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Abstract—Implementations of neuromorphic algorithms are 

traditionally implemented on platforms which consume 

significant power, falling short of their biologically 

underpinnings. Recent improvements in FPGA technology have 

led to FPGAs becoming a platform in which these rapidly 

evolving algorithms can be implemented. Unfortunately, 

implementing designs on FPGAs still prove challenging for non-

experts, limiting their use in the neuroscience domain. In this 

paper, a FPGA framework is presented which enables 

neuroscientists to compose multi-FPGA systems for a cortical 

object classification model. This is demonstrated by mapping this 

algorithm onto two distinct platforms providing speedups of up 

to ~28X over a reference CPU implementation.  

Keywords- Multi-FPGA partitioning; FPGA programming; 

Neuromorphic vision algorithms; FPGA application mapping 

I. INTRODUCTION
*
  

The algorithmic abstractions for the visual cortex are 

arguably the best understood portions of the human brain. In 

the last three decades, neuroscientists have made a number of 

breakthroughs in understanding the ventral and dorsal paths of 

the human's visual cortex. These advances have inspired a 

number of algorithms for computer vision – collectively 

referred to as “neuromorphic vision algorithms” – which have 

the potential to provide an unprecedented improvement in the 

way computers can analyze and interpret information. Recent 

improvements in FPGA technology, however, are now 

enabling these systems to be built while meeting performance, 

power, and size constraints, and maintaining the flexibility 

required for algorithm exploration. The goals of this research 

are two-fold: accelerate the design exploration of 

neuromorphic implementations and performance acceleration 

of the resulting designs. 

Currently, four broad categories of tools exist for 

accelerating the FPGA design process [2]. The first consists of 

those that are aimed at improving the non-recurring 

engineering costs (NRE) incurred from core development. 

Impulse C [3], Catapult C [4], Cameron [5], and Calypto [6] 

are all examples of tools that attempt to raise the level of 

abstraction from HDL. However, these tools are limited in 

scope, as they fail to elevate the level of abstraction beyond 

the individual core. The second, such as Xilinx’s Platform 

Studio [7], provide system design methodologies similar to 

ASICs. With these tools, designers are provided with 
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Finally, the last category contains tools that attempt to provide 

abstraction at the system-level. Examples include Xilinx 

System Generator (XSG) [8] and ShapeUp [2].  In both cases, 

IP modules are encapsulated in a higher-level language and 

module parameters are provided as a means for performing 

operations such as static type checking.  These black-box 

modules can then be composed either programmatically, or 

graphically. However, these tools do not attempt to provide 

standardized interfaces for IP components, nor address the 

issue of inter-IP communication. The fourth category includes 

tools that are a hybrid of categories 1 and 2. For instance, 

Cong et. al. [9] describes the use of AutoPilot [10], a C-to-

FPGA synthesis solution, which is coupled with platforms 

offered by Xilinx. The authors show that using the tool yields 

an 11-31% reduction in FPGA resource usage compared to 

hand-coded designs. However, the authors did not discuss the 

ability of the tool to map components to Multi-FPGA systems. 

This paper focuses on automation tools for transforming 

HMAX [11] variants onto a multi-FPGA system as well as 

accelerating its’ performance. Work towards providing a high-

level tool, Cerebrum
1
, is described which standardizes multi-

FPGA system specifications and uses high-level meta-data to 

deliver an application level design experience to the user. To 

accomplish this an IP-based multi-FPGA mapping algorithm is 

also developed that automatically evaluates the placement of IP 

components according to resource use, connectivity, and I/O. 

The remainder of the paper is organized as follows. Section 

2 describes HMAX, a cortical model for object classification. 

Section 3 introduces Cerebrum, a tool for enabling users to 

compose systems and program dataflow through common 

multi-processor concepts and languages. In Section 4, a 

mapping algorithm capable of automatically mapping many-

core designs across multi-FPGA platforms is described. 

Section 5 provides a case study for mapping HMAX onto two 

distinct FPGA platforms and demonstrates the achievable 

speedups.  Finally, Section 6 concludes the paper. 

II. HMAX 

HMAX (“Hierarchical Model and X”) is a model of the 

ventral visual pathway from the visual cortex to the 

inferotemporal cortex, IT. This model attempts to provide 
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space and scale invariant object recognition by building 

complex features from a set of simple features in a hierarchical 

fashion. The reader is encouraged to consult [11] for an in-

depth treatment of the topic. The computational version used 

for this work was an extension developed from Mutch and 

Lowe [12]. 

A CPU reference of HMAX was implemented on an Intel 

server containing a quad-core 1.6 GHz Xeon processor and 

24GB of system memory. The reference implementation 

consists of a pre-processing stage, S0, and 4 cortical stages split 

into S1, C1, S2, and C2. The final output of HMAX is a set of 

features that can then be used for classification. 
The percentage of execution time for each stage is shown in 

Figure 2. S2
 
is perhaps the most complicated layer as it attempts 

to match a set of 4x4xm, 8x8xm, 12x12xm, and 16x16xm 
prototypes that make up a patch dictionary which can be used 
as fuzzy templates consisting of simple features that are 
position and scale invariant. The value of m represents the 
number of orientations extracted from the original image 
during the S1 stage and typical values for m are between 4 and 
12 (in this paper, m = 12). S2 then computes the response of a 
patch, X, of C1 units, to a particular S2 feature prototype, P, of 
size n x n x m (n = 4,8,12,16) as given by the normalized dot 
product. Figure 1, shows the pseudo code for computing the S2 
response for a given input image.  

HMAX contains several algorithmic parameters that can be 
tuned in order to achieve the best classification results for the 
application domain. A key difficulty is the effort required to 
integrate custom HDL IP cores in a way that creates a 

functionally valid system prone to rapidly changing system 
specifications. Therefore tools which can assist users mitigate 
the FPGAs high NRE costs are required.  

III. CEREBRUM 

One of the major contributing factors to FPGA system 
complexity is the dearth of tools that leverage scalable 
infrastructures (such as NoCs) and standardized components 
for multi-FPGA systems. The lack of abstraction mechanisms 
for FPGA accelerators makes determining and modifying 
dataflow a time-consuming process requiring a high-degree of 
expertise. Cerebrum is the result of an effort to standardize 
FPGA platform specifications, communication, and interfaces, 
as well as provide a layer of abstraction for specifying 
dataflow. The goal of Cerebrum is to allow neuroscientists and 
researchers to compose accelerators for various cortical vision 
algorithms with minimal engineering effort. Figure 3 describes 
the front end GUI and back-end EDA tool for composing 
FPGA systems.  

A. Cerebrum GUI 

The purpose of the Cerebrum front-end is to provide users 

with a graphical way to create systems and automate the back-

end process for the user. During the design, the user is given 

access to a library of IP cores in which to create a design. Each 

core falls into one of two categories, stream and compute 

oriented computational modules. Shown below is an example 

XML IP core specification for a module consisting of two 

compute modules made up of three Xilinx IP cores: 

The IP Core specification file specifies the interfaces and 

contents of the IP. The first section, <Software>, has several 

fields that determine how the core is exposed to the Cerebrum 

designer, with the most important being the port interfaces. The 

 S2 Stage( Pseudo Code) 

1 𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑠𝑐𝑎𝑙𝑒, 𝑠 = 1: 1: 11	
  

2     𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑜 = 1: 1:𝑚	
  

3           𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑤𝑖𝑛𝑑𝑜𝑤,𝑤 = {4𝑥4, 8𝑥8, 12𝑥12, 16𝑥16} 
4                         𝑠𝑢𝑚!"#$ 𝑤 += 𝑐𝑜𝑟𝑟(𝑆! 𝑠, 𝑜 , 𝑜𝑛𝑒𝑠 𝑤 )/ 𝑤  

5                         𝑠𝑢𝑚!"#$
!

𝑤 += 𝑐𝑜𝑟𝑟(𝑆! 𝑠, 𝑜
!, 𝑜𝑛𝑒𝑠 𝑤 / 𝑤 )	
  

6 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  end;	
  

7     end; 

8     𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒, 𝑝 = 1: 1: 5000 

9         𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑜 = 1: 1:𝑚	
  

10               𝒓𝒆𝒔𝒖𝒍𝒕𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒆+= 𝒄𝒐𝒓𝒓(𝑺𝟏 𝒔,𝒐 ,𝒑𝒓𝒐𝒕𝒐 𝒑,𝒐 ) 

11         end; 

12        𝑟𝑒𝑠𝑢𝑙𝑡!! 𝑠, 𝑝 = 𝑟𝑒𝑠𝑢𝑙𝑡!"##$%&'$ . ./   𝑠𝑢𝑚!"#$ − 𝑠𝑢𝑚!"#$
!

	
  

13     end; 

14 End 

Figure 1. Pseudo Code of S2 Stage 
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Figure 2. HMAX Stages and Percentage of Execution (CPU) 

<Software> 
 <DesignDisplay> 
  <Category Name=”Nallatech Interfaces” /> 
   <Ports> 
</Ports/></DesignDisplay></Software> 
… 
<Hardware> 
 <Interface Type="SAP" PE="True"> nal_rx </> 
 <PCores> 
  <PCore Type="nal_rx" Version="1.01.a" … /> 
 </PCores> 
… 
<Clocks> 
 <”100MHz Oscillator"… Frequency="100MHz"… /> 
</Clocks></Hardware> 



ports expose the cores interface, initiator/target (compute), 

input/output (streaming), and describe rules as to how 

components can be composed (for example, a target can only 

be connected to an initiator or output). The <Hardware> 

section on the other hand, details the internals of the IP core 

and is separated into two types, the Interface Type and PCore 

set. The Interface Type indicates to the back-end tools the 

network interface(s) that the core belongs to. The PCore set 

describes the underlying hardware components that make up 

the core. Lastly, there is an additional clock section that allows 

the components to expose clocks, or specify required clocks, in 

addition to the clock automatically being inserted by the 

framework.  

Creating a system is then a matter of placing the cores onto 

the workspace and connecting them in a meaningful way. For 

example, compute based modules allow users to create 

transactions and be programmed using the C-language (e.g. 

codelets). Accelerator functions are provided through 

instruction set extension APIs that are specified along with the 

accelerator. Stream oriented modules are not programmable, 

but rather processes data as it streams between compute 

modules. Also, stream modules may be chained together 

allowing for applications to process data on-the-fly as would be 

desired for many real-time imaging applications.  

Reprogramming the data flow or which accelerator 

functionality is invoked is accomplished by re-writing codelets, 

which do not require synthesis. As demonstrated in Table 1, 

codelets substantially improve on the amount of time required 

to evaluate parameters when compared to a fixed 

implementation. 

B. Cerebrum EDA 

Cerebrum consists of three categories of projects 

specifications:  

Platform Specification: XML files which defines the I/O, 

resources, interconnections, and required interfaces.  

Design Specification: An XML file which describes the IP 

cores, their interconnections, and any design parameters.  

Project Options: FPGA back-end tool options 

From these sets of files, the back-end flow implements the 

accelerator mapping, runs the FPGAs proprietary back-end 

flows, compiles codelets, and merges the executables with the 

bitfiles. In order to standardize the communication between IP 

blocks, the back-end flow relies on a communication network 

and set of network interface modules (NIFs) to act as the 

underlying infrastructure. In addition, the back-end uses a 

multi-FPGA accelerator-mapping algorithm in order to 

automatically place IPs onto the FPGAs and generate the 

communication network. 

IV. MULTI-FPGA ACCELERATOR MAPPING 

The multi-FPGA accelerator mapping acts to automatically 

insert and place each component onto a corresponding FPGA 

platform consisting of one or more FPGAs. Let 𝐺! = (𝑉! ,𝐸!) 

be a graph defining the IP resource and connectivity, with 

𝑉!and 𝐸!defined as follows:  

*𝑉! = {𝑣!|𝑣! represents a component in the design which 

consumes a set of resources, R}.  

*𝐸!= {𝑒!|𝑒!  is an edge from 𝑣!  to 𝑣!!!  and represents a 

communication between each node}.  

The physical resources of the FPGAs and their connectivity 

are represented with another directed-graph,   𝐺! = (𝑉! ,𝐸!) , 

with the set of vertices, 𝑉!, and edges, 𝐸!, defined as follows:  

*𝑉! = {𝑣!|𝑣! represents an FPGA present in the design 

which provides a set of resources, R}.  

*𝐸!= {𝑒!|𝑒! is an edge from 𝑣! to 𝑣!!! and represents 

the interconnectivity between each FPGA}. The direction of 

each edge defines the link direction, uni- or bi-directional.  
Mapping Problem Formulation: Given the physical FPGA 

resource and connectivity graph 𝐺!(𝑉! ,𝐸!) and the component 
graph 𝐺!(𝑉! ,𝐸!) representing a design, find a mapping of the 

components, 𝐺!, to the FPGAs, 𝐺!, that does not exceed the 
resources available on any one FPGA.  

Feasibility Check: A first-pass feasibility check is performed 
prior to mapping. During this pass it is guaranteed that enough 
resources exist across all FPGAs. If satisfied, the mapping 
proceeds through four phases: (I) Component Grouping, (II) 
I/O Distance Calculation, (III) Pre-mapped Allocation, and 
(IV) Un-mapped Allocation. 

I. Component Grouping: For all G! vertices determine if there 

have been any that must be placed within the same FPGA. If 
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Figure 3. Cerebrum Front End GUI (Left) and EDA Flow (Right) 

Table 1. Productivity Comparison Fixed-Hardware vs. Codelet 

Platform 
(# of FPGAs) 

Param 
Synthesis 

(mins) 
Codelet 
(mins) 

Improvement 
(X’s) 

ML510 
(1 FX 130T) 

(1)(2) (3) 90-150 0.5-1.0 90-300 

Nallatech 
FSB 

(4 SX240T) 

(1) 
[1 FPGA] 

180-360 0.5-1.0 180-720 

(1)(2) 
[2 FPGA] 

360-720 0.5-1.0 360-1440 

(1)(2)(3) 
[4 FPGA] 

720-1440 0.5-1.0 720-2880 

(1) Number of orientations used in S1 
(2) Number of prototype patches used in S2 
(3) Number of scales used throughout S1, C1, S2, C2 



so, annotate each group with the FPGA they are to be mapped 

onto. 

II. I/O Distance: These distances will be used to map those 

components directly interfacing with IO close to the source 

(sink).   

III. Pre-Map Allocation Place components that have been pre-

mapped to FPGA’s.  

IV. Un-mapped Allocation A greedy approach is used to iterate 

through the groups and assigned to an FPGA vertex based on 

the available resources, and the I/O distance of each the 

vertices, v!. As each vertex is visited, a check is performed to 

see if there are sufficient resources available. The FPGA that 

provides enough resources and has the lowest combined I/O 

distance is chosen.  

V. HMAX CASE STUDY 

The Cerebrum Tool was then used to explore the 

implementation of HMAX onto two FPGA platforms, The 

Xilinx ML510 platform and Nallatech FPGA accelerator 

platform (Table 2). In the HMAX Ml510 platform a single 

FPGA was used to perform acceleration of S2. The S2 

accelerator was able to achieve a 20X speedup over the CPU S2 

stage. Within the Nallatech platform 4 FPGAs were used were 

used to accelerate all stages of the algorithm. The first FPGA 

mapped S1, C1, and C2, while the remaining three FPGAs 

contains S2 modules. Using this platform the CPU reference 

implementation was accelerated by 27.9X over the reference 

CPU. A regularized least squares classifier was used to classify 

a dataset containing 16 different categories. The FPGA-based 

implementation of HMAX was used to extract features of 1382 

images used in a test set, the results are shown in Table 3. The 

overall accuracy of the classifier is 76.63%, significantly better 

than random (6.25%). 

VI. CONCLUSION 

This paper presented a multi-FPGA framework for assisting 

neuroscientists implement algorithms on FPGAs. This 

framework abstracts FPGA specific details leaving 

neuroscientists to simply compose IP blocks to achieve the 

desired functionality. The framework was used to evaluate 

HMAX, achieving up to 28X speedup with 76% accuracy 

across 16 classes. 
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Table 2. HMAX Results for two FPGA based platforms 

Platform 

(# FPGAs) 

HMAX Layer Tot. Exec. 

Time S1/C1 S2 C2 

CPU 2.937 222.9 0.458 226.295 

ML510 

1 FX130 

252.78 

(0.012) 

10.98 

(20.31) 

8.04 

(0.057) 

271.79 

(0.833) 

Nallatech 

FSB 

4 Sx240T 

0.922 

(3.185) 

8.73 

(25.53) 

0.143 

(3.203) 

8.23 

(27.49) 

Table 3. Classification Accuracy using HMAX 

Class Class Number Correct Accuracy 

Background 0 668 665 99.55 

Boats 1 18 4 22.22 

Buses 2 28 14 50.00 

Cars 3 176 155 88.07 

Heavy 

Vehicles 4 24 4 16.67 

F-1 Cars 5 33 22 66.67 

Helicopters 6 44 31 70.45 

Military 

Vehicles 7 65 28 43.08 

Monster 

Trucks 8 30 7 23.33 

Pickups 9 47 13 27.66 

Plane 10 61 43 70.49 

Semi-

Trailers 11 51 29 56.86 

Tanks 12 45 13 28.89 

Trains 13 32 12 37.50 

UFOs 14 36 15 41.67 

Vans 15 24 4 16.67 

Total 1382 1059 76.63 
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