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Sciences, Bahçeşehir University,

34349 Istanbul, Turkey

Abstract

In this article, we examine a computational model to explore the prevalence of a viral

infectious disease, namely hand-foot-mouth disease, which is more common in

infants and children. The structure of this model consists of six sub-populations along

with two delay parameters. Besides, by taking advantage of the Atangana–Baleanu

fractional derivative, the ability of the model to justify different situations for the

system has been improved. Discussions about the existence of the solution and its

uniqueness are also included in the article. Subsequently, an effective numerical

scheme has been employed to obtain several meaningful approximate solutions in

various scenarios imposed on the problem. The sensitivity analysis of some existing

parameters in the model has also been investigated through several numerical

simulations. One of the advantages of the fractional derivative used in the model is

the use of the concept of memory in maintaining the substantial properties of the

understudied phenomena from the origin of time to the desired time. It seems that

the tools used in this model are very powerful and can effectively simulate the

expected theoretical conditions in the problem, and can also be recommended in

modeling other computational models in infectious diseases.

Keywords: Mathematical modeling of infectious diseases; The Atangana–Baleanu

fractional derivative; Approximate solutions; Predictor–corrector scheme; Fractional

delay differential equations

1 Introduction

Infectious diseases are a branch of science that deals with the diagnosis and treatment of

diseases caused by microorganisms. While many infectious diseases such as tuberculosis,

plague, leprosy, smallpox, and the flu have existed throughout the history of the world,

humans have been fighting microorganisms for centuries. Although some infectious dis-

eases, such as smallpox, have been eradicated through vaccination, new infectious diseases

have emerged, such as AIDS and COVID-19. With globalization, global warming, and in-

creasing travel, whether newly emerging viral diseases or resistant bacterial infections,

infectious diseases remain at the forefront.

The hand-foot-mouth disease (HFMD) is one of the most common infectious diseases

that affect many people around the world. The disease is caused by some viruses like
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Coxsackievirus A16 and Enterovirus 71. The disease is more common in children un-

der 5 years old. More precisely, the prevalence of the disease is much more common in

children under three years of age. Besides, there have been numerous cases of the dis-

ease in adults around the world. In most cases, patients have mild symptoms for 7 to

10 days [1]. Some of these symptoms are fever and flu-like symptoms, mouth sores, and

skin rash. So far, two main ways of transmitting this contagious disease have been iden-

tified: the first way is transmitted through contact with an infected person or contact

with tools used by infected people. The disease can also be spread through coughing or

sneezing in the air and transmitted through the respiratory transmission to another per-

son.

The first cases of HFMD cases were clinically reported in Canada and New Zealand in

1957. The disease has been reported in many parts of the world, including some parts

of Asia, Europe, and the United States. The disease first appeared in Shanghai, China,

and spread rapidly to other parts of the country, including Beijing, Shandong, and Jiangxi

provinces. According to our information, the epidemic of this disease occurs in cycles

of two or three years. The best time to peak the spread of the disease is usually in the

summer. Heat and humidity are known as two main factors that aggravate the spread of

the disease. The first case of the disease was seen in Thailand in 2003. In a short time,

signs of this contagious disease were visible in all cities and provinces of this country [32].

The first national study describing a large number of deaths caused in this country by the

disease during an outbreak in 2011 was presented in [46]. HFMD has also been found in

many Indian major states [38].

Unfortunately, no specific curative treatment has been found for this viral disease. How-

ever, several simple preventive measures such as avoiding direct contact with infected

people, quarantining infected children at school, cleaning common utensils regularly, and

disinfecting contaminated surfaces have been confirmed as the most effective ways to re-

duce transmission of the virus to other people in the community.

Due to the high prevalence of this disease in different parts of the world and the im-

portance of identifying and controlling the factors affecting its prevalence, many exten-

sive kinds of research have been conducted by researchers from various scientific aspects.

In [26], a new method for the disease prediction using GeoDetector and a Long Short-

Term Memory neural network (LSTM) has been proposed. In [40], the authors applied

optimal control theory to the HFMD model, including the treatment and vaccination in-

terventions. They presented some control strategies based on minimizing the cost of the

intervention and minimizing the number of infected people. Very recently, a fractional-

order model has been utilized to describe the transmission of HFMD in [39]. In this paper,

the authors considered two major cases of constant and optimal control. In each case,

the existence and uniqueness of positive solutions and the sufficient conditions for the

existence and stability of equilibriums were investigated. It is important to mention that

their study on the optimality control conditions is based on Pontryagin’s maximum prin-

ciple. Another interesting study on the disease was conducted to investigate the role of air

pollution in the prevalence and incidence of the disease in the warm and cold seasons in

Wuhan, China [47]. In [42], the authors investigated some strategies to control the dis-

ease using a system of ordinary differential with two delay parameters. To estimate and

better understand the transmissibility of HFMD, a susceptible–infected–recovered (SIR)

model has been utilized in [26]. They claim that the main reason for this choice is that
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the incubation period of the disease is less than one week. In [13], another new SIR model

has been developed to fit the surveillance data containing valuable information on the

severity of HFMD in order to accurately estimate the basic reproductive number (R0) of

the disease. In [27], a simple SEIR model has been examined to investigate the dynamics of

the disease among young children. A discrete SEIADR (susceptible–exposed–infectious–

asymptomatic–dead–recovered) epidemicmodel has been also developed in [34]. To read

more articles, please refer to [12, 16, 17, 28, 31, 33, 45, 50, 51].

Fractional differential calculus has been used in modeling many phenomena in every-

day real-world applications [18, 20–23, 25]. Therefore, due to the importance and scope

of applications, many efficient numerical methods specific to each of these types of frac-

tional operators have also been introduced [3–8, 10, 11, 15, 19, 24, 30, 35, 37, 43]. However,

in [41] the author has conducted a review to point some possible problems and difficul-

ties arising in the construction of fractional-dynamic model analogs of standard models

by using fractional calculus. This stems from the fact that some fundamental properties

of fractional derivatives (such as the multiplicity principle, the solvability and correspon-

dence principles, and the interpretability principle) violate various known standard rules

and properties that are fulfilled for derivatives of integer order.

Information retention (or so-calledmemory effect) is one of themost basic properties of

fractional-order derivatives. This significant property hasmade these operators one of the

most efficient tools in computational models arising in biology. In other words, the basic

information of the model from the beginning of time is utilized to characterize the behav-

ior of the phenomenon at any desired time. The use of fractional derivatives has made it

possible to employ such a valuable feature. To take advantage of memory-related benefits

in the context of fractional-order derivatives, our main objective is to study a nonlinear

system of the delayed-fractional model in studying HFMD. For this purpose, the present

contribution is structured as follows: Some mathematical background, mainly about re-

cent definitions on fractional calculusmodel, is formulated in Sect. 2. The proposedmodel

is introduced in Sect. 3. In Sect. 4, we investigate some mathematical frameworks of the

model, including the equilibriumpoints, the basic reproduction number, and the existence

and uniqueness of the model’s solution. Then, we present some corresponding numerical

simulations in Sect. 5. Finally, some conclusions are drawn in the last section of the arti-

cle.

2 Some basic preliminaries on fractional operators

Employing new definitions in mathematics always makes extensive progress in modeling

various phenomena around us in the world. One of these new and powerful topics is the

use of fractional calculus concepts. In this section, we will have an overview of some of

known basic definitions corresponding to fractional calculus that are used in what follows.

For this purpose, we present the definition of Riemann–Liouville fractional integral and

derivative operators RLIα and RLDα of order α > 0, respectively. Then, we define the Ca-

puto fractional derivative CDα of order α > 0 as a modification of the Riemann–Liouville

fractional derivative. Further, we present some properties of the Mittag-Leffler function

Eα,β (z), α,β > 0 (see [48]).
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Definition 1 For a given integrable function S(t), the fractional integral operator in the

Riemann–Liouville sense CD–α of order α > 0 is given by [36]

CIαS(t) =
1

Ŵ(α)

∫ t

0

(t – ς )α–1S(ς )dς , (1)

where Ŵ(·) denotes the well-known gamma function.

Definition 2 For a given function S(t) in C[0,T], the fractional derivative operator in the

Riemann–Liouville sense CI–α of order α > 0 is given by

CDαS(t) =

⎧
⎨
⎩

1
Ŵ(n–q)

dn

dtn

∫ t

0
S(ς )

(t–ς )α–n+1
dς , n – 1 ≤ α < n,n ∈N,

dn

dtn
S(t), α = n,n ∈N.

Definition 3 Let T > 0 and S(t) ∈ Cn[0,T]. The Caputo fractional derivative operator
CDα of order α > 0 is defined by

CDαS(t) =

⎧
⎨
⎩

1
Ŵ(n–q)

∫ t

0
S(n)(ς )

(t–ς )α–n+1
dς , n – 1 < α < n,n ∈N,

dn

dtn
S(t), q = n,n ∈ N.

The following two important propositions are consequences of the above definitions:

CDα
(

CIαS(t)
)
= S(t), CIα

(
CDαS(t)

)
= S(t) –

n–1∑

k=0

h(k)(0)

k!
tk , t > 0.

Definitions (2) and (3) are different from each other, and the relation between the two

types of fractional derivatives is as follows:

CDαS(t) = RL
0 D

α
t S(t) –

n–1∑

k=0

rαk (t)S
(k)(0), rαk (t) =

tk–α

Ŵ(k + 1 – α)
.

The Caputo derivative has the main advantage that the initial condition of the corre-

sponding problem has the same value as the ordinary differential equation. Moreover, for

a constant-valued function, the Caputo derivative is zero.

Definition 4 The Mittag-Leffler function of two parameters is given by

Eα,β (z) =

∞∑

k=0

zk

Ŵ(αk + β)
, z ∈ C, (2)

where α,β > 0, C denotes the complex plane.

For α = β = 1, the Mittag-Leffler function E1,1(z) gives the exponential function exp(z).

Moreover, the Mittag-Leffler function satisfies the following useful equality:

Eα,β (z) = zEα,α+β (z) +
1

Ŵ(β)
, α,β > 0.
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Lemma 1 For a ∈R and α,β > 0, we obtain

L
(
tα–1Eα,β (at)

)
=

sα–β

sα – a
. (3)

Also,

L
(

CDαS(t)
)
= sα–1Ŝ(s) –

n–1∑

k=0

S (k)(0)sα–k–1, (4)

where Ŝ(s) =L(S(t)).

Definition 5 The AB-Caputo derivative operator AB
D

α of S(t) is defined as follows [9]:

ABDαS(t) =
AB(α)

1 – α

∫ t

0

Eα,1

[
–

α

1 – α
(t – ς )

]
Ṡ(ς )dς , α ∈ (0, 1) (5)

and AB(α) = 1 – α + α/Ŵ(α).

Definition 6 The AB-Caputo integral operator of order α is defined as

ABIαS(t) =
1 – α

AB(α)
S(t) +

α

Ŵ(α)AB(α)

∫ t

0

S(ς )(t – ς )α–1 dς , 0 < α ≤ 1. (6)

Lemma 2 For the operators defined in Equations (6) and (5), the following union is estab-

lished [2]:

ABIα
(

ABDαS(t)
)
= S(t) – S(0). (7)

3 The delayed-fractional version of themodel

In recent years, modeling real-world problems using the fractional delay differential equa-

tions (FDDEs) has attracted much attention among mathematicians, physicists, and engi-

neers. Due to the wide application of these equations, the theoretical and practical aspects

of this category of equations have been extensively studied by researchers inmany research

articles such as [42, 44, 49].

In the light of these facts and after employing the AB-Caputo fractional derivative ABDα

and defining two-time delays τ1 and τ2 in the model presented in [42], we arrive at the

following FDDE for the spread of the disease:

ABDαS(t) = (1 – ρ)bN (t) – λS(t) – (1 – ǫ)λS(t – τ1) – ρ1S(t – τ1)

–
(
γN (t) +μ + ρ2

)
S(t) +wR(t),

ABDαTν(t) = ρ1S(t – τ1) + ǫVν(t) –
(
N (t)γ + η4 +μ

)
Tν(t),

ABDαIc(t) = λS(t) + (1 – ǫ)λS(t – τ1) –
(
γN (t) + η2 + δ +μ

)
Ic(t),

ABDαR(t) = η2Ic(t) –
(
γN (t) +μ +ω

)
R(t) + η3Vca(t) + η4Tν(t),

ABDαVν(t) = bρN (t) + ρ2S(t) – φλVν(t) –
(
γN (t) + ǫ +μ

)
Vν(t),

ABDαVca(t) = φλVν(t) –
(
γN (t) + η3 + δ +μ

)
Vca(t),

(8)
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where λ = β(Ic(t – τ2) +μVca(t – τ2))/N (t), and subject to given initial conditions

S(t) = ψ1(t), Tν(t) = ψ2(t), Ic(t) = ψ3(t), R(t) = ψ4(t),

Vν(t) = ψ5(t), Vca(t) = ψ6(t), t ∈ [–τ , 0], τ = max{τ1, τ2}.

The effective populations in this model are categorized into six state variables as follows:

the susceptible subpopulation S(t), the treated and vaccinated subpopulation Tν(t), the

clinically infectious subpopulation Ic(t), the recovered subpopulationR(t), the vaccinated

subpopulation Vν(t), and finally, the vaccinated carrier subpopulation Vca(t).We symbol-

ize the sum of all subpopulations byN (t). In this model, the transmission rate is denoted

by β . Moreover, b is the birth rate, η2 represents the transforming rate from Ic(t) toR(t).

Also, η2 is utilized to describe the vaccinated carrier rate, ω is the recovery rate, φ is the

rate of protection loss, τ1 and τ2 are two delay parameters. Moreover, μ denotes the natu-

ral death rate, treating and vaccinating rate of susceptible people is shown by ρ1, culling of

clinical infective, and vaccinated carrier rate is denoted by δ. Finally, the rates correspond-

ing to the treating vaccinated, vaccinating susceptible, and recovery of treated people are

ǫ, ρ2, and η4, respectively [29].

In consecutive subsections, we analyze some theoretical aspects of the fractional model

outlined in (8).

3.1 The equilibrium points

The equilibrium points of the system are determined as follows:

– The disease-free equilibrium of the model is B1 = (S1,Tν1, 0,R1,Vν1, 0), where

S1 =
((1 – ρ)(b3 + (ω + ǫ + η4)b

2 + ((ω + η4)bǫ +ωη4)b) + ǫωη4)r

γM1

,

Tν1 =
(b +ω)r(ǫ(bρ + ρ1 + ρ2) + bρ1(1 – ρ))

γM1

,

R1 =
(b +ω)r(ǫ(bρ + ρ1 + ρ2) + bρ1(1 – ρ))

γM1

,

Vν1 =
rb(b +ω + η4)ρρ1 + r(b + η4)(b +ω)(bρ + ρ2)

γM1

,

(9)

and

M1 = b3 + (ω + ǫ + ρ1 + ρ2 + η4)b2

+
(
(ω + ρ1 + ρ1 + η4) + (ω + ρ1 + ρ2)η4 +ω(ρ1 + ρ2)

)
b

+
(
(ω + ρ1 + ρ2)

)
η4 +ω(ρ1 + ρ2) +ωη4ρ2.

– The endemic equilibrium of the model is B2 = (S2,Tν2,Ic2,R2,Vν2,Vca), where

S1 =
(1 – ρ)b(r/γ ) +ωR1

(2 – ǫ)λ′ + b + ρ1 + ρ2

,

Tν1 =
ρ1((1 – ρ)bb(r/γ ) +ωR1)

A4

+
ǫb(r/γ )bp

(b +μ4)(λ′φ + b + ǫ)
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+
ǫρ2((1 – ρ)bb(r/γ ) +ωR1)

(λ′φ + b + ǫ)A4

,

Ic1 =
(2 – ǫ)λ′((1 – ρ)bb(r/γ ) +ωR1)

(δ + b + η2)((2 – ǫ)λ′ + b + ρ1 + ρ2)
,

R1 =
1

1 –A2

(
A3

(b +ω)(δ + b + η2)A4

(10)

+A5

(
ρ

(b + η4)(δ + b + η3)
+

ρ2(1 – ρ)

A4(δ + b + η3)

))
,

Vν1 =
b(r/γ )bρ

λ′φ + b + ǫ
+

ρ2((1 – ρ)bb(r/γ ) +ωR1)

(λ′φ + b + ǫ)((2 – ǫ)λ′ + b + ρ1 + ρ2)
,

Vca1 =
λ′φ

δ + b + η3

(
b(r/γ )bρ

λ′φ + b + ǫ
+

ρ2((1 – ρ)bb(r/γ ) +ωR1)

(λ′φ + b + ǫ)((2 – ǫ)λ′ + b + ρ1 + ρ2)

)
,

and

A1 = (b +ω)
(
(2 – ǫ)λ′ + b + ρ1 + ρ2

)
,

A2 =
ω

A1

(
η2(2 – ǫ)λ′

δ + b + η2

+
η4(λ

′φρ1 + (b + ǫ)ρ1 + ǫρ2)

(λ′φ + b + ǫ)(b + η4)
+

η3λ
′φρ2

(λ′φ + b + ǫ)(δ + b + η3)

)
,

A3 = (1 – ρ)bK
(
(2 – ǫ)λ′(b + η4)η2 + η4ρ1(δ + b + η2)

)
, (11)

A4 =
(
(2 – ǫ)λ′ + b + ρ1 + ρ2

)
(b + η2),

A5 =
bb(r/γ )(η3λ

′φ(b + η4) + ǫη4(δ + b + η3))

(λ′φ + b + ǫ)(b +ω)
,

A6 =
(
(b + ǫ)(b + ρ1)(bδ + η3)(bδ + η2)

)
,

A detailed survey of the stability of these equilibrium points can be found in the reference

[42].

3.2 The basic reproduction number

Employing the next generation matrix method [14], the basic reproduction number of

model (8) is given by [42]

R0 =
βφμρb

(ǫ + b)(η3 + b + δ)
+

β(2 – ǫ)(1 – ρ)b

(b + ρ1)(b + δ + η2)
. (12)

3.3 Existence of the solution

To investigate and prove the existence of a solution for the model, we can first apply the

AB-Caputo integral operator (6) to the sides of model (8) to give the following equalities:

S(t) – S(0) =
1 – α

AB(α)
N1

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N1

(
F(ς )

)
dς ,

Tν(t) – Tν(0) =
1 – α

AB(α)
N2

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N2

(
F(ς )

)
dς ,
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Ic(t) – Ic(0) =
1 – α

AB(α)
N3

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – α)α–1N3

(
F(ς )

)
dς ,

R(t) –R(0) =
1 – α

AB(α)
N4

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – α)α–1N4

(
F(ς )

)
dς ,

(13)

Vν(t) – Vν(0) =
1 – α

AB(α)
N5

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – α)α–1N5

(
F(ς )

)
dς ,

Vca(t) – Vca(0) =
1 – α

AB(α)
N6

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – α)α–1N6

(
F(ς )

)
dς ,

where F(t) = [S(t),Tν(t),Ic(t),R(t),Vν(t),Vca(t)], and

N1

(
F(t)

)
= (1 – ρ)bN (t) – λS(t) – (1 – ǫ)λS(t) – ρ1S(t)

–
(
γN (t) +μ + ρ2

)
S(t) +wR(t),

N2

(
F(t)

)
= ρ1S(t) + ǫVν(t) –

(
N (t)γ + η4 +μ

)
Tν(t),

N3

(
F(t)

)
= λS(t) + (1 – ǫ)λS(t) –

(
γN (t) + η2 + δ +μ

)
Ic(t),

N4

(
F(t)

)
= η2Ic(t) –

(
γN (t) +μ +ω

)
R(t) + η3Vca(t) + η4Tν(t),

N5

(
F(t)

)
= bρN (t) + ρ2S(t) – φλVν(t) –

(
γN (t) + ǫ +μ

)
Vν(t),

N6

(
F(t)

)
= φλVν(t) –

(
γN (t) + η3 + δ +μ

)
Vca(t).

(14)

Defining N(F(t)) = [N1(F(t)),N2(F(t)), . . . ,N6(F(t))], and F0 = [S(0),Tν(0),Ic(0),R(0),

Vν(0),Vca(0)], Equation (13) can be considered as follows:

F(t) – F0 =
1 – α

AB(α)
N

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N
(
F(ς )

)
dς . (15)

The following iterative process can be defined:

Fn(t) – F0 =
1 – α

AB(α)
N

(
Fn–1(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N
(
Fn–1(ς )

)
dς ,

F0(t) = F0.

(16)

Subtracting two consecutive terms gives

Fn(t) – Fn–1(t)

=
1 – α

AB(α)

[
N

(
Fn–1(t)

)
–N

(
Fn–2(t)

)]

+
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
[
N

(
Fn–1(ς )

)
–N

(
Fn–2(ς )

)]
dς . (17)

For simplicity, we set �n(t) = Fn(t) – Fn–1(t). Hence, one has

Fn(t) =

n∑

i=0

�i(t). (18)
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Thus, we get

∥∥�n(t)
∥∥ =

∥∥Fn(t) – Fn–1(t)
∥∥,

∥∥�n(t)
∥∥ =

∥∥∥∥
1 – α

AB(α)

[
N

(
Fn–1(t)

)
–N

(
Fn–2(t)

)]
(19)

+
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
[
N

(
Fn–1(ς )

)
–N

(
Fn–2(ς )

)]
dς

∥∥∥∥.

Hence

∥∥�n(t)
∥∥ ≤

1 – α

AB(α)
‖N

(
Fn–1(t)

)
–N

(
Fn–2(t)

)∥∥∥∥

+
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
∥∥∥∥N

(
Fn–1(ς )

)
–N

(
Fn–2(ς )

)
‖dς .

Whenever N satisfies the Lipschitz condition with respect to F, thus

∥∥�n(t)
∥∥ ≤

1 – α

AB(α)
L
∥∥Fn–1(t) – Fn–2(t)

∥∥

+
αL

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
∥∥Fn–1(t) – Fn–2(t)

∥∥dς .

Hence the following inequality will be obtained:

∥∥�n(t)
∥∥ ≤

1 – α

AB(α)
L
∥∥�n–1(t)

∥∥ +
αL

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
∥∥�n–1(t)

∥∥dς .

Now, replacing ‖�n–1(t)‖ by its value, we get

∥∥�n(t)
∥∥ ≤

(
1 – α

AB(α)
L +

αLtα

AB(α)Ŵ(α + 1)

)2∥∥�n–2(t)
∥∥.

Also, we have

∥∥�n(t)
∥∥ ≤

(
1 – α

AB(α)
L +

αLtα

AB(α)Ŵ(α + 1)

)3∥∥�n–3(t)
∥∥.

And finally,

∥∥�n(t)
∥∥ ≤

(
1 – α

AB(α)
L +

αLtα

AB(α)Ŵ(α + 1)

)n∥∥�0(t)
∥∥,

≤

(
1 – α

AB(α)
+

αtα

AB(α)Ŵ(α + 1)

)n

Ln max
t∈[0,T]

F0(t). (20)

By choosing

F(t) =

n∑

i=0

�i(t), (21)
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we are now in a position to define the following sequence for F(t):

F(t) = Fn(t) +�n(t), (22)

where �n(t)→ 0 when n→ ∞. Thus,

F(t) – Fn(t) =
1 – α

AB(α)
N

(
F(t) –�n(t)

)

+
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N
(
F(ς ) –�n(ς )

)
dς . (23)

Now, we can write

F(t) – F0 –
1 – α

AB(α)
N

(
F(t) –�n(t)

)
–

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N
(
F(ς ) –�n(ς )

)
dς

= �n(t) +
1 – α

AB(α)

[
N

(
F(t) –�n(t)

)
–N

(
F(t)

)]

–
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
[
N

(
F(ς ) –�n(ς )

)
–N

(
F(ς )

)]
dς .

Taking the standard norm on both sides of the above equation, we conclude that

‖F(t) – F0(t) –
1 – α

AB(α)
N

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N(F(ς )dς‖

≤
∥∥�n(t)

∥∥ +
1 – α

AB(α)
‖N

(
F(ς ) –�n(ς )

)
–N

(
F(ς )

)∥∥∥∥

+
α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1
∥∥∥∥N

(
F(ς ) –�n(ς )

)
–N

(
F(ς )

)
‖dς

≤
∥∥�n(t)

∥∥ +
1 – α

AB(α)
L
∥∥�n–1(t)

∥∥ +
αtα

AB(α)Ŵ(α + 1)
L
∥∥�n–1(t)

∥∥.

If n→ ∞, the right-hand side of the equation tends to zero. So, one gets

F(t) – F0 =
1 – α

AB(α)
N

(
F(t)

)
+

α

AB(α)Ŵ(α)

∫ t

0

(t – ς )α–1N
(
F(ς )

)
dς . (24)

And that was what we were trying to prove in this subsection.

3.4 The uniqueness of the solution

In this part, we are looking for the proof of the uniqueness of the solution related to the

model. To do this, let us consider that model admits two solutions F(t) andN(t). Then we

can write

∥∥F(t) –N(t)
∥∥ ≤

1 – α

AB(α)
L
∥∥F(t) –N(t)

∥∥ +
αLtα

AB(α)Ŵ(α + 1)

∥∥F(t) –N(t)
∥∥

≤

(
1 – α

AB(α)
L +

αLtα

AB(1 + α)Ŵ(α)

)∥∥F(t) –N(t)
∥∥ (25)
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... (26)

≤

(
1 – α

AB(α)
L +

αLtα

AB(1 + α)Ŵ(α)

)n∥∥F(t) –N(t)
∥∥. (27)

If 1–α
AB(α)

L+ αLtα

AB(1+α)Ŵ(α)
< 1 holds, we get ‖F(t)–N(t)‖ ≤ 0, fromwhich the equality F(t) =N(t)

results. This means that the system has a unique solution.

4 A numerical method

In recent years, various approximate methods have been used to solve the system of

fractional-order differential equations. In each of these methods, a specific idea is used

to discretize the problem and approximate the solution of the system.

In order to express the method, we first need to consider a fractional delay differential

equation given by

⎧
⎨
⎩

CDαR(t) =Q(t,R(t),R(t – τ1),R(t – τ2)), t ∈ [0,T],

R(t) = ψ(t), t ∈ [–τ , 0].
(28)

To determine the numerical method, we first consider the domain discretization as fol-

lows:

tn = nℏ, n = –k, –k + 1, . . . – 1, 0, 1, . . .N ,ℏ :=
T

N
=

τ

k
.

Keeping these notations in mind, we obviously haveR(tj) = ψ(tj), j = –k, –k + 1, . . . , –1, 0.

In other words, it can be written

R(tj – τ ) =R(jh – kℏ) =R(tj–k), j = 0, 1, . . . ,N .

The main assumption of the numerical method is that we have approximated the value as

the solution function in points

R(tj), j = –k, –k + 1, . . . – 1, 0, 1, . . . ,n,

and now we are looking for the value ofR(tn+1).

The next idea used is to apply the definition of the integral operator (6), which results

in the following relation:

R(t) –R(t0) =
1 – α

AB(α)
R(t) +

α

Ŵ(α)AB(α)

×

∫ t

t0

(t –̟ )α–1Q
(
̟ ,R(̟ ),R(̟ – τ1),R(̟ – τ2)

)
d̟ . (29)

Setting t = tn+1 in (29) gives

R(tn+1) –R(t0)

=
1 – α

AB(α)
R(tn+1) +

α

Ŵ(α)AB(α)

×

∫ tn+1

t0

(tn+1 –̟ )α–1Q
(
̟ ,R(̟ ),R(̟ – τ1),R(̟ – τ2)

)
d̟ . (30)
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Now, we utilize the product trapezoidal quadrature formula to approximate (30). Then,

the corrector approximation forR(tn+1) is obtained as follows:

R(tn+1) =R(t0) +
1 – α

AB(α)
R(tn+1)

+
αℏα

AB(α)Ŵ(α + 2)
Q

(
tn+1,R(tn+1),R(tn+1 – τ1),R(tn+1 – τ2)

)

+
ℏ

α

Ŵ(α + 2)

n∑

j=0

ζj,n+1Q
(
tj,R(tj),R(tj – τ1),R(tj – τ2)

)

=R(t0) +
1 – α

AB(α)
RP(tn+1)

+
αℏα

AB(α)Ŵ(α + 2)
Q

(
tn+1,R

P(tn+1),R(tn+1–k1 ),R(tn+1–k2 )
)

+
αℏα

AB(α)Ŵ(α + 2)

n∑

j=0

ζj,n+1Q
(
tj,R(tj),R(tj–k1 ),R(tj–k2 )

)
, (31)

where k1 = ceil(τ1/ℏ), k2 = ceil(τ2/ℏ), and

ζj,n+1 =

⎧
⎪⎪⎨
⎪⎪⎩

nα+1 – (n – α)(n + 1)α , j = 0,

(n – j + 2)α+1 – (n – j)α+1 – 2(n – j + 1)α+1, 1≤ j ≤ n,

1, j = n + 1.

(32)

The unknown termRP(tn+1) that appears in (31) is also calculated using the product rect-

angle rule as follows:

R(tn+1) =R(t0) +
1 – α

AB(α)
R(tn)

+
αℏα

AB(α)Ŵ(α + 2)

n∑

j=0

ζj,n+1Q
(
tj,R(tj),R(tj – τ1),R(tj – τ2)

)
,

=R(t0) +
1 – α

AB(α)
R(tn)

+
αℏα

AB(α)Ŵ(α + 2)

n∑

j=0

ζj,n+1Q
(
tj,R(tj),R(tj–k1 ),R(tj–k2 )

)
, (33)

where

ζj,n+1 =
ℏ

Ŵ(α)

[
(n – j + 1)α – (n – j)α

]
. (34)

5 Simulation results and discussion

In this section, the numerical simulations corresponding to the proposed model along

with the attached approximate method are examined. In all graphs, the following values

are used as the default of the constants, unlesswe intentionally change someof these values
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in the graphs ourselves. These changes are expressed in each graph.

ρ = 0.3, b = 0.3, β = 1.4, η = 0.1, ǫ = 0.1,

ρ1 = 0.5, ρ2 = 0.1, μ = 0.0324, γ = (b –μ)/200, ω = 0.1,

η4 = 0.1, δ = 0.05, η2 = 0.1, η3 = 0.2, φ = 0.5.

(35)

The effect of fractional-order parameter (α) on the disease evolution, in the absence of

delay parameters τ1 = τ2 = 0, is shown in Fig. 1. It is seen that when α increases, then the

susceptible and clinically infected classes decrease, and treated and vaccinated, recovered,

vaccinated, and vaccinated carrier classes increase. In this case, all model solutions con-

verge to the internal equilibrium point of the system.

The effect of the treating of vaccinated people rate (ǫ) on the disease prevalence, in

the absence of delay parameters τ1 = τ2 = 0, is presented in Fig. 2. In some diagrams of

Figure 1 The impact of α on the results for τ1 = τ2 = 0

Figure 2 The impact of ǫ on the results for τ1 = τ2 = 0 and α = 0.95
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this figure, it can be seen that a change in the value of the ǫ parameter can cause very

significant changes in the overall condition of the system. In a way, by taking some values,

the behavior of some solutions will be completely different from others in general. For

example, by taking ǫ = 0.8, the graphs related to the two solutions clinically infected classes

and vaccinated carrier classes take on a damping state and tend to zero.

Further, the effect of the rate of vaccination (ρ) on the disease evolution, in the absence

of delay parameters τ1 = τ2 = 0, is displayed in Fig. 3. In this figure it is clear that by taking

ρ = 0.6, 0.7, and 0.8 the graphs related to the two solutions clinically infected classes and

vaccinated carrier classes take on a damping state and tend to zero. In other words, in

these cases, the system moves to the disease-free equilibrium point. These conditions are

fully consistent with the theoretical arguments presented in this paper and reference [42].

The effect of the rate of vaccination (b) on the disease dynamics, in the absence of delay

parameters τ1 = τ2 = 0, has been plotted in Fig. 4. The diagrams in this figure clearly show

that the curves corresponding to b = 0.1 always create the lowest values in all possible

Figure 3 The impact of ρ on the results for τ1 = τ2 = 0 and α = 0.95

Figure 4 The impact of b on the results for τ1 = τ2 = 0 and α = 0.95
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solutions in the system. Taking the value stated in this case into account the systemmoves

towards stability at the endemic equilibrium point B2.

To investigate the significant effect of the rate of culling of clinical infective and vac-

cinated carrier people (δ) on the disease dynamics, in the absence of delay parameters

τ1 = τ2 = 0, we have presented Fig. 5. A distinctive feature of the diagrams in this figure is

that the final values for system solutions always have an alignment correlation to the pa-

rameter δ. In other words, by increasing the value of parameter δ, the equilibrium points

of the system are placed in higher levels.

Figure 6 exhibits the effect of the rate of delay parameter (τ2) on the disease dynamics

of the model when we take τ1 = 3. As we have seen in this figure, by increasing the delay

parameter τ2, the solutions S(t), Tν , Vν(t) have similar trends. The same is true also for

Ic(t),R(t),Vca(t). Also, by increasing the value of the parameter τ2, the system showsmore

oscillating behavior.

Figure 5 The impact of δ on the results for τ1 = τ2 = 0 and α = 0.95

Figure 6 The impact of τ2 on the results for τ1 = 3 and α = 0.95
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Figure 7 The impact of τ1 on the results for τ2 = 15 and α = 0.95

Figure 8 The impact of ρ2 on the results for τ1 = 10, τ2 = 100, and α = 0.95

Figure 7 demonstrates the effect of the rate of delay parameter (τ1) on the disease vari-

ation of the model when we take τ2 = 15. The occurrence of oscillating properties in this

figure is very obvious. In addition, by increasing the value of the delay parameter τ1, the

system reveals more severe instability behavior.

Figure 8 demonstrates the effect of the rate of vaccinating susceptible people (ρ2) on the

disease dynamics for delay parameters τ1 = 10, τ2 = 100. In this figure, the high sensitivity

of the model’s response behavior to the parameter ρ2 can be seen. For example, by con-

sidering ρ2 = 0.1, the behavior of the system is quite volatile and unstable. While for the

bigger values of this parameter, the system’s response show more stable behavior.

The effect of the rate of culling of clinical infective and vaccinated carrier people (δ) on

the disease dynamics, for delay parameters τ1 = 5, τ2 = 10, has been displayed in Fig. 9.

The influence of the transmission rate (β) on the disease dynamics, for delay parameters

τ1 = 3, τ2 = 10, is investigated in Fig. 10. It can be seen that for the β = 0.9, the system tends

toward the disease-free equilibriumB1, and for the other considered values to the endemic
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Figure 9 The impact of δ on the results for τ1 = 5, τ2 = 10, and α = 0.95

Figure 10 The impact of β on the results for τ1 = 3, τ2 = 10, and α = 0.95

equilibrium point of B2. Therefore, β can play a very important and constructive role in

the behavior and dynamics of the disease.

6 Conclusion

Humans have been exposed to infectious diseases throughout history and have always

tried to be able to control the spread of the disease and then find an effective treatment

process to treat the disease. One way to control infectious diseases is to study the dynamic

systems that describe the extent and prevalence of the disease. On the other hand, apply-

ing the modern concepts presented in the study of these dynamic systems can lead to

dramatic advances in the study and control of this disease. In this article, we examined the

prevalence of hand-foot-mouth disease in a certain population that has been described by

a fractional system of ordinary differential equations. The model is constructed using the

Atangana–Baleanu fractional derivative and two constant parameters to apply the time

delay in the solutions. In order to take advantage of the concept of memory in the evolu-
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tion of the model, we have employed a well-known derivative with fractional order as well

as two delay parameters in the model.

Several numerical simulations revealed the effects of the fractional parameter, and the

existence of two delay parameters in the disease dynamic. Through some performed ex-

periments, we also investigated the sensitivity analysis of the model to some numerical

parameters of the model. In some cases, it was observed that with a slight change in some

of these parameters, very fundamental changes in the behavior of system responses occur.

Another noteworthy aspect of this paper is the high degree of influence of the model on

the delay parameters. For some specific values for the parameters in the system, unsta-

ble chaotic behavior can be observed in the system responses. The results of the model

presented in this paper provide the ability to investigate the effects of time delay parame-

ters, prophylactic vaccination, reactive vaccination, prophylactic treatment, and reaction-

reflecting parameters on disease outbreak in a population. The process presented in this

article can be applied to other infectious disease models.
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