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Abstract. The ER model is arguably today's most widely accepted basis for the 
conceptual specification of information systems. A further common practice is 
to use the Relational Model at an intermediate logical stage, in order to 
adequately prepare for physical implementation. Although the Relational Model 
still works well in contexts relying on standard databases, it imposes certain 
restrictions, not inherent in ER specifications, which make it less suitable in 
Web environments. This paper proposes frames as an alternative to move from 
ER specifications to logical stage modelling, and treats frames as an abstract 
data type equipped with a Frame Manipulation Algebra (FMA). It is argued that 
frames, with a long tradition in AI applications, are able to accommodate the 
irregularities of semi-structured data, and that frame-sets generalize relational 
tables, allowing to drop the strict homogeneity requirement. A prototype logic-
programming tool has been developed to experiment with FMA. Examples are 
included to help describe the use of the operators. 
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1 Introduction 
It is widely recognized [29] that database design comprises three successive stages: 

a. conceptual, 
b. logical, 
c. physical. 

The Entity-Relationship (ER) model has gained ample acceptance for stage (a), while 
the Relational Model is still the most popular for (b) [29]. Stage (c) has to do with 
implementation using some DBMS compatible with the model chosen at stage (b). 

Design should normally proceed top-down, from (a) to (b) and then to (c). 
Curiously the two models mentioned above were conceived, so to speak, in a bottom-
up fashion. The central notion of the Relational Model – the relation or table – 
corresponds to an abstraction of conventional file structures. On the other hand, the 
originally declared purpose of the ER model was to subsume, and thereby conciliate, 
the Relational Model and its competitors: the Hierarchic and the Codasyl models [9]. 
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Fortunately, the database research community did not take much time to detect the 
radical distinction between the ER model and the other models, realizing that only the 
former addresses conceptual modelling, whereas the others play their part at the stage 
of logical modelling, as an intermediate step along the often worksome passage from 
world concepts to machine implementation. To that end, they resort to different data 
structures (respectively: tables, trees, networks). Tables in particular, once equipped 
with a formal language for their manipulation – namely Relational Algebra or 
Relational Calculus [12] – constitute a full-fledged abstract data type. 

Despite certain criticisms, such as the claim that different structures might lead to a 
better performance for certain modern business applications [28], the Relational 
Model still underlies the architecture of most DBMSs currently working on 
conventional databases, some of which with an extended object-relational data model 
to respond to the demand for object-oriented features [3,29]. However, in the context 
of Web environments, information may come from a variety of sources, in different 
formats, with little or no structure, and is often incomplete or conflicting. Moreover 
the traditional notion of classification as conformity to postulated lists of properties 
has been questioned [21], suggesting that similarity to typical representatives might 
provide a better criterion, as we investigated [1] employing a three-factor measure.   

We suggest that frames, with a long tradition in Artificial Intelligence applications 
[4,22], provide an adequate degree of flexibility. The main contribution of the present 
paper is to propose a Frame Manipulation Algebra (FMA) to fully characterize frames 
and frame-sets as an abstract data type, powerful enough to help moving from the ER 
specifications to the logical design stage.     

The paper is organized as follows. Section 2 recalls how facts are characterized in 
the ER model, and describes the clausal notation adopted for their representation. In 
section 3, four kinds of relations between facts are examined, as providing a guiding 
criterion to choose a (in a practical sense) complete repertoire of operators for 
manipulating information-bearing structures, such as frames. Section 4, which is the 
thrust of the paper, discusses frames, frame-sets and the FMA operators, together with 
extensions that enhance their application. Section 5 contains concluding remarks. 

2 Facts in terms of the ER model 
A database state consists of all facts that hold in the mini-world underlying an 
information system at a certain moment of time. For the sake of the present 
discussion, we assume that all incoming information is first broken down into basic 
facts, represented in a standard unit clause format, in full conformity with the ER 
model. We also assume that, besides facts, meta-level conceptual schema information 
is represented, also in clausal format. 

Following the ER model, facts refer to the existence of entity instances and to their 
properties. These include their attributes and respective values and their participation 
in binary relationships, whose instances may in turn have attributes. Schema 
information serves to characterize the allowed classes of entity and relationship 
instances. Entity classes may be connected by is_a and part_of links. A notation in a 
logic programming style is used, as shown below (note that the identifying attribute of 
an entity class is indicated as a second parameter in the entity clause itself): 
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Schema 
entity(<entity name>,<identifying attribute>) 
attribute(<entity name>,<attribute name>) 
domain(<entity name>,<attribute name>,<value domain specification>) 
relationship(<relationship name>,[<entity name>,<entity name>]) 
attribute(<relationship name>,<attribute name>) 
is_a(<entity name>,<entity name>) 
part_of(<entity name>,<entity name>) 
 
Instances 
<entity name>(<identifier value>) 
<attribute name>(<identifier value>,<attribute value>) 
<relationship name>([<identifier value>,<identifier value>]) 
<relationship attribute>([<identifier value>,<identifier 
value>],<attribute value>) 

For entities that are part-of others, <identifier value> is a list of identifiers at 
successive levels, in descending order. For instance, if companies are downward 
structured in departments, sections, etc.,  an instance of a quality control section 
might be designated as section(['Acme', product, quality_control]).  

A common practice is to reify n-ary relationships, for n > 2, i.e. to represent their 
occurrence by instances of appropriately named entity classes. For example, a ships 
ternary relationship, between entity classes company, product and client, would lead 
to an entity class shipment, connected to the respective participating entities by 
different binary relationships, such as ships_agent, ships_object, ships_recipient 
to use a case grammar nomenclature [16]. To avoid cluttering the presentation with 
details, such extensions and other notational features will not be covered here, with 
two exceptions to be illustrated in examples 3 and 8 (section 4.3). Also not covered 
are non-conventional value domains, e.g. for multimedia applications, which may 
require an extensible data type feature [27]. 

The clausal notation is also compatible with the notation of the RDF (Resource 
Description Framewok) language. A correspondence may be established between our 
clauses and RDF statements, which are triples of the form (<subject>, <property 
or predicate>, <object>)[6], if we replace <subject> by <identifier value>. It 
is worth noting that RDF has been declared to be "a member of the Entity-
Relationship modelling family" in The Cambridge Communiqué, a W3C document1.   

3 Relations between facts 
Facts should be articulated in a coherent way to form a meaningful utterance. Starting 
from semiotic studies [5,7,8,24], we have detected four types of relations between 
facts – syntagmatic, paradigmatic, antithetic, and meronymic – referring, 
respectively, to coherence inside an utterance, to alternatives around some common 
paradigm, to negative restrictions, and to successive levels of detail. 

Such relations serve to define the dimensions and limits of the information space, 
wherein facts are articulated to compose meaningful utterances, which we represent at 
the logical stage as frames, either standing alone or assembled in frame-sets. In turn, 
as will be shown in section 4.2, the characterization of the relations offers a criterion 
to configure an adequate repertoire of operators to handle frames and frame-sets. 
                                                
1 www.w3.org/TR/schema-arch 
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3.1 Syntagmatic relations 
Adapting a notion taken from linguistic studies [24], we say that a syntagmatic 
relation holds between facts F1 and F2 if they express properties of the same entity 
instance Ei. Since properties include relationships in which the entity instance 
participates, the syntagmatic relation applies transitively to facts pertaining to other 
entity instances connected to Ei via some relationship. The syntagmatic relation acts 
therefore as a fundamental reason to chain different facts in a single cohesive 
utterance. For example, it would be meaningful to expand John's frame by joining it 
to the headquarters property belonging to the frame of the company he works for.  

On the other hand, if an entity instance has properties from more than one class, an 
utterance may either encompass all properties or be restricted to those of a chosen 
class. For example, if John is both a student and an employee, one might be interested 
to focus on properties of John as a student, in which case his salary and works 
properties would have a weaker justification for inclusion.  

3.2 Paradigmatic relations 
Still adapting [24], a paradigmatic relation holds between facts F1 and F2 if they 
constitute alternatives according to some criterion (paradigm). The presence of this 
relation is what leads to the formation of frame-sets. To begin with, all facts involving 
the same property are so related, such as John's salary and Mary's salary. Indeed, 
since they are both employees, possibly sharing additional properties, a frame-set 
including their frames would make sense, recalling that the most obvious reason to 
create conventional files is to gather all data pertaining to instances of an entity class.  

Property similarity is still another reason for a paradigmatic relation. For example, 
salary and scholarship are similar in that they are alternative forms of income, 
which would justify assembling employees and students in one frame-set with the 
purpose of examining the financial status of a population group.  

Even more heterogeneous frame-sets may arise if the unifying paradigm serves an 
occasional pragmatic objective, such as to provide all kinds of information of interest 
to a trip, including flight, hotel and restaurant information. A common property, e.g. 
city, would then serve to select whatever refers to the place currently being visited. 

3.3 Antithetic relations 
Taken together, the syntagmatic and paradigmatic relations allow configuring two 
dimensions in the information space. They can be described as orthogonal, if, on the 
one hand, we visualize the "horizontal" syntagmatic axis as the one along which 
frames are created by aligning properties and by the concatenation with other frames 
or subsequences thereof, and, on the other hand, the "vertical" paradigmatic axis as 
the one down which frames offering alternatives within some common paradigm are 
assembled to compose frame-sets. 

And yet orthogonality, in the specific sense of independence of the two 
dimensions, sometimes breaks down due to the existence of antithetic relations. An 
antithetic relation holds between two facts if they are incompatible with each other. 
Full orthogonality would imply that a fact F1 should be able to coexist in a frame with 
any alternative facts F21, ..., F2n characterized by the same paradigm, but this is not 



A Frame Manipulation Algebra for ER  
Logical Stage Modelling    

so. Suppose we are told that Mary is seven years old; then she can have scholarship 
as income, but not salary, if the legislation duly restricts the age for employment. 

Thus antithetic relations do not introduce a new dimension, serving instead to 
delimit the information space. Suggested by semiotic research on binary oppositions 
and irony [5,7], they are the result of negative prescriptions from various origins, 
such as natural impossibilities, laws and regulations, business rules, integrity 
constraints, and any sort of decisions, justifiable or arbitrary. They may motivate the 
absence of some property from a frame, or the exclusion of one or more frames from 
a frame-set. For example, one may want to exclude the recent graduates from a 
students frame-set. Ironically, such restrictions, even when necessary for legal or 
administrative reasons, may fail to occur in practice, which would then constitute 
cases of violation or, sometimes, of admissible exceptions. 

3.4 Meronymic relations 
Meronymy is a word of Greek origin, used in linguistics to refer to the decomposition 
of a whole into its constituent parts. Forming an adjective from this noun, we shall 
call meronymic relations those that hold between a fact F1 and a lower-level set of 
facts F21, F22, ..., F2n, with whose help it is possible to achieve more detailed 
descriptions. The number of levels may of course be greater than two.  

The correspondence between a fact, say F1, with a lower-level set of facts F21, F22, 
..., F2n requires, in general, some sort of mapping rule. Here we shall concentrate on 
the simplest cases of decomposition, where the mapping connections can be 
expressed by part-of semantic links of the component/ integral-object type (cf. [31]). 
A company may be subdivided into departments, which may in turn have sections 
and so on and so forth. A country may have states, townships, etc. Outside our 
present scope is, for instance, the case of artifacts whose parts are interconnected 
in ways that could only be described through maps with the descriptive power of a 
blueprint. 

Meronymic relations add a third dimension to the information space. If discrete 
levels of detail are specified, we can visualize successive two-dimensional planes 
disposed along the meronymic axis, each plane determined by its syntagmatic and 
paradigmatic axes.  

Traversing the meronymic axis is like zooming in or out. After looking at a 
company frame, one may want to come closer in order to examine the frames of its 
constituent departments, and further down towards the smallest organizational units, 
the same applying in turn to each frame in a frame-set describing several companies. 
And while the is-a links imply top-down property inheritance, part-of links induce a 
bottom-up aggregation of values. For example, if there is a budget attribute for each 
department of a company, summing up their values would yield a corporate total.  

4 Towards an abstract data type for ER logical-stage modelling 

4.1 Frames and frame-sets 
Frames are sets of P:V (i.e. <property>:<value>) pairs. A frame-set can either be the 
empty set [] or consist of one or more frames.  
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The most elementary frames are those collecting P:V information about a single 
entity or binary relationship instance, or a single class. In a frame displaying 
information on a given entity instance E, each property may refer to an attribute or to 
a relationship. In the latter case, the P component takes the form R/1 or R/2 to 
indicate whether E is the first or the second entity participating in relationship R, 
whereas the V component is the identifier (or list of identifiers) of the entity instance 
(or instances) related to E by R. In a frame displaying information about a relationship 
instance, only attributes are allowed as properties. For frames concerning entity or 
relationship classes, the V component positions can be filled up with variables. 

We require that a property cannot figure more than once in a frame, a restriction 
that has an important consequence when frames are compared during the execution of 
an operation: by first sorting each frame, i.e. by putting the P:V pairs in lexicographic 
order (an n×log(n) process), we ensure that the comparisons proper take linear time.   

A few examples of elementary frames follow. The notation "_" indicates an 
anonymous variable. Typically not all properties specified for a class will have known 
values for all instances of the class. If, among other properties, Mary's age is 
unknown at the moment, this information is simply not present in her frame. The last 
line below illustrates a frame-set, whose constituent frames provide information about 
two employees of company Acme.  
 
Class employee:  [name:_, age:_, salary:_, works/1:_] 
Class works: [name:_,cname:_,status:_} 
Mary: [name:'Mary', salary:150, works/1:'Acme'] 
John: [name: 'John', age: 46, salary: 100, scholarship: 50,  
      works/1: 'Acme'] 

Acme: [cname:'Acme', headquarters:'Carfax', works/2:['John','Mary']] 
Acme employees: [ [name:'Mary', salary:150, works/1:'Acme'], 
                  [name: 'John', age: 46, salary: 100, scholarship: 50,  
                   works/1: 'Acme'] ] 

 
Both Acme's frame and Mary's frame contain, respectively, properties of a single 

class or instance. However, if we want that frames should constitute a realistic model 
for human utterances, more complex frames are needed. In particular, the addition of 
properties of related identifiers should be allowed, as in: 
[name: 'Mary', salary: 150, works/1: 'Acme', headquarters: 'Carfax', 
 status: temporary, 'John'\salary: 100] 

where the third property belongs to the company for which Mary works, and the fifth 
is a relationship attribute concerning her job at the company. The inclusion of the 
sixth property, which belongs to her co-worker John, would violate the syntactic 
requirement that property names be unique inside a frame; the problem is solved by 
prefixing the other employee's salary property with his identifier. Further generalizing 
this practice, for the sake of clarity, one may choose to fully prefix in this way all 
properties attached to identifiers other than Mary: 
[name:'Mary', salary:150, works/1:'Acme',  
 'Acme'\headquarters:'Carfax', ['Mary','Acme']\status: temporary,  
 'John'\salary: 100] 
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Recalling that every instance is distinguished by its <identifier value>, we may 
establish a correspondence between an instance frame and a labelled RDF-graph 
whose edges represent triples sharing the same <subject> root node [6]. 

4.2 Overview of the algebra 
Both frames and frame-sets can figure in FMA expressions as operands. To denote 
the evaluation of an expression, and the assignment of the resulting frame or frame-
set to a variable F, one can write: 

F := <algebraic expression>. 

or optionally: 
F#r := <algebraic expression>. 

in which case, as a side-effect, the expression itself will be stored for future use, the 
indicated r constant serving thereafter as an identifier. Storing the result rather than 
the expression requires two consecutive steps:  

F1 := <algebraic expression>  
F2#r := F1.   

 A stored expression works like a database view, since every time the expression is 
evaluated, the result will vary according to the current state, whereas storing a given 
result corresponds to a snapshot. 

The simplest expressions consist of a single frame, which may be represented 
explicitly or by an instance identifier (or r constant) or class name, in which case the 
FMA engine will retrieve the respective properties to compose the result frame. Note 
that the first and the second evaluations below should yield the same result, whereas 
the third yields a frame limited to the properties specified in the search-frame placed 
after the ^ symbol (example 11 shows a useful application of this feature). If the "\" 
symbol is used instead of "^", the full-prefix notation will be applied. Note, in 
addition, that lists of identifiers or of class names yield frame-sets. 

Fm1 := [name:'Mary', salary:150, works/1:'Acme'] 
Fm2 := 'Mary'. 
Fms1 := 'Mary' ^ [salary:S, works/1:C]. 
Fmsp := 'Mary' \ [salary:S, works/1:C]. 
Fmsr#msw := 'Mary' \ [salary:S, works/1:C]. 
Fms2 := msw. 
Fmj1 := [[name:'Mary', salary:150, works/1:'Acme'], [name:'John', age:46, 
         salary:100, scholarship:50, works/1:'Acme']] 
Fmj2 := ['Mary','John']. 
Fc := student. 

Instances and classes can be treated together in a particularly convenient way. If John 
is both a student and an employee, his properties can be collected in separate frames, 
by indicating the name of each class, whose frame will then serve as search-frame: 

Fjs := 'John' ^ student. 
Fje := 'John' ^ employee. 

Over these simple terms, the algebraic operators can be used to build more 
complex expressions. To build the operator set of FMA, the five basic operators of 
Relational Algebra were redefined to handle both frames and frame-sets. Two more 
operators had to be added in order to take into due account all the four relations 
between facts indicated in section 3. 
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An intuitive understanding of the role played by the first four operators is 
suggested when they are grouped into pairs, the first operator providing a constructor 
and the second a selector. This is reminiscent of the LISP primitives, where cons 
works as constructor and car and cdr as selectors, noting that eq, the primitive on 
which value comparisons ultimately depend, induces yet another selector mechanism. 
For FMA the two pairs are: 
 

� product and projection, along the syntagmatic axis; 
� union and selection, along the paradigmatic axis. 

 
Apart from constructors and selectors, a negation operator is needed, as demanded by 
antithetic restrictions. To this end, FMA has the difference operator and enables the 
selection operator to evaluate logical expressions involving the not Boolean operator. 
LISP includes not as a primitive, and Relational Algebra has difference. Negation is 
also essential for expressing universal in terms of existential quantification. Recall for 
example that a supplier who supplies all products is anyone such that there is not 
some product that it does not supply. Also, difference being provided, an 
intersection operator is no longer needed as a primitive, since A � B = A - (A - B).  

To traverse the meronymic dimension, zooming in and out along part-of links, 
FMA includes the factoring and the combination operators. One must recall at this 
point that the Relational Model originally required that tables be in first-normal form 
(1NF), which determined the choice of the Relational Algebra operators and their 
definition, allowing only such tables as operands. However, more complex types of 
data, describing for example assembled products or geographical units, characterized 
conceptually via a semantic part-of hierarchy [26], led to the use of the so-called NF2 
(non first normal form) or nested tables at the logical level of design. To handle NF2 
tables, an extended relational algebra was needed, including operators such as 
"partitioning" and "de-partitioning" [18], or "nest" and "unnest" [19] to convert from 
1NF into NF2 tables and vice-versa. 

We claim that, with the seven operators indicated here, FMA is complete in the 
specific sense that it covers frame (and frame-set) manipulation in the information 
space spanned by the syntagmatic, paradigmatic, antithetic and meronymic relations 
holding between facts.  

It has been demonstrated that Relational Algebra is complete, in that its five 
operators are enough, as long as only 1NF tables are permitted, to make it equivalent 
in expressive power to Relational Calculus, a formalism based on first-order calculus. 
Another aspect of completeness is computational completeness [14,30], usually 
measured through a comparison with a Turing machine. To increase the 
computational power of relational DBMSs, the SQL-99 standard includes provision 
for recursive queries.  

Pursuing along this trend, we decided to embed our running FMA prototype in a 
logic programming language, which not only made it easier to define virtual attributes 
and relationships, a rather flexible selection operator and an iteration extension, but 
also to take advantage of Prolog's pattern-matching facilities to deal simultaneously 
with instance frames and (non-ground) frame patterns and class frames. 
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4.3 The basic Algebraic operators 
Out of the seven FMA operators, three are binary and the others are unary. All 
operators admit both frames and frame-sets as operands. For union, selection and 
difference, if frames are given as operands, the prototype tool transforms them into 
frames-sets as a preliminary step; conversely, the result will be converted into frame 
format whenever it is a frame-set containing just one frame. 

Apart from this, the main differences between the way that FMA and the 
Relational Algebra treat the five operators that they have in common are due to the 
relaxation of the homogeneity and first-normal form requirements. In Relational 
Algebra, union and difference can only be performed on union-compatible tables. 
Since union-compatibility is not prescribed in FMA, the frames belonging to a frame-
set need not be constituted of exactly the same properties, which in turn affects the 
functioning of the projection and selection operators. Both operators search for a 
number of properties in the operand, but no error is signaled if some property is 
missing in one or more frames: such frames simply do not contribute to the result. 
FMA also differs from Relational Algebra by permitting arbitrary logical expressions 
to be tested as an optional part of the execution of the selection operator. Moreover 
the several uses of variables, enabled by logic programming, open a number of 
possibilities, some of which are illustrated in the examples. 

The empty list "[]" (nil) is used to ambiguously denote the empty frame and the 
empty frame-set. As such, [] works as the neutral element for both product and union 
and, in addition, is returned as the result when the execution of an operator fails, for 
example when no frame in a frame-set satisfies a selection test.   

The FMA requirement that a property can occur at most once in a frame raises a 
conflict if, when a product is executed, the same property figures in both operands. 
The conflict may be solved by default if the attached values are the same, or may 
require a decision, which may be fixed beforehand through the inclusion of 
appropriate tags. Handling conflicts through the use of tags is a convenient expedient 
that serves various purposes, such as to replace a value, or form sets or bags (recalling 
that multiple values are permitted), or call for aggregate numerical computations, etc. 
If no tag is supplied, our prototype tool offers a menu to the user's choice. 

The two operators without counterpart in Relational Algebra, namely factoring and 
combination, act on frame-structured identifiers associated with part-of links, and also 
on attributes with frame-structured value domains. When working on a list of 
identifiers, the result of factoring is a frame-set composed of the frames obtained from 
each identifier in the operand list. When working on properties with frame-structured 
value domains, factoring has a flattening effect, breaking the property into separate 
constituents so as to bring to the front the internal structure. 

When examining the examples, recall that, although the operands of every FMA 
operation are always frames or frame-sets, identifiers or lists of identifiers may figure 
in their place, being converted into the corresponding frames or frame-sets as a 
preliminary step in the execution of the operation. Both in the description of the 
operators and in the examples, we shall employ a notation that is unavoidably a 
transliteration imposed by the Prolog character set limitations and syntax restrictions. 
For instance, "+" denotes union. Also, since blank spaces are not allowed as 
separators, the operand of a projection or selection is introduced by an "@" symbol.     
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Product. The product of two frames F1 and F2, denoted F1 * F2, returns a frame F 
containing all F1 and F2 properties. If one or both operands are (non-empty) frame-
sets, the result is a frame-set containing the product of each frame taken from the first 
operand with each frame from the second, according to the standard Cartesian product 
conventions. If one of the operands is the empty frame, denoted by [], the result of the 
product operation is the other operand, and thus [] behaves as the neutral element for 
product. The case of an empty frame-set, rather than an empty frame, demanded an 
implementation decision; by analogy with the zero element in the algebra of numbers, 
it would be justifiable to determine that a failure should result whenever one or both 
operands are an empty frame-set. However we preferred, here again, to return the 
other operand as result, so as to regard the two cases (i.e. product by empty frame or 
by empty frame-set) as frustrated attempts to extend frames, rather than errors. 

When two operand frames have one or more properties in common, a conflict 
arises, since, being a frame, the result could have no more than one P:V pair for each 
property P. Except if V is the same in both operands, the criterion to solve the conflict 
must be indicated explicitly through a P:τ(V) notation, where, depending on the 
choice of the tag τ, the values V1 and V2 coming from the two operands can be 
handled as follows to obtain the resulting V, noting that one or both can be value lists:  

� τ ∈ {set,bag} – V is a set or bag (which keeps duplicates and preserves the 
order), containing the value or values of property P taken from V1 and V2; 

� τ = del – V is the set difference V1 - V2, containing therefore the value or 
values in V1 not also present in V2; 

� τ = rep – V is V2, where V2 is either given explicitly, or results from an 
expression indicating the replacement of V1 by V2 (cf. example 1);  

� τ ∈ {sum,min,max,count,avg} – V is an aggregate value (cf. section 4.4, 
example 9). 

A more radical effect is the removal of property P, so that no pair P:V will appear in 
the result, which happens if one operand has P:nil. 

Notice, finally, that the conflict may be avoided altogether by adding a suitable 
prefix to the occurrence in one or both operands, as in S1\P:V1 and/or S2\P:V2, in 
which case the two occurrences will appear as distinct properties in the result.   

Example 1: Suppose that one wishes to modify the values of the salary attribute of 
a group of employees, say John and Mary, figuring in a frame-set, by granting a 5% 
raise. This can be done by specifying a frame containing a replacement tag and then 
performing the product of this frame against the given frame-set. In the replacement 
tag shown in the first line, X refers to the current salary and Y to the new salary, to be 
obtained by multiplying X by 1.05 (note that ":-" is the prompt for Prolog 
evaluation): 

:- F := [salary:rep(X/(Y:(Y is X * 1.05)))] *  
        [[name:'John',salary:130], [name:'Mary',salary:150]]. 

result: F = [[name:John, salary:136.50], [name:Mary, salary:157.50]] 
Projection. The projection of a frame F', denoted proj [T] @ F', returns a frame F that 
only contains the properties of F' specified in the projection-template T, ordered 
according to their position in T. The projection-template T is a sequence of property 
names P or, optionally, of P:V pairs, where V is a value in the domain of property P 
or is a variable. In addition to (or instead of) retrieving the desired properties, 
projection can be used to display them in an arbitrary order. Note that, for efficiency, 
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all operations preliminarily sort their operands and, as a consequence – with the sole 
exception of projection, as just mentioned – yield their result in lexicographic order.  

If the operand is a frame-set, the result is a frame-set containing the projection of 
the frames of the operand. Note however that, being sets, they cannot contain 
duplicates, which may arise as the consequence of a projection that suppresses all the 
property-value pairs that distinguish two or more frames – and such duplicates are 
accordingly eliminated from the result. If the projection fails for some reason, e.g. 
because the projection-template T referred to a P or P:V term that did not figure in F', 
the result will be [] rather than an error. 

Example 2: Product is used to concatenate information belonging to Mary's frame 
with information about the company she works for, and with an attribute pertaining to 
her work relationship. Projection is used to display the result in a chosen order. 

:- F1 := 'Mary' ^ [name:N,works/1:C] *  
         C ^ [headquarters:H] * 
    works(['Mary',C]) ^ [status:S], 
   F2 := proj [name,status,works/1,headquarters] @ F1. 

result: F = [name:Mary, status:temporary, works/1:Acme,headquarters:Carfax] 
Example 3: Given a list of identifiers, their frames are obtained and the resulting 

frame-set assigned to F1. Projection on name and revenue fails for Dupin. Notice that 
revenue has been defined as a virtual attribute, a sum of salary and scholarship. 

revenue(A, D) :- 
        bagof(B, (salary(A, B);scholarship(A, B)), C), 
        sum(C, D). 
 
:- F1 := ['Mina','Dupin','Hercule'],  
   F2 := proj [name,revenue] @ F1. 

result: F = [[name:Mina, revenue:50], [name:Hercule, revenue:130]]  
Union. The union of two frames F1 and F2, denoted by F1 + F2, returns a frame-set 
containing both F1 and F2. If one or both operands are frame-sets, the result is a 
frame-set containing all frames in each operand, with duplicates eliminated. One or 
both operands can be the empty frame-set, ambiguously denoted as said before by [], 
functioning as the neutral element for union; so, if one of the operands is [], the union 
operator returns the other operand as result. In all cases, resulting frame-sets 
consisting of just one frame are converted into single frame format. 

Example 4: The common paradigm, leading to put together hotel and airport-
transfer frames, is the practical need to assemble any information relevant to a trip. 
The resulting frame-set is assigned to F and also stored under the my_trip identifier. 

:- F#my_trip := [[hotel: 'Bavária',city: 'Gramado'], 
                 [hotel: 'Everest',city: 'Rio']] + 
                [transfer_type: executive,airport:'Salgado Filho',  
                 to: 'Gramado', departure: '10 AM']. 

result: F = [[hotel: 'Bavária',city: 'Gramado'], 
            [hotel: 'Everest',city: 'Rio'], 
            [transfer_type: executive,airport:'Salgado Filho',  
             to: 'Gramado', departure: '10 AM']] 

Selection. The selection of a frame F', denoted sel [T]/E @ F', returns the frame F' 
itself if the selection-template T matches F', and the subsequent evaluation of the 
selection-condition E (also involving information taken from F') succeeds. The 
presence of E is optional, except if T is empty. If the test fails, the result to be as-
signed to F is the empty frame []. If the operand is a frame-set, its result will be a 
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frame-set containing all frames that satisfy the test, or the empty frame-set [] if none 
does. Resulting frame-sets consisting of just one frame are converted into frame 
format. In order to select one plot at a time from a resulting frame-set S containing 
two or more frames, the form sel [T]/E @ one(S) must be employed. 

Example 5: Since my_trip denotes a previously computed and stored frame-set 
(cf. example 4),  it is now possible to select from my_trip all the information 
concerning Gramado, no matter which property may have as value the name of this 
city (notice the use of an anonymous variable in the selection-template). The result is 
stored, under the er_venue identifier. 

:- F#er_venue := sel [_: 'Gramado'] @ my_trip. 

result: F = [[airport: Salgado Filho, time: 10 AM, to: Gramado, 
             transfer_type: executive],  
            [city: Gramado, hotel: Bavária]] 

Difference. The difference of two frames F1 and F2, denoted F1 – F2, returns [] if F1 
is equal to F2, or F1 otherwise. If one or both operands are frame-sets, the result is a 
frame-set containing all frames in the first operand that are not equal to any frame in 
the second. Resulting frame-sets with just one frame are converted into frame format. 

Example 6: Assume, in continuation to examples 4 and 5, that one is about to 
leave Gramado. Difference is then used to retrieve information for the rest of the trip. 

:- F := my_trip - er_venue. 

result: F = [hotel: 'Everest', city: 'Rio'] 
Factoring. The factoring of a frame-structured identifier I' of an entity instance, 
denoted by fac I', is a frame-set I containing the frame-structured identifiers I1,I2,...,In 
of all entity instances to which I' is directly connected by a part-of link.  

Factoring can also be applied to frames that include attributes with frame-
structured values. If F' is one such frame, its factoring  F := fac F' is the result of 
expanding F', i.e. all terms A:[A1:V1,A:2:V2,...,An:Vn] will be replaced by the 
sequence A_A1:V1, A_A2:V2,..., A_An:Vn. 

In both cases, if the operand is a frame-set, the result is a frame-set containing the 
result obtained by factoring each constituent of the operand. 

Example 7: Given a list of company identifiers, the frame-structured identifiers of 
their constituent departments are obtained through factoring. 

:- F := fac ['Acme', 'Casa_Soft']. 

result: F = [[1:VL, 2:personnel], [1:VL, 2:product], [1:VL, 2:sales],  
            [1:BK, 2:audit], [1:BK, 2:product]]  

Combination. The combination of a frame-structured identifier I' of an entity 
instance, denoted by comb I', is the frame-structured identifier I of the entity instance 
such that I' is part-of I. If the operand is a frame-set composed of frame-structured 
identifiers (or frame-sets thereof, as those obtained by factoring in example 7), the 
result is a frame-set containing the combinations of each constituent frame. Since 
duplicates are eliminated, all frame-structured identifiers Ij1',Ij2',...,Ijn' in I' that are 
part-of the same entity instance Ij will be replaced by a single occurrence of Ij in the 
resulting frame-set I.  

Combination can also be applied to a frame F' containing expanded terms. Then  
F := comb F' will revert all such terms to their frame-structured value representation. 
The operand can be a frame-set, in which case the resulting frame-set will contain the 
result of applying combination to each constituent of the operand.  
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Example 8: Applying combination to frame F1, containing Carrie Fisher's data in 
flat format, yields frame F2, where address and birth_date are shown as properties 
with frame-structured values. This only works, however, if the two attributes have 
been explicitly defined, with the appropriate syntax, over frame-structured domains.   

attribute(person,address). 
domain(star,address,[street,city]). 
 
attribute(person,birth_date). 
domain(person,birth_date,[day,month,year]). 
 
:- F := comb [name: 'Carrie Fisher', address_city: 'Hollywood',   
              address_street: '123 Maple St.', birth_date_day: 21, 
              birth_date_month:10,birth_date_year: 56, 
              starred_in/1:'Star Wars'].  

result: F =  [name:Carrie Fisher,starred_in/1:Star Wars, 
             address:[street:123 Maple St., city:Hollywood], 
             birth_date:[day:21, month:10, year:56] 

4.4 Extensions 
As a convenient enhancement to its computational power, FMA allows to iterate over 
the two basic constructors, product and union.  

Given a frame F', the iterated product of F', expressed by F := prod E @ F', where 
E is a logical expression sharing at least one variable with F', is evaluated as follows: 

� first, the iterator-template T is obtained, as the set of all current instantiations 
of E, and then: 

� if T is the empty set, F = [] 
� else, if T = {t1, t2, ..., tn}, F = F't1 * F'{t2, ..., tn} 

where F'ti is the same as F' with its variables instantiated consistently with those 
figuring in ti, and letting the subscript in F'{ti+1, ..., tn} refer to the remaining 
instantiations of T to be used recursively at the next stages. As happens with (binary) 
product, this feature applies to single frames and to frame-sets. 

Similarly, given a frame F', the iterated union of F', expressed by F := uni E @ F', 
where E is a logical expression sharing at least one variable with F', is thus evaluated: 

� first, the iterator-template T is obtained, as the set of all current instantiations 
of E, and then: 

� if T is the empty set, F = [] 
� else, if T = {t1, t2, ..., tn}, F = F't1 + F'{t2, ..., tn} 

where F'ti is the same as F' with its variables instantiated consistently with those 
figuring in ti, and letting the subscript in F'{ti+1, ..., tn} refer to the remaining 
instantiations of T to be used recursively at the next stages. Once again, as happens 
with (binary) union, this feature applies to single frames and to frame-sets. 

Example 9: If departments have a budget attribute, we may wish to compute a 
total value for each company by adding the budget values of their constituent 
departments. Two nested iteration schemes are involved, with uni finding each 
company C, and prod iterating over the set SD of departments of C, obtained by 
applying the factoring operator to C. For all departments D which are members of SD, 
the corresponding budget values are retrieved and added-up, as determined by the sum 
tag in the selection-template, yielding the corporate budget values. Notice the use of 



  Antonio L. Furtado, Marco A. Casanova, Karin K. Breitman, Simone D. J. Barbosa 

C\ at the beginning of the second line, in order to prefix each value with the 
respective company name.  

:- F := uni (company(C)) @  
          C\(prod (SD := fac C, member(D,SD)) @  
                  (sel [budget:sum(B)] @ D ^ [budget:B])). 

result: F = [[Acme\budget:60], [Casa_Soft\budget:20]] 
Example 10: The same constant can be used an arbitrary number of times to serve 

as an artificial identifier, which may provide a device with an effect similar to that of 
"tagging", in the sense that this word is used in the context of folksonomies [13]. 
Looking back at Example 4, suppose we have, along a period of time, collected a 
number of frames pertinent to the planned trip, and marked each of them with the 
same my_trip constant (cf. the notation F#r at the beginning of section 4.2). Later, 
when needed, the desired frame-set can be assembled by applying iterated union. 
Notice in this example the double use of variable T, first as iterator-template and then 
as operand. As iterator-template, T is obtained through the repeated evaluation of the 
expression T := my_trip, which assigns to T the set of all instances of my_trip 
frames, whose union then results in the desired frame-set F. 

:- F#my_trip := [hotel: 'Bavária',city: 'Gramado'] ... 
:- F#my_trip := [hotel: 'Everest',city: 'Rio'] ... 
:- F#my_trip := [transfer_type: executive,airport:'Salgado Filho',  
                 to: 'Gramado', departure: '10 AM'] ... 
........ 
:- G := uni (T := my_trip) @ T. 

result: G = [[hotel: 'Bavária',city: 'Gramado'], 
            [hotel: 'Everest',city: 'Rio'], 
            [transfer_type: executive,airport:'Salgado Filho',  
             to: 'Gramado', departure: '10 AM']] 

Another extension has to do with the obtention of patterns, in special for handling 
class frames and instance frames simultaneously, and for similarity [15] rather than 
mere equality comparisons. Given a frame F, the pattern of F, denoted by patt F, is 
obtained from F by substituting variables for the values of the various properties. 

Example 11: The objective is to find which employees are somehow similar to 
Hercule. Both in F1 and F2, the union iterator-template is obtained by evaluating all 
instances of the expression employee(E), not E == 'Hercule', Fe := E, which 
retrieves each currently existing employee name E, different from Hercule, and then 
obtains the frame Fe having E as identifier. The operand of both union operations is a 
product, whose second term is the more important. In F1, it is determined by the sub-
expression 'Hercule' ^ Fe, which looks for properties of Hercule using Fe as 
search-frame (see section 4.2). In F2, a weaker similarity requirement is used; the 
sub-expression 'Hercule' ^ (patt Fe) produces the properties shared by the frames 
of Hercule and E with equal or different values, which are all displayed as variables 
thanks to a second application of patt. Finally, product is used to introduce 
same_prop_val or same_prop as new properties, in order to indicate who has been 
found similar to Hercule. 

:- F1 := uni (employee(E), not E == 'Hercule', Fe := E) @  
              ([same_prop_val:E] * 'Hercule' ^ Fe). 

result: F1 = [[same_prop_val: Jonathan, salary: 100, works/1: Acme],  
             [same_prop_val: Mina, works/1:Acme]] 
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:- F2 := uni (employee(E), not E == 'Hercule', Fe := E) @  
              ([same_prop:E] * (patt ('Hercule' ^ (patt Fe)))). 

result: F2 = [[same_prop: Jonathan, salary:_, works/1:_],  
             [same_prop: Mina, salary:_, works/1:_],  
             [same_prop: Hugo, salary:_, scholarship:_, works/1:_]] 

5 Concluding remarks 
We have submitted in the present paper that frames are a convenient abstract data 
type for representing heterogeneous incomplete information. We have also argued 
that, with its seven operators, our Frame Manipulation Algebra (FMA) is complete in 
the specific sense that it covers frame (and frame-set) manipulation in the information 
space induced by the syntagmatic, paradigmatic, antithetic and meronymic relations 
holding between facts. These relations, besides characterizing some basic aspects of 
frame handling, can be associated in turn, as we argued in [11], with the four major 
tropes (metonymy, metaphor, irony, and synecdoche) of semiotic research [5,8]. 

Frames aim at partial descriptions of the mini-world underlying an information 
system. In a separate paper [17], we showed how to use other frame-like structures, 
denominated plots, to register how the mini-world has evolved (cf. [10]), i.e. what 
narratives were observed to happen. Moreover we have been associating the notion of 
plots with plan-recognition and plan-generation, as a powerful mechanism to achieve 
executable specifications and, after actual implementation, intelligent systems that 
make ample use of online available meta-data originating from the conceptual 
modelling stage (comprising static, dynamic and behavioural schemas). 

To business information systems we have added literary genres as domains of 
application of such methods. In fact, the plot manipulation algebra (PMA), which we 
developed in parallel with FMA in order to also characterize plots as abstract data 
types, proved to be applicable in the context of digital entertainment [20].  

Another example of the pervasive use of frame or frame-like structures, in the area 
of Artificial Intelligence, is the seminal work on stereotypes [23] to represent 
personality traits. In the continuation of our project, we intend to pursue this line of 
research so as to enhance our behavioural characterization of agents (or personages, 
in literary genres), encompassing both cognitive and emotional factors [2].  
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