
A Framework for a Large-Scale B2B Recommender

System

Azadeh Ghafari Nia, Jie Lu, Qian Zhang

Decision Systems and e-Service Intelligence Laboratory,

Centre for Artificial Intelligence

University of Technology Sydney, Australia

Email: azadeh.ghafarinia@student.uts.edu.au,

Jie.Lu@uts.edu.au, Qian.Zhang-1@uts.edu.au

Mario Ribeiro

Sydney, Australia

Email: info@marioribeiro.com.au

Abstract—The aim of a recommender system is to suggest
relevant items in order to improve purchasing experience and
minimise information overload. Despite extensive research in
the area of B2C recommender systems, business-to-business
distributors can have a complexity of the items and customers
to deal with. A unique approach to recommendation with an
emphasis on knowledge components is needed for such businesses.
In a B2B distribution scenario one can not just rely on purchase
history of customers to use collaborative filtering or content-
based methods. A number of use cases have to deal with a
list of queries to match against a large data set of items.
Furthermore, the data can be very sparse due to the large
number of items and the demographics of the customers. It is
critical that category specific features be carefully analyzed for
any recommendation. In this paper, we propose a large scale
industrial B2B recommender system framework to deal with
the above questions. Our proposed framework has the ability
to deal with the huge number of items and make use of the side
information accumulated in the real-world industry at the same
time.

Index Terms—recommender systems, business to business ser-
vices, hybrid recommender systems, knowledge engineering

I. INTRODUCTION

A Business-to-Business (B2B) distributor might have hun-

dreds of thousands of products across tens of categories.

This is known as an ’information overload’ challenge for

businesses [1]. It is a difficult task to identify the right product

for a customer considering the diversity of the range and

subtle differences between items when it comes to specialty

categories. The challenge is more obvious when there is a list

of thousands of products as a text input from a Business-to-

Business (B2B) customer. There are a lot of abbreviations and

variations of naming in the industry which makes it difficult

to find the right item without the expert domain knowledge.

An expert employee can receive a short text as the input to

find the item and identify the category and narrow down to

one or a few products. It is usually very costly and timely for

a company to get a new employee to that level of expertise;

In such a scenario technology can come very handy.

Recommender systems are primarily designed to assist

individuals who are short on experience or knowledge deal

This research is supported by an Australian Government Research Training
Program Scholarship.

with the vast number of choices in relation to items [1].

The explosive information on the web and the rapid increase

of products or services has given users a huge amount of

choice, which make users suffer when making decisions.

Recommender systems take advantage of various sources of

information including feedbacks of users to predict preferences

of users in relation to different items [10]. This area of research

has been the focus of great interest for the past twenty years

from both academia and industry. Research in this field is

motivated by the potential profit recommender systems have

generated for businesses such as Amazon [3]. p0
0

Recommender system studies typically target individual

consumers in online shopping platforms but there seems

to be a lot of room for improvements in the B2B space.

Whilst the principles remain quite the same, the nature of

B2B environments and large scale retailers and their business

customers are very unique. First, the number of items for such

retailer to choose from is huge. Given on a request from the

user, it is very difficult to recognize which item matches to the

current user’s demand. Second, to discriminate the difference

between some similar items/categories, we need to integrate

their related attributes or descriptions into the recommender

system. It is vital to deal with the vague and uncertain

information in the text description. Third, the users in B2B

are not like one customer in B2C recommender systems, but

can vary from individuals to large enterprise. How to model

the preference of those users are not properly handled by any

existing recommender systems.

While having an efficient recommender system can improve

business processes and facilitate new sales opportunities, it

should rely on accurate knowledge about the business and

detailed information on the products and their features. This

paper elaborates the efforts to design a large-scale recom-

mender system for a B2B industrial retailer to recommend and

propose items based on customer input across many categories.

Machine learning techniques (supervised and unsupervised)

are used to develop the engine and the results will be com-

pared against the input acquired from the category experts.

The proposed framework includes a classifier component, a

feature extraction component and a hybrid recommender. The

success of item classification as the step one will directly suit



the B2B retailer’s requirements, however the full framework

implementation will bring a clear saving in the labor costs

including the number of employees and the amount of time to

train an employee across many product categories.

The remainder of the paper is as follows. Section II reviews

related literature on recommender systems. The proposed

framework and related components are demonstrated in Sec-

tion III. The case study has been elaborated in section IV.

Finally, conclusion and further study are given in Section V.

II. RELATED WORK

Related work on the most relevant topics to this research has

been provided in this section. First we review recommender

systems, then...

A. Recommender Systems

In 1998 [2] introduced Assistant Agents as software systems

which are created to perform tasks on behalf of the user with

easy and efficient interactions. Since then the filed which is

known as recommender systems now had a lot of interest and

hundreds of articles have been published around it.

The significant recommendation approaches are Stereo-

typing, content-based (CB) filtering, collaborative filtering

(CF), knowledge-Based (KB), co-occurrence recommenda-

tions, graph-based, global relevance and hybrid approaches.

Stereotyping or demographic approach groups the users

into fixed classes, e.g. male/female and recommends different

items based on the class [6] and in some cases personalization

of the recommendations are demanded [12]. An example on

demographic approach is to classify the users based on income

level or annual spend and provide specific recommendations

for each class. CF uses the rating profiles of the users with a

similar history of ratings to suggest items such as movies. It

mainly employs nearest neighbour techniques to identify the

closest match [7], [9]. Global relevance approach introduced

by [5] is defined as “a non-parametric probabilistic model

which can measure the context-based relevance between a

citation context and a document.”, this method is often used as

a secondary ranking mechanism along with another approach.

CB approach is the most common recommendation approach

[10] and it consider the features of the items and associates

them with user ratings, then it extracts the common features

that users have rated the highest and produces the recom-

mendations subsequently. Knowledge-Based systems use the

preferences and inferred requirements of the users to suggest

an item [9]. Co-occurrence recommendations are based on the

number of times two items are appeared in the same basket

or context. It was introduced first by Small [16]. It focuses on

relatedness rather than similarity. As an example two types of

papers might be very similar in features but pen and paper are

very related and both are required for writing [4]. Graph-based

methods use the inherent connections between entities; each

item is a node and the edges are created based on relations or

similarity of features of two nodes [11], [17].

Here we name some drawbacks of individual recommender

system approaches. Content-based filtering models the users

and extracts the features for items and uses similarity measures

to find similarities. If the number of users and items is large, it

will need significant computing resources. Another downside

of CB could be overspecialized recommendations which lead

to recommended items being too similar to the items the user

already has [10].

Sparsity is a problem associated with collaborative filtering

approach. For CF it is desired for a system to have a lot

of users and relatively smaller set of items.In an opposite

situation with a large set of items and smaller set of users there

are less data points such as user ratings to rely on. Also the

explain-ability of CF is limited to the fact that the item is liked

by other users [10]. Furthermore CF needs more computing

time comparing to CB. Another known drawback for CF is the

cold start issue, i.e. the lack of ratings for a new user, item

or system [14]. One way to overcome cold start problem is to

infer implicit ratings based on user interaction with items [15]

but [4] believes this voids the real advantage of CF which is

having the quality user ratings.

Hybrid recommender systems have been introduced to com-

bine some of these approaches and deal with some inefficien-

cies of one recommendation approach. The hybrid approaches

such as content boosted collaborative filtering [3] try to

combine some of these techniques to eliminate the effects

of sparsity and other issues with any one of the techniques.

Usually global ranking and graph methods are used along with

CF or CB to improve the results. [8] is another sample of a

cross-domain hybrid recommender system with kernel-induced

knowledge.

According to [4] a vast majority of recommender systems

researches do not translate to practice and only a handful seem

to be publicly available and online.

B. Short Text Classification

Short-text classification is a crucial task in many natural

language processing (NLP) areas. There has been a variety of

approaches to address this task, such as: building dependency

trees with conditional random fields [18], support vector ma-

chines (SVMs) with rule-based features [19],recursive neural

networks [34], combining SVMs with naive Bayes [20], con-

volutional neural networks (CNNs) [29]. This study focuses

on CNN for the classification of short text. The input to the

CNN is the word embedding vectors with more details in the

subsequent sections.

C. Unsupervised Learning

Duda et al. describes five main reasons for choosing an

unsupervised method in [23]:

• The cost of collection of sample patterns and labeling

them can be very high.

• In some cases, the reverse direction of supervised learn-

ing might be desirable, i.e. unsupervised clustering of

unlabeled data first, and then supervised labeling of the

clusters.



• In case of a system dealing with changing patterns

over time, unsupervised approach would improve the

performance.

• Unsupervised methods are useful for identifying features

for categorizations.

• It can be very helpful in the early stages of data explo-

ration to examine the similarities and patterns.

Named entity recognittion (NER) is one of the NLP disci-

plines with a lot of different approaches including of unsu-

pervised learning. [21] uses a bi-directional long-short term

memory (BLSTM) network for NER. NER will take word

embeddings as an input.

Word embeddings are the methods that one uses to represent

a word. There has been numerous ways to represent a word,

such as symbols, one-hot vectors or the more advanced real-

valued vectors [24] that represent the relationship of a word

in conjunction with other words in a numeric vector form.

Some of the most recent method of extracting word vectors

are Word2vec [25], GloVe (global vectors) which has been

developed at Stanford University in 2014 [24], Poincare Em-

bedding [26] in 2017 and ELMO for deep contextual word

representations [22] in 2018.

D. Similarity Measures

To perform operations such as data mining tasks of clus-

tering, classification, and information retrieval on any set, it

is crucial to define a notion of distance or similarity between

two entities [28]. The most commonly used similarity measure

in text data mining and information retrieval is the cosine of

the angle between vectors which represents the text. Once one

has converted the corpus to an inner point distance matrix then

one can apply simple nearest neighbor classifiers to the data.

Where the inherent high dimensionality of the text features

precludes a straightforward application of feature-based classi-

fication, strategies such as linear/quadratic classifiers, mixture

models, and classification trees must be coupled with dimen-

sionality reduction strategies. Deep learning approaches for

text classification are increasingly discussed in the literature

[27], [30].

The core functionality of many of the modern information

systems is the ability to detect similarities between different

segments of data while surveys, literature reviews, and exper-

imental evaluations of these systems show that the simplistic

use of similarity detection in such globally authored linked

systems is not enough [32].

In IR and knowledge discovery systems must be able to

justify the similarity or distance between information entities

[33]. A similarity measure “is an algorithm that determines the

degree of agreement between entities” [32]. “Similarity-based

classifiers estimate the class label of a test sample based on

the similarities between the test sample and a set of labeled

training samples, and the pairwise similarities between the

training samples.” [35]

“The core to measure similarity or distance between two

information entities is required for all information discovery

tasks (whether IR or data mining). It is crucial to use an

appropriate measure both to improve the quality of information

selection and to reduce the time and processing costs.” [32]

Three intuition have been provided by Lin [36] to define

similarity:

• The commonality between A and B defines their simi-

larity. The more they have in common, the more similar

they are.

• The similarity is also related to the differences between

two items. The more differences they have, the less

similar they are.

• The maximum similarity between A and B is reached

when A and B are identical, regardless of how much they

have in common.

This is how it is formulated based on these assumptions:

I(common(A, B)) is the commonality between A and B and the

differences between A and B is measured by I(description(A,

B)) - I (common(A, B). The similarity between A and B,

sim(A,B), is a function of their commonalities and differ-

ences; sim(A, B) = f (I(common(A, B)); I(description(A, B)

and the domain of f is (x, y)|x >= 0, y > 0, y >= x The

similarity between a pair of identical objects is 1 and for any

y > 0, f(0, y) = 0
Based on previous equations and assuming that the overall

similarity of the two documents is a weighted average of their

similarities computed from different perspectives. The weights

are the amounts of information in the descriptions. This leads

to the last assumption: for any x1 <= y1, x2 <= y2,

f(x1+x2, y1+y2) = (
y1

(y1 + y2))
∗f(x1, y1)+(

y2

(y1 + y2)
)∗f(x2, y2)

At the end Lin defines the Similarity Theorem as: The

similarity between A and B is measured by the ratio between

the amount of information needed to state the commonality of

A and B and the information needed to fully describe what A

and B are:

sim(A,B) =
logP (common(A,B))

logP (description(A,B))

In a word processing scenario, after defining the set of features

for each word in a corpus, Lin defines below measure for

similarity of two words: Let F (w) be the set of features

possessed by w. F (w) can be viewed as a description of the

word w. The commonalities between two words w1 and w2
is then

F (w1) ∩ F (w2)

Subsequently, the similarity between the two words can be

defined as:

sim(w1, w2) =
F (w1) ∩ F (w2)

I(F (w1)) + I(F (w2))

Text similarity measurement approaches have been categorized

to three categories by [31]: string-based, corpus-based and

knowledge-based. Also the steps on text similarity matching

begin with word similarity and then summarize to sentence and



paragraph similarity. Words can be lexically or semantically

similar. Lexical similarity which is the shape and character

sequence similarity and string-based algorithms are used for

this measurement, but semantic similarity is focused on the

context of the words, e.g. synonym and opposite. To measure

the semantic similarity corpus-based and knowledge-based

algorithms are used. String-based measures are categorized to

character-based and term-based measures [31]; some of the

more famous character-based measures are:

• Longest character substring (LCS) which is based on the

longest continuous character string in common between

the two string inputs.

• Damerau-Levenshtein is based on the number of opera-

tions needed to transform one string to the other.

• Jaro counts the number of common characters and order

of them.

• JaroWinkler has a prefix scale to favour the similarities

at the beginning of the text.

• Needleman-Wunsch [38] is a dynamic approach which

divides the problem to smaller sets and combines the

results back to the final measure result.

• Smith-Waterman [37] is another dynamic solution which

tries to find partial similarities.

• N-gram is a sub-sequence of N characters or items from

a list and the distance is computed by dividing the

number of similar N-grams between the two strings by

the maximal number of N-grams.

Here some of the most used term-based similarity measures

are briefly explained:

• Block distance (Manhattan distance, absolute value dis-

tance, boxcar distance, L1 distance and city block dis-

tance are other names for it). In an assumed grid-like

path, how much travel is required to get from one

point to another. To measure this distance between two

list of items or components this will be calculated per

component and then summarized.

• Cosine similarity is used to measure the similarity be-

tween two vectors of an inner product space that measures

the cosine of the angle between them.

• Dices coefficient is defined as twice the number of

common terms in the compared strings divided by the

total number of terms in both strings.

• Euclidean distance or L2 distance is the square root of

the sum of squared differences between corresponding

elements of the two vectors.

• Jaccard similarity is computed as the number of shared

terms over the number of all unique terms in both strings.

• Matching Coefficient is a very simple vector-based ap-

proach which simply counts the number of similar terms,

(dimensions), on which both vectors are non zero.

• Overlap coefficient is similar to the Dice’s coefficient, but

considers two strings a full match if one is a subset of

the other.

Corpus-based similarity uses the information which is ex-

tracted from a large corpora to determine the similarity degree

between words [31]. Knowledge-based similarity measures

determine the scale of similarity between two words by driving

information from semantic networks [31] and also Hybrid

similarity measures defined by the same source.

III. FRAMEWORK FOR A LARGE-SCALE B2B

RECOMMENDER SYSTEM

A variety of components are required in the proposed

framework. We propose a framework that will break down the

complexity by classification of the input by mapping it to the

right category as shown in Fig. ?? and implement a cascade

of category specific recommenders using mainly unsupervised

methods followed by an involvement of human category expert

to validate the results which are a set of features produced by

clustering of products labeled data for each category.

There are 2 main stages for this approach: 1- Classification

of the input, 2- CB/KB/Demographics on the input item and

the user and a generic stage for pre-processing of the input to

make it ready to be passed to the main stages.

A. Pre-processing

As the input to this system is text and we use some NLP

techniques such as NER, the input must go through some

initial steps to be prepared for the subsequent processes.

Generally NLP based solutions have these steps at the be-

ginning: tokenization, stemming, tagging and lemmatization.

In tokenization the text is broken to smaller elements (words).

A lot of NLP systems remove the digits to reduce the size

of the corpus. Stemming aims to normalize how the words

appear in a text so it will reform all the forms of a word to a

common shape which is the stem, e.g. navigator, navigation,

navigate would all convert to ’navigat’.

Since the input to this system is not exactly complying

with natural language structure but more of an industrial form

with abbreviations and style names and codes, we can not

apply all these steps in pre-processing. In our case the digits

can not be dismissed because they play an important role

in identifying the relevant product. Moreover if we apply

stemming on the input it will heavily reduce the accuracy

of the recommendations. In safety product categories for

example, normalizing abbreviations and style names could

lead to choosing a totally wrong product. To summarize, in

this work the main pre-processing step is tokenization with

keeping the digits and no stemming, tagging or lemmatization.

B. The Classifier

The title or description for an industrial product is often a

very short text, between 10 to 60 characters. As depicted in

the proposed model in Fig. ??, to be able to accurately identify

an item we propose to predict the category first based on the

provided input. Thus this is a short-text classification problem.

Out of many different techniques for text classification, CNN,

initially designed for computer vision, have become increas-

ingly popular and proven outstanding performance in NLP.

“A CNN considers feature extraction and classification as one

joint task.” [13]



We use a CNN to identify the category of the input query.

The CNN with be trained based on the labeled data set for

product categories. According to Fig. ?? The categories of

products are {C1, C2, ...Cn}, so for any provided input, the

classifier will provide a probability {p1, p2, ...pn}, p1 being the

probability of the input belonging to C1 and so on. A ranking

would pick the category with the most likelihood, being Ck.

This provides a context to the next step which extracts the

features and having the context improves the quality of the

feature extraction.

C. The Feature-based Recommendation

Having identified the category in previous step as Ck, the

input query will be passed through an LTSM model for named

entity recognition [21] against the feature set of the category

Ck, the extracted features are f1, f2, ...fm and this provides

the input to the main recommender components (CB, KB,

Demographics). In terms of word embeddings, we have done

experiments on GloVe and Word2vec embeddings as a part

of this research. Our early results show that Word2vec suits

our models best. Also since Word2vec can be implemented as

continuous bag of words (CBOW) and skip-gram, we have ran

tests using both methods and due to interchangeable location

of term in an industrial product description, it seems that

CBOW is a better representation because it is not sensitive

to the order of the words and in many cases the words in an

item description can appear in different locations.

The features extracted from the input will be represented

as a vector and matched against the pre-extracted and stored

feature vectors of all the items in the database. Cosine-

similarity will be applied on the vectors to identify the closest

match. Any preferences set based on user demographics will

be applied on the result set to achieve the final ranking of

recommended items. For some product categories there are

a fixed set of rules dictated by the human expert which are

included as a KB component in the solution. Fig. ?? depicts the

components of this model and their interactions. A calculated

accuracy measure is required which is capable of reflecting the

role of each component. A test automation platform has been

developed to allow for the many changes in hyper parameters

and measure the results based on the labeled data in a timely

fashion. This also allows to isolate the impact of any change

in one of the system components in the overall outcome. The

overall accuracy of the model is a product of classification

model and the feature recognition (NER).

IV. CASE STUDY

Due to the scope of this work, the framework will be

designed according to an existing B2B industrial retailer

requirements. There is a data set of 100,000 lines of text

available from the industrial retailer for the development and

improvement of this framework. All the text lines are labeled

with the category of the products and the actual industrial

product code. This provides sufficient input to measure the

accuracy of the models proposed and developed in this re-

search. In this work an item is equivalent to a product.

Fig. 1. A sample product hierarchy

Each product has a life-cycle, from getting introduced through

an on-boarding process to becoming no-longer-available or

removed from the range. Each product has a unique code to

refer to and a description which sometimes has an imposed

length limit by enterprise resource planning (ERP) systems

which leads to creation of many abbreviations and shortenings

on the words. During its lifetime, a product will be searched

and found and get ordered and shipped and stocked and so on

by the unique product code. A product can also be classified in

a hierarchy and there could be more than one product hierarchy

in use depending on the industry requirements. Fig. 1 shows

how a sample set of products could be classified. In this figure

we see how two sample products are classified under category

and subcategories. The two sample products have a unique

product code (e.g. AB000566) followed by the short text that

describes the products.

The users (customers or accounts) of the subjected retail

system are mainly other businesses. The size of the customers

vary from individuals to large enterprises. There are multiple

channels available to the users to place their transactions a.k.a

omnichannel which includes physical stores, email, phone and

e-commerce platform. An account might have several sub-

accounts or customers and they can transact at any level. A

large scale industrial retailer can trade from 100,000 items to

over one million. The number of categories could be from

10 to over a hundred. Some of the categories are safety and

personal protection equipment with a very specialized speci-

fication and targeting a specific usage. A lot of items in such

categories have very similar features and subtle variations. Due

to the scale of the customers, the number of items that just one

customer needs to identify can be very huge at a given point

of time. Without identifying the right item, an order can not be

placed. So there is an extensive amount of labour involved in

identifying the products which are mainly requested through

trade stores, emails and phone calls and last but not the least

bids and tenders including thousand of items to be quoted.

The labour which supports these operations need long periods

of training before getting involved in the tasks. The question

is how such expertise in industrial products with such a vast

range can be augmented in a recommender system.



V. CONCLUSION AND FUTURE WORK

This research aims to cover an end-to-end large scale

B2B recommender system. Having looked at all the dif-

ferent recommendation approaches and their characteristics,

we have decided to design a hybrid system with CB, KB

and demographic components to suit an industrial retailer.

From a technical point of view, this work highly relies on

word embeddings and NER using BLSTM for short text

classification and feature extraction to build the recommender

engine for CB and recognition of the features from the input.

More detailed research is to be done for modules in our

framework. But first we have two major focus areas: item

classification and feature extraction. For future work, we will

amend and adjust our pre-processing part with NLP techniques

so that we can map the input to an existing product catgory

accuratly. Also, we will do in-depth analysis of deep learning

classification methods with the application scenario described

in our case study. In this process, the some new methods or

algorithms that are suitable for our probelm will be developed.

REFERENCES

[1] J. Lu and D. Wu and M. Mao and W. Wang and G. Zhang, “Recom-
mender system application developments: a survey,” Decision Support
Systems, vol. 74, pp. 12-32, 2015.

[2] K.D. Bollacker and S. Lawrence and C.L. Gile, “CiteSeer: an au-
tonomous web agent for automatic retrieval and identification of in-
teresting publications,” Proceedings of the 2nd international conference
on Autonomous agents, pp. 116-123, 1998.

[3] P. Melville and R.J. Mooney and R. Nagarajan, “Content-boosted
collaborative filtering for improved recommendations,” Proceedings of
the National Conference on Artificial Intelligence, pp. 187-192, 2002.

[4] J. Beel and B. Gipp and S. Langer and C. Breitinger, ”Research-paper
recommender systems: a literature survey,” International Journal on
Digital Libraries 17, pp. 305–338, 2016.

[5] Q. He and J. Pei and D. Kifer and P. Mitra and L. Giles, ” Context-
aware citation recommendation,” Proceedings of the 19th international
conference on World wide web, pp. 421-430, 2010.

[6] E. Rich, ”User modeling via stereotypes,” Cognitive Sciences 3(4), pp.
329-354, 1979.

[7] B. Yang and Y. Lei and J. Liu and W. Li, ”Social collaborative
filtering by trust,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 8, pp. 1633-1647, 2017.

[8] Q. Zhang and J. Lu and D. Wu, and G. Zhang, ”A cross-domain recom-
mender system with kernel-induced knowledge transfer for overlapping
entities,” IEEE Transactions on Neural Networks and Learning Systems,
2018.

[9] R. Bourke, ”Hybrid Web Recommender Systems,” Springer, The Adap-
tive Web: Methods and Strategies of Web Personalization, pp. 377–408,
2007.

[10] F. Ricci and L. Rokach and B. Shapira and P.B. Kantor, ”Recommender
Systems Handbook,” Springer, Berlin, pp. 1–35, 2011.

[11] M. Mao and J. Lu and G. Zhang and J. Zhang, ”Multirelational
social recommendations via multigraph ranking,” IEEE Transactions on
Cybernetics, vol. 47, no. 12, pp. 4049-4061, 2016.

[12] Q. Shambour and J. Lu, ”An effective recommender system by unify-
ing user and item trust information for b2b applications,” Journal of
Computer and System Sciences, vol. 81, no. 7, pp. 1110-1126, 2015.

[13] A. Hassan and A. Mahmood, ”Convolutional recurrent deep learning
model for sentence classification,” Ieee Access, 2018.

[14] J.B. Schafer and D. Frankowski and J. Herlocker and S. Sen, ”Collabo-
rative filtering recommender systems,” Lecture Notes Computer Science
4321, 291, 2007.

[15] C. Yang and B. Wei and J. Wu and Y. Zhang and L. Zhang, ”a
ranking-oriented CADAL recommender system,” Proceedings of the 9th
ACM/IEEE-CS joint conference on Digital libraries, pp. 203-212, 2009.

[16] H. Small, ”Co-citation in the scientific literature: a new measure of the
relationship between two documents,” Journal of the American Society
of Information Science. 24, 265269, 1973.

[17] Z. Huang and W. Chung and T.H. Ong and H. Chen, ”A graph-
based recommender system for digital library,” Proceedings of the 2nd
ACM/IEEE-CS joint conference on Digital libraries, pp. 65-73, 2002.

[18] T. Nakagawa and K. Inui and S. Kurohashi, ”Dependency tree-based
sentiment classification using CRFs with hidden variables in Human
Language Technologies,”The Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 786-794,
2010.

[19] J. Silva and L. Coheur and A. C. Mendes and A. Wichert, ”From sym-
bolic to sub-symbolic information in question classification,” Artificial
Intelligence Review, Vol. 35 2, pp. 137-154, 2011.

[20] S. Wang and C. D. Manning, ”Baselines and bigrams: Simple, good
sentiment and topic classification,” Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics Short Papers,
Vol. 2, pp. 90-94, 2012.

[21] J. P. C. Chiu and E. Nichols, ”Named Entity Recognition with Bidirec-
tional LSTM-CNNs,” Transactions of the Association for Computational
Linguistics, vol. 4, pp. 357-370, 2016

[22] M. E. Peters and M. Neumann and M. Iyyer and M. Gardner and
C. Clark and K. Lee and L. Zettlemoyer, ”Deep contextualized word
representations,” ArXiv, vol. abs/1802.05365,2018.

[23] R. O. Duda and P. E. Hart and D. G. Stork, “Pattern Classification and
Scene Analysis,” Wiley, 1996.

[24] J. Pennington and R. Socher and C. D. Manning, “GloVe: global vectors
for word representation,” Stanford University, 2014

[25] T. Mikolov and W. T. Yih and G. Zweig, “Linguistic regularities in
continuous space word representations,” HLTNAACL, 2013

[26] M. Nickel and D. Kiela, “Poincare Embeddings for Learning Hier-
archical Representations,” Advances in Neural Information Processing
Systems 30, 2017.

[27] J. Bian and B. Gao and T. Y. Liu, “Knowledge-Powered Deep Learning
for Word Embedding,” ECML PKDD Part I, LNCS 8724, pp. 132-148,
2014

[28] C. D. Manning and H. Schutze, “Foundations of Statistical Natural
Language Processing,” MIT Press, 1999

[29] Y. Kim, “Convolutional neural networks for sentence classification,”
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pp. 17461751, 2014.

[30] M. W. Berry and M. Browne, “Understanding Search Engines: Mathe-
matical Modeling and Text Retrieval(Software, Environments, Tools),”
Society for Industrial and Applied Mathematics, 2005.

[31] W. H. Gomaa and A.A. Fahmy, “A Survey of Text Similarity
Approaches,” International Journal of Computer Applications, V.
68,pp.09758887, 2013.

[32] B. Zaka, “Theory and Applications of Similarity Detection Techniques,”
Institute for Information Systems and Computer Media (IICM), Graz
University of Technology,2009.

[33] I. F. Iatan, “Studies in Computational Intelligence,” Springer, 2017.
[34] R. Socher and B. Huval and C.D. Manning and A.Y. Ng., “Semantic

compositionality through recursive matrixvector spaces,” Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 1201-
1211. 2012.

[35] Y. Chen and E.K. Garcia and M.Y. Gupta and A. Rahimi and A.
Cazzanti, “Similarity-based Classification: Concepts and Algorithms,”
Journal of Machine Learning Research, Vol. 10, pp. 747-776, 2009.

[36] D. Lin, “An information-theoretic definition of similarity,”,1998.
[37] F. T. Smith and S. M. Waterman, “Identification of Common Molec-

ular Subsequences,” Journal of Molecular Biology, Vol. 147, pp. 195-
197,1981.

[38] B. S. Needleman and D. C. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, Vol. 48, 3, pp. 443–453, 1970.


