s polynomial. Moreover, “He” was the
Chinese mathematician who first proposed the idea of HPM. The authors in [57] applied the HPM
to nonlinear oscillator problem. It could be used in an equation having linear and nonlinear parts,
and one can form a homotopy ν(s, p) : D × [0, 1]→ R :

F(ν, p) = (1− p)[L(ν)− L(u0)] + p[L(ν) + N(ν)− f (s)] = 0, (3)
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where L is used for the linear part, N for the nonlinear part, s ∈ D, D is a topological space and
p ∈ [0, 1] is the embedding parameter. Further, u0 is an initial approximation that satisfies the
boundary conditions.

Definition 5 ([58]). The He’s fractional derivative is defined as:

Dp
t =

1
Γ(n− p)

dn

dtn

∫ t

t0

(s− t)n−p−1[ f0(s)− f (s)]ds. (4)

3. General Solution for the Model (2)

In this section, we discuss the general techniques to construct the solution for the
considered model (2) along with the initial conditions.

3.1. General Solution for Model (2) with (LADM)

Now, taking the Laplace transform of the considered (2), and the normalization value
M(p) = 1, one may get

L[CFDp
t (X)(t)] = L[λ− β1X(t)H(t) + α Y(t)− µ X(t)],

L[CFDp
t (H)(t)] = L[β1X(t)H(t)− β2H(t)J(t)− (λ1 + µ)H(t)],

L[CFDp
t (J)(t)] = L[β2H(t)J(t)− (ω + λ2 + µ)J(t)],

L[CFDp
t (Y)(t)] = L[ω J(t)− (γ + µ + α)Y(t)],

L[CFDp
t (Z)(t)] = L[γ Y(t)− µ Z(t)].

(5)

Using the initial conditions yields

L[(X)(t)] =
X(0)

s
+

s + p(1− s)
s

L[λ− β1X(t)H(t) + α Y(t)− µ X(t)],

L[(H)(t)] =
H(0)

s
+

s + p(1− s)
s

L[β1X(t)H(t)− β2H(t)J(t)− (λ1 + µ)H(t)],

L[(J)(t)] =
J(0)

s
+

s + p(1− s)
s

L[β2H(t)J(t)− (ω + λ2 + µ)J(t)],

L[(Y)(t)] = Y(0)
s
− s + p(1− s)

s
L[ω J(t)− (γ + µ + α)Y(t)],

L[(Z)(t)] =
Z(0)

s
− s + p(1− s)

s
L[γ Y(t)− µ Z(t)].

(6)

Assuming the solution for the compartments X(t), H(t), J(t), Y(t), and Z(t) in an
infinite series is given below:

X(t) = ∑∞
k=0 Xk(t), H(t) = ∑∞

k=0 Hk(t),

Jk(t) = ∑∞
k=0 Jk(t), Y(t) = ∑∞

k=0 Yk(t),

Z(t) = ∑∞
k=0 Zk(t),

(7)

where X(t)H(t) = ∑∞
k=0 Sk(t), H(t)J(t) = ∑∞

k=0 W(t) are the non-linear terms of Adomian
polynomial wherein:Sk(t) = 1

m!
dm

dλm [∑m
k=0 λkXk(t)∑m

k=0 λk Hk(t)]|λ=0,

Wk(t) = 1
m!

dm

dλm [∑m
k=0 λk Hk(t)∑m

k=0 λk Jk(t)]|λ=0.
(8)

Using Equations (7) and (8) into (6), one can get
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L[∑∞
k=0 Xk(t)] =

X(0)
s

+
s + p(1− s)

s
L[λ− β1 ∑∞

k=0 Sk(t) + α ∑∞
k=0 Yk(t)− µ ∑∞

k=0 Xk(t)],

L[∑∞
k=0 Hk(t)] =

H(0)
s

+
s + p(1− s)

s
L[β1 ∑∞

k=0 Sk(t)− β2 ∑∞
k=0 W(t)− (λ1 + µ)∑∞

k=0 Hk(t)],

L[∑∞
k=0 Jk(t)] =

J(0)
s

+
s + p(1− s)

s
L[β2 ∑∞

k=0 W(t)− (ω + λ2 + µ)∑∞
k=0 Jk(t)],

L[∑∞
k=0 Yk(t)] =

Y(0)
s

+
s + p(1− s)

s
L[ω ∑∞

k=0 Jk(t)− (γ + µ + α)∑∞
k=0 Yk(t)],

L[∑∞
k=0 Zk(t)] =

Z(0)
s

+
s + p(1− s)

s
L[γ ∑∞

k=0 Yk(t)− µ ∑∞
k=0 Zk(t)].

(9)

Now, comparing like terms on both sides, one can get

L[X0(t)] =
m1
s ,L[H0(t)] =

m2
s ,L[J0(t)] =

m3
s ,L[Y0(t)] =

m4
s ,L[Z0(t)] =

m5
s ,

L[X1(t)] =
s + p(1− s)

s
L[λ− β1S0(t) + α Y0(t)− µ X0(t)],

L[H1(t)] =
s + p(1− s)

s
L[β1S0(t)− β2W0(t)− (λ1 + µ)H0(t)],

L[J1(t)] = [β2W0(t)− (ω + λ2 + µ)J0(t)],

L[Y1(t)] =
s + p(1− s)

s
L[ω J0(t)− (γ + µ + α)Y0(t)],

L[Z1(t)] =
s + p(1− s)

s
L[γ Y0(t)− µ Z0(t)],

L[X2(t)] =
s + p(1− s)

s
L[λ− β1S1(t) + α Y1(t)− µ X1(t)],

L[H2(t)] =
s + p(1− s)

s
L[β1S1(t)− β2W1(t)− (λ1 + µ)H1(t)],

L[J2(t)] = [β2W1(t)− (ω + λ2 + µ)J1(t)],

L[Y2(t)] =
s + p(1− s)

s
L[ω J1(t)− (γ + µ + α)Y1(t)],

L[Z2(t)] =
s + p(1− s)

s
L[γ Y1(t)− µ Z1(t)],

...

L[Xk+1(t)] =
s + p(1− s)

s
L[λ− β1Sk(t) + α Yk(t)− µ Xk(t)],

L[Hk+1(t)] =
s + p(1− s)

s
L[β1Sk(t)− β2Wk(t)− (λ1 + µ)Hk(t)],

L[Jk+1(t)] = [β2Wk(t)− (ω + λ2 + µ)Jk(t)],

L[Yk+1(t)] =
s + p(1− s)

s
L[ω Jk(t)− (γ + µ + α)Yk(t)],

L[Zk+1(t)] =
s + p(1− s)

s
L[γ Yk(t)− µ Zk(t)].

(10)

Further, utilizing the inverse Laplace transform to equation (10), we have
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X0 = m1, H0 = m2, J0 = m3, Y0 = m4, Z0 = m5.

X1(t) = [λ− β1m1m2 + α m4 − µ m1][1 + p(t− 1)],

H1(t) = [β1m1m2 − β2m2m3 − (λ1 + µ)m2][1 + p(t− 1)],

J1(t) = [β2m2m3 − (ω + λ2 + µ)m3][1 + p(t− 1)],

Y1(t) = [ω m3 − (γ + µ + α)m4][1 + p(t− 1)],

Z1(t) = [γ m4 − µ m5][1 + p(t− 1)].

X2(t) = [λ][1 + p(t− 1)] + [−β1(x11m2 + m1h11) + (α y11 − µ x11)][p2t2 − 2p2t + 2pt + (p− 1)2],

H2(t) = [β1(x11m2 + m1h11)− β2(m2 J11 + m3h11) + (λ1 + µ)h11][p2t2 − 2p2t + 2pt + (p− 1)2],

J2(t) = [β2(m2 J11 + m3h11)− (ω + λ2 + µ)J11][p2t2 − 2p2t + 2pt + (p− 1)2],

Y2(t) = [ω J11 − (γ + µ + α)y11][p2t2 − 2p2t + 2pt + (p− 1)2],

Z2(t) = [γ y11 − µ z11][p2t2 − 2p2t + 2pt + (p− 1)2].

(11)

Furthermore, the other terms can be obtained similarly, respectively, and the unknown
values in the aforementioned equations are given underneath as:

x11(t) = [λ− β1m1m2 + α m4 − µ m1][1 + p(t− 1)],

h11(t) = [β1m1m2 − β2m2m3 − (λ1 + µ)m2][1 + p(t− 1)],

j11(t) = [β2m2m3 − (ω + λ2 + µ)m3][1 + p(t− 1)],

y11(t) = [ω m3 − (γ + µ + α)m4][1 + p(t− 1)],

z11(t) = [γ m4 − µ m5][1 + p(t− 1)].

(12)

3.2. Numerical Results and Simulations

In this section, we accomplish the numerical simulations to help the analytical findings
of our proposed model. Therefore, we apportioned some values for the parameters which
are used in the proposed model (2) as:

m1 = 68, m2 = 40, m3 = 30, m4 = 20, m5 = 15,

λ = 0.1, β1 = 0.003, β2 = 0.002, ω = 0.05,

γ = 0.05, µ = 0.002, α = 0.003, λ1 = 0.003, λ2 = 0.003.

Utilizing these parametric values, the following terms of the model (2) are obtained:

X0 = 68, H0 = 40, J0 = 30, Y0 = 20, Z0 = 15.

X1 = (−8.13)[1 + p(t− 1)], H1 = (5.58)[1 + p(t− 1)], J1 = (2.13)[1 + p(t− 1)],

Y1 = (−0.98)[1 + (y− 1)], Z1 = (0.97)[1 + p(t− 1)],
X2 = (0.1)[1 + p(t− 1)]− (0.1819)[p2t2 − 2p2t + 2pt + (p− 1)2],

H2 = (0.2267)[p2t2 − 2p2t + 2pt + (p− 1)2],

J2 = (0.486)[p2t2 − 2p2t + 2pt + (p− 1)2],

Y2 = (0.0624)[p2t2 − 2p2t + 2pt + (p− 1)2],

Z2 = (−0.0509)[p2t2 − 2p2t + 2pt + (p− 1)2].

(13)
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Furthermore, the solutions to the first few terms are given as:

X(t) = 68− (8.03)[1 + p(t− 1)]− (0.1819)[p2t2 − 2p2t + 2pt + (p− 1)2],

H(t) = 40 + (5.58)[1 + p(t− 1)] + (0.2267)[p2t2 − 2p2t + 2pt + (p− 1)2],

J(t) = 30 + (2, 13)[1 + p(t− 1)] + (0.486)[p2t2 − 2p2t + 2pt + (p− 1)2],

Y(t) = 20− (−0.98)[1 + (y− 1)] + (0.0624)[p2t2 − 2p2t + 2pt + (p− 1)2],

Z(t) = 15 + (0.97)[1 + p(t− 1)]− (−0.0509)[p2t2 − 2p2t + 2pt + (p− 1)2].

(14)

Note that from (14), one can obtain the approximate solution of the proposed model
for various values of p.

3.3. General Solution for Model (2) with (HPM)

Now, we will employ the Homotopy perturbation method (HPM) to construct the
general solution of the Model (2) as:

(1− q)[CFDp
t (X)(t)−CF Dp

t (X0)(t)] + q[CFDp
t (X)(t)− λ + β1X(t)H(t)− α Y(t) + µ X(t)] = 0,

(1− q)[CFDp
t (H)(t)−CF Dp

t (H)0(t)] + q[CFDp
t (H)(t)− β1X(t)H(t) + β2H(t)J(t) + (λ1 − µ)H(t)] = 0,

(1− q)[CFDp
t (J)(t)−CF Dp

t (J)0(t)] + q[CFDp
t (J)(t)− β2H(t)J(t) + (ω + λ2 − µ)J(t)] = 0,

(1− q)[CFDp
t (Y)(t)−CF Dp

t (Y0)(t)] + [CFDp
t (Y)(t)−ω J(t) + (γ + µ + α)Y(t)] = 0,

(1− q)[CFDp
t (Z)(t)−CF Dp

t (Z0)(t)] + q[CFDp
t (Z)(t)− γ Y(t) + µ Z(t)] = 0.

(15)

Substituting q = 0 in (15) yields the following system of fractional differential equations:

CFDp
t (X)(t)−CF Dp

t (X0)(t) = 0,
CFDp

t (H)(t)−CF Dp
t (H)0(t) = 0,

CFDp
t (J)(t)−CF Dp

t (J0)(t) = 0,
CFDp

t (Y)(t)−CF Dp
t (Y0)(t) = 0,

CFDp
t (Z)(t)−CF Dp

t (Z0)(t) = 0,

(16)

and the solution to the above equation is simple. Now, by setting q = 1 in (15) yields the
similar model as (2). Now, assuming the solution in an infinite series form as:

X(t) = ∑∞
n=0 qnXn(t),

H(t) = ∑∞
n=0 qn Hn(t),

J(t) = ∑∞
n=0 qn Jn(t),

Y(t) = ∑∞
n=0 qnYn(t),

Z(t) = ∑∞
n=0 qnZn(t).

(17)

Furthermore, the original system can be attained by substituting q = 1 in (15). Now,
by substituting (17) into (15) and comparing the terms with the power of q generates:

q0 :



X0(t) = X(0) = m1,

H0(t) = H(0) = m2,

J0(t) = J(0) = m3,

Y0(t) = Y(0) = m4,

Z0(t) = Z(0) = m5.

(18)
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q1 :



X1(t) = [λ− β1m1m2 + α m4 − µ m1][1 + p(t− 1)],

H1(t) = [β1m1m2 − β2m2m3 − (λ1 + µ)m2][1 + p(t− 1)],

J1(t) = [β2m2m3 − (ω + λ2 + µ)m3][1 + p(t− 1)],

Y1(t) = [ω m3 − (γ + µ + α)m4][1 + p(t− 1)],

Z1(t) = [γ m4 − µ m5][1 + p(t− 1)].

(19)

q2 :



X2(t) = [λ][1 + p(t− 1)]− [β1(x11m2 + m1 I11) + (α y11 − µ X11)][p2t2 − 2p2t + 2pt + (p− 1)2],

H2(t) = [β1(x11m2 + m1 I11 − β2m2 J11 + m3 I11][p2t2 − 2p2t + 2pt + (p− 1)2],

J2(t) = [β2m2 J11 + m3 I11 − (ω + λ2 + µ)J11][p2t2 − 2p2t + 2pt + (p− 1)2],

Y2(t) = [ω J11 − (γ + µ + α)y11][p2t2 − 2p2t + 2pt + (p− 1)2],

Z2(t) = [γ y11 − µ z11][p2t2 − 2p2t + 2pt + (p− 1)2].

(20)

Similarly, higher-order power terms can be identified, and unknown terms have earlier
been mentioned in the previous section. Thus, we were able to reach the same terms as
the LADM technique. Moreover, both approaches are useful in solving fractional-order
nonlinear differential equations.

4. Simulations Results and Discussion

We offer numerical simulation for the proposed model to allow for the variation
of our semi-analytical findings in both ways. The simulation makes use of qualitative
point analysis and takes into account the parameters from a biological feasibility aspect.
The starting class sizes for each compartment, namely, Susceptible X(t), Snuffing H(t),
Irregular J(t), Regular Y(t), and quitter Z(t), are taken from the Section 3.2 together with
the numerical values of the parameters. In this section graph of all five compartments is
signified, and the explanation of the behavior of all the classes is discussed. Moreover, the
results are shown in Figures 1–5.
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Figure 1. Adaptive nature of the approximated result for the susceptible class X(t) class of the
considered model at different arbitrary fractional orders.
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Figure 2. Adaptive nature of the approximated result for the snuffing class H(t) class of the proposed
model at different arbitrary fractional orders.
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Figure 3. Adaptive nature of the approximated result for the irregular smokers J(t) class of the
considered model at different arbitrary fractional orders.
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Figure 4. Adaptive nature of the approximated result for the regular smokers Y(t) class of the
proposed model at different arbitrary fractional orders.
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Figure 5. Adaptive nature of the approximated result for the quitter smokers Z(t) class of the
considered model at different arbitrary fractional orders.

The dynamical behavior of the susceptible class X(t) is depicted in Figure 1 at different
fractional orders. For the lower fractional order, the drop is noticeable, while for the higher
fractional order, it is less noticeable. Furthermore, after 250 days, it becomes approximately
constant. Figure 2 presents the behavior of the snuffing class H(t) at various fractional
orders. It grows at high fractional order and for low fractional order, it grows first and then
going to decrease after 150 days.

In Figure 3, the irregular class J(t) grows rapidly for low fractional order and then
grows slowly for high fractional order. The dynamical behavior of regular class Y(t)
is shown in Figure 4. The results show that for the lower fractional order, the drop is
remarkable, while for the higher order, it is less remarkable.

Similarly, Figure 5 shows that the growth in quitter class Z(t) grows rapidly for low
fractional order and grows slowly for high fractional order.

In the next figure, Figure 6, we present the dynamical behavior of the five compart-
ments of the considered model by taking different values for the initial conditions along
with the same fractional orders.
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Figure 6. Cont.
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(e)
Figure 6. Fractional dynamical behavior of all the compartments of the considered model having
different initial conditions along with the same fractional orders. (a) Dynamical behavior of class
X(t) at t = 150 ; (b) Dynamical behavior of class H(t) at t = 100 ; (c) Dynamical behavior of class J(t)
at t = 80 ; (d) Dynamical behavior of class Y(t) at t = 60 ; (e) Dynamical behavior of class X(t) at
t = 40.

Next, we are intended to present a comparison of the numerical solutions of distinct
compartments of the studied model via both the suggested method of HPM and LADM for
the first few terms that display simulation similarities as given from Figures 7–11.
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Figure 7. Comparison of the approximate solution for X(t) class of the suggested model at different
arbitrary fractional orders by LADM and HPM.
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Figure 8. Comparison of the approximate solution for H(t) class of the proposed model at different
arbitrary fractional orders by LADM and HPM.
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Figure 9. Comparison of the approximate solution for J(t) class of the proposed model at different
arbitrary fractional orders by LADM and HPM.

Figures 7–11 show the comparison of the numerical simulations of the solutions of
all the compartments of the considered model. Furthermore, it is noted that both the
techniques LADM and HPM have the same results, so the graphical representation is
also the same for each compartment. The susceptible class X(t) and the regular smokers
class Y(t) are decreasing with time, the snuffing class H(t) first increases with time and
then decreases after some time, and the irregular smokers class J(t) are rapidly increasing
over time.

Moreover, the below Figures 12–16 present the comparison of LADM and HPM by
taking different values of the initial conditions but having the same fractional order values.



Fractal Fract. 2022, 6, 623 14 of 18

0 100 200 300 400

time t (Days)

0

2

4

6

8

10

12

14

16

18

20

p=0.99

p=0.97

p=0.94

p=0.92

p=0.90

0 100 200 300 400

time t (Days)

0

2

4

6

8

10

12

14

16

18

20

p=0.99

p=0.97

p=0.94

p=0.92

p=0.90

Figure 10. Comparison of the approximate solution for Y(t) class of the suggested model at different
arbitrary fractional orders by LADM and HPM.
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Figure 11. Comparison of the approximate solution for Z(t) class of the proposed model at different
arbitrary fractional orders by LADM and HPM.
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Figure 12. Comparison of the approximate solution for X(t) class of the proposed model having
initial condition 150.
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Figure 13. Comparison of the approximate solution for H(t) class of the proposed model having
initial condition 100.
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Figure 14. Comparison of the approximate solution for J(t) class of the proposed model having initial
condition 80.
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Figure 15. Comparison of the approximate solution for Y(t) class of the proposed model having
initial condition 60.
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Figure 16. Comparison of the approximate solution for Z(t) class of the proposed model having
initial condition 40.

5. Conclusions

In this paper, the dynamical behavior of the smoking mathematical model via the
Caputo-Fabrizio differential operator is analyzed and makes use of the utilities of frac-
tional calculus. The considered model has been numerically explored by employing the
Homotopy perturbation method (HPM) and the Laplace transform with the Adomian
decomposition method (LADM). The numerical results obtained with the hired methods
are significantly identical and have provided the finest confirmation for the considered
model in arbitrary order derivatives. The outcomes are influenced by various parameters
used in the considered model. Both methods converge and are useful for solving nonlinear
fractional order differential equations. It is also important to emphasize that, when com-
pared to standard methods, the method can save processing effort while maintaining good
numerical accuracy. Moreover, the numerical simulation results of the underlying problem
have been facilitated with the aid of Matlab, and the graphical behavior of each compart-
ment of the considered problem at arbitrary order derivatives has been presented. From the
presented simulation, we conclude that fractional order systems reveal more prosperous
dynamics than the one with the integer order. As well, we anticipate that the existing study
will be more beneficial in the account of smoking matter thinking of determination and
education. Conceivably, in the future, the gained elements may lead us to do more research
on this subject. For example, the mathematical model can be modernized by considering
various dynamical structures and can be investigated with different types of derivatives.
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