
A Framework for Accelerating Neuromorphic-Vision

Algorithms on FPGAs
M. DeBole, A. Al Maashri, M. Cotter, C-L. Yu

†
, C. Chakrabarti

†
, V. Narayanan

Dept. of CSE, The Pennsylvania State University

University Park, PA 16802, USA

{debole, maashri, mjc324, vijay}@cse.psu.edu

†
School of ECEE, Arizona State University

Tempe, AZ 85287, USA

{chi-li.yu, chaitali}@asu.edu

Abstract—Implementations of neuromorphic algorithms are

traditionally implemented on platforms which consume

significant power, falling short of their biologically

underpinnings. Recent improvements in FPGA technology have

led to FPGAs becoming a platform in which these rapidly

evolving algorithms can be implemented. Unfortunately,

implementing designs on FPGAs still prove challenging for non-

experts, limiting their use in the neuroscience domain. In this

paper, a FPGA framework is presented which enables

neuroscientists to compose multi-FPGA systems for a cortical

object classification model. This is demonstrated by mapping this

algorithm onto two distinct platforms providing speedups of up

to ~28X over a reference CPU implementation.

Keywords- Multi-FPGA partitioning; FPGA programming;

Neuromorphic vision algorithms; FPGA application mapping

I. INTRODUCTION
*

The algorithmic abstractions for the visual cortex are

arguably the best understood portions of the human brain. In

the last three decades, neuroscientists have made a number of

breakthroughs in understanding the ventral and dorsal paths of

the human's visual cortex. These advances have inspired a

number of algorithms for computer vision – collectively

referred to as “neuromorphic vision algorithms” – which have

the potential to provide an unprecedented improvement in the

way computers can analyze and interpret information. Recent

improvements in FPGA technology, however, are now

enabling these systems to be built while meeting performance,

power, and size constraints, and maintaining the flexibility

required for algorithm exploration. The goals of this research

are two-fold: accelerate the design exploration of

neuromorphic implementations and performance acceleration

of the resulting designs.

Currently, four broad categories of tools exist for

accelerating the FPGA design process [2]. The first consists of

those that are aimed at improving the non-recurring

engineering costs (NRE) incurred from core development.

Impulse C [3], Catapult C [4], Cameron [5], and Calypto [6]

are all examples of tools that attempt to raise the level of

abstraction from HDL. However, these tools are limited in

scope, as they fail to elevate the level of abstraction beyond

the individual core. The second, such as Xilinx’s Platform

Studio [7], provide system design methodologies similar to

ASICs. With these tools, designers are provided with

*
 This work is funded in part by the DARPA Neovision 2 program. A. Al.

Maashri is sponsored by a scholarship from the Government of Oman
1
 The name Cerebrum was chosen to portray the tool as the center for all

peripheral, bus, and application IP, however the onus is on the

designer to construct the system in an appropriate fashion.

Finally, the last category contains tools that attempt to provide

abstraction at the system-level. Examples include Xilinx

System Generator (XSG) [8] and ShapeUp [2]. In both cases,

IP modules are encapsulated in a higher-level language and

module parameters are provided as a means for performing

operations such as static type checking. These black-box

modules can then be composed either programmatically, or

graphically. However, these tools do not attempt to provide

standardized interfaces for IP components, nor address the

issue of inter-IP communication. The fourth category includes

tools that are a hybrid of categories 1 and 2. For instance,

Cong et. al. [9] describes the use of AutoPilot [10], a C-to-

FPGA synthesis solution, which is coupled with platforms

offered by Xilinx. The authors show that using the tool yields

an 11-31% reduction in FPGA resource usage compared to

hand-coded designs. However, the authors did not discuss the

ability of the tool to map components to Multi-FPGA systems.

This paper focuses on automation tools for transforming

HMAX [11] variants onto a multi-FPGA system as well as

accelerating its’ performance. Work towards providing a high-

level tool, Cerebrum
1
, is described which standardizes multi-

FPGA system specifications and uses high-level meta-data to

deliver an application level design experience to the user. To

accomplish this an IP-based multi-FPGA mapping algorithm is

also developed that automatically evaluates the placement of IP

components according to resource use, connectivity, and I/O.

The remainder of the paper is organized as follows. Section

2 describes HMAX, a cortical model for object classification.

Section 3 introduces Cerebrum, a tool for enabling users to

compose systems and program dataflow through common

multi-processor concepts and languages. In Section 4, a

mapping algorithm capable of automatically mapping many-

core designs across multi-FPGA platforms is described.

Section 5 provides a case study for mapping HMAX onto two

distinct FPGA platforms and demonstrates the achievable

speedups. Finally, Section 6 concludes the paper.

II. HMAX

HMAX (“Hierarchical Model and X”) is a model of the

ventral visual pathway from the visual cortex to the

inferotemporal cortex, IT. This model attempts to provide

1
 The name Cerebrum was chosen to portray the tool as the center for all

actions in creating FPGA systems, similar to the role of its biological

counterpart.

space and scale invariant object recognition by building

complex features from a set of simple features in a hierarchical

fashion. The reader is encouraged to consult [11] for an in-

depth treatment of the topic. The computational version used

for this work was an extension developed from Mutch and

Lowe [12].

A CPU reference of HMAX was implemented on an Intel

server containing a quad-core 1.6 GHz Xeon processor and

24GB of system memory. The reference implementation

consists of a pre-processing stage, S0, and 4 cortical stages split

into S1, C1, S2, and C2. The final output of HMAX is a set of

features that can then be used for classification.
The percentage of execution time for each stage is shown in

Figure 2. S2

is perhaps the most complicated layer as it attempts

to match a set of 4x4xm, 8x8xm, 12x12xm, and 16x16xm
prototypes that make up a patch dictionary which can be used
as fuzzy templates consisting of simple features that are
position and scale invariant. The value of m represents the
number of orientations extracted from the original image
during the S1 stage and typical values for m are between 4 and
12 (in this paper, m = 12). S2 then computes the response of a
patch, X, of C1 units, to a particular S2 feature prototype, P, of
size n x n x m (n = 4,8,12,16) as given by the normalized dot
product. Figure 1, shows the pseudo code for computing the S2
response for a given input image.

HMAX contains several algorithmic parameters that can be
tuned in order to achieve the best classification results for the
application domain. A key difficulty is the effort required to
integrate custom HDL IP cores in a way that creates a

functionally valid system prone to rapidly changing system
specifications. Therefore tools which can assist users mitigate
the FPGAs high NRE costs are required.

III. CEREBRUM

One of the major contributing factors to FPGA system
complexity is the dearth of tools that leverage scalable
infrastructures (such as NoCs) and standardized components
for multi-FPGA systems. The lack of abstraction mechanisms
for FPGA accelerators makes determining and modifying
dataflow a time-consuming process requiring a high-degree of
expertise. Cerebrum is the result of an effort to standardize
FPGA platform specifications, communication, and interfaces,
as well as provide a layer of abstraction for specifying
dataflow. The goal of Cerebrum is to allow neuroscientists and
researchers to compose accelerators for various cortical vision
algorithms with minimal engineering effort. Figure 3 describes
the front end GUI and back-end EDA tool for composing
FPGA systems.

A. Cerebrum GUI

The purpose of the Cerebrum front-end is to provide users

with a graphical way to create systems and automate the back-

end process for the user. During the design, the user is given

access to a library of IP cores in which to create a design. Each

core falls into one of two categories, stream and compute

oriented computational modules. Shown below is an example

XML IP core specification for a module consisting of two

compute modules made up of three Xilinx IP cores:

The IP Core specification file specifies the interfaces and

contents of the IP. The first section, <Software>, has several

fields that determine how the core is exposed to the Cerebrum

designer, with the most important being the port interfaces. The

 S2 Stage(Pseudo Code)

1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑐𝑎𝑙𝑒, 𝑠 = 1: 1: 11	

2 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑜 = 1: 1:𝑚	

3 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤𝑖𝑛𝑑𝑜𝑤,𝑤 = {4𝑥4, 8𝑥8, 12𝑥12, 16𝑥16}
4 𝑠𝑢𝑚!"#$ 𝑤 += 𝑐𝑜𝑟𝑟(𝑆! 𝑠, 𝑜 , 𝑜𝑛𝑒𝑠 𝑤)/ 𝑤

5 𝑠𝑢𝑚!"#$
!

𝑤 += 𝑐𝑜𝑟𝑟(𝑆! 𝑠, 𝑜
!, 𝑜𝑛𝑒𝑠 𝑤 / 𝑤)	

6 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end;	

7 end;

8 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒, 𝑝 = 1: 1: 5000

9 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑜 = 1: 1:𝑚	

10 𝒓𝒆𝒔𝒖𝒍𝒕𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒆+= 𝒄𝒐𝒓𝒓(𝑺𝟏 𝒔,𝒐 ,𝒑𝒓𝒐𝒕𝒐 𝒑,𝒐)

11 end;

12 𝑟𝑒𝑠𝑢𝑙𝑡!! 𝑠, 𝑝 = 𝑟𝑒𝑠𝑢𝑙𝑡!"##$%&'$. ./ 𝑠𝑢𝑚!"#$ − 𝑠𝑢𝑚!"#$
!

	

13 end;

14 End

Figure 1. Pseudo Code of S2 Stage

`

f0

f1
f2

fn

S1.	
 Oriented	
 Gabors	
 (12	
 Orientations) C1.	
 Pooling	
 &	
 Subsample S2.	
 Prototype	
 Matching

.

.

.

C2.	
 PoolingS0.	
 Input	
 Image	
 &	
 Pyramid(12	
 Scales)

Conv.

Max

5k	
 Proto.

Correlate

Max

Time (%) .02 3.01 .16 96.61 .2

Figure 2. HMAX Stages and Percentage of Execution (CPU)

<Software>
 <DesignDisplay>
 <Category Name=”Nallatech Interfaces” />
 <Ports>
</Ports/></DesignDisplay></Software>
…
<Hardware>
 <Interface Type="SAP" PE="True"> nal_rx </>
 <PCores>
 <PCore Type="nal_rx" Version="1.01.a" … />
 </PCores>
…
<Clocks>
 <”100MHz Oscillator"… Frequency="100MHz"… />
</Clocks></Hardware>

ports expose the cores interface, initiator/target (compute),

input/output (streaming), and describe rules as to how

components can be composed (for example, a target can only

be connected to an initiator or output). The <Hardware>

section on the other hand, details the internals of the IP core

and is separated into two types, the Interface Type and PCore

set. The Interface Type indicates to the back-end tools the

network interface(s) that the core belongs to. The PCore set

describes the underlying hardware components that make up

the core. Lastly, there is an additional clock section that allows

the components to expose clocks, or specify required clocks, in

addition to the clock automatically being inserted by the

framework.

Creating a system is then a matter of placing the cores onto

the workspace and connecting them in a meaningful way. For

example, compute based modules allow users to create

transactions and be programmed using the C-language (e.g.

codelets). Accelerator functions are provided through

instruction set extension APIs that are specified along with the

accelerator. Stream oriented modules are not programmable,

but rather processes data as it streams between compute

modules. Also, stream modules may be chained together

allowing for applications to process data on-the-fly as would be

desired for many real-time imaging applications.

Reprogramming the data flow or which accelerator

functionality is invoked is accomplished by re-writing codelets,

which do not require synthesis. As demonstrated in Table 1,

codelets substantially improve on the amount of time required

to evaluate parameters when compared to a fixed

implementation.

B. Cerebrum EDA

Cerebrum consists of three categories of projects

specifications:

Platform Specification: XML files which defines the I/O,

resources, interconnections, and required interfaces.

Design Specification: An XML file which describes the IP

cores, their interconnections, and any design parameters.

Project Options: FPGA back-end tool options

From these sets of files, the back-end flow implements the

accelerator mapping, runs the FPGAs proprietary back-end

flows, compiles codelets, and merges the executables with the

bitfiles. In order to standardize the communication between IP

blocks, the back-end flow relies on a communication network

and set of network interface modules (NIFs) to act as the

underlying infrastructure. In addition, the back-end uses a

multi-FPGA accelerator-mapping algorithm in order to

automatically place IPs onto the FPGAs and generate the

communication network.

IV. MULTI-FPGA ACCELERATOR MAPPING

The multi-FPGA accelerator mapping acts to automatically

insert and place each component onto a corresponding FPGA

platform consisting of one or more FPGAs. Let 𝐺! = (𝑉! ,𝐸!)

be a graph defining the IP resource and connectivity, with

𝑉!and 𝐸!defined as follows:

*𝑉! = {𝑣!|𝑣! represents a component in the design which

consumes a set of resources, R}.

*𝐸!= {𝑒!|𝑒! is an edge from 𝑣! to 𝑣!!! and represents a

communication between each node}.

The physical resources of the FPGAs and their connectivity

are represented with another directed-graph, 𝐺! = (𝑉! ,𝐸!) ,

with the set of vertices, 𝑉!, and edges, 𝐸!, defined as follows:

*𝑉! = {𝑣!|𝑣! represents an FPGA present in the design

which provides a set of resources, R}.

*𝐸!= {𝑒!|𝑒! is an edge from 𝑣! to 𝑣!!! and represents

the interconnectivity between each FPGA}. The direction of

each edge defines the link direction, uni- or bi-directional.
Mapping Problem Formulation: Given the physical FPGA

resource and connectivity graph 𝐺!(𝑉! ,𝐸!) and the component
graph 𝐺!(𝑉! ,𝐸!) representing a design, find a mapping of the

components, 𝐺!, to the FPGAs, 𝐺!, that does not exceed the
resources available on any one FPGA.

Feasibility Check: A first-pass feasibility check is performed
prior to mapping. During this pass it is guaranteed that enough
resources exist across all FPGAs. If satisfied, the mapping
proceeds through four phases: (I) Component Grouping, (II)
I/O Distance Calculation, (III) Pre-mapped Allocation, and
(IV) Un-mapped Allocation.

I. Component Grouping: For all G! vertices determine if there

have been any that must be placed within the same FPGA. If

Project	
 Specification

Platform

Files

Communication

Files
Tool	
 Options

Design

Files

Software

SAP	
 PEs

Platform	
 Specification Design	
 Specification Project	
 Options

Component	
 Mapping

IP IP

IPIP

IP IP

IP

V

O

R

T

E

X

V

O

R

T

E

X

FPGA	
 1 FPGA	
 2

Mapping	

Specification

&

Extracted	
 Flows
Xilinx	
 Back-­‐End	
 Tools

FPGA	
 1

XPS	
 Platform	

Builder

IP
IP

IP

Component	

Synthesis

System	

Synthesis

MappingP&RBitfile

Bitfile

(FPGA	
 1)

Accelerator	
 Instructions

GCC
Codelets

CodeletsRAM	

GenerationFinal	
 Bitfile

Tool	
 Output

BitFile	
 UpdateBitFile	
 Update

Figure 3. Cerebrum Front End GUI (Left) and EDA Flow (Right)

Table 1. Productivity Comparison Fixed-Hardware vs. Codelet

Platform
(# of FPGAs)

Param
Synthesis

(mins)
Codelet
(mins)

Improvement
(X’s)

ML510
(1 FX 130T)

(1)(2) (3) 90-150 0.5-1.0 90-300

Nallatech
FSB

(4 SX240T)

(1)
[1 FPGA]

180-360 0.5-1.0 180-720

(1)(2)
[2 FPGA]

360-720 0.5-1.0 360-1440

(1)(2)(3)
[4 FPGA]

720-1440 0.5-1.0 720-2880

(1) Number of orientations used in S1
(2) Number of prototype patches used in S2
(3) Number of scales used throughout S1, C1, S2, C2

so, annotate each group with the FPGA they are to be mapped

onto.

II. I/O Distance: These distances will be used to map those

components directly interfacing with IO close to the source

(sink).

III. Pre-Map Allocation Place components that have been pre-

mapped to FPGA’s.

IV. Un-mapped Allocation A greedy approach is used to iterate

through the groups and assigned to an FPGA vertex based on

the available resources, and the I/O distance of each the

vertices, v!. As each vertex is visited, a check is performed to

see if there are sufficient resources available. The FPGA that

provides enough resources and has the lowest combined I/O

distance is chosen.

V. HMAX CASE STUDY

The Cerebrum Tool was then used to explore the

implementation of HMAX onto two FPGA platforms, The

Xilinx ML510 platform and Nallatech FPGA accelerator

platform (Table 2). In the HMAX Ml510 platform a single

FPGA was used to perform acceleration of S2. The S2

accelerator was able to achieve a 20X speedup over the CPU S2

stage. Within the Nallatech platform 4 FPGAs were used were

used to accelerate all stages of the algorithm. The first FPGA

mapped S1, C1, and C2, while the remaining three FPGAs

contains S2 modules. Using this platform the CPU reference

implementation was accelerated by 27.9X over the reference

CPU. A regularized least squares classifier was used to classify

a dataset containing 16 different categories. The FPGA-based

implementation of HMAX was used to extract features of 1382

images used in a test set, the results are shown in Table 3. The

overall accuracy of the classifier is 76.63%, significantly better

than random (6.25%).

VI. CONCLUSION

This paper presented a multi-FPGA framework for assisting

neuroscientists implement algorithms on FPGAs. This

framework abstracts FPGA specific details leaving

neuroscientists to simply compose IP blocks to achieve the

desired functionality. The framework was used to evaluate

HMAX, achieving up to 28X speedup with 76% accuracy

across 16 classes.

[1] Xilinx, "7 Series FPGAs Overview," DS180(v1.5) 2011.

[2] Christopher Neely, Gordon Brebner, and weijia Shang, "ShapeUp: A

High-Level Design Approach to Simplify Module Interconnection on

FPGAs," in 18th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, 2010, pp. 141-148.

[3] (2007) Impulse C. [Online]. http://www.impulsec.com,

[4] (2007) The Mentor Graphics Web Page. [Online].

http://www.mentor.com/ products/esl/high level synthesis/catapult

synthesis/

[5] (2002) Cameron: Compiling high-level programs to fpga configurations.

[Online]. http://www.cs.colostate.edu/cameron/

[6] (2008) Calypto’s sequential analysis technology. [Online].

http://www.calypto.com/

[7] Xilinx. Xilinx Platform Studio. [Online]. www.xilinx.com

[8] Xilinx. Xilinx System Generator. [Online]. www.xilinx.com

[9] J. Cong et al., "High-Level Synthesis for FPGAs: From Prototyping to

Deployment," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 30, no. 4, pp. 473-491, April 2011.

[10] Z. Zhang et al., "AutoPilot: A platform-based ESL synthesis system," in

High-Level Synthesis: From Algorithm to Digital Circuit, P. Morawiec

and A. Coussy, Eds. Heidelberg, Germany: Springer, 2008, ch. 6, pp. 99-

112.

[11] Maximilian Riesenhuber and Tomaso Poggio, "Hierarchical models of

object recognition in cortex," Nature Neuroscience, vol. 2, no. 11, pp.

1019-1025, November 1999.

[12] Jim Mutch and David G. Lowe, "Object class recognition and

localization using sparse features with limited receptive fields,"

International Journal of Computer Vision (IJCV), vol. 80, no. 1, pp. 45-

57, October 2008.

[13] Don Anderson and Tom Shanley, PCI Express System Architecture.:

Addison-Wesley Professional, 2003.

[14] Xilinx, "MicroBlaze Processor Referenc Guide Embedded Development

Kit (EDK 11.1)," UG081 2009.

[15] Kevin Irick et al., "A Scalable Multi-FPGA Framework for Real-Time

Digital Signal Processing," in In Proceedings of SPIE, vol. 7444, 2009.

[16] Nallatech Inc. (2011) [Online]. http://www.nallatech.com/Intel-Xeon-

FSB-Socket-Fillers/fsb-development-systems.html

Table 2. HMAX Results for two FPGA based platforms

Platform

(# FPGAs)

HMAX Layer Tot. Exec.

Time S1/C1 S2 C2

CPU 2.937 222.9 0.458 226.295

ML510

1 FX130

252.78

(0.012)

10.98

(20.31)

8.04

(0.057)

271.79

(0.833)

Nallatech

FSB

4 Sx240T

0.922

(3.185)

8.73

(25.53)

0.143

(3.203)

8.23

(27.49)

Table 3. Classification Accuracy using HMAX

Class Class Number Correct Accuracy

Background 0 668 665 99.55

Boats 1 18 4 22.22

Buses 2 28 14 50.00

Cars 3 176 155 88.07

Heavy

Vehicles 4 24 4 16.67

F-1 Cars 5 33 22 66.67

Helicopters 6 44 31 70.45

Military

Vehicles 7 65 28 43.08

Monster

Trucks 8 30 7 23.33

Pickups 9 47 13 27.66

Plane 10 61 43 70.49

Semi-

Trailers 11 51 29 56.86

Tanks 12 45 13 28.89

Trains 13 32 12 37.50

UFOs 14 36 15 41.67

Vans 15 24 4 16.67

Total 1382 1059 76.63

REFERENCES

