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Abstract:	1	

The	 bi-spectral	 method	 retrieves	 cloud	 optical	 thickness	 (τ )	 and	 cloud	 droplet	2	

effective	radius	( r
e
)	simultaneously	from	a	pair	of	cloud	reflectance	observations,	one	in	3	

a	visible	or	near	 infrared	 (VIS/NIR)	band	and	the	other	 in	a	shortwave-infrared	 (SWIR)	4	

band.	A	cloudy	pixel	is	usually	assumed	to	be	horizontally	homogeneous	in	the	retrieval.	5	

Ignoring	 sub-pixel	 variations	of	 cloud	 reflectances	 can	 lead	 to	 a	 significant	 bias	 in	 the	6	

retrieved	τ 	and	 r
e
.	In	the	literature,	the	retrievals	of	τ 	and	 r

e
	are	often	assumed	to	be	7	

independent	 and	 considered	 separately	 when	 investigating	 the	 impact	 of	 sub-pixel	8	

cloud	reflectance	variations	on	the	bi-spectral	method.	As	a	 result,	 the	 impact	on	τ 	is	9	

contributed	only	by	the	sub-pixel	variation	of	VIS/NIR	band	reflectance	and	the	impact	10	

on	 r
e
	only	by	the	sub-pixel	variation	of	SWIR	band	reflectance.			11	

In	our	new	 framework,	we	use	 the	Taylor	 expansion	of	 a	 two-variable	 function	 to	12	

understand	and	quantify	the	impacts	of	sub-pixel	variances	of	VIS/NIR	and	SWIR	cloud	13	

reflectances	and	their	covariance	on	the	τ 	and	 r
e
	retrievals.	This	framework	takes	into	14	

account	 the	 fact	 that	 the	 retrievals	 are	 determined	 by	 both	 VIS/NIR	 and	 SWIR	 band	15	

observations	 in	 a	 mutually	 dependent	 way.	 In	 comparison	 with	 previous	 studies,	 it	16	

provides	 a	 more	 comprehensive	 understanding	 of	 how	 sub-pixel	 cloud	 reflectance	17	

variations	impact	the	τ 	and	 r
e
	retrievals	based	on	the	bi-spectral	method.	In	particular,	18	

our	 framework	provides	a	mathematical	 explanation	of	how	 the	 sub-pixel	 variation	 in	19	

VIS/NIR	 band	 influences	 the	 r
e
	retrieval	 and	 why	 it	 can	 sometimes	 outweigh	 the	20	

influence	of	variations	in	the	SWIR	band	and	dominate	the	error	in r
e
	retrievals,	leading	21	

to	 a	 potential	 contribution	of	 positive	 bias	 to	 the	 r
e
	retrieval.	We	 test	 our	 framework	22	

using	 synthetic	 cloud	 fields	 from	 a	 large-eddy	 simulation	 and	 real	 observations	 from	23	

MODIS.	 The	 predicted	 results	 based	 on	 our	 framework	 agree	 very	 well	 with	 the	24	

numerical	simulations.	Our	framework	can	be	used	to	estimate	the	retrieval	uncertainty	25	

from	sub-pixel	reflectance	variations	in	operational	satellite	cloud	products	and	to	help	26	

understand	the	differences	in	τ 	and	 r
e
	retrievals	between	two	instruments.		27	

28	
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	29	

1. Introduction		30	

	 Among	 many	 satellite-based	 cloud	 remote	 sensing	 techniques,	 the	 bi-spectral	31	

solar	 reflective	 method	 (“bi-spectral	 method”	 hereafter)	 is	 a	 widely	 used	 method	 to	32	

infer	 cloud	 optical	 thickness	 (τ )	 and	 cloud	 droplet	 effective	 radius	 ( r
e
)	 from	 satellite	33	

observation	 of	 cloud	 reflectance	 [Nakajima	 and	 King,	 1990].	 This	 method	 uses	 cloud	34	

reflectance	measurements	 from	 two	 spectral	 bands	 to	 simultaneously	 retrieve	τ 	and	35	

r
e
.	One	measurement	 is	usually	made	 in	the	visible	or	near-infrared	(VIS/NIR)	spectral	36	

region	 (e.g.,	0.64	µm	or	0.86	µm),	where	water	absorption	 is	negligible	and	 therefore	37	

cloud	 reflection	 generally	 increases	 with	τ .	 The	 other	measurement	 is	 usually	 in	 the	38	

shortwave	infrared	(SWIR)	spectral	region	(e.g.,	2.1	µm	or	3.7	µm),	where	water	drops	39	

are	moderately	absorptive	and	cloud	reflectance	generally	decreases	with	increasing	 r
e
	40	

for	 optically	 thick	 clouds.	 In	 practice,	 the	 bi-spectral	 method	 is	 often	 implemented	41	

utilizing	the	so-called	look-up-table	(LUT).	A	couple	of	LUT	examples	are	shown	in	Figure	42	

1.	 Such	 LUTs	 contain	 pre-computed	 bi-directional	 cloud	 reflectances	 at	 VIS/NIR	 and	43	

SWIR	bands	 for	 various	 combinations	of	 r
e
	and	τ 	under	different	 sun-satellite	 viewing	44	

geometries	 and	 surface	 reflectances.	 Given	 the	 observed	 reflectances,	 the	45	

corresponding	 r
e
	and	τ 	can	 be	 retrieved	 easily	 by	 searching	 and	 interpolating	 the	46	

proper	LUT.	The	bi-spectral	method	has	been	adopted	by	a	number	of	satellite	missions,	47	

including	 Moderate	 Resolution	 Imaging	 Spectroradiometer	 (MODIS),	 Visible	 Infrared	48	

Imaging	 Radiometer	 Suite	 (VIIRS),	 and	 Spinning	 Enhanced	 Visible	 and	 Infrared	 Imager	49	

(SEVIRI)	for	operational	retrievals	of	cloud	properties	(i.e.,	τ ,	 r
e
	and	derived	cloud	liquid	50	
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water	 path	 (LWP))	 [Platnick	 et	 al.,	 2003;	 Roebeling	 et	 al.,	 2006;	Minnis	 et	 al.,	 2011;	51	

Walther	 and	 Heidinger,	 2012].	 Given	 the	 wide	 usage	 of	 the	 bi-spectral	 method,	 it	 is	52	

critical	to	study	and	understand	its	limitations	and	uncertainties.		53	

The	 bi-spectral	method	makes	 several	 important	 assumptions	 about	 the	 cloud	54	

(or	 cloudy	 pixels).	 First,	 within	 a	 cloudy	 pixel,	 cloud	 is	 assumed	 to	 be	 horizontally	55	

homogenous	(referred	to	as	the	“homogenous	pixel	assumption”).	Second,	it	is	assumed	56	

that	the	pixels	are	independent	from	each	other,	in	the	sense	that	there	is	no	net	inter-57	

pixel	 transport	 of	 radiation	 (often	 referred	 to	 as	 the	 “independent	 pixel	 assumption,	58	

IPA”).	 Under	 these	 assumptions,	 clouds	 are	 considered	 to	 be	 “plane-parallel”.	 In	59	

addition	to	plane-parallel	cloud	assumptions,	clouds	are	often	assumed	to	be	vertically	60	

homogenous	 in	 the	 operational	 algorithms.	 Furthermore,	 the	 size	 spectrum	 of	 cloud	61	

particles	 is	 often	 assumed	 to	 follow	 certain	 analytical	 distributions,	 such	 as	 the	 single	62	

modal	gamma	or	 lognormal	 size	distributions	 [e.g.,	Nakajima	and	King,	1990;	Dong	et	63	

al.,	 1997].	 These	 assumptions	may	 be	 reasonable	 for	 certain	 types	 of	 clouds,	 such	 as	64	

closed-cell,	 non-precipitating	 stratocumulus,	 but	 become	problematic	 for	 others,	 such	65	

as	broken	trade-wind	cumuli	or	precipitating	clouds	[Di	Girolamo	et	al.,	2010;	Painemal	66	

and	Zuidema,	2011;	Zhang	and	Platnick,	2011;	Liang	and	Girolamo,	2013;	Zhang,	2013].	67	

As	 elucidated	 in	 numerous	 previous	 studies,	 when	 real	 clouds	 deviate	 from	 these	68	

assumptions,	the	 r
e
	and	τ 	retrievals	from	the	bi-spectral	method	can	suffer	from	large	69	

errors	and	uncertainties	[e.g.,	Várnai	and	Marshak,	2002;	Kato	et	al.,	2006;	Marshak	et	70	

al.,	2006;	Zhang	and	Platnick,	2011;	Zhang	et	al.,	2012;	Zhang,	2013;	Liang	et	al.,	2015].		71	
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The	focus	of	this	study	is	the	homogenous	pixel	assumption.	Our	objective	is	to	72	

develop	a	unified	framework	for	understanding	and	quantifying	the	impacts	of	sub-pixel	73	

level	 unresolved	 reflectance	 variations	 on	 r
e
	and	τ 	retrievals	 based	 on	 the	 bi-spectral	74	

method.	A	number	of	previous	 studies	have	already	made	substantial	progress	 in	 this	75	

direction.	 It	has	been	known	for	a	 long	time	that	at	the	spatial	scale	of	climate	model	76	

grids	 (e.g.,	 ~	 10
2
	 km)	 approximating	 inhomogeneous	 cloud	 fields	 with	 plane-parallel	77	

clouds	 can	 lead	 to	 significant	 biases	 in	 shortwave	 solar	 radiation	 [e.g.,	Harshvardhan	78	

and	Randall,	1985;	Cahalan	et	al.,	1994;	Barker,	1996].	Cahalan	et	al.	[1994]	described	79	

an	 elegant	 theoretical	 framework	 based	 on	 a	 fractal	 cloud	 model	 to	 explain	 the	80	

influence	of	small-scale	horizontal	variability	of	τ 	on	the	averaged	cloud	reflectance	in	81	

the	 visible	 spectral	 region	 R
VIS

.	 It	 is	 shown	 that	 the	 averaged	 reflectance	 R
VIS

τ
i( ) ,	82	

where	 τ
i
	denotes	 the	 sub-pixel	 scale	 cloud	 optical	 thickness,	 is	 smaller	 than	 the	83	

reflectance	 that	 corresponds	 to	 the	 averaged	 cloud	 optical	 thickness	 τ
i
,	 i.e.,	84	

R
VIS

τ
i( ) < RVIS τ

i( ) .	 This	 inequality	 relation	 is	 well	 known	 as	 the	 “plane-parallel	85	

homogenous	bias”	(referred	to	as	PPHB),	which	is	a	result	of	the	non-linear	dependence	86	

of	 R
VIS

	on	τ 	i.e.,	
∂
2
R
vis

∂τ
2

< 0 .	 The	 implication	 of	 the	 PPHB	 for	τ 	retrievals	 from	 R
VIS

	is	87	

illustrated	using	an	example	shown	 in	Figure	2a.	Here,	we	assume	that	one	half	of	an	88	

inhomogeneous	pixel	 is	covered	by	a	thinner	cloud	with	τ
1
= 5 	and	the	other	half	by	a	89	

thicker	 cloud	 with	τ
2
= 18 	(both	 clouds	 with	 r

e
= 8µm ).	 Because	 of	 the	 PPHB,	 the	90	

retrieved	 cloud	 optical	 thickness	 τ
*
= 9.8 	based	 on	 the	 averaged	 reflectance	91	
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R = R(τ
1
)+ R(τ

2
)[ ] / 2 	is	significantly	smaller	than	the	linear	average	of	the	sub-pixel	τ ,	92	

i.e.,	τ = 11.5 .	The	impacts	of	PPHB	on	satellite	based	cloud	property	retrievals	and	the	93	

implications	 have	 been	 investigated	 in	 a	 number	 of	 studies	 [Oreopoulos	 and	 Davies,	94	

1998;	Pincus	et	al.,	1999;	Oreopoulos	et	al.,	2007].		95	

We	note	that	the	variation	of	cloud	reflectance	may	be	a	result	of	varying	cloud	96	

properties,	but	may	also	be	caused	by	3-D	radiative	effects.	For	example,	a	cloudy	pixel	97	

can	be	perfectly	homogenous	 in	 terms	of	cloud	properties,	but	 the	surrounding	pixels	98	

can	 cast	 a	 shadow	 on	 part	 of	 this	 pixel	 leading	 to	 sub-pixel	 reflectance	 variation	99	

[Marshak	et	al.,	2006].	A	variety	of	such	3-D	effects	that	cannot	be	explained	by	the	1-D	100	

plane-parallel	radiative	transfer	theory	have	been	identified	and	their	impacts	on	cloud	101	

property	 retrievals	 investigated	 in	 previous	 studies	 [Davis	 and	 Marshak,	 2010].	 In	102	

reality,	 the	 PPHB	 is	 inevitably	 entangled	 with	 the	 3-D	 transfer	 effects	 and	 other	103	

uncertainties	such	as	the	impact	of	instrument	noise	in	the	retrieval.	It	is	difficult,	if	not	104	

impossible,	 to	separate	 them.	Following	 the	 literature,	we	shall	 refer	 to	 the	 impact	of	105	

sub-pixel	 cloud	 reflectance	 variation	 on	 cloud	 property	 retrievals	 as	 the	 PPHB,	 while	106	

keeping	 in	mind	that	the	sub-pixel	cloud	reflectance	variation	can	also	result	from	3-D	107	

radiative	effects	and	may	not	reflect	the	true	variation	of	sub-pixel	cloud	properties.		108	

Recently,	as	 the	 interests	 in	aerosol-cloud	 interactions	have	grown,	 there	 is	an	109	

increasing	attention	on	the	impacts	of	small-scale	cloud	variations	on	the	satellite-based	110	

r
e
	retrievals	 [e.g.,	 Kato	 et	 al.,	 2006;	Marshak	 et	 al.,	 2006;	 Zhang	 and	 Platnick,	 2011;	111	

Zhang	et	al.,	2012;	Liang	et	al.,	2015].	Marshak	et	al.	[2006]	pointed	out	that	similar	to	112	

the	 PPHB	 the	 non-linear	 dependence	 of	 the	 SWIR	 band	 cloud	 reflectance	 R
SWIR

	on	 r
e
	113	
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can	also	 lead	to	significant	biases	on	 r
e 	retrievals,	which	 is	demonstrated	 in	Figure	2b.	114	

Here,	one	half	of	an	inhomogeneous	pixel	is	covered	by	a	cloud	with	 r
e
= 8µm 	and	the	115	

other	half	by	a	cloud	with	 r
e
= 22µm .	Both	parts	have	the	same	τ = 4.1.	As	shown	in	the	116	

figure,	 the	 retrieved	 r
e

*
= 12µm 	based	 on	 the	 averaged	 reflectance	 is	 significantly	117	

smaller	 than	 the	 linear	 average	 of	 sub-pixel	 r
e
= 15µm ,	 similar	 to	 the	 PPHB	 of	τ 	in	118	

Figure	2a.	It	must	be	noted	that	in	the	framework	of	Marshak		et	al.	[2006]	the	retrievals	119	

of	 r
e
	and	τ 	are	 considered	 separately	 and	 assumed	 to	 be	 independent	 from	 one	120	

another.	However,	as	Marshak	et	al.	[2006]	pointed	out	this	assumption	is	valid	only	for	121	

“large	 enough”	 	τ 	and	 r
e 		 (typically,	 re>	 5	 µm	 and	τ 	>	 10).	 As	 one	 can	 see	 from	 the	122	

shape	 of	 the	 LUT	 in	 Figure	 1	 the	 R
SWIR

	is	 not	 completely	 orthogonal	 to	 the	 R
VIS

,	123	

especially	when	τ 	is	 small.	As	a	 result,	 the	 retrievals	of	 r
e
	and	τ 	are	not	 independent	124	

from	one	another.	Marshak	et	al.	[2006]	suspected	that	some	cases	with	large	 r
e
	bias	in	125	

their	simulations	might	be	the	result	of	this	mutual	dependence	of	 r
e
	and	τ 	retrievals.	126	

Zhang	and	Platnick	[2011]	showed	that	the	sub-pixel	variance	of	τ 	can	have	a	significant	127	

impact	 on	 the	 r
e
	retrieval,	 which	 is	 illustrated	 in	 the	 example	 in	 Figure	 2c.	 In	 this	128	

hypothetical	case,	an	inhomogeneous	pixel	is	assumed	to	be	covered	by	a	thinner	cloud	129	

with	t1=6	in	one	half	and	a	thicker	cloud	with	t2=18	in	the	other.	Both	clouds	have	the	130	

same	re=14	µm.	Note	that	in	this	case	the	sub-pixel	reflectance	variation	is	solely	caused	131	

by	the	variability	in	t. 	If	the	 r
e
	retrieval	were	independent	from	the	t	retrieval,	then	the	132	

retrieved	 r
e
	would	be	14	µm.	The	solid	triangle	in	the	figure	indicates	the	location	of	the	133	

R
VIS

	and	 R
SWIR

	averaged	over	the	pixel,	 i.e.,	 the	“observation”.	The	retrieved	τ
*
= 10.8 	134	
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is	 smaller	 than	 the	 averaged	τ = 12 	as	 a	 result	 of	 the	 PPHB.	 However,	 the	 retrieved	135	

r
e

*
= 16 	is	 2	 µm	 larger	 than	 the	 expected	 value	 of	 14	 µm.	 This	 positive	 bias	 in	 the	 r

e
	136	

retrieval,	apparently	caused	by	the	sub-pixel	variability	of	τ ,	cannot	be	explained	by	the	137	

framework	 of	 Marshak	 et	 al.	 [2006]	 in	 which	 the	 r
e
	retrieval	 is	 assumed	 to	 be	138	

independent	from	theτ 	retrieval.	Zhang	and	Platnick	[2011]	and	Zhang	et	al.	[2012]	also	139	

found	 that	 the	 magnitude	 of	 the	 positive	 r
e
	retrieval	 bias	 caused	 by	 the	 sub-pixel	140	

variability	of	τ 	is	dependent	on	the	SWIR	band	chosen	for	the	 r
e
	retrieval.	These	studies	141	

showed	that	the	same	sub-pixel	τ 	variability	tends	to	induce	larger	bias	in	retrieved	 r
e 	142	

using	 the	 less	 absorptive	 2.1	 µm	band	 (referred	 to	 as	 r
e,2.1

)	 than	 that	 using	 the	more	143	

absorptive	 3.7	 µm	 band	 (referred	 to	 as	 r
e,3.7

).	 This	 spectral	 dependence	 provides	 an	144	

important	explanation	for	the	fact	that	the	MODIS	operational	 r
e,2.1

	retrievals	for	water	145	

clouds	are	often	significantly	larger	than	the	 r
e,3.7

	retrievals,	especially	when	clouds	have	146	

large	sub-pixel	heterogeneity	[Zhang	and	Platnick,	2011;	Cho	et	al.,	2015].		147	

The	 aforementioned	 studies	 have	 undoubtedly	 shed	 important	 light	 on	 the	148	

impact	 of	 sub-pixel	 cloud	 variability	 on	 r
e
	and	τ 	retrievals	 based	 on	 the	 bi-spectral	149	

method.	However,	several	questions	still	remain.	For	example,	an	important	question	is	150	

how	to	reconcile	the	negative	 r
e
	bias	discussed	in	Marshak	et	al.	[Marshak	et	al.,	2006]	151	

and	the	positive	 r
e
	bias	discussed	in	Zhang	and	Platnick	[2011]	and	Zhang	et	al.	[2012].	152	

Indeed,	this	 is	 the	main	question	we	will	address	 in	this	study.	 In	the	 light	of	previous	153	

studies,	 here	 we	 develop	 a	 new	 mathematical	 framework	 to	 provide	 a	 more	154	

comprehensive	and	complete	understanding	of	the	impact	of	sub-pixel	cloud	variability	155	
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on	 r
e
	and	τ 	retrievals	 based	 on	 the	 bi-spectral	 method.	 The	 paper	 is	 organized	 as	156	

follows:	 We	 formulate	 the	 problem	 in	 Section	 2.	 We	 introduce	 our	 mathematical	157	

framework	in	Section	3,	test	and	validate	it	using	two	examples	in	Section	4,	and	discuss	158	

its	applications	in	Section	5.	159	

2. Statement	of	the	problem	160	

In	 the	 bi-spectral	method,	 r
e
	and	τ 	are	 retrieved	 from	 a	 pair	 of	 cloud	 reflectance	161	

observations,	 one	 in	 VIS/NIR	 and	 the	 other	 in	 SWIR.	 From	 this	 point	 of	 view,	we	 can	162	

define	 r
e
	and	τ 	as:	163	

	
τ ≡ τ R

VIS
,R

SWIR( )

r
e
≡ r

e
R
VIS
,R

SWIR( )
,		 (1)	164	

where	 R
VIS

	and	 R
SWIR

	are	 the	 observed	 reflectances	 in	 the	 VIS/NIR	 (denoted	 by	165	

subscript	“VIS”	for	short)	and	SWIR	bands,	respectively.	Assume	that	an	instrument	with	166	

a	 relatively	 coarse	 spatial	 resolution	 observes	 a	 horizontally	 inhomogeneous	 cloudy	167	

pixel	in	its	field	of	view.	The	observed	cloud	reflectances	are	R
VIS

	and	R
SWIR

,	where	the	168	

overbar	 denotes	 the	 spatial	 average.	 Now	 if	 we	 use	 another	 instrument	 with	 a	 finer	169	

spatial	resolution	to	observe	the	same	area	covered	by	the	coarser	resolution	pixel,	we	170	

can	 obtain	 high-resolution	 observations,	 R
VIS ,i

	and	R
SWIR,i

, i =1,2,...N ,	 (the	 number	 N	171	

depends	on	the	relative	sizes	of	the	pixels).	The	high-resolution	measurements	provide	172	

the	 information	 on	 the	 variance	 and	 covariance	 of	 R
VIS

	and	 R
SWIR

	at	 sub-pixel	 scale.	173	

Each	 sub-pixel	 observation	 R
VIS ,i

	and	 R
SWIR,i

can	 be	 specified	 as	 the	 deviation	 from	 the	174	

mean	value	 R
VIS

	and	 R
SWIR

	as:	175	
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R
VIS ,i

= R
VIS

+ ΔR
VIS ,i

R
SWIR,i

= R
SWIR

+ ΔR
SWIR,i

;i = 1,2...N .		 (2)	176	

It	 naturally	 follows	 that	 the	 spatial	 average	ΔR
VIS ,i

= ΔR
SWIR,i

= 0 .	 Based	on	 the	 coarse-177	

resolution	 reflectance	 observations	 R
VIS

	and	 R
SWIR

,	 we	 can	 retrieve	τ R
VIS
,R

SWIR( ) 	and	178	

r
e
R
VIS
,R

SWIR( ) .	From	the	high-resolution,	sub-pixel	observations	 R
VIS ,i

	and R
SWIR,i

,	we	can	179	

retrieve	τ R
VIS ,i
,R

SWIR,i( ) 	and	 re RVIS ,i ,RSWIR,i( ) .	The	differences	Δτ 	and	Δre ,	defined	as:	180	

	
Δτ = τ R

VIS
,R

SWIR( )−τ R
VIS ,i
,R

SWIR,i( )

Δr
e
= r

e
R
VIS
,R

SWIR( )− re RVIS ,i ,RSWIR,i( )
,	 (3)	181	

are	 considered	 in	 this,	 as	 well	 as	 previous	 studies,	 as	 the	 biases	 caused	 by	 the	182	

homogeneous	 pixel	 assumption	 in	 r
e
	and	 τ 	retrievals	 [Cahalan	 and	 Joseph,	 1989;	183	

Marshak	et	al.,	2006;	Zhang	et	al.,	2012].		184	

	 Consideration	of	eq.	(3)	raises	a	few	important	questions.	What	are	the	sign	and	185	

magnitude	 of	Δτ 	and	Δr
e
?	 How	 do	 they	 depend	 on	 the	 sub-pixel	 R

VIS ,i
	and R

SWIR,i
?	186	

Addressing	these	questions	could	help	 improve	understanding	of	the	biases	caused	by	187	

ignoring	 the	 sub-pixel	 reflectance	 variation	 in	 bi-spectral	 r
e
	and	 τ 	retrievals.	188	

Furthermore,	 since	 performing	 high-resolution	 retrievals	 can	 be	 computationally	189	

expensive,	 another	 important	 question	 is	 whether	 it	 is	 possible	 to	 estimate	190	

τ R
VIS ,i
,R

SWIR,i( ) 	and	 re RVIS ,i ,RSWIR,i( ) 	from	 the	 coarse-resolution	 retrievals	 and	 the	191	

statistics	 of	 sub-pixel	 reflectance	 observations,	 even	 without	 doing	 time-consuming	192	

high-resolution	 retrievals.	 If	 this	 proved	 possible,	 then	 it	 is	 a	 very	 efficient	 way	 to	193	
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estimate	the	biases	and	uncertainty	caused	by	the	homogenous	pixel	assumption.	These	194	

questions	are	the	focus	of	this	study	and	will	be	addressed	in	the	next	section.		195	

	 Before	proceeding,	we	need	to	clarify	two	points.	First,	the	Δτ 	and	Δr
e
	in	Eq.	(3)	196	

are	 the	 differences	 between	 two	 sets	 of	 retrievals,	 not	 the	 differences	 between	 the	197	

retrievals	 and	 “true”	 cloud	 properties.	 As	 aforementioned,	 sub-pixel	 reflectance	198	

variations	can	be	due	to	sub-pixel	scale	cloud	property	variation,	but	may	also	be	caused	199	

by	 3-D	 radiative	 effects.	 If	 the	 former	 is	 dominant,	 then	 Δτ 	and	 Δr
e
	provide	 an	200	

estimate	 of	 the	 PPHB	 and	 can	 be	 used	 to	 correct	 the	 coarse-resolution	 retrievals	 to	201	

better	represent	the	“true”	cloud	properties.	However,	if	3-D	effects	are	the	dominant	202	

cause	 of	 the	 sub-pixel	 reflectance	 variation,	 then	Δτ 	and	Δr
e
	can	 be	 considered	 a	203	

quantitative	index	of	the	3-D	effects	on	the	retrievals.	Second,	our	scope	is	to	study	the	204	

connections	 between	 retrieval	 biases	 Δτ 	and	 Δr
e
	with	 sub-pixel	 observations	 R

VIS ,i
	205	

and R
SWIR,i

.	 We	 simply	 take	 R
VIS ,i

	and R
SWIR,i

	as	 given	 inputs.	 Here	 we	 do	 not	 seek	 to	206	

explain	 the	 characteristics	 of	 R
VIS ,i

	andR
SWIR,i

	(e.g.,	 their	 mean	 values,	 variances	 and	207	

covariance),	or	their	dependence	on	cloud	properties.	Neither	do	we	try	to	explain	how	208	

the	3-D	radiative	effects	and	instrument	characteristics	influence	 R
VIS ,i

	and R
SWIR,i

.		209	

	210	

3. A	unified	mathematical	framework	211	

In	 this	 section,	 we	 will	 introduce	 a	 comprehensive	 framework	 that	 is	 able	 to	212	

reconcile	and	unify	the	theoretical	understandings	provided	by	Marshak	et	al.	 [2006]	 ,	213	

Zhang	 and	 Platnick	 [2011],	 and	 Zhang	 et	 al.	 [2012]	 To	 investigate	 the	 sign	 and	214	
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magnitude	of	Δτ 	and	Δr
e
,	we	 first	expand	 the	τ R

VIS ,i
,R

SWIR,i( ) 	and	 re RVIS ,i ,RSWIR,i( ) 	into	215	

two-dimensional	 Taylor	 series	 of	 R
VIS ,i

	and	 R
SWIR,i

.	 Take	 r
e
R
VIS ,i
,R

SWIR,i( ) 	for	 example.	216	

The	expansion	is:		217	

	

 

r
e
R

VIS ,i
, R

SWIR ,i
( ) = r

e
R

VIS
+ ΔR

VIS ,i
, R

SWIR
+ ΔR

SWIR ,i
( )

= r
e
R

VIS
, R

SWIR
( ) +

∂r
e
R

VIS
, R

SWIR
( )
∂R

VIS

ΔR
VIS ,i

+
∂r

e
R

VIS
, R

SWIR
( )
∂R

SWIR

ΔR
SWIR ,i

Linear terms

! "###### $######

+

1

2

∂
2

r
e
R

VIS
, R

SWIR
( )
∂R

VIS

2
ΔR

VIS ,i

2

+
∂

2

r
e
R

VIS
, R

SWIR
( )

∂R
VIS
∂R

SWIR

ΔR
VIS ,i

ΔR
SWIR ,i

+
1

2

∂
2

r
e
R

VIS
, R

SWIR
( )
∂R

SWIR

2
ΔR

SWIR ,i

2

Second-order terms

! "############ $############

+ ε

.	(4)	218	

where	ε 	is	 the	 truncation	 error	 if	 higher	 order	 derivative	 terms	 are	 neglected.	 If	 we	219	

take	 the	 spatial	 average	 of	 Eq.	 (4)	 and	 neglect	 ε ,	 all	 the	 linear	 terms	 (i.e.,	220	

∂r
e
R
VIS
,R

SWIR
( )
∂R

VIS

ΔR
VIS ,i

	and	
∂r

e
R
VIS
,R

SWIR
( )
∂R

SWIR

ΔR
SWIR ,i

)	 vanish	 because	 ΔR
VIS ,i

= ΔR
SWIR,i

= 0 .	 Thus,	221	

only	second	order	terms	in	Eq.	(4)	remain	after	the	spatial	average:		222	

	 r
e
R

VIS ,i
, R

SWIR ,i
( ) ≈ r

e
R

VIS
, R

SWIR
( ) +

1

2

∂
2

r
e
R

VIS
, R

SWIR
( )
∂R

VIS

2
σ

VIS

2

+
∂
2

r
e
R

VIS
, R

SWIR
( )

∂R
VIS
∂R

SWIR

cov R
VIS
, R

SWIR
( ) +

1

2

∂
2

r
e
R

VIS
, R

SWIR
( )
∂R

SWIR

2
σ

SWIR

2 ,	223	

	 (5)	224	

where	 σ
VIS

2
= ΔR

VIS ,i

2
,	 σ

SWIR

2
= ΔR

SWIR,i

2
	are	 the	 spatial	 variances	 of	 R

VIS ,i
	and	 R

SWIR,i
,	225	

respectively,	 and	 cov R
VIS
,R

SWIR( ) 	is	 the	 spatial	 covariance	 of	 	 RVIS ,i 	and	 RSWIR,i .	226	

Substituting	Eq.	(5)	into	Eq.	(3),	we	obtain	the	following	formula	for	Δr
e
:	227	
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Δr
e
= r

e
R
VIS
,R

SWIR( )− re R
VIS ,i
,R

SWIR,i( )

= −
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
σ

VIS

2
−
∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

cov R
VIS
,R

SWIR
( )−

1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
σ

SWIR

2

.	228	

	 (6)	229	

Following	the	same	procedure,	we	can	derive	the	formula	for	Δτ 	as:	230	

	

Δτ = τ R
VIS
,R

SWIR( )− τ R
VIS ,i
,R

SWIR,i( )

= −
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
σ

VIS

2
−
∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

cov R
VIS
,R

SWIR
( )−

1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

SWIR

2
σ

SWIR

2

.	231	

	 (7)	232	

Eq.	(6)	and	(7)	can	be	combined	into	a	matrix	form	as	follows:			233	

	
Δτ
Δr

e

⎛

⎝
⎜

⎞

⎠
⎟ =

−
1

2

∂2τ R
VIS
,R

SWIR( )
∂R

VIS

2
−
∂2τ R

VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

−
1

2

∂2τ R
VIS
,R

SWIR( )
∂R

SWIR

2

−
1

2

∂2 r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
−
∂2 r

e
R
VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

−
1

2

∂2 r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

σ
VIS

2

cov

σ
SWIR

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.	234	

	 (8)	235	

Eq.	 (8)	 is	 the	 central	 equation	 of	 our	 framework	 for	 quantifying	 the	 impact	 of	236	

sub-pixel	reflectance	variance	on	 r
e
	and	τ 	retrievals.	Eq.	(8)	decomposes	the	impact	of	237	

sub-pixel	cloud	reflectance	variability	on	the	τ 	and	 r
e
	retrievals	based	on	the	bi-spectral	238	

method	 into	 two	 parts:	 1)	 the	 magnitude	 of	 the	 sub-pixel	 reflectance	 variance	 and	239	

covariance	 specified	 by	 the	 vector	 σ
VIS

2
,  cov,  σ

SWIR

2( )
T

	(referred	 to	 as	 “sub-pixel	240	

variance	 vector”)	 and	 2)	 the	 matrix	 of	 the	 second-order	 derivatives	 of	 the	 LUT	 with	241	

respect	to	 R
VIS

	and	 R
SWIR

	(referred	to	as	“matrix	of	2
nd
	derivatives”).	Given	the	LUT,	the	242	

matrix	 of	 2
nd
	 derivatives	 can	 be	 easily	 derived	 from	 straightforward	 numerical	243	



	 13	

differentiation.	 An	 example	 of	 such	 a	 derived	 matrix	 based	 on	 the	 LUT	 for	 0.86	 µm	244	

reflectance	(R
0.86

)	and	2.1	µm	reflectance	( R
2.1
)	is	shown	in	Figure	3.	The	values	of	the	245	

2
nd
	derivatives	for	the	grids	of	LUT	are	indicated	by	the	color	bar.	Note	that	the	sign	of	246	

Δτ 	or	Δr
e
	is	determined	both	by	the	2

nd
	derivatives	and	the	sub-pixel	variance	vector	247	

σ
VIS

2
,  cov,  σ

SWIR

2( )
T

.	While	σ
VIS

2 	and	σ
SWIR

2 	are	positive	definite,	the	covariance	term	can	248	

be	negative.		249	

It	is	clear	from	Eq.	(8)	that	the	τ 	and	 r
e
	retrievals	are	not	only	influenced	by	the	250	

sub-pixel	variation	of	the	primary	band	(i.e.,	 R
VIS

	for	τ 	and	 R
SWIR

	for	 r
e
)	but	also	by	the	251	

variation	 of	 the	 secondary	 band	 (i.e.,	 R
SWIR

for	 τ 	and	 R
VIS

	for	 r
e
),	 as	 well	 as	 the	252	

covariance	 of	 the	 two	 bands	 R
VIS

	and	 R
SWIR

.	 Therefore,	 it	 reconciles	 and	 unifies	 the	253	

theoretical	 frameworks	 in	 Marshak	 et	 al.	 [2006]	 and	 Zhang	 and	 Platnick	 [Zhang	 and	254	

Platnick,	2011]	and	Zhang	et	al.	[2012].	In	particular,	the	impact	of	the	PPHB	on	τ 	and	255	

r
e
,	 described	 in	 Marshak	 et	 al.	 [2006],	 corresponds	 to	 the	 upper-left	 term,	256	

−
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
	(Figure	 3a),	 and	 lower-right	 term,	−

1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
	(Figure	 3f),	 in	257	

the	2
nd
	derivatives	matrix,	respectively.	As	shown	in	Figure	3,	both	terms	are	generally	258	

negative	over	the	most	part	of	LUT,	consistent	with	the	finding	of	Marshak		et	al.	[2006]	259	

that	 ignoring	 sub-pixel	 variability	 tends	 to	 result	 in	 an	 underestimation	 of	 the	 pixel	260	

average	 of	 the	 retrieved	 quantity	 if	τ 	and	 r
e
	retrievals	 are	 considered	 separately	 and	261	

independently	 (i.e.,	 negative	 Δτ and	 Δr
e
).	 On	 the	 other	 hand, Δτ 	and	 Δr

e
	are	 also	262	

influenced	by	other	terms	in	the	matrix.	Physically,	these	terms	arise	from	the	fact	that	263	
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both	 R
VIS

	and R
SWIR

	depend	 not	 only	 on	 τ 	but	 also	 r
e
.	 For	 example,	 the	264	

−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
	term	in	Figure	3d	is	mostly	positive	 in	the	region	of	the	LUT	with	τ 	265	

between	 about	 1.5	 and	 20	 and	 r
e
	between	 about	 10	 and	 28	µm.	 This	 term	 competes	266	

with	 the	 negative	−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
	term	 in	 determining	 the	 sign	 and	 size	 of	Δr

e
.	 In	267	

some	 cases,	 when	σ
VIS

2 	is	 large	 as	 in	 the	 example	 in	 Figure	 2c,	 the	 influence	 of	268	

−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
	may	be	 stronger,	 leading	 to	a	positive	Δr

e
,	 as	 argued	 in	 Zhang	and	269	

Platnick	[2011]	and	Zhang	et	al.	[2012].		270	

Some	new	terms	that	have	not	been	explained	in	previous	studies,	e.g.,	the	cross	271	

terms	−
∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

	in	Figure	3b	and	−
∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

in	Figure	3e,	also	emerge	from	272	

Eq.	 (8).	 These	 two	 terms	 generally	 have	 the	 opposite	 sign	 of	−
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
	and	273	

−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
.	 Because	 the	 covariance	 cov 	is	 generally	 positive,	 the	 cross	 terms	274	

evidently	 counteract	 the	 effects	 of	 −
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
	and	 −

1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
	on	 Δτ 	275	

and	Δr
e
.		276	

Eq.	(8)	also	provides	a	quantitative	explanation	for	why	sub-pixel	inhomogeneity	277	

has	 different	 impacts	 on	 the	 r
e
	retrievals	 based	 on	 different	 SWIR	 bands	 (i.e.,	 r

e,2.1
vs.	278	

r
e,3.7

).	Figure	4	shows	an	example	of	the	matrix	of	2
nd
	derivatives	for	the	 R

0.86
	and	 R

3.7
	279	
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combination.	 In	 comparison	 with	 the	 R
0.86

	and	 R
2.1
	combination	 in	 Figure	 3,	 the	280	

−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
	term	in	Figure	4d	is	significantly	smaller.	This	suggests	that	the	same	281	

sub-pixel	inhomogeneity	in	the	0.86	µm	band	(i.e.,	same	σ
VIS

2 )	has	a	stronger	impact	on	282	

r
e,2.1

	than	it	does	on	 r
e,3.7

.	Because	this	term	tends	to	lead	to	a	positive	Δr
e
	bias,	it	could	283	

be	an	important	reason	why	the	MODIS	 r
e,2.1

retrievals	are	often	found	to	be	significantly	284	

larger	 than	 the	 r
e,3.7

,	 in	 particular	 for	 inhomogeneous	 pixels	 [Painemal	 and	 Zuidema,	285	

2011;	Zhang	and	Platnick,	2011;	Zhang	et	al.,	2012;	Cho	et	al.,	2015].		286	

	 As	 analyzed	 above,	 in	 comparison	 with	 previous	 studies	 the	 framework	287	

described	in	Eq.	(8)	provides	us	with	a	more	comprehensive	explanation	of	the	bias	in	τ 	288	

and	 r
e
	retrievals	caused	by	the	homogenous	pixel	assumption.	This	framework	may	be	289	

useful	in	a	variety	of	applications.	It	can	be	used	to	quantify	Δτ 	and	Δr
e
	if	the	sub-pixel	290	

variances	and	covariance	 σ
VIS

2
,  cov,  σ

SWIR

2( )
T

	are	known,	as	shown	in	the	example	in	the	291	

next	 section.	 The	Δτ 	and	Δr
e
	can	 then	 in	 turn	 be	 used	 to	 estimate	 the	 uncertainties	292	

and	 potential	 biases	 in	τ 	and	 r
e
	retrievals	 due	 to	 ignoring	 the	 sub-pixel	 reflectance	293	

variability	in	the	bi-spectral	method.	Our	framework	can	also	be	used	to	understand	the	294	

differences	among	retrievals	based	on	instruments	with	different	spatial	resolutions.	295	

Finally,	it	is	worth	mentioning	that	Eq.	(8)	can	be	rewritten	in	a	slightly	different	296	

form	as	follows:		297	
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	298	

Δτ
Δr

e

⎛

⎝
⎜

⎞

⎠
⎟ =

−
1

2

∂2τ R
VIS
,R

SWIR( )
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VIS

2
R
VIS( )

2

−
∂2τ R

VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

R
VIS

⋅R
SWIR( ) −

1

2

∂2τ R
VIS
,R

SWIR( )
∂R

SWIR

2
R
SWIR( )

2

−
1

2

∂2 r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
R
VIS( )

2

−
∂2 r

e
R
VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

R
VIS

⋅R
SWIR( ) −

1

2

∂2 r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
R
SWIR( )

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

HσVIS

2

H
cov

Hσ SWIR

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

299	

	 300	

		 	 (9)	301	

where	 H
σVIS

2
=σ

VIS

2
/ R

VIS( )
2

,	 H
σ SWIR

2
=σ

SWIR

2
/ R

SWIR( )
2

,	 and	302	

H
COV

= cov R
VIS
,R

SWIR( ) / RVIS ⋅RSWIR( ) .	Note	that	HσVIS

	has	been	used	in	previous	studies	303	

as	 an	 index	of	 sub-pixel	 inhomogeneity,	 in	 particular	 for	MODIS	 cloud	 retrievals	 [e.g.,	304	

Liang	et	al.,	2009;	Di	Girolamo	et	al.,	2010;	Zhang	and	Platnick,	2011;	Zhang	et	al.,	2012;	305	

Cho	et	al.,	2015].	Therefore,	although	Eq.	(9)	and	(8)	are	equivalent,	some	readers	may	306	

find	 H
σVIS

2
,H

cov
,H

σ SWIR

2( )
T

	more	familiar	than	 σ
VIS

2
,  cov,  σ

SWIR

2( )
T

.		307	

	 It	 is	 important	 to	 point	 out	 that	 Eqs.	 (8)-(9)	 hold,	 no	matter	whether	 the	 sub-308	

pixel	 reflectance	 variations	 (i.e.,	 non-zero	 σ
VIS

2
,  cov,  σ

SWIR

2( )
T

)	 are	 attributable	 to	 sub-309	

pixel	 scale	 cloud	 property	 variations,	 3-D	 radiative	 effects,	 or	 both.	 It	 is	 the	310	

interpretation	of	the	resultant	Δτ 	and	Δr
e
	that	is	dependent	on	the	circumstances	and	311	

needs	to	be	made	with	caution.	312	

	 Finally,	it	is	important	to	note	that	a	critical	assumption	in	our	derivation	is	that		313	

the	truncation	error	ε 	in	the	Taylor	expansion	is	negligible.	This	term	is	a	summation	of	314	

all	the	higher	order	derivatives.	Take	 r
e
	for	example,	the	form	of	the	k

th
	order	derivative:	315	
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1

k!

d
k
r
e

dR
k
=

1

m!(k −m)!

∂
k
r
e

∂R
vis

m
∂R

vis

k−m

0≤m≤k

∑ R
VIS
,R

SWIR( )ΔRVISm ΔR
SWIR

k−m .		 (10)	316	

Because	 there	 is	 no	 analytical	 solution	 to	 the	 higher	 order	 derivatives,	 we	 can	 only	317	

assess	 the	 validity	 of	 this	 assumption	 and	 evaluate	 the	 accuracy	 of	 our	 framework	318	

numerically,	which	is	done	in	the	next	section.			319	

4. Numerical	tests		320	

In	this	section,	we	evaluate	the	accuracy	and	limits	of	our	mathematical	framework	321	

using	two	examples.	The	main	objective	is	to	assess,	through	case	studies,	if	the	higher	322	

order	 derivative	 terms	 are	 negligible	 so	 that	 our	 framework	 in	 Eq.	 (8)	 provides	 an	323	

accurate	estimate	of	the	PPHB.			324	

4.1. Cloud	fields	from	large-eddy	simulation			325	

In	the	first	example,	we	test	our	framework	using	a	synthetic	cloud	field	simulated	326	

from	a	large-eddy	simulations	(LES)	model	(DHARMA)	with	bin	microphysics	[Ackerman	327	

et	al.,	2004].	The	LES	case	is	based	on	an	idealized	case	study	[Stevens	et	al.,	2010]		from	328	

the	 Atlantic	 Trade	Wind	 Experiment	 (ATEX),	 with	 an	 diagnostic	 treatment	 of	 aerosol,	329	

specified	 to	 have	 a	 uniform	 number	 concentration	 of	 40	 cm
-3
.	 The	 ATEX	 simulation	330	

represents	a	trade-wind	cumulus	case	under	a	sharp	inversion.	The	ATEX	simulation	has	331	

a	domain	size	of	9.6	x	9.6	x	3	km,	with	a	uniform	horizontal	grid	of	Δx=Δy=100	m	and	a	332	

fixed	 vertical	 grid	 spacing	 of	 Δz=40	m.	 Further	 details	 of	 the	model	 setup	 for	 the	 LES	333	

case	are	provided	in	Zhang	et	al.	[2012].	The	droplet	size	distributions	from	the	LES	are	334	

used	to	drive	the	radiative	transfer	simulations.	The	solar	zenith	and	azimuth	angle	are	335	

set	at	20°	and	30°,	respectively,	for	the	radiative	transfer	simulations.	For	simplicity,	the	336	
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surface	 is	 assumed	 to	 be	 black.	 Both	 1-D	 and	 3-D	 radiative	 transfer	 simulations	were	337	

performed,	 using	 the	 DISORT	 [Stamnes	 et	 al.,	 1988]	 and	 the	 I3RC	model	 [Pincus	 and	338	

Evans,	 2009],	 respectively.	 We	 focus	 on	 the	 3-D	 results	 because	 they	 are	 more	339	

representative	of	real	retrievals.	The	1-D	results	are	similar	and	are	therefore	not	shown	340	

here.			341	

We	first	run	radiative	transfer	simulations	at	the	100-m	horizontal	resolution	of	the	342	

LES	 grid.	 Figure	 5a—c	 show	 the	 simulated	 100-m	 cloud	 bi-directional	 reflectances	 at	343	

nadir	viewing	angle	for	the	0.86,	2.1,	and	3.7	µm	MODIS	bands,	receptively.		Then,	the	344	

100m	 reflectances	 are	 aggregated	 to	 400	 m	 to	 simulate	 the	 coarse-resolution	345	

observations,	which	are	shown	in	Figure	5d—f.	Obviously,	for	each	400-m	pixel	we	have	346	

4x4	100m	pixels	that	can	be	used	to	derive	the	variances	and	covariances	of	sub-pixel	347	

reflectance	variances.	Figure	6	shows	the	sub-pixel	reflectance	variances,	σ
0.86

2 ,	σ
2.1

2 	and	348	

σ
3.7

2 ,	 and	 covariances,	 cov R
0.86
,R

2.1( ) 	and	 cov R
0.86
,R

3.7( ) 	derived	 from	 100-m	349	

reflectances.	Because	of	 the	 large,	order-of-magnitude	differences	between	R
0.86

,	 R
2.1
	350	

and	 R
3.7
,	σ

0.86

2 	is	substantially	larger	than	σ
2.1

2 ,	which	in	turn	is	substantially	larger	than	351	

σ
3.7

2 .	 Both	 covariances	 cov R
0.86
,R

2.1( ) 	and	 cov R
0.86
,R

3.7( ) are	 generally	 positive,	352	

indicating	 a	 general	 positive	 correlation	 between	 SWIR	 and	 VIS/NIR	 band	 cloud	353	

reflectances.	 This	 is	 not	 surprising	 because	 R
2.1
	and	 R

3.7
	do	 increase	with	τ 	when	 the	354	

cloud	 is	 optically	 thin.	 Only	 for	 optically	 thick	 clouds	 do R
2.1

	and	 R
3.7

	become	355	

independent	 from	 R
0.86

.	 Figure	 7	 shows	 the	 reflectance	 variances	 and	 covariances	356	

normalized	 by	 the	 mean	 reflectances	 squared,	 i.e.,	 H
σ 0.86

2 ,	 H
σ 2.1

2 	and	 H
σ 3.7

2 	and	357	
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cov R
0.86
,R

2.1( ) / R0.86 ,⋅R2.1( ) 	and	 cov R
0.86
,R

3.7( ) / R0.86 ⋅R3.7( ) .	 After	 the	 normalization,	358	

H
σ 0.86

2 ,	H
σ 2.1

2 	and	H
σ 3.7

2 	are	more	 comparable	 in	 terms	of	magnitude.	 In	 addition,	 cloud	359	

edges	 are	 seen	 to	 have	 larger	 sub-pixel	 inhomogeneity	 than	 the	 center	 of	 the	 cloud,	360	

which	has	also	been	found	in	MODIS	observations	[Zhang	and	Platnick,	2011;	Liang	and	361	

Girolamo,	2013].		362	

The	τ 	retrievals	 based	 on	 the	 simulated	 100-m	 cloud	 reflectances	 ( R
0.86

	and	 R
2.1
	363	

combination)	 in	 Figure	 5a—b	 are	 shown	 in	 Figure	 8a,	 which	 closely	 follow	 the	 R
0.86

	364	

observations	in	Figure	5a.	The	τ 	retrievals	based	on	the	 R
0.86

	and	 R
3.7
	combination	are	365	

mostly	 identical	 and	 therefore	 not	 shown.	 The	 r
e,2.1

	and	 r
e,3.7

	retrievals	 based	 on	 the	366	

100-m	 reflectances	 are	 shown	 in	 Figure	 8b—c.	 For	 consistency	 with	 the	 notation	 in	367	

Section	 3,	 we	 refer	 to	 these	 retrievals	 as	 sub-pixel	 retrievals,	 i.e.,	 τ R
0.86,i
,R

2.1,i( ) ,	368	

r
e
R
0.86,i
,R

2.1,i( ) 	and	 re R0.86,i ,R3.7,i( ) .	 The	 τ ,	 r
e,2.1

	and	 r
e,3.7

	retrievals	 based	 on	 the	369	

aggregated	400m	reflectances	 in	Figure	5d—f	are	 shown	 in	Figure	8d—f,	 respectively,	370	

which	 are	 referred	 to	 as	 pixel-level	 retrievals	 τ R
0.86,i
,R

2.1,i( ) ,	 re R0.86,i ,R2.1,i( ) 	and	371	

r
e
R
0.86,i
,R

3.7,i( ) .	372	

Having	derived	both	sub-pixel	and	pixel	level	retrievals,	we	first	compute	the	biases	373	

caused	by	the	homogenous	pixel	assumption,	Δτ 	and	Δr
e
,	as	expressed	in	Eq.	(3).	The	374	

results	 are	 shown	 in	 Figure	9a—c.	 It	 can	be	 seen	 that	Δτ 	is	mostly	negative	over	 the	375	

whole	domain,	as	one	would	expect	based	on	 the	PPHB.	However,	 the	Δr
e
,	especially	376	

Δr
e,2.1

,	is	predominantly	positive,	which	is	the	opposite	of	PPHB	but	consistent	with	the	377	
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findings	 in	Zhang	and	Platnick	[2011]	and	Zhang	et	al.	[2012].	 It	should	be	pointed	out	378	

that	the	cloud-free	pixels	are	marked	in	black	in	the	figure.	The	pixels	in	gray	are	partly	379	

cloudy	pixels	(i.e.,	one	or	more	100-m	sub-pixels	are	cloud-free).	(Because	it	is	uncertain	380	

how	cloud-free	sub-pixels	should	be	treated	in	the	spatial	averages,	partly	cloudy	pixels	381	

are	excluded	from	our	analysis.)		382	

To	assess	the	accuracy	of	our	framework,	we	derived	the	second	set	of	Δτ 	and	Δr
e
	383	

based	on	Eq.	(8)	using	the	matrix	of	2
nd
	derivatives	(Figure	3	andFigure	4)	and	the	sub-384	

pixel	reflectance	variances	and	covariances	(Figure	6).	The	results	from	this	method	are	385	

shown	in	Figure	9d—f.	Evidently,	Δτ 	and	Δr
e
	derived	in	two	different	and	independent	386	

ways	agree	very	well.	The	correlation	coefficients	all	exceed	0.8	as	shown	in	Figure	9g—387	

i.	Only	 those	pixels	with	 large	sub-pixel	 inhomogeneity	 index	H
σ 0.86

(>0.5)	deviate	 from	388	

the	one-to-one	line.	For	these	pixels	the	higher	order	terms	O ΔR
3( ) 	ignored	in	Eq.	(8),	389	

likely	 impact	Δτ 	and	Δr
e
.	 But	 such	 cases	 are	 relatively	 rare	 for	 this	 LES	 scene.	 The	390	

overall	excellent	agreement	clearly	demonstrates	that	our	framework	is	able	to	provide	391	

an	 accurate	 quantitative	 estimation	 of	 the	 biases	 in	τ 	and	 r
e
	retrievals	 caused	 by	 the	392	

homogenous	pixel	assumption	for	overcast	pixels.		393	

An	advantage	of	using	Eq.	 (8)	 is	 that	 the	bias	can	be	 further	decomposed	 into	 the	394	

contributions	 from	each	 term	 in	 the	matrix	of	2
nd
	derivatives,	which	help	us	 to	better	395	

understand	the	relative	importance	of	various	factors	in	causing	the	bias.	For	example,	396	

as	 shown	 in	 Figure	 10a—c,	 the	 τ 	retrieval	 bias	 is	 dominated	 by	 the	397	

−
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
⋅σ

VIS

2 	term	 in	Eq.	 (7).	As	mentioned	before,	 this	 term	corresponds	 to	398	
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the	PPHB		(Figure	2a),	which	is	why	the	total	Δτ 	in	Figure	9	is	generally	negative.	In	the	399	

case	 of	 the	 r
e,3.7

	retrieval,	 both	 the	 positive	−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
⋅σ

VIS

2 	term	 (Figure	 10g)	400	

and	 the	 negative	−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
⋅σ

SWIR

2 	term	 (Figure	 10i)	 are	 significant.	 The	 former	401	

corresponds	to	the	example	in	Figure	2c,	while	the	latter	refers	to	the	example	in	Figure	402	

2b.	 After	 summation,	 the	 −
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
σ

VIS

2 	is	 dominant	 and	 leads	 to	 the	 overall	403	

positive	 bias	 in	 the	 r
e,3.7

	retrieval.	 The	 bias	 in	 the	 r
e,2.1

	retrieval	 is	 even	 more	404	

complicated,	as	all	three	terms	on	the	right	hand	side	of	Eq.	(6)	contribute	substantially	405	

to	the	bias.	Overall,	the	positive	terms	in	Figure	10d—e	dominate	the	total	error	budget,	406	

leading	to	a	generally	positive	Δr
e,2.1

	in	Figure	8.	407	

In	the	above	example,	the	solar	zenith	angle	 is	high,	with	θ
0
= 20 °.	We	also	tested	408	

our	 framework	 in	 a	 case	 with	 low	 solar	 zenith	 angle	 of	θ
0
= 60 °	 and	 the	 results	 are	409	

shown	in	Figure	11.	The	correlations	between	the	biases	from	the	numerical	simulations	410	

and	those	predicted	by	our	framework	are	substantial,	suggesting	our	framework	works	411	

equally	well	for	a	high	sun	in	this	case.	412	

From	 the	 above	 example,	 one	 can	 clearly	 see	 that	 our	 framework	 provides	 a	413	

comprehensive	 explanation	 of	 the	 impact	 of	 sub-pixel	 inhomogeneity	 on	τ 	and	 r
e
	414	

retrievals.	 As	mentioned	 earlier	we	 have	 also	 tested	 our	 framework	 on	 the	 retrievals	415	

based	 on	 reflectance	 using	 1-D	 radiative	 transfer,	 and	 find	 the	 predicted	Δτ 	and	Δr
e
	416	

based	on	our	framework	to	agree	very	well	with	the	numerical	results	(not	shown).		417	
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We’d	 like	 to	 point	 out	 here	 that	 less	 sensitivity	 to	 sub-pixel	 heterogeneity	 in	 the	418	

3.7µm	channel	should	not	necessarily	be	equated	to	less	 r
e
	bias	in	the	overall	retrieval.	419	

For	simplicity,	our	3.7	µm	analysis	deals	with	reflectance	only.	Thus	it	assumes	that	the	420	

cloud	 and	 surface	 temperatures	 are	 known	 without	 error,	 as	 are	 the	 atmospheric	421	

emission/correction	 terms,	 needed	 to	 infer	 cloud	 top	 reflectance	 from	 top-of-422	

atmosphere	measurements	of	emitted	and	reflected	radiation.	Because	we	are	dealing	423	

with	reflectance	only,	it	is	implicitly	assumed	that	the	effects	of	sub-pixel	heterogeneity	424	

on	 the	 cloud	 temperature	 retrieval	 and	 atmospheric	 correction	 are	 negligible.	 The	425	

validity	of	this	assumption	will	be	assessed	in	future	work.	426	

	427	

4.2. MODIS	retrieval	test	428	

In	 the	 second	 example,	 we	 test	 our	 framework	 using	 MODIS	 observations.	 The	429	

MODIS	 instrument	has	36	spectral	bands.	The	spatial	 resolution	of	most	bands	 (bands	430	

8—36)	is	1	km.	Bands	3—7	have	a	500-m	resolution.	Bands	1	and	2	have	a	250	m	spatial	431	

resolution.	 The	 current	 (collection	 06)	 operational	 MODIS	 cloud	 property	 retrieval	432	

products,	 such	 as	τ , r
e
	and	 LWP,	 are	 made	 at	 1-km	 resolution.	 The	 higher	 spatial	433	

resolution	 of	 the	 0.86	 µm	 (band	 2)	 and	 2.1	 µm	 (band	 7)	 sensors	 provides	 us	with	 an	434	

opportunity	 to	 test	 our	 framework	 and	 investigate	 the	 impact	 of	 sub-pixel	435	

inhomogeneity	on	the	MODIS	τ 	and	 r
e
	retrievals.	For	this	purpose,	we	selected	a	case	436	

shown	 in	 Figure	 12.	 The	 granule	 in	 Figure	 12a	 was	 collected	 by	MODIS	 onboard	 the	437	

Terra	 satellite	on	 September	9
th
	 2006	over	 the	Gulf	 of	Mexico.	We	 further	 selected	a	438	

small	 region	off	 the	 coast	 of	 Louisiana	marked	 in	 the	 red	box	 for	 our	 test.	A	 zoom-in	439	
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view	of	this	small	 region	at	the	1km	and	500m	resolutions	 is	shown	in	Figure	12b	and	440	

Figure	12c,	respectively.		441	

Similar	to	the	LES	example,	we	first	developed	two	sets	of	cloud	property	retrievals,	442	

one	at	a	higher	spatial	resolution	of	500	m	and	the	other	at	a	coarser	resolution	of	1	km.	443	

Figure	13a	and	b	show	the	500	m	resolution	τ 	and	 r
e
	retrievals,	respectively,	based	on	444	

the	combination	of	0.86	and	2.1	µm	reflectances	for	the	selected	region	in	Figure	12b.	445	

The	1	km	 retrievals	are	 shown	 in	Figure	13c	and	d.	This	 scene	has	a	 cloud	 fraction	of	446	

about	72%.	In	the	center	of	the	scene	is	a	cluster	of	thick	clouds	with	τ 	around	20	to	30,	447	

and	 r
e
	ranging	mainly	between	15µm	to	20µm.	Note	that	 in	our	framework	the	500	m	448	

retrievals	are	the	sub-pixel	τ R
VIS ,i
,R

SWIR,i( ) 	and	 re RVIS ,i ,RSWIR,i( ) .	The	1	km	retrievals	are	449	

τ R
VIS
,R

SWIR( ) 	and	 re RVIS ,RSWIR( ) .	 To	 derive	 the	 Δτ 	and	 Δr
e
	from	 our	 mathematical	450	

framework	 in	Eq.	 (8),	we	compute	the	sub-pixel	 reflectance	variances	and	covariances	451	

for	every	1-km	cloudy	pixel	from	the	2x2	500-m	sub-pixel	reflectance	observations.	The	452	

results	are	shown	in	Figure	14.	Similar	to	the	LES	case,	we	find	that	the	0.86	and	2.1	µm	453	

cloud	 reflectances	 are	 generally	 positively	 correlated	over	 the	 thin	 cloud	 regions.	 The	454	

correlation	 becomes	 weak	 (close	 to	 zero)	 over	 the	 thick	 cloud	 regions.	 These	 results	455	

indicate	 that	when	 the	 cloud	 is	 thin,	 the	 variability	 in	 both	 0.86	 and	 2.1	 µm	bands	 is	456	

controlled	mainly	by	τ .	The	variability	of	2.1	µm	cloud	reflectances	becomes	primarily	457	

sensitive	to	 r
e
	only	when	the	cloud	becomes	optically	thick.	458	

The	difference	between	the	1	km	retrievals	and	the	mean	of	500	m	retrievals	are	the	459	

biases,	Δτ 	and	Δr
e
,	 caused	 by	 the	 homogeneous	 pixel	 assumption.	 Figure	 15a	 and	 b	460	
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show	Δτ 	and	Δr
e
,	respectively,	based	on	Eq.	(3).	We	found	thatΔτ 	is	mainly	negative	461	

particularly	 in	 the	regions	with	 thick	clouds,	while	Δr
e
	is	mainly	positive	particularly	 in	462	

the	transition	regions	from	thick	to	thin	clouds.	These	results	are	very	similar	to	what	we	463	

found	 in	 the	 LES	 scene	 in	 Figure	 9.	 Both	Δτ 	and	Δr
e
	are	 shown	 in	 Figure	 15c	 and	 d,	464	

respectively.	 The	Δτ 	and	Δr
e
	predicted	 from	 Eq.	 (8)	 agree	 reasonably	 well	 with	 the	465	

results	derived	from	numerical	retrievals	 in	Figure	15a	and	b.	The	predicted	Δτ 	based	466	

on	 Eq.	 (9)	 and	 the	 numerical	 results	 have	 a	 correlation	 coefficient	 over	 0.85	 for	 all	467	

cloudy	 pixels	 (over	 0.95	 for	 pixels	 with	τ > 5 ).	 The	 correlation	 coefficient	 for	Δr
e
	is	468	

significantly	lower	especially	for	thin	clouds	with	τ < 5 .	This	is	mainly	because	when	the	469	

cloud	is	thin	the	2.1	µm	cloud	reflectances	are	not	very	sensitive	to	 r
e
.	As	a	result,	the	470	

retrievals	 are	 subject	 to	 large	 uncertainties	 caused	 by	 radiative	 transfer	 model	471	

uncertainties.	 If	we	 limited	 the	 comparison	 only	 to	 clouds	with	τ > 5 ,	 the	 correlation	472	

coefficient	is	over	0.70.	473	

In	summary,	our	numerical	 framework	work	very	well	 for	 the	LES	cases,	 indicating	474	

that	the	high-order	terms	are	mostly	negligible	in	these	cases.	It	also	works	reasonably	475	

well	for	the	real	MODIS	case,	especially	for	the	clouds	with	τ > 5 .	For	thinner	clouds,	it	476	

is	 difficult	 to	 tell	 whether	 the	 deviation	 stems	 from	 higher-order	 terms	 or	 retrieval	477	

uncertainties.	Another	factor	to	consider	is	that	we	only	have	four	500	m	sub-pixels	for	478	

each	 1	 km	pixel,	which	may	 be	 insufficient	 for	 deriving	meaningful	 sub-pixel	 variance	479	

and	 co-variance.	 As	 part	 of	 ongoing	 research,	we	 are	 trying	 to	 retrieve	τ 	and	 r
e
	from	480	

the	 Advanced	 Space-borne	 Thermal	 Emission	 and	 Reflection	 Radiometer	 (ASTER)	 on	481	

Terra.	 ASTER	 has	 a	 much	 greater	 spatial	 resolution	 than	 MODIS	 and	 therefore	 can	482	
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provide	much	richer	information	on	small	scale	variability	of	cloud	reflectance	[Zhao	and	483	

Di	Girolamo,	2006;	Wen	et	al.,	2007].	We	will	 further	test	our	 framework	using	ASTER	484	

observations	in	future	work.				485	

5. Summary	and	Discussion	486	

The	 impact	 of	 unresolved	 sub-pixel	 level	 variation	 of	 cloud	 reflectances	 is	 an	487	

important	source	of	uncertainty	in	the	bi-spectral	solar	reflective	method.	In	this	study,	488	

we	develop	a	mathematical	 framework	 for	understanding	 this	 impact	 and	quantifying	489	

the	 consequent	 biases,	 Δτ 	and	 Δr
e
.	 We	 show	 in	 Eq.	 (8)	 that	 Δτ 	and	 Δr

e
are	490	

determined	 by	 two	 factors—the	 nonlinearity	 of	 the	 LUT	 and	 the	 inhomogeneity	 of	491	

reflectances	within	the	pixel.	We	tested	our	framework	using	LES	cloud	fields	and	real	492	

MODIS	observations.	The	results	indicate	that,	in	comparison	with	previous	studies,	our	493	

framework	 provides	 a	 more	 comprehensive	 explanation	 and	 also	 a	 more	 accurate	494	

estimation	 of	 the	 retrieval	 biases	 caused	 by	 the	 sub-pixel	 level	 variation	 of	 cloud	495	

reflectances.	 Most	 importantly,	 it	 demonstrates	 that	 sub-pixel	 variations	 in	 cloud	496	

reflectance	 can	 lead	 to	 both	positive	 and	negative	 values	 of	Δr
e
.	 In	 both	 the	 LES	 and	497	

MODIS	cases	that	we	examined,	Δr
e
were	dominantly	positive,	hence	contributing	to	the	498	

dominantly	positive	bias	in	retrieved	re	from	resolved	cloud	variability.	499	

Our	 framework	 could	 have	 several	 applications.	 For	 example,	 it	 can	 be	 used	 to	500	

understand	 the	 differences	 between	 retrievals	 made	 at	 different	 spatial	 resolutions	501	

(e.g.,	MODIS	vs.	SEVIRI)	or	based	on	different	spectral	reflectances	(e.g.,	MODIS	2.1	µm	502	

vs.	3.7	µm).		It	could	also	useful	for	estimating	retrieval	uncertainties.	For	example,	the	503	

retrieval	uncertainty	caused	by	sub-pixel	 reflectance	variation	 in	 the	operational	1	km	504	
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MODIS	cloud	products	can	be	estimated	based	on	our	framework	from	the	500	m	cloud	505	

reflectances.	It	can	also	be	integrated	into	the	operational	MODIS	retrieval	algorithm	to	506	

determine	in	real-time	whether	the	high-resolution	retrievals	(e.g.,	from	1km	to	500m)	507	

are	necessary	for	a	given	pixel.	Another	useful	application	is	to	help	the	trade-off	studies	508	

for	instrument	design.	For	example,	the	Ocean	Color	Imager	(OCI)	is	the	key	instrument	509	

planned	 for	 NASA’s	 coming	 Pre-Aerosol,	 Clouds,	 and	 ocean	 Ecosystem	 mission	510	

(http://decadal.gsfc.nasa.gov/pace.html).	An	important	part	of	the	OCI	design	trade-off	511	

study	 is	 to	 determine	 the	 optimal	 spatial	 resolution	 for	 both	 ocean	 color	 and	512	

atmospheric	observations,	including	cloud	property	retrievals.	Our	framework	would	be	513	

highly	useful	for	such	study.		514	

Finally,	 we	 feel	 necessary	 to	 clarify	 again	 that	 our	 framework	 cannot	 explain	 or	515	

predict	3-D	effects,	such	as	the	illuminating,	shadowing,	and	photon	leaking,	which	are	516	

known	 to	 substantially	 influence	 cloud	 reflectances	 and	 therefore	 retrieval	 results.	517	

These	 effects	 are	 beyond	 the	 scope	 of	 this	 study.	Our	 framework	 simply	 predicts	 the	518	

statistical	differences	between	retrievals	with	different	spatial	resolutions,	regardless	of	519	

whether	the	radiative	transfer	is	1-D	or	3-D.		520	

521	
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Figures		639	

	640	

	641	
Figure	1	Examples	of	the	look-up	table	of	cloud	bi-directional	reflection	function	as	functions	of	642	

cloud	optical	thickness	and	effective	radius,	based	on	the	combination	of	a)	0.86	and	2.1	µm	643	

bands,	and	b)	0.86	and	3.7	µm	bands.	Surface	is	assumed	to	be	Lambertian	with	a	reflectance	of	644	

0.02.	Solar	and	viewing	zenith	angle	are	45°	and	20°,	respectively.	Relative	azimuthal	angle	is	0°.	645	

		646	
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	647	

	648	

Figure	2	a)	an	example	to	illustrate	the	PPHB	bias	proposed	in	Cahalan	et	al.	[1994]	for	τ 	649	

retrieval,	b)	example	to	illustrate	the	PPHB	bias	proposed	in	Marshak	et	al.	[2006],	c)	example	650	

to	illustrate	the	 r
e
	retrieval	bias	caused	by	sub-pixel	τ 	variability	proposed	in	Zhang	and	651	

Platnick		[2011]	and	Zhang	et	al.	[2012].	See	text	for	details.	Solar	and	view	zenith	angles	are	652	

assume	to	be	20°	and	0°	and	relative	azimuth	angle	is	assumed	to	be	30°	in	these	cases.			653	

654	
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	655	
Figure	3	The	sign	and	magnitude	of	each	2

nd
	derivative	term	in	Eq.	(8)	derived	from	the	 R

0.86
	656	

and	R2.1	LUT.		a)	corresponds	to	−
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS

2
,	b)	to	−

∂
2
τ R

VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

,	c)	to	657	

−
1

2

∂
2
τ R

VIS
,R

SWIR( )
∂R

SWIR

2
,	d)	to	−

1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS

2
,	e)	to−

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

VIS
∂R

SWIR

,	and	f)	to	−
1

2

∂
2
r
e
R
VIS
,R

SWIR( )
∂R

SWIR

2
.	658	

Solar	and	view	zenith	angles	are	assumed	to	be	20°	and	0°,	relative	azimuth	angle	is	assumed	to	659	

be	30°	in	these	cases.			660	

661	
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	662	
Figure	4	Same	as	Figure	3	,	except	for	the	 R

0.86
	and	 R

3.7
	LUT.	Solar	and	view	zenith	angles	are	663	

assume	to	be	20°	and	0°	and	relative	azimuth	angle	is	assumed	to	be	30°	in	these	cases.			664	

665	
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		666	

	667	
Figure	5	Simulated	a)	0.86	µm,	b)	2.1	µm	and	c)	3.7	µm	MODIS	bi-directional	reflectances	at	668	

100-m	resolution	for	the	LES	cloud	field.	d)—f)	400-m	bi-directional	reflectances	averaged	from	669	

100-m	resolution	simulations.	670	

671	
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	672	

	673	
Figure	6	The	sub-pixel	reflectance	variance	a)	σ

0.86

2 ,	b)	σ
2.1

2 ,	c)	σ
3.7

2 	and	covariances	d)	674	

cov R
0.86
,R

2.1( ) 	and	e)	 cov R
0.86
,R

3.7( ) 	for	the	LES	case	in	Figure	5.	675	

	676	

677	
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	678	

Figure	7	The	sub-pixel	a)	H
σ 0.86

2 ,	b)	H
σ 2.1

2 ,	c)	H
σ 3.7

2 	d)	 cov R
0.86
,R

2.1( ) / R0.86 ,⋅R2.1( ) 	and	e)	679	

cov R
0.86
,R

3.7( ) / R0.86 ,⋅R3.7( ) for	the	LES	case	in	Figure	5.		680	

681	
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	682	

	683	

	684	

Figure	8	a)τ ,	b)	 r
e,2.1

	and	c)	 r
e,3.7

	retrievals	based	on	the	100	m	reflectance.	d)—f)	retrievals	685	

based	on	the	400	m	reflectance.				686	

687	
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	688	

	689	
Figure	9	The	a)	Δτ ,	b)	Δr

e,2.1
	and	c)	Δr

e,3.7
	derived	based	on	the	Eq.	(3).	The	corresponding	690	

results	obtained	based	on	Eq.	(8)	are	shown	in	d)—f).	The	pixel-to-pixel	comparisons	are	shown	691	

in	g)—i),	in	which	the	color	indicate	the	value	of	the	sub-pixel	inhomogeneity	index	H
σ 0.86

.		692	

		693	

694	
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	695	

	696	
Figure	10	The	decomposition	of	Δτ 	and	Δr

e
	into	the	contributions	from	each	term	in	the	697	

matrix	of	2
nd
	derivative.	a)	contribution	of	−

1

2

∂
2
τ R

0.86
,R

2.1( )
∂R

0.86

2
⋅σ

0.86

2 	to	Δτ ,	b)	contribution	of	698	

−
1

2

∂
2
τ R

0.86
,R

2.1( )
∂R

0.86
∂R

2.1

⋅cov R
0.86
,R

2.1( ) 	to	Δτ ,	c)	contribution	of	−
1

2

∂
2
τ R

0.86
,R

2.1( )
∂R

2.1

2
⋅σ

2.1

2 	to	Δτ .	d)	699	

contribution	of	−
1

2

∂
2
r
e
R
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,R

2.1( )
∂R

0.86

2
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0.86
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,	e)	contribution	of	700	

−
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∂
2
r
e
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0.86
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∂
2
r
e
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contribution	of	−
1

2

∂
2
τ R

0.86
,R

3.7( )
∂R

3.7

2
⋅σ

3.7

2 	toΔr
e,3.7

.	h)	contribution	of	702	

−
1
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∂
2
r
e
R
0.86
,R

3.7( )
∂R

0.86
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∂
2
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e
R
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,R

3.7( )
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	705	

	706	
Figure	11	Same	as	Figure	9,	except	that	in	this	case	the	solar	zenith	angle	is	60°.	707	

	708	

709	
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	711	
Figure	12	The	a)	RGB	image	of	a	MODIS	granule	collected	on	September	9

th
	2006	over	the	Gulf	712	

of	Mexico.	A	zoom-in	view	of	the	region	in	the	red	box	based	on	b)	1	km	MODIS	true	color	RGB	713	

image	and	c)	500	m	MODIS	true	color	RGB	image..			714	

715	
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	716	

	717	
Figure	13	τ 	and	 r

e,2.1
	retrievals	for	the	region	in	Figure	12b	at	the	500	m	(a)	and	b))	and	1	km	(c)	718	

and	d))	resolutions.	The	differences	between	1km	retrievals	and	the	aggregated	500m	retrievals	719	

,	i.e.,	Δτ 	and	Δr
e,2.1

,	are	shown	in	e)	and	f).	720	

721	
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	722	
Figure	14	The	sub-pixel	reflectance	variances	a)	σ

0.86

2 ,	b)	σ
2.1

2 ,	and		covariances	c)	723	

cov R
0.86
,R

2.1( ) 	for	the	MODIS	case	in	Figure	12b.	724	

	725	

726	
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	727	
Figure	15	The	a)	Δτ 	and	b)	Δr

e
	derived	based	on	the	Eq.	(3).	The	corresponding	results	based	728	

on	Eq.	(8)	are	shown	in	c)	and	d)	and	comparisons	in	e)	and	f).	729	


