
Rafael Fierro

MARHES Laboratory

School of Electrical and Computer Engineering

Oklahoma State University

Stillwater, OK USA

Aveek Das
John Spletzer
Joel Esposito
Vijay Kumar
James P. Ostrowski
George Pappas
Camillo J. Taylor

GRASP Laboratory

University of Pennsylvania

Philadelphia, PA USA

Yerang Hur
Rajeev Alur
Insup Lee

SDRL Laboratory

University of Pennsylvania

Philadelphia, PA USA

Greg Grudic

Department of Computer Science

University of Colorado at Boulder

Boulder, CO USA

Ben Southall

Sarnoff Corporation

Princeton, USA

A Framework and
Architecture for
Multi-Robot
Coordination

Abstract

In this paper, we present a framework and the software architecture

for the deployment of multiple autonomous robots in an unstructured

and unknown environment, with applications ranging from scouting

and reconnaissance, to search and rescue, to manipulation tasks, to

cooperative localization and mapping, and formation control. Our

software framework allows a modular and hierarchical approach to

programming deliberative and reactive behaviors in autonomous op-

eration. Formal definitions for sequential composition, hierarchical

composition, and parallel composition allow the bottom-up devel-

The International Journal of Robotics Research

Vol. 21, No. 10–11, October-November 2002, pp. 977-995,

©2002 Sage Publications

opment of complex software systems. We demonstrate the algorithms

and software on an experimental testbed that involves a group of car-

like robots, each using a single omnidirectional camera as a sensor

without explicit use of odometry.

KEY WORDS—multi-robot coordination, hierarchical hy-

brid systems, vision-based control

1. Introduction

It has long been recognized that there are several tasks that

can be performed more efficiently and robustly using multiple

robots (Donald, Gariepy, and Rus 2000; Khatib et al. 1996).

In fact, there is extensive literature on control and coordina-

977

http:\\www.sagepublications.com

978 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

tion for multiple mobile robots, and application to tasks such

as exploration (Burgard et al. 2000), surveillance (Feddema

and Schoenwald 2001), search and rescue (Jennings, Whelan,

and Evans 1997), mapping of unknown or partially known

environments (Taylor 2002), distributed manipulation (Rus,

Donald, and Jennings 1995; Matarić, Nilsson, and Simsar-

ian 1995), distributed sensor fusion and localization (Stroupe,

Martin, and Balch 2001; Roumeliotis and Bekey 2000), and

transportation of large objects (Stilwell and Bay 1993; Sugar

and Kumar 2000; Kosuge et al. 1999). See, for instance, Parker

(2000) for a review of contemporary work in this area.

In our previous work, a high-level language CHARON was

introduced for describing hierarchical hybrid systems (Alur

et al. 2000a). The problem of controlling a group of robots has

been addressed in a series of papers: trajectory generation is

addressed in Fierro et al. (2002) and Belta and Kumar (2001);

switched control in Desai, Kumar, and Ostrowski (1999) and

Fierro et al. (2001b); vision-based formation control is pre-

sented in Das et al. (2002); and cooperative localization and

manipulation is addressed in Spletzer et al. (2001). In this pa-

per, in contrast, we focus on the design of software and control

behaviors for cooperative multi-robot systems. Our goal is to

describe a set of tools that allows the development of con-

trollers and estimators for multi-robot coordination. The tools

consist of a framework for developing software components,

an architecture for control and estimation modules, and a set

of decentralized control, planning and sensing algorithms. In

our software framework, each component, for example each

robot, is an agent. The agent can be a parallel composition of

many sub-agents, for example, sensor agents, actuator agents,

and other software agents that operate in parallel. The multi-

robot control task is decomposed within each agent into a set

of modes or behaviors. Modes can consist of high-level be-

haviors such as planning a path to a goal position, as well as

low-level tasks such as obstacle avoidance. We allow for se-

quential composition of modes to enable changes in behavior.

Hierarchical composition allows high-level deliberative con-

trollers to be composed with low-level reactive controllers.

We use a high-level language to formally describe how and

when transitions between these modes are to take place in

order to achieve a set of global objectives.

2. Motivation

There is extensive literature on the control of robot manipu-

lators or mobile robots in structured environments, and robot

control is a well-understood problem area. However, tradi-

tional control theory mostly enables the design of controllers

in a single mode of operation, in which the task and the model

of the system are fixed. A similar problem exists in developing

estimators in the context of sensing.

When operating in unstructured or dynamic environments

with many different sources of uncertainty, it is very difficult

if not impossible to design controllers that will guarantee per-

formance even in a local sense. In contrast, we also know that

it is relatively easy to design reactive controllers or behav-

iors that react to simple stimuli or commands from the envi-

ronment. This is the basis for the subsumption architecture

(Brooks 1986) and the paradigm for behavior-based robotics

(Matarić 1995; Arkin 1998).

Our goal in this paper is to establish a paradigm that allows

us to design simple components whose performance can be

analyzed and predicted using control theory and dynamics,

and to develop tools that allow us to construct hierarchical

systems with switches in behavior that can be used in the

development of intelligent robotic systems. Specifically, we

describe an architecture and a high-level language with for-

mal semantics, CHARON, that can be used to describe multi-

agent, networked robotic systems with multiple control and

estimation modes, and discrete communication protocols in

a principled way. The architecture allows the development of

complex multi-robot behavior via hierarchical and sequential

composition of control and estimation modes, and parallel

composition of agents. We present our ongoing work to au-

tomatically generate control and simulation code from the

high-level language description.

We also illustrate the application of these ideas to the devel-

opment of an experimental platform of multiple mobile robots

that cooperate in performing the following tasks: (a) searching

and identification of colored objects; (b) cooperative localiza-

tion of targets and robots; (c) cooperative two-dimensional

mapping; (d) cooperative manipulation and transportation of

objects; and (e) formation control.

The experimental results demonstrate the benefits and the

limitations of mode switching and the methodology underly-

ing the implementation of cooperative control of multi-robotic

systems.

3. Modeling Language and Software

Architecture

The last few years have seen active research in the field of dis-

tributed robotics, and in the development of architectures for

multi-robot coordination. These architectures have focused on

providing different capabilities to the group of robots. For in-

stance, ALLIANCE (Parker 1998), a behavior-based software

architecture, has focused on fault tolerant cooperative control.

In Morrow and Khosla (1997), robot skills are expressed as

finite state machines (FSMs) under the Chimera software en-

vironment. The coordination of robots for large-scale assem-

bly has been considered in Simmons et al. (2000). Klavins

and Koditschek (2000) have presented tools for composing

hybrid control programs for a class of distributed robotic

systems. This approach assumes that a palette of controllers

for individual tasks is available. These controllers i.e., robot

behaviors are sequentially composed using the techniques

introduced in Burridge, Rizzi, and Koditschek (1999). These

Fierro et al. / Multi-Robot Coordination 979

ideas are applied to the design of assembly tasks as found in

automated factories.

The three-tier (3T) layered architecture is presented in

Schreckenghost et al. (1998). In this work the problem of

managing life support for remote facilities is considered. A

planner coordinates the tasks across subsystems. An explicit

separation between deliberative and reactive tasks enables ap-

propriate human intervention in autonomous operation. Re-

cently, the CLARAty architecture for robotic autonomy was

introduced in Volpe et al. (2001). This two-tiered approach

considers a tight coupling between planning and execution

within the decision layer. The decision layer interacts with

the functional layer. The functional layer consists of software

modules for estimation, status reporting and system operation

organized in a conventional object-oriented manner. Both ar-

chitectures, 3T and CLARAty, are being implemented on some

NASA robotic projects.

Our software architecture has some similarities with the

works described above. It is object-oriented and supports hi-

erarchical composition of agents and behaviors or modes. In

addition, we use the theory of hybrid systems (Alur et al.

2000b; Fierro and Lewis 1997; van der Schaft and Schu-

macher 2000) to formally analyze and design multi-robotic

cooperative systems. For this purpose, we have developed

CHARON, an acronym for Coordinated Control, Hierarchi-

cal Design, Analysis, and Run-Time Monitoring of Hybrid

Systems.

3.1. Modeling Language

CHARON is a language for modular specification of inter-

acting hybrid systems based on the notions of agents and

modes. For a hierarchical description of the system architec-

ture, CHARON provides the operations of instantiation, hid-

ing, and parallel composition on agents, which can be used

to build a complex agent from other agents. The discrete and

continuous behaviors of an agent are described using modes.

For a hierarchical description of the behavior of an agent,

CHARON supports the operations of instantiation and nesting

of modes. Furthermore, features such as weak pre-emption,

history retention, and externally defined Java functions, facili-

tate the description of complex discrete behavior. Continuous

behavior can be specified using differential as well as alge-

braic constraints, and invariants restricting the flow spaces,

all of which can be declared at various levels of the hierarchy.

The modular structure of the language is not merely syntactic,

but is also reflected in the semantics so that it can be exploited

during analysis. The key features of CHARON are summa-

rized below.

• Architectural hierarchy: The building block for de-

scribing the system architecture is an agent that com-

municates with its environment via shared variables and

also communication channels. The language supports

the operations of composition of agents for concur-

rency, hiding of variables for information encapsula-

tion, and instantiation of agents to support reuse.

• Behavioral hierarchy: The building block for describ-

ing a flow of control inside an atomic agent is a mode. A

mode is basically a hierarchical state machine, that is,

a mode can have submodes and transitions connecting

them. Variables can be declared locally inside any mode

with standard scoping rules for visibility. Modes can be

connected to each other through entry and exit points.

We allow the instantiation of modes so that the same

mode definition can be reused in multiple contexts. Fi-

nally, to support exceptions, the language allows group

transitions from default exit points that are applicable

to all enclosing modes, and to support history retention,

the language allows default entry transitions that restore

the local state within a mode from the most recent exit.

• Discrete and continuous variable updates: Discrete

updates are specified by guards labeling transitions con-

necting the modes. Such updates correspond to mode-

switching, and are allowed to modify variables through

assignment statements.

Variables in CHARON can be declared analog, and

they flow continuously during the continuous updates

that model the passage of time. The evolution of analog

variables can be constrained in three ways: differential

constraints (e.g., by equations such as ẋ = f (x, u)),

algebraic constraints (e.g., by equations such as y =

g(x, u)), and invariants (e.g., x − y < c) which limit

the allowed durations of flows. Such constraints can be

declared at different levels of the mode hierarchy.

It should be noted that CHARON is a modeling language:

it supports nondeterminism for both discrete and continuous

updates, it is suitable for describing the system as well as the

assumptions about the environment in which the system is

supposed to operate, and for describing the same system at

different levels of abstraction. The language constructs pri-

marily facilitate the description of control flow, but it also

supports calls to externally defined Java functions which can

be used to write complex data manipulations. More details

about the language, the global semantics and the formal de-

scription are presented in Alur et al. (2000a).

3.2. Software Architecture

3.2.1. Architectural Modeling with Agents

The architecture proposed here allows the development of

complex multi-robot behavior via hierarchical and sequential

composition of control and estimation modes, and parallel

composition of agents.1

1. Note that our definitions of composition do not satisfy the constraints

required by Burridge, Rizzi, and Koditschek (1999), where the definition of

composition comes with guarantees for global performance.

980 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

formation,

role[1…n],

obstacleDetected,

wallDetected

Coordination Agent

Robot_Group Agent

groupState

obstacleSensed[1...n],

wallSensed[1…n]

targetSensed[1…n]

controlEstimator[1...n]

Fig. 1. Agent hierarchy diagram.

At the highest level of the hierarchy, the multi-robot system

is represented by two interacting agents: a coordination agent

and a robot-group agent. The coordination agent reduces to

the specification of communication channels between robot

agents, and the specification of parameters for transitions and

the instantiation of each agent within the robot-group agent.

This is schematically illustrated in Figure 1.

Robot agents can receive estimates of the obstacles from

other robots, and commands and specifications from the hu-

man operator on input channels, and it can send its own infor-

mation to other robots or to the human operator on the output

channels (see Figure 2).

The architecture diagram in Figure 3 shows a parallel com-

position of control and estimator agents operating concur-

rently with off-the-shelf black boxes (shown shaded). The

control agent switches between modes described in the next

subsection. The estimator agent on the left in the dotted box

represents different logical sensors that can be developed from

one vision system.

3.2.2. Behavioral Modeling with Modes

The state of a robot agent is given by xxx ∈ Rn. Its evolution is

determined by a set of differential equations

ẋxx = fq(xxx,uuu), uuu = kq(xxx,zzz), (1)

where uuu ∈ Rm is the control vector, q ∈ Q ⊂ Z is the control

mode for the agent, Q is a finite set of control mode indices,

Z denotes the set of positive integers, and zzz ∈ Rp is the in-

formation about the external world available either through

sensors or through communication channels. The robot agent

contains modes describing behaviors that are available to the

robot.

The controller-Top mode depicted in Figure 4 consists of

two submodes: leader mode and follower mode. These sub-

modes become active based on the state of the discrete variable

role from the coordination agent.

There are three submodes within the leader mode: go-

ToGoal, obstacleAvoidance, and wallFollowing. Initially, the

leader’s mode is goToGoal and both wallDetected and obsta-

cleAvoided are false. If one of these becomes true, the transi-

tion from goToGoal to one of wallFollowing and obstacleAv-

oidance occurs accordingly, and the reverse transition will

be enabled if the variable is reset. If both variables become

true, obstacleAvoidance mode will be active. A leader will en-

ter wallFollowing mode if the Boolean variable wallDetected

becomes true, obstacleAvoidance mode if obstacleDetected

becomes true, respectively. This behavioral structure is illus-

trated in Figure 5.

If a robot agent is in follower mode, it will follow its leader

keeping a desired distance and relative bearing. The estimator

agent provides all the required information about the state of

the leader. The follower robot uses this information in order

to compute its own control velocities. We have developed

and implemented a number of controllers for this purpose.

Figure 6 illustrates the textual description in CHARON of

the follower mode. The separation-bearing controller (SBC)

implemented within this mode is presented in Section 5.

In the next section, we proceed to illustrate how to exploit

the modular structure of CHARON in implementing the above

architecture. We consider the problem of controlling multiple

mobile, autonomous robots for mission-critical applications

and stringent requirements on safety. A detailed CHARON

code for a two-robot example is given in the Appendix.

4. Real-Time Framework for Multi-Robot

Coordination

Our multi-threaded software implementation encapsulates al-

gorithms and data in the usual object-oriented manner to-

gether with control of a thread within which the algorithms

will execute, and a number of events that allow communica-

tion with other objects. At the top of the hierarchy, the algo-

rithms associated with the objects are likely to be planners,

while at bottom they will be interfaces to control and sensing

hardware. The planner objects are able to control the exe-

cution of the lower level objects to service high-level goals.

To offer platform independence, only the lowest level objects

should be specific to any hardware, and these should have

Fierro et al. / Multi-Robot Coordination 981

formation, role[1...n],

obstacleDetected,

wallDetected

Robot_1

groupState

obstacleSensed[1...n],

targetSensed[1…n],

wallSensed[1...n]

controlEstimator[1…n]

Robot_2 Robot_n. . .

Fig. 2. Robot-group agent.

Frame_Grabber Agent

Estimator Agent

Motion_Controller Agent

Control Agent

Robot_k

o
b
st

ac
le

S
en

se
d
[k

]

wallSensed[k] controlEstimator[k] groupState formation role[k]

o
b
stacleD

etected
w

allD
etected

ta
rg

et
S

en
se

d
[k

]

Fig. 3. A robot agent consists of estimator agent, control agent and hardware interface agents.

Controller_Top

read discrete int role;

read discrete bool wallDetected, obstacleDetected;

Follower_Mode

Leader_Mode

role == lead role == follow

role == follow

Fig. 4. Robot modes within the Controller Top mode.

982 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

Leader_Mode

read discrete bool wallDetected, obstacleDetected;

wallDetected== true &&

obstacleDetected == false

Obstacle

Avoidance obstacleDetected == true

Go_To_Goal
Wall

Following
wallDetected == false

wallDetected == true

obstacleDetected == true

wallDetected==false &&

obstacleDetected == false

Fig. 5. Submodes within the leader mode.

param ld, psid, d, k1, k2, deltaL, deltaPsi;

read analog real xI, yI, thetaI, omegaI, vI;

write analog real x, y, theta, omega, v;

private analog real l, psi;

inv invFollow {Math.abs(l - ld) <= deltaL

and Math.abs(psi- psid) <= deltaPsi}

diff dFollowV {d(v)== k1(ld-l)* Math.cos(thetaI+psi-theta)

-l*Math.sin((thetaI+psi-theta)(k2(psid-psi)+omegaI))

+vI* Math.cos(thetaI-theta)}

diff dFollowOmega {d(omega)==1/d (k1(ld-l)*Math.sin(thetaI+psi-theta)

+l*Math.cos((thetaI+psi-theta)(k2(psid-psi)+omegaI))

+vI*Math.sin(thetaI-theta))}

diff dFollowXY { d(x) == v*Math.cos(theta);

d(y) == v*Math.sin(theta)}

alge aLP { l==Math.sqrt((x-xI)(x-xI)+(y-yI)(y-yI));

psi==pi-thetaI-Math.atan2(y-yI,x-xI)}

Follower_Mode

Fig. 6. Description of the follower mode.

Fierro et al. / Multi-Robot Coordination 983

a consistent interface for communication with the planning

objects that control their execution.

Vision-based control algorithms have been incorporated

into the multi-threaded software architecture for such basic

functionality as obstacle avoidance, wall following, mapping

and localization, and group behavior. Thus, each robot can be

easily programmed to follow a wall while avoiding obstacles,

and looking for targets that might specify the goal location.

With multiple robots, each robot may also have the flexibil-

ity of following other robots. This software is used by robots

to explore long passages in buildings and build maps of the

environment for possible reconstruction with applications to

immersion or for scouting and reconnaissance. Other exam-

ples of group behavior include formation keeping, collabo-

rative mapping and manipulation. We can form two-robot or

n-robot teams by parallel composition of robot agents. The

availability and sharing of information between the robots

allows us: (a) to design modes within estimator agents that

can exploit sensory information obtained from other robots;

and (b) to design the coordination agent to initiate or trigger

mode-switching within the controller agent.

In the next subsections, we describe the real-time imple-

mentation of the software objects that realize the architecture

proposed here.

4.1. Experimental Platform

The GRASP Laboratory Clodbuster (CB) robots served as

the testbed for all experiments. The platform is based upon a

commercially available radio control truck from Tamiya Inc.,

with significant modifications. The CB version used for this

work lacks on-board processing. Wireless video is transmitted

at 2.4 GHz, back to a remote computer where all vision and

control algorithms are processed. Control servo signals are

then sent back in turn from the computer to the CB via a

parallel port interface. An image of the CB platform is shown

in Figure 7 (Extension 1).

The CB platform uses an omnidirectional camera (Para-

camera from Remote Reality) as its sole sensor. One of the

primary advantages of these catadioptric sensors is that they

afford a single effective point of projection (Baker and Nayar

1998). This means that after an appropriate calibration, every

point in the omnidirectional image can be associated with a

unique ray through the focal point of the camera. This allows

azimuth and elevation angles to every teammate (and target)

visible in the 360◦ field-of-view image to be estimated, mak-

ing the camera an ideal choice for cooperative sensing tasks,

as will be discussed in the following section.

The robot has a servo controller on board for steering and

a digital proportional speed controller for forward/backward

motion. A parallel port interface, also designed in our lab,

allows us to drive up to eight mobile robot platforms from

a single Windows NT workstation. A video receiver, located

at the host computer, feeds the signal to a frame grabber that

is able to capture video at full frame rate (30 Hz) for image

processing. This yields a video signal in a format for viewing

and recording, as well as image processing.

4.2. Sensors

Sensors are organized hierarchically within the estimator

agent shown in Figure 3. The estimator agent will share infor-

mation with the coordination and robot agents. The logical

sensors or detectors work in parallel and all use the informa-

tion provided by the Frame_Grabber agent. This is graphi-

cally depicted in Figure 8.

A target or other robots can be identified in the image using

a YUV color space based feature extractor, which provides ro-

bustness to variations in illumination (Spletzer et al. 2001).

Three-dimensional color models are generated a priori from

images of the target at numerous distances, orientations, and

illumination levels. These data are stored in a pair of look-up

tables to speed image processing. During operation, the tar-

get detection algorithm, the blobExtractor sensor, is initially

applied to the entire image and can run at frame rate (30 Hz).

Once the target is acquired, the sensor switches to target

tracking mode (Extension 2). The target tracking scheme is

simple yet robust. The YUV-based color extractor actually

processes the entire image very quickly, segmenting up to

eight colors from each pixel with a single binary operation.

4.2.1. Range Mapping

The range map (see Figure 7) is obtained by applying a Sobel

gradient to the omnidirectional image. The resulting edges in

the image are the features of interest. By assuming a ground

plane constraint, the distance to the nearest feature in the sec-

tor of interest is determined from the its relative elevation

angle to the mirror. This provides a range map to all obstacles

at frame rate.

4.2.2. Localizer

Our localization algorithm employs an extended Kalman fil-

ter (EKF) to match landmark observations to an a priori map

of landmark locations. The Localizer object uses the blobEx-

tractor sensor agent to determine the range and the bearing of

an observed landmark. If the observed landmark is success-

fully matched, it is used to update the vehicle position and

orientation. The lower left image of Figure 7 shows a typical

image used for localization.

In the experiment depicted in Figure 9, we let the robot

trace an open-loop circular trajectory in a measured area with

fixed landmarks. The robot usually sees very few landmarks.

The overhead camera gives us an idea of the actual ground

trajectory of the robot. The average error is approximately

2 cm. This is particularly challenging as we use a simplified

kinematic model, and we lack odometry.

984 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

Fig. 7. The mobile robot platform with Omnicam (top), typical image and the ensuing range map (bottom).

Obstacle

Detector
Relative

State Observer

Collision

Detector

Target

Detector

Color Blob

Extractor
Edge Detector

o
b
st

ac
le

S
en

se
d
[k

]
w

al
lS

en
se

d
[k

]

controlEstimator[k]

Frame Grabber

targ
etS

en
sed

[k]

Range

Mapper

Fig. 8. Description of the Estimator agent.

Fierro et al. / Multi-Robot Coordination 985

Initial

Position (1,1)

From localizer

Ground

truth

Ground

truth

Fig. 9. Localization results for a circular trajectory.

4.2.3. Velocity Estimator

The leader-following control object described in the next sec-

tion requires reliable estimation of the linear velocity and an-

gular velocity of a leader mobile robot. The velocity estimator

algorithm is also based on an EKF. It uses the blobExtractor

sensor to determine the range ρ and the bearing β of the ob-

served leader. In addition, the filter requires a sensor model,

and a model of the dynamics of the leader and follower robots.

The EKF is based on a kinematic model of the nonholo-

nomic mobile robot

ẋ = u1 cos θ, ẏ = u1 sin θ,

θ̇ =
u1

l
tan φ, φ̇ = λ(u2 − φ),

(2)

where l is the body length, u2 is the steering command,

|φ| < 70◦ is the steering angle, and λ ≈ 4s−1 is a parameter

that depends on the steering servo time constant and wheel-

ground friction. The control vector is given by uuu = [u1 u2]
T

where u1 is the robot’s forward velocity and u2 is the steering

command. More details of the EKF are provided in Das et al.

(2001).

4.2.4. Mapper

When communication is enabled between the robots, central-

ized controllers and estimators are possible. Figure 10 shows

the results of a cooperating mapper enabled by sharing infor-

mation between, and coordinating, three robots. The mapper

requires two robots to stay fixed at any instant, while a third

robot, called the mapper, explores unknown areas. In the fig-

ure, three robots develop a map of a 4 × 4m2 test area with

global map updates at 3–5 Hz.

4.3. Controllers

4.3.1. Obstacle Avoidance and Wall Following

The wall following works by using inputs from two sensors:

a wall detector and an obstacle detector. Both take as input

the image from an edge detector, and use range map data to

find the relative position of the wall/obstacle. The wall de-

tector has a 40◦ field of view from 160◦–200◦ with respect to

the robot frame, where 90◦ reflects the forward direction of

the robot. A line is fit to these points using a RANSAC (ran-

dom sampled consensus) algorithm (Hartley and Zisserman

2000), which gives us a line fit robust to outliers. From this we

are able to extract the relative position and orientation of the

robot to the wall. We use input–output feedback linearization

techniques to design a proportional–derivative (PD) controller

to regulate the distance of the vehicle to the wall, Figure 11

(top). Wall following can be considered as a particular case

of path following (De Luca, Oriolo, and Samson 1998). Thus,

the kinematics, in terms of the path variables, arc length s and

orientation θt , becomes

986 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

ACTUAL EXTRACTED

Fig. 10. Cooperative mapping with three robots, in an environment with real and simulated walls.

ṡ = v1 cos θp, ḋ = v1 sin θp, θ̇p =
v1

l
tan φ, φ̇ = v2.

(3)

In this case θt = π

2
and θp = θ − θt . Assuming the robot is to

follow the wall with a piecewise constant velocity v1(t), the

controller is given by

u = tan−1

[

l

v2
1 cos θp

(kp(d0 − d) − kvv1 sin θp)

]

, (4)

where u(t) is the steering command, v1(t) is the linear ve-

locity, and kp and kv are positive design controller gains. A

critically damped behavior is obtained by setting kv = 2
√

kp.

The obstacle detector picks up objects in its 80◦ forward-

staring field of view. Since the position and orientation rela-

tive to the wall are known, the detector is able to discriminate

which obstacles are actually the wall, and which are truly ob-

stacles that must be avoided. Mode switching between wall

following and obstacle avoidance is accomplished by giving

priority to the latter. Experimental results are depicted in Fig-

ure 11 (axes units are inches).

5. Control of Groups of Robots

Problems in formation control of multiple vehicles that have

been investigated include assignment of feasible formations

(Tabuada, Pappas, and Lima 2001), getting into formation

(Chen and Luh 1994; Beni and Liang 1996), and mainte-

nance of formation shape (Yamaguchi and Burdick 1998).

Approaches to modeling and solving these problems have

been diverse, ranging from paradigms based on combining re-

active behaviors (Balch and Arkin 1998; Burridge, Rizzi, and

Koditschek 1999) to those based on leader-following graphs

(Desai, Ostrowski, and Kumar 2001) and virtual structures

(Tan and Lewis 1997; Lawton, Young, and Beard 2000).

We consider a team of n nonholonomic mobile robots that

are required to follow a prescribed trajectory while maintain-

ing a desired formation. The desired formation may change

based on environmental conditions or higher-level commands.

In this paper, we assume that the robots are velocity controlled

platforms and have two independent inputs vi andωi . The con-

trol laws are based on I/O feedback linearization. This means

we are able to regulate two outputs. Moreover, we assume that

the robots are assigned labels from 1 through n which restrict

the choice of control laws. Robot 1 is the leader of the group. It

is assumed that R1 knows where to go. We do not consider ex-

plicitly the trajectory planning for the leader, but instead focus

on the algorithms and software required for the group to fol-

low the leader. Follower robots have no information about the

leader’s trajectory. Each follower robot is able to estimate the

state of its leader by using extended Kalman filter techniques

(Das et al. 2001). Thus, a follower can maintain a prescribed

separation and bearing from its adjacent neighbors. Follow-

ing our previous work (Desai, Ostrowski, and Kumar 2001),

we consider two controllers that enable this behavior in the

next two subsections: (a) the Separation–Bearing Controller

(SBC); and (b) the Separation–Separation Controller (SSC).

5.1. Separation–Bearing Control

In this mode of control, the desired separations ld
ij

and bearings

ψd
ij

define the desired shape of the formation locally as shown

in Figure 12 (top). The kinematics of the nonholonomic i-

robot are given by

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, (5)

where xi ≡ (xi, yi, θi) ∈ SE(2). The control velocities for

the follower are given by

vj = sij cos γij − lij sin γij (bij + ωi) + vi cos(θi − θj), (6)

Fierro et al. / Multi-Robot Coordination 987

d

θt

θ

s

l

W
A

L
L

-80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

80

100

120

* Obstacle

Avoidance

o Wall

Following

Obstacle

Wall

Fig. 11. The wall following, sample wall following configuration, and corresponding mode versus position results (see also

Extension 3).

ωj =
1

dj

[sij sin γij + lij cos γij (bij + ωi) + vi sin(θi − θj)],

(7)

where

γij = θi + ψij − θj , (8)

sij = k1(l
d

ij
− lij), (9)

bij = k2(ψ
d

ij
− ψij), k1, k2 > 0. (10)

The closed-loop linearized system becomes

l̇ij = k1(l
d

ij
− lij), ψ̇ij = k2(ψ

d

ij
− ψij), θ̇j = ωj . (11)

In the following theorem, we provide a stability result for the

SBC.

THEOREM 1. Assume that the reference trajectory g(t) is

smooth, the reference linear velocity is large enough and

bounded, i.e., vi > Vmin > 0, the reference angular veloc-

ity is small enough, i.e., ‖ωi‖ < Wmax and the initial relative

orientation is bounded, i.e.,
∥

∥θi − θj

∥

∥ < εθ < π . If the con-

trol velocities (6)–(7) are applied to Rj , then system (11) is

stable and the output system error of the linearized system

converges to zero exponentially.

While the two output variables in eq. (11) converge to the

desired values arbitrarily fast (depending on k1 and k2), the be-

havior of the follower’s internal dynamics, θj , depends on the

controlled angular velocity ωj . In our analysis we have con-

sidered the internal dynamics required for a complete study

of the stability of the system. Let the orientation error be ex-

pressed as

ėθ = ωi − ωj . (12)

After incorporating the angular velocity for the follower (7),

we obtain

ėθ = −
vi

dj

sin eθ + η(www, eθ), (13)

where www depends on the output system error and reference

angular velocity ωi . η(·) is a nonvanishing perturbation for

the nominal system (eq. (13) with η(·) = 0), which is itself

(locally) exponentially stable. By using the stability of per-

turbed systems (Khalil 2002), it can be shown that system (13)

is stable, and thus the stability result in Theorem 1 follows.

Figure 12 shows a view of a leader-following experiment.

Shown superimposed on the ground plane are actual data

points collected from an overhead camera installed in our lab

for ground truth purposes.

Figure 13 depicts the estimated linear and angular velocity

of the leader robot, and the measured separation and bearing.

We choose ld = 0.6 m and ψd = 180◦. The robustness of the

system is verified when we manually hold the follower for a

few seconds at t ≈ 65 s.

988 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

(xi,yi,θi)

lij

vi, ωi
ψij

Ri

dj

(xj,yj,θj)

vj, ωj
Rj

X

Y

Fig. 12. The SBC and formation control experimental setup (see also Extension 1).

5.2. Separation–Separation Control

In this mode of control, robot Rk follows two leaders Ri and

Rj with desired separations ld
ik

and ld
jk

, respectively. This con-

troller can be used to define a triangle formation provided that

Rj followsRi with the appropriate separation and bearing (see

Figure 14).

In this case the control velocities for the follower robot

become

vk = (14)

sik sin γjk − sjk sin γik + vi cosψik sin γjk − vj cosψjk sin γik

sin(γjk − γik)
,

ωk = (15)

−sik cos γjk+sjk cos γik−vi cosψik cos γjk+vj cosψjk cos γik

dk sin(γjk−γik)
.

The closed-loop linearized system is

l̇ik = k1(l
d

ik
− lik), l̇jk = k1(l

d

jk
− ljk), θ̇k = ωk. (16)

In the following theorem, we provide a stability result for the

SSC. Details are described in Fierro et al. (2002).

THEOREM 2. Assume that the reference linear velocity

along the trajectory g(t) ∈ SE(2) is lower bounded, i.e.,

vi > Vmin > 0, the reference angular velocity is also bounded,

i.e., ‖ωi‖ < Wmax , the relative velocity δv ≡ vi −vj and orien-

tation δθ ≡ θi − θj are bounded by small positive numbers ε1,

ε2, and the initial relative orientation ‖θi(t0) − θk(t0)‖ < π .

If the control velocities (14)–(15) are applied to Rk, then sys-

tem (16) is stable and the output system error of the linearized

system converges to zero exponentially.

Figure 15 depicts ground-truth data for triangular forma-

tion experiments. The desired formation was an isosceles tri-

angle where both followers maintained a distance of 1.0 m

Fierro et al. / Multi-Robot Coordination 989

0 20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

0.8
Separation

A
m

p
li
tu

d
e

(m
)

Time (s)

0 20 40 60 80 100 120 140
150

155

160

165

170

175

180

185

190

195

200
Bearing

ψ
(d

e
g

)

Time (s)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6
Estimated linear velocity (leader)

v
1

(m
/s

)

Time (s)

0 20 40 60 80 100 120 140
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Estimated angular velocity (leader)

ω
1

(r
a

d
/s

)

Time (s)

Fig. 13. Leader-following experimental results.

from the lead robot. The results are for the most part satisfac-

tory, with mean separation errors of 3.2% and 5.5% for the

two followers.

5.2.1. Distributed Manipulation

The ability to maintain a prescribed formation allows the

robots to manipulate objects and transport them to a desired lo-

cation. Experiments were conducted using a box as the object

to be manipulated. In Figure 16, the initial team configuration

is centered around the box, with the goal to flow the formation

along a trajectory generated by the leader. By choosing a con-

straining formation geometry, the box is kept in contact with

all three robots during the formation flow. Several snapshots

from a sample run are shown in Figure 16.

Despite the control strategy not accounting for changes in

the object pose, the formation was typically successful in its

manipulation task over the tested trajectories. These exper-

iments, while not an exhaustive investigation of distributed

manipulation, demonstrate the potential for a vision-based

formation control application.

5.3. Discussion

We have discussed two types of controllers for the Leader-

Following mode for controlling and coordinating a team of

mobile robots. These are not the only controllers possible.

In Spletzer et al. (2001), we describe controllers that are par-

ticularly useful for cooperative localization and manipulation,

and we exploit the characteristics of the omnidirectional cam-

eras. However, as shown in Fierro et al. (2001b, 2002), these

controllers can be used to control a team of n robots in arbi-

trarily complicated formations. Furthermore, in Fierro et al.

(2001b) a simple algorithm for assigning one of the two con-

trollers discussed above is developed. This mode-switching

algorithm, although derived from heuristics based on the

990 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

(xi,yi,θi)

vi, ωi

X

Y

lik

(xk,yk,θk)

vk, ωk

(xj,yj,θj)

vj, ωj

ljk

Rk

Ri

Rj

 dk

Omni-Camera

Video transmitter

Collar for

identification

Fig. 14. The SSC and experimental setup.

2 1 0 1 2
2

1

0

1

2

3

4

Dist (m.)

D
is

t
(m

.)

Initial

Final

1

2

3

1

2
3

2 1 0 1 2 3

2

1

0

1

2

3

4

Dist (m.)

D
is

t
(m

.)

1

2

3

1

2

3

Fig. 15. Sample ground-truth data for trajectories for a triangular formation (see also Extension 5).

Fierro et al. / Multi-Robot Coordination 991

Fig. 16. Distributed manipulation demonstration.

sensor characteristics and the dynamics of the robot, is proven

to be stable for a three-robot formation.

The assignment of controllers for an n-robot team can be

formulated as an optimization problem on a directed graph,

where the nodes represent the robots and each directed edge

represents the assigned control policy for the associated robot

pair. We call such a directed graph H, a control graph. The

objective for the optimization could be to maximize stability

of the formation for bounded trajectories of the lead robot for

a specified task. This problem is particularly complicated be-

cause the constraints on the graph must reflect the limitations

of the sensor and the dynamic characteristics of the robot and

are therefore continuous constraints in state space. This is a

subject of ongoing work.

Finally, we assume that each robot agent can execute a fi-

nite set of modes. Thus, the tasks performed by the multi-agent

system are specified as mode transition boundaries. Because it

is difficult to predict exactly under what conditions switching

between modes should occur, we parametrize mode bound-

ary transitions within each robot’s information space and use

reinforcement reward to obtain locally optimal mode bound-

ary locations. Given this formal specification of the control

task, the autonomous agents begin to interact with the envi-

ronment, collecting data. This information (e.g., samples of

vehicle dynamics, obstacles, and other unknowns such as vi-

sion), and an appropriate performance index (e.g., number of

mode switches, task completion time, etc.) are used within the

Boundary Localized Reinforcement Learning (BLRL) frame-

work to suggest an updated set of the mode boundaries. We

point the reader to a description of the BLRL to obtain locally

optimal mode transition boundary locations (Grudic and Un-

gar 2000a, 2000b).

6. Concluding Remarks

We have presented a formal architecture and high-level lan-

guage for programming multiple cooperative robots. Our ap-

proach assumes that each robot has a finite set of behaviors

or modes that it can execute, and the programming language

is used to formally specify a set of conditions under which

mode transitions take place. We have also discussed the de-

velopment of stable controllers and estimators that can be

used as building blocks in the bottom-up development of an

intelligent system. We have described experiments involving

searching and identification of targets, two-dimensional coop-

erative localization of targets and robots, collaborative map-

ping, cooperative manipulation and transportation of objects,

and formation control.

Currently we are developing a three-dimensional cooper-

ative mapping system which will be necessary for outdoor

operation. Operating outdoors, as in any unstructured envi-

ronment, poses challenges related to robust operation under

conditions such as non-planar terrain and variable lighting

conditions. Also, we are modeling the role of communication

and shared information in tasks involving multi-autonomous

agents. As a future work, we are planning to carry out a

reachability analysis for our hybrid automaton framework.

992 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

We are interested in extending the applicability of our current

framework to other types of multi-agent systems including

unmanned aerial vehicles (UAVs) (Fierro et al. 2001a). Fi-

nally, we are very encouraged by our new approach to Rein-

forcement Learning (RL). It does not suffer from the curse of

dimensionality that plagues most other RL work. We are ac-

tively pursuing the application of algorithms to learning group

behavior.

Appendix 1: CHARON Code of a Multi-Robot

Coordination Example

Consider a two-robot team that tries to arrive at a goal posi-

tion in an environment with obstacles. Additionally, one robot

may take the role of leader while the follower keeps a desired

distance and relative bearing under separation-bearing control

(Section 5). Each robot is considered to have sensors that pro-

vide partial information (or estimate) about the environment,

in this case, the positions of detected obstacles.

We use the framework and architecture presented in this

paper to implement this multi-robot coordination example.

The CHARON code is given below.

/*****************
* Multirobots
* Version: V2.11
*****************/
extern real Math.cos(real);
extern real Math.sin(real);
extern real Math.sqrt(real);
extern real Math.atan2(real, real);

macro single 1
macro lead 2
macro follow 3
macro pi 3.14
macro SBC 1 // Separation-Bearing Control

agent Multirobots() {
private discrete int role1, role2,
formation;

private discrete bool wallDetected,
obstacleDetected;

agent coordination = Coordination()
[r1c, r2c, frc, wdc, odc,
x1, y1c, theta1c, x2c,y2c,
theta2c :=

role1, role2, formation,
wallDetected, obstacleDetected,

x1, y1, theta1, x2, y2, theta2]
agent robotG = RobotGroup()

[r1rg, r2rg, frrg, wdrg, odrg,
x1rg, y1rg, theta1rg, x2rg,
y2rg, theta2rg :=

role1, role2, formation,
wallDetected, obstacleDetected,

x1, y1, theta1, x2, y2, theta2]
}

agent Coordination() {
read analog real x1c, y1c, theta1c, x2c, y2c,
theta2c;

write discrete int r1c, r2c, frc;
write discrete bool wdc, odc;

mode top = CoordinationTop();
init {r1c = lead; r2c = follow; frc = SBC;

wdc = false; odc = false}
}

agent RobotGroup() {
read discrete int r1rg, r2rg, frrg;
read discrete bool wdrg, odrg;
write analog real x1rg, y1rg, theta1rg, x2rg,
y2rg, theta2rg;

agent robot1 = Robot(2.0, 2.0, 0.0,
0.5, 0.0, 0.6, 3.14, 0.1)

[role, frr, wdr, odr, x, y, v,
theta, omega :=

r1rg, frrg, wdrg, odrg, xL, yL, vL,
thetaL, omegaL]

agent robot2 = Robot(0.0, 0.0, 0.0,
0.0, 0.0, 0.6, 3.14, 0.1)

[role, frr, wdr, odr, xI, yI, vI,
thetaI, omegaI :=

r2rg, frrg, wdrg, odrg, xL, yL, yL,
thetaL, omegaL]

}

agent Robot(real initX, real initY, real init
Theta,

real initV, real initOmega,
real ld, real psid,

real d) {
read discrete int role, frr;
read discrete bool wdr, odr;
read analog real xI, yI, vI, thetaI, omegaI;
write analog real x, y, v, theta, omega;

mode top = ControllerTop
(initX, initY, initTheta,
initV, initOmega, ld, psid, d)

}

mode ControllerTop (real initX, real initY,
real initTheta,

real initV, real initOmega,
real ld, real psid,

real d) {
read discrete int role;
write analog real x, y, v, theta, omega;
private analog real t;

mode lead = LeaderMode()

Fierro et al. / Multi-Robot Coordination 993

mode follow = FollowerMode(ld, psid, d, 1.0,
0.5, 1.0, 3.14/10.0)

//k1, k2, deltaL, deltaPsi

trans from default to lead when role==lead
do {x=initX; y=initY; v=initV;

theta=initTheta; omega=initOmega;
t=0 }

trans from default to follow when role=
=follow

do {x=initX; y=initY; v=initV;
theta=initTheta; omega=initOmega;
t=0 }

}

mode LeaderMode(){
entry ptN;
exit ptX;

read discrete bool wallDetected,
obstacleDetected;

write analog real x, y, v, theta, omega;

diff dTimer {d(t) == 1.0}

mode goToGoal = GoToGoalMode()
mode wallFollowing = WallFollowingMode()
mode obstacleAvoidance =
ObstacleAvoidanceMode()

trans from default to goToGoal when true
do {}

trans from goToGoal.ptX to wallFollowing.
ptN

when {wallDetected == true} do {}
to obstacleAvoidance.ptN
when {wallDetected == false &&
obstacleDetected == true}

do {}
trans from wallFollowing.ptX to
goToGoal.ptN

when {wallDetected == false} do {}
to obstacleAvoidance.ptN
when {obstacleDetected == true} do {}

trans from obstacleAvoidance.ptX to
goToGoal.ptN

when {wallDetected == false &&
obstacleDetected == false}

do {}
to wallFollowing.ptN
when {wallDetected == true &&
obstacleDetected == false}

do {}
}

mode GoToGoalMode(){
entry ptN;
exit ptX;

read discrete bool wallDetected,
obstacleDetected;

read analog real t;
write analog real x, y, v, theta, omega;

inv invGoToGoal {wallDetected == false &&
obstacleDetected == false}

diff dLeadXYT {d(x) == v*Math.cos(theta);
d(y) == v*Math.sin(theta);
d(theta) == omega}

diff dVO {d(v) == 0; d(omega) ==
0.1*Math.sin(0.1*t)}

}

mode followerMode(real ld, real psid, real d,
real k1, real k2,

real deltaL, real deltaPsi){
entry ptN;
exit ptX;

write analog real x, y, v, theta, omega;
read analog real xI, yI, vI, thetaI, omegaI;
private analog real l, psi;

inv invFollow {Math.abs(l-ld) <= deltaL
and Math.abs(psi-psid) <=
deltaPsi}

diff dFollowV {d(v) == k1*(ld-l)*Math.cos
(thetaI+psi-theta)

-l*Math.sin((thetaI+psi-theta)*
(k2*(psid-psi)+omegaI))

+vI*Math.cos(thetaI-theta)}
diff dFollowOmega {d(omega) == 1/d*(k1*
(ld-l)*Math.sin(thetaI+psi-theta)

+l*Math.cos((thetaI+psi-theta)*(k2*
(psid-psi)+omegaI))

+vI*Math.sin(thetaI-theta))}
diff dFollowO {d(theta) == omega }
diff dFollowXY {d(x) == v*Math.cos(theta);

d(y) == v*Math.sin(theta) }
alge aLP {l == Math.sqrt((x-xI)(x-xI)+(y-yI)
(y-yI));

psi == pi-thetaI-Math.atan2(y-yI,
xI-x))}

}

Appendix 2: Index to Multimedia Extensions

The multimedia extension page is found at http://www.

ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video Experimental platform and ob-

stacle avoidance experiment

(Continued on next page)

994 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October-November 2002

2 Video In this experiment we restrict

the robot to two modes: (a) tar-

get acquisition and (b) target

tracking

3 Video Switching between modes: ob-

stacle avoidance and line (sim-

ulated wall) following

4 Video Leader-following. The fol-

lower uses an extended Kalman

filer (EKF) for estimating its

leader’s velocities.

5 Video A 3-robot system in triangular

formation

6 Video Collaborative manipulation

Acknowledgments

This research was supported in part by DARPA ITO MARS

130-1303-4-534328-xxxx-2000-0000, DARPA ITO MoBIES

F33615-00-C-1707, and NSF grant CISE/CDS-9703220. We

thank Dan Walker for his work on the hardware of our ex-

perimental mobile platform. We also thank the anonymous

reviewers for their constructive comments to improve this

paper.

References

Alur, R., Grosu, R., Hur, Y., Kumar, V., and Lee, I. 2000a.

Modular specifications of hybrid systems in CHARON.

In Lynch, N. A. and Krogh, B. H., eds., Hybrid Systems:

Computation and Control, LNCS 1790, pp. 6–19. Berlin:

Springer.

Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G.

2000b. Discrete abstractions of hybrid systems. Proc.

IEEE, 88(7):971–984.

Arkin, R. 1998. Behavior-Based Robotics. MIT Press.

Baker, S., and Nayar, S. 1998. A theory of catadioptric im-

age formation. In International Conference on Computer

Vision, pp. 35–42, Bombay, India.

Balch, T., and Arkin, R. 1998. Behavior-based formation

control for multi-robotic teams. IEEE Transactions on

Robotics and Automation, 14(6):926–934.

Belta, C., and Kumar, V. 2001. Motion generation for forma-

tions of robots: A geometric approach. In Proc. IEEE Int.

Conf. on Robotics and Automation, pp. 1245–1250, Seoul,

Korea.

Beni, G., and Liang, P. 1996. Pattern reconfiguration

in swarms—convergence of a distributed asynchronous

and bounded iterative algorithm. IEEE Transactions on

Robotics and Automation, 12(3):485–490.

Brooks, R. 1986. A robust layered control system for a mobile

robot. IEEE Journal on Robotics and Automation, 2(1):14–

23.

Burgard, W., Moors, M., Fox, D., Simmons, R., and Thrun, S.

2000. Collaborative multi-robot exploration. In Proc. IEEE

Int. Conf. on Robotics and Automation, pp. 476–481, San

Francisco, CA.

Burridge, R., Rizzi, A., and Koditschek, D. 1999. Sequential

composition of dynamically dexterous robot behaviors. In-

ternational Journal of Robotics Research, 18(6):534–555.

Chen, Q., and Luh, J. Y. S. 1994. Coordination and control of

a group of small mobile robots. In Proc. IEEE Int. Conf.

on Robotics and Automation, Vol. 3, pp. 2315–2320.

Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J.,

and Taylor, C. J. 2002. A vision-based formation control

framework. IEEE Transactions on Robotics and Automa-

tion, 18(5):813–825.

Das, A. K., Fierro, R., Kumar, V., Southall, B., Spletzer, J.,

and Taylor, C. 2001. Real-time vision-based control of a

nonholonomic mobile robot. In Proc. IEEE Int. Conf. on

Robotics and Automation, pp. 1714–1719, Seoul, Korea.

De Luca, A., Oriolo, G., and Samson, C. 1998. Feedback

control of a nonholonomic car-like robot. In Laumond,

J.-P., editor, Robot Motion Planning and Control, pp. 171–

253. London: Springer-Verlag.

Desai, J., Kumar, V., and Ostrowski, J. P. 1999. Control of

changes in formation for a team of mobile robots. In Proc.

IEEE Int. Conf. on Robotics and Automation, pp. 1556–

1561, Detroit, Michigan.

Desai, J. P., Ostrowski, J. P., and Kumar, V. 2001. Model-

ing and control of formations of nonholonomic mobile

robots. IEEE Transactions on Robotics and Automation,

17(6):905–908.

Donald, B., Gariepy, L., and Rus, D. 2000. Distributed ma-

nipulation of multiple objects using ropes. In Proc. IEEE

Int. Conf. on Robotics and Automation, pp. 450–457.

Feddema, J., and Schoenwald, D. 2001. Decentralized control

of cooperative robotic vehicles. In Proc. SPIE, Vol. 4364,

Aerosense, Orlando, FL.

Fierro, R., Belta, C., Desai, J., and Kumar, V. 2001a. On con-

trolling aircraft formations. In Proc. IEEE Conf. on Deci-

sion and Control, pp. 1065–1070, Orlando, FL.

Fierro, R., Das, A., Kumar, V., and Ostrowski, J. P. 2001b.

Hybrid control of formations of robots. In Proc. IEEE Int.

Conf. on Robotics and Automation, pp. 157–162, Seoul,

Korea.

Fierro, R., and Lewis, F. L. 1997. A framework for hybrid con-

trol design. IEEE Trans. Syst. Man Cybern., 27-A(6):765–

773.

Fierro, R., Song, P., Das, A. K., and Kumar, V. 2002. Coop-

erative control of robot formations. In Murphey, R. and

Pardalos, P., eds., Cooperative Control and Optimization,

Vol. 66 of Applied Optimization, chapter 5, pp. 73–93.

Dordrecht: Kluwer Academic.

Grudic, G. Z., and Ungar, L. H. 2000a. Localizing policy gra-

dient estimates to action transitions. In Proc. 17th Int. Conf.

on Machine Learning, Vol. 17, pp. 343–350. San Mateo,

CA: Morgan Kaufmann.

Fierro et al. / Multi-Robot Coordination 995

Grudic, G. Z., and Ungar, L. H. 2000b. Localizing search in

reinforcement learning. In Proc. 17th National Conf. on

Artificial Intelligence, Vol. 17, pp. 590–595. Menlo Park,

CA: AAAI/Cambridge, MA: MIT Press.

Hartley, R., and Zisserman, A. 2000. Multiple View Geome-

try in Computer Vision. Cambridge: Cambridge University

Press.

Jennings, J. S., Whelan, G., and Evans, W. F. 1997. Coop-

erative search and rescue with a team of mobile robots.

In Proc. IEEE Int. Conf. on Advanced Robotics (ICAR),

pp. 193–200, Monterey, CA.

Khalil, H. K. 2002. Nonlinear Systems, 3rd edition. Upper

Saddle River, NJ: Prentice Hall.

Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R.,

and Casal, A. 1996. Vehicle/arm coordination and mobile

manipulator decentralized cooperation. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pp. 546–553.

Klavins, E., and Koditschek, D. 2000. A formalism for the

composition of concurrent robot behaviors. In Proc. IEEE

Int. Conf. on Robotics and Automation, Vol. 4, pp. 3395–

3402, San Francisco, CA.

Kosuge, K., Hirata, Y., Asama, H., Kaetsu, H., and Kawabata,

K. 1999. Motion control of multiple autonomous mobile

robots handling a large object in coordination. In Proc.

IEEE Int. Conf. on Robotics and Automation, pp. 2666–

2673, Detroit, MI.

Lawton, J., Young, B., and Beard, R. 2000. A decentralized ap-

proach to elementary formation maneuvers. In Proc. IEEE

Int. Conf. on Robotics and Automation, pp. 2728–2733,

San Francisco, CA.

Matarić, M. 1995. Issues and approaches in the design of

collective autonomous agents. Robotics and Autonomous

Systems, 16(2-4):321–331.

Matarić, M., Nilsson, M., and Simsarian, K. 1995. Cooper-

ative multi-robot box pushing. In IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, pp. 556–561, Pittsburgh,

PA.

Morrow, J., and Khosla, P. 1997. Manipulation task primi-

tives for composing robot skills. In Proc. IEEE Int. Conf.

on Robotics and Automation, Vol. 4, pp. 3354–3359.

Parker, L. 1998. ALLIANCE: An architecture for fault

tolerant multi-robot cooperation. IEEE Transactions on

Robotics and Automation, 14(2):220–240.

Parker, L. E. 2000. Current state of the art in distributed au-

tonomous mobile robotics. In Parker, L. E., Bekey, G., and

Barhen, J., eds., Distributed Autonomous Robotic Systems,

Vol. 4, pp. 3–12. Tokyo: Springer.

Roumeliotis, S., and Bekey, G. 2000. Collective localiza-

tion: A distributed kalman filter approach to localization

of groups of mobile robots. In Proc. IEEE Int. Conf. on

Robotics and Automation, pp. 2958–2965, San Francisco,

CA.

Rus, D., Donald, B., and Jennings, J. 1995. Moving furni-

ture with teams of autonomous robots. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pp. 235–242,

Pittsburgh, PA.

Schreckenghost, D., Bonasso, P., Kortenkamp, D., and Ryan,

D. 1998. Three tier architecture for controlling space life

support systems. In Proc. IEEE Int. Joint Symposia on In-

telligence and Systems, pp. 195–201, Rockville, MD.

Simmons, R., Singh, S., Hershberger, D., Ramos, J., and

Smith, T. 2000. Coordination of heterogeneous robots for

large-scale assembly. In Proc. ISER00, 7th Int. Sympo-

sium on Experimental Robotics, pp. 311–320, Honolulu,

Hawaii.

Spletzer, J., Das, A., Fierro, R., Taylor, C. J., Kumar, V., and

Ostrowski, J. P. 2001. Cooperative localization and con-

trol for multi-robot manipulation. In IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, pp. 631–636, Maui,

Hawaii.

Stilwell, D., and Bay, J. 1993. Toward the development of a

material transport system using swarms of ant-like robots.

In Proc. IEEE Int. Conf. on Robotics and Automation,

pp. 766–771, Atlanta, GA.

Stroupe, A., Martin, M., and Balch, T. 2001. Distributed sen-

sor fusion for object position estimation by multi-robot

systems. In Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pp. 1092–1098, Seoul, Korea.

Sugar, T., and Kumar, V. 2000. Control and coordination of

multiple mobile robots in manipulation and material han-

dling tasks. In Corke, P. and Trevelyan, J., eds., Experimen-

tal Robotics VI: Lecture Notes in Control and Information

Sciences, Vol. 250, pp. 15–24. Berlin: Springer-Verlag.

Tabuada, P., Pappas, G., and Lima, P. 2001. Feasible forma-

tions of multi-agent systems. In Proc. American Control

Conference, pp. 56–61, Arlington, VA.

Tan, K. H., and Lewis, M. A. 1997. Virtual structures for high

precision cooperative mobile robot control. Autonomous

Robots, 4:387–403.

Taylor, C. J. 2002. Videoplus: a method for capturing the struc-

ture and appearance of immersive environments. IEEE

Transactions on Visualization and Computer Graphics,

8(2):171–182.

van der Schaft, A. and Schumacher, H. 2000. An Introduction

to Hybrid Dynamical Systems, Vol. 251 of Lecture Notes

in Control and Information Sciences. London: Springer.

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das,

H. 2001. The CLARAty architecture for robotic autonomy.

In Proc. IEEE Aerospace Conference, Vol. 1, pp. 121–132,

Big Sky, MT.

Yamaguchi, H., and Burdick, J. W. 1998. Asymptotic stabi-

lization of multiple nonholonomic mobile robots forming

groups formations. In Proc. IEEE Int. Conf. on Robotics

and Automation, pp. 3573–3580, Leuven, Belgium.

