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Abstract The outbreak of the novel coronavirus
(COVID-19), which was firstly reported in China, has
affected many countries worldwide. To understand and
predict the transmission dynamics of this disease, math-
ematical models can be very effective. It has been
shown that the fractional order is related to the memory
effects, which seems to be more effective for modeling
the epidemic diseases. Motivated by this, in this paper,
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we propose fractional-order susceptible individuals,
asymptomatic infected, symptomatic infected, recov-
ered, and deceased (SEIRD) model for the spread of
COVID-19. We consider both classical and fractional-
order models and estimate the parameters by using the
real data of Italy, reported by the World Health Organi-
zation. The results show that the fractional-order model
has less root-mean-square error than the classical one.
Finally, the prediction ability of both of the integer- and
fractional-order models is evaluated by using a test data
set. The results show that the fractional model provides
a closer forecast to the real data.
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1 Introduction

At the end of 2019, a new viral disease was discov-
ered in Wuhan, China. The scientists found that the
cause of this infectious disease is the novel betacoron-
avirus, which leads to the severe acute respiratory syn-
drome. This virus, which is now known as 2019-nCoV,
SARS-CoV-2, and COVID-19, affects the lungs and
has symptoms such as cough, fever, tiredness, and dif-
ficult breathing. Unfortunately, the spread of the 2019-
nCoV was too rapid in Hubei Province and became an
epidemic at the end of January 2020. Consequently, the
Chinese government imposed the quarantine restric-
tions to prevent the outbreak. International travels were
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also declared. However, it was not successful, and the
disease was spread in the whole globe. At the time, a
large number of countries such as the USA, Italy, Spain,
and Germany are affected by this disease and the gov-
ernments try to defeat coronavirus by enforcing social
distancing.

The infectious pandemics have substantial effects
on the health and also on finance. Therefore, the study
of the dynamics of transmission of the disease is of
great importance. By the help of mathematical tools, it
is a possibility to predict many real-world time series
in different fields such as economics, finance, and cli-
mate [1–5]. Mathematical models are an effective tool
for understanding the dynamics of the outbreaks. These
models are also useful in forecasting the spread of the
disease and thus help the governments to be prepared
and make necessary decisions [6]. The well-known and
most used mathematical models for the spread of infec-
tions are the classical ordinary differential equations,
such as SI, SIS, SIR, SEIR, SIRD, and SEIRD models.
In these models, each variable represents the number of
individuals in different groups. From the discovery of
the 2019-nCoV, several models have been proposed to
study its dynamics [7–12]. Zhong et al. [13] proposed
a simple SIR model for predicting novel coronavirus,
according to China’s first reported data. Yang and Wang
[14] presented an extended SEIR model for COVID-19
with time-varying transmission rates by considering the
environmental effects. Liang [15] described the growth
propagation of three pandemic diseases, COVID-19,
SARS, and MERS, by mathematical models and found
that the growth rate of COVID-19 is much greater than
SARS and MERS.

The fractional-order differential equations have been
recently used for describing the behavior of the epi-
demics [16–22]. The fractional derivatives are depen-
dent on the historical states, in addition to the current
state, and thus have memory properties [17,18]. There-
fore, they are a better choice for the epidemic’s mod-
eling. Furthermore, in the fractional model, the deriva-
tive order provides a degree of freedom in fitting data
[18]. Due to these properties, the fractional differen-
tial equations have been used for various applications
in different fields [23–29]. González–Parra et al. [18]
presented a fractional-order SEIR model for explain-
ing the outbreak of influenza A(H1N1). They showed
that the fractional model agrees with the real data bet-
ter than the classical model. Demirci et al. [16] pro-
posed a fractional-order SEIR epidemic model with

vertical transmission with considering that the death
rate is dependent on the number of the total population.
Area et al. [17] analyzed the data of the Ebola outbreak
by both integer-order and fractional-order SEIR mod-
els. However, they reported that the classical model had
better fitting results than the fractional one.

All of the studies in modeling the spread of COVID-
19 have considered ordinary differential equations,
while there are some claims that the fractional-order
models have a better fitting to the real data. In [30], the
authors have presented a SEIRD model for analyzing
and predicting the COVID-19. In this paper, we analyze
this model with fractional-order derivatives. We com-
pute the error of fitting the model to the real data, which
refers to Italy from February 24 to April 7. Therefore,
the optimum parameters are found for different deriva-
tive orders. It is observed that the model with fractional
order has less fitting error than the integer model. Then,
the model is tested by using the data of April 8 to May
16 (unseen by the model during parameter estimation).
The results show that the fractional model provides a
better prediction than the integer model.

2 SEIRD model

In our investigation, we use the SEIRD model pro-
posed in [30], which contains five populations of sus-
ceptible individuals (S), the infected individuals who
are not detected (asymptomatic) (E), the symptomatic
(I ), recovered (R), and deceased (D) individuals. The
describing equations of this model are as follows:

dS

dt
= −S(r1 E + r2 I )

dE

dt
= S(r1 E + r2 I ) + (a1 + c1)E

dI

dt
= c1 E − (a2 + c2)I

dR

dt
= a1 E + a2 I

dD

dt
= c2 I. (1)

This model assumes that the asymptomatic individ-
uals can recover with the rate of a1 or become symp-
tomatic with the rate of c1. Furthermore, the symp-
tomatic individuals recover with the rate of a2 or die
with the rate of c2. The rates of getting infected from the
asymptomatic and symptomatic individuals are r1 and
r2, respectively. According to [30], it is assumed that
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the detected infected individuals are in isolation, and
thus, r2 = 0 is considered. At the first stage of the epi-
demic, the total population is susceptible to the disease
(S(0) = N ). But by enforcing the social distancing,
fewer people are susceptible, and therefore, the value
taken for S(0) is reduced.

As in [30], we consider the sum of α1 = a1 +c1 and
α2 = a2+c2 to be the inverse of τI and τD , respectively.
The τI = 5 and τD = 11 are the mean time of incu-
bation and the mean time from the initial symptoms to
death. The mortality rate is also set at 0.02 and is calcu-
lated by m =

c1
α1

c2
α2

. Therefore, by setting the parame-
ters a1, r1, S(0), and E(0) from the best fit and by using

Fig. 1 The estimation of the integer-order model. a The esti-
mated (blue line) and the real (cyan circles) infected individuals.
b The estimated (red line) and the real (magenta circles) deceased
individuals. c Estimation of all populations (susceptible: green,

exposed: orange, infected: blue, recovered: purple, deceased:
red). The parameters are S(0) = 3.6 × 106, E(0) = 1.24 × 104,
r1 = 9.3 × 10−8, a1 = 0.17. (Color figure online)
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these equations, all of the parameters are obtained as
follows: c1 = α1 − a1 c2 = m α1α2

c1
a2 = α2 − c − 2.

3 Fractional SEIRD model

There are several definitions for the fractional deriva-
tives. Among them, the Caputo-type fractional deriva-
tive is more popular and used for real applications. The
Caputo-type fractional derivative is defined by:

Dq f (t) =
1

∆(n − q)

∫ t

0
(t − τ)n−q−1 f (n)(τ )dτ =

j (n−q)

(

dn

dtn
f (t)

)

, (2)

where n = [q] is the first integer greater than q, ∆ is
the gamma function, and jα is the α-order Riemann–
Liouville integral operator expressed by:

jα f (t) =
1

∆(α)

∫ t

0
(t − τ)α−1 f (τ )dτ. (3)

Now, we write the SEIRD model (Eq. 1) with fractional
derivatives as:

Dα S = −S(r1 E + r2 I )

Dα E = S(r1 E + r2 I ) + (a1 + c1)E

Dα I = c1 E − (a2 + c2)I

Dα R = a1 E + a2 I

Dα D = c2 I (4)

where all the parameters are defined the same as the
classical model, and q is the derivative order. As in the
classical model, the values of the a1, r1, E(0), and S(0)

are estimated from the best fit of the model and the real
data. Then, the values of c1, c2, and α2 are computed
from the equations. For the numerical solutions of the
fractional model (Eq. 4), we use the Adams–Bashforth–
Moulton predictor–corrector scheme [31].

Theorem 1 There is a unique nonnegative solution for

the fractional differential equations given by Eq. 4.

Proof The existence and uniqueness of the solution of
Eq. 4 can be attained by applying ([32], Theorem 3.1,
and Remark 3.2). According to [16], we must show that
the domain R4

+ is positively invariant: Dα S|S=0 = 0

Dα E |E=0 = 0

Dα I |I=0 = c1 E

Dα R|R=0 = a1 E + a2 I

Dα D|D=0 = c2 I .

Thus, all of the above equations are ≥ 0. Therefore,
by using ([16], Lemma 3.1, and Remark 3.2) Theorem
1 is proved and the solution remains in R4

+.

Fig. 2 The comparison between estimations with different derivative orders. a The estimated and the real infected individuals. b The
estimated and the real deceased individuals. The parameters used for each derivative order are presented in Table 1
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Table 1 The values of the optimum parameters for each derivative order

q S(0) E(0) r1 a1 q S(0) E(0) r1 a1

1 3.6 × 106 1.24 × 104 9.3 × 10−8 0.17 0.725 5.32 × 106 1.16 × 104 9.4 × 10−8 0.185

0.975 3.6 × 106 1.08 × 104 10 × 10−8 0.175 0.7 5.48 × 106 1.28 × 104 9.3 × 10−8 0.185

0.95 3.64 × 106 1.2 × 104 10 × 10−8 0.175 0.675 5.6 × 106 1.24 × 104 9.4 × 10−8 0.185

0.925 3.72 × 106 1.32 × 104 9.9 × 10−8 0.175 0.65 5.56 × 106 1 × 104 10 × 10−8 0.185

0.8 4.16 × 106 1.2 × 104 9.5 × 10−8 0.18 0.625 5.72 × 106 1 × 104 10 × 10−8 0.185

0.875 4.08 × 106 1.16 × 104 10 × 10−8 0.18 0.6 6 × 106 1 × 104 9.8 × 10−8 0.185

0.85 4.18 × 106 1.2 × 104 10 × 10−8 0.18 0.575 6.12 × 106 1.04 × 104 9.9 × 10−8 0.185

0.825 4.24 × 106 1.28 × 104 10 × 10−8 0.18 0.55 6.2 × 106 1.2 × 104 10 × 10−8 0.185

0.8 4.32 × 106 1.4 × 104 10 × 10−8 0.18 0.525 6 × 106 1.32 × 104 10 × 10−8 0.18

0.775 5.33 × 106 1.36 × 104 8.7 × 10−8 0.185 0.5 6.2 × 106 1.36 × 104 10 × 10−8 0.18

0.75 5.36 × 106 1.36 × 104 8.9 × 10−8 0.185

4 Results

To estimate the parameters of the model, we use Italy’s
data from February 24 to April 7, reported by WHO. We
consider the number of the infected (I ) and deceased
(D) individuals and compute the root-mean-square
error (RMSE) to find the optimal parameters:

RMSE =

√

∑T
t=1(Ir − Im)2 + (Dr − Dm)2

T
, (5)

where r and m denote the real data and the model,
respectively, and T is the time of available data. The
initial values are adopted according to the data in Febru-
ary 24 as I (0) = 221, R(0) = 1, and D(0) = 7. Firstly,
the integer-order model is studied, and the best param-
eters are obtained.

Figure 1 shows the best estimation of the classical
model by fixing S(0) = 3.6×106, E(0) = 1.24×104,
r1 = 9.3 × 10−8, and a1 = 0.17. The value of the nor-
malized root-mean-square error is 0.0202. In Fig. 1a,
the estimated (blue line) and real values (cyan circles)
of the infected individuals (I ) are shown, and the esti-
mated (red line) and real values (magenta circles) of the
deaths are illustrated in Fig. 1b. Figure 1c depicts all of
the models variables in the logarithmic scale, wherein
the susceptible, exposed, and recovered individuals are
shown in green, orange, and purple, respectively. This
estimation predicted that the number of infected indi-
viduals would be maximum on April 9.

Next, the fractional-order model is investigated by
varying the derivative order. The results of the estima-
tion of the infected and dead populations for differ-
ent orders are shown in Fig. 2. As the figure shows,
the slope and the peak of the estimation are changed
by varying the derivative order. To find the optimum
order for the fractional model, we have calculated the
RMSE for each order and found the best fit. Figure 3
shows the value of the normalized RMSE concerning
the derivative order. The values of the parameters at
which these errors have been obtained are presented
in Table 1. Figure 3 represents that by decreasing the
derivative order, the error of estimation is decreased
until q = 0.725. Then, by more decreasing the order,
the error increases. Therefore, according to this dia-

Fig. 3 The normalized root-mean-square error of the model esti-
mation for different derivative orders. The minimum error of
estimation is obtained for q = 0.725
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Fig. 4 The estimation of the fractional-order model with q =

0.725. a The estimated (blue line) and the real (cyan circles)
infected individuals. b The estimated (red line) and the real
(magenta circles) deceased individuals. c Estimation of all pop-

ulations (susceptible: green, exposed: orange, infected: blue,
recovered: purple, deceased: red). The parameters are S(0) =

5.32 × 106, E(0) = 1.16 × 104, r1 = 9.4 × 10−8, a1 = 0.185.
(Color figure online)

gram, the best fit is obtained by setting q = 0.725,
with RM SE = 0.0082. Figure 4 shows the results for
q = 0.725, at which the parameters are fixed at S(0) =

5.32 × 106, E(0) = 1.16 × 104, r1 = 9.4 × 10−8, and
a1 = 0.185. This estimation predicted that the peak of
the infected population would occur on 15 April.

In order to compare the integer and fractional mod-
els’ prediction ability, another set of real data is used.

As mentioned before, for estimating the parameters of
the models, the data from February 24 to April 7 have
been used. To check the prediction of the models, we
use the data from April 8 to May 16. In Fig. 5, the
blue circles show the samples used for evaluating the
models, and the blue stars show the test data set. The
estimation of the integer and fractional models is rep-
resented by red and green, respectively. It is observed
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Fig. 5 The prediction of the integer- and fractional-order (q =

0.725) models. The data used for estimating the parameters are
shown by blue circles, and the test data are shown by blue stars.
The estimation of the integer- and fractional-order models is rep-
resented by red and green, respectively. The values of the param-
eters are given in Table 1. (Color figure online)

that the integer model is only valid for the first data set
and does not perform well in forecasting the unseen
data. But the fractional model not only has less error in
modeling main data, but is also much closer to real test
data (better performance in forecasting).

5 Discussion and conclusion

In December 2019, a novel coronavirus was discov-
ered in China and very rapidly affected other coun-
tries. In this paper, in order to understand and pre-
dict the spread of this epidemic, we analyzed the out-
break of the novel coronavirus in Italy, acquired from
World Health Organization (WHO). Recently, a SEIRD
model that considers the susceptible, exposed, infected,
recovered, and deceased populations has been proposed
for this disease [30]. Here, we considered the SEIRD
model with fractional derivatives to model the out-
break. The fractional-order equations are usually more
efficient in modeling since the choice of the deriva-
tive order provides one more degree of freedom. For
the fractional model, the Caputo operator was consid-
ered, and the Adams–Bashforth–Moulton predictor–
corrector scheme was used for solving the equations.
Firstly, the data from February 24 to April 7 were used
for finding the model’s parameters with the best fit. The
parameters were obtained by computing the minimum
root-mean-square error of fitting the model to the real
data. The results showed that the factional-order model
provides a better fit to the real data with less error than

the integer-order model. The best fit was attained for
the derivative order q = 0.725. Then, the data from
April 8 to May 16 were used to check the prediction
of the integer and fractional models. It was observed
that the fractional model has a closer estimation of the
reality. The fractional model predicts the peak of the
outbreak to be on April 15. While in the estimation of
the integer-order model, the peak occurs on April 9.
According to the obtained results, it is suggested to use
fractional-order models in the prediction of many real-
world time series in different fields such as economics,
finance, and climate.
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