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Abstract: With the development of information technology, Internet-of-Things (IoT) and low-altitude

remote-sensing technology represented by Unmanned Aerial Vehicles (UAVs) are widely used in

environmental monitoring fields. In agricultural modernization, IoT and UAV can monitor the

incidence of crop diseases and pests from the ground micro and air macro perspectives, respectively.

IoT technology can collect real-time weather parameters of the crop growth by means of numerous

inexpensive sensor nodes. While depending on spectral camera technology, UAVs can capture

the images of farmland, and these images can be utilize for analyzing the occurrence of pests and

diseases of crops. In this work, we attempt to design an agriculture framework for providing

profound insights into the specific relationship between the occurrence of pests/diseases and weather

parameters. Firstly, considering that most farms are usually located in remote areas and far away from

infrastructure, making it hard to deploy agricultural IoT devices due to limited energy supplement,

a sun tracker device is designed to adjust the angle automatically between the solar panel and the

sunlight for improving the energy-harvesting rate. Secondly, for resolving the problem of short

flight time of UAV, a flight mode is introduced to ensure the maximum utilization of wind force and

prolong the fight time. Thirdly, the images captured by UAV are transmitted to the cloud data center

for analyzing the degree of damage of pests and diseases based on spectrum analysis technology.

Finally, the agriculture framework is deployed in the Yangtze River Zone of China and the results

demonstrate that wheat is susceptible to disease when the temperature is between 14 ◦C and 16 ◦C,

and high rainfall decreases the spread of wheat powdery mildew.

Keywords: agricultural pests and diseases; internet of things; unmanned aerial vehicle

1. Introduction

Due to population growth and social development, world food demand is expected to double

by 2050 [1], but it is currently challenging to increase food production because of falling water levels,

climate change, arable land reduction, and pests and diseases [2]. Pests and diseases have always

been among the critical factors that restrict the increase of grain production [3], causing substantial

economic losses to agriculture. According to the statistics of the Food and Agriculture Organization of

the United Nations (FAO), global grain production will be reduced by 10–16% annually owing to the

occurrence of crop pests and diseases. In China, investigation shows that pests and diseases cause

about 40 million tons of grain loss each year [4].
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For detecting the occurrence of pests and diseases on farms, remote-sensing technologies (e.g.,

satellites and drones (in this paper, we will use “drone” and “UAV” interchangeably)), are employed

to find insect pests and inform farmers of the state-of-affairs promptly [5]. Agricultural detection

technology depending on satellites, called high-altitude remote-sensing technology, has the advantages

of the extensive monitoring area, fine timeliness, short revisit period, and low cost [6]. On the one

hand, a satellite device can cover a large area and is suitable for a wide range of disaster monitoring.

On the other hand, satellite technology is susceptible to weather and has a low spatial resolution,

making it challenging to meet the need for pest and disease monitoring in agricultural fields [7]. Now,

the remote-sensing technology with low-altitude (e.g., drones) has the characteristics of high flexibility

and image definition [8], which can meet the requirements of pest and disease monitoring for crops.

Currently, the detection technology depending on drones or UAV devices, named low-altitude

remote-sensing technology, has been applied widely in modern farms [9], which can guarantee a high

timeliness of acquired data [10]. When drones are used for detecting the occurrence of pests and

diseases, the information about pests and diseases of crops should be standardized and digitized [11].

However, for a drone, due to limited carrying weight and battery capacity in a remote large-scale farm,

it faces the problems containing short flight time and frequent battery replacement [12]. Nowadays,

these characteristics affect the promotion and application of drones in the modern agricultural field.

In this work, for reducing the energy consumption of a drone, its flight route on the farm is planned

previously to ensure that the entire farm is checked with the shortest flight distance. At the same time,

the drone can utilize wind force to prolong its flight time when it flies on the farm and selects the path

with the largest proportion of the downwind distance. Besides, the drone can adjust its flying angle

dynamically for saving energy according to different wind directions.

The eruption of pests and diseases is closely related to climate change during the crop growth

period [13]. IoT technology is utilized to collect information on entities of interest [14], which provides

a convenient method to monitor the growing processes of crops in real time. However, most farms are

often far away from infrastructure and face the problem of limited energy supply, which restricts the

development and popularization of agricultural IoT technology [15]. At present, the energy harvesting

type of IoT technology represented by solar power is gradually applied to the agricultural field [16].

Nevertheless, in the currently used photovoltaic power generation system, fixed solar panels are

mainly used for convenience [17]. The solar energy conversion rate is related to the angle between the

solar panel and sunlight [18], and it is on the influence of the light angle. In the work, an automatic

rotary-device based on angle perception of sun illumination is designed for ensuring that the solar

panel is always perpendicular to the sunlight, which ensures that more solar power is converted into

electric energy.

The contributions are summarized as follows:

• An automatic rotary-device based on angle perception of sun illumination is designed for ensuring

the solar panel is always perpendicular to sunlight and improving the energy-harvesting rate

from solar power.

• An IoT framework containing multiple wireless technologies (e.g., LoRa, ZigBee, TVWS) is proposed

for collecting information and transmitting the collected data to the base station/gateway.

• A strategy to prolong the flight time of a drone is introduced by planning the flying path with the

largest proportion of downwind and ensuring the maximum utilization of wind force.

The remainder of this paper is organized as follows. Section 2 gives a review on the existing

strategies for monitoring agricultural pests and diseases. Section 3 presents our method and design in

detail. Section 4 contains experimental results and Conclusion is in Section 5.

2. Related Work

Pests and diseases of crops have always been an important factor hindering agricultural

development [19]. A great quantity of works have been proposed for monitoring agricultural pests
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and diseases, i.e., early warning system of diseases and pests based on wireless sensor network [20,21]

and remote video interactive systems [22]. In [23], a pest and disease reporting system is established to

investigate and report on various crops such as potatoes, soybeans, rice, and sweet potatoes. In [24],

the authors review the influence of pests and diseases to global tomato production. Denmark [25] has

developed a pest and disease monitoring system to monitor seven crops such as winter wheat and

spring barley, and developed a plant protection information system to integrate pesticides, pests, plant

protection programs and field records.

At present, the mainstream pest and disease monitoring technologies applied internationally can

be divided into two categories: IoT technology and remote-sensing technology. The IoT technology has

emerged as a significant promising technology [26,27], containing numerous inexpensive sensor nodes

randomly scattered over the area of interest to collect information on entities of interest [27–29], have

been used for wide-ranging applications in the fields of climate simulation monitoring [30], real-time

video monitoring of pests and diseases [31], and real-time early warning systems for predicting the

occurrence of pests and diseases [32]. For agroclimatic diseases (such as wheat powdery mildew),

the establishment of climate models through data collected by small climatic instruments arranged

in the field can markedly reduce the incidence of pests of crops [33]. In [34], the authors propose a

hardware design architecture of the Wireless Sensor and Actuators Networks (WSANs) for real-world

agricultural applications.

Recent advances in remote-sensed imagery and geospatial image processing using unmanned

aerial vehicles have enabled the rapid and ongoing development of monitoring tools for crop

management and the detecting/surveillance of insect pests and diseases [35]. The real-time video

monitoring system for pests and diseases is established publicly by the aid of high-definition

cameras [36] on UAVs or mounting racks, which means farmers have to enter the farmland for

checking the crops frequently and improve the overall working efficiency [37]. For mapping the

overflown environment of farms in point clouds, a Light Detection and Ranging (LiDAR) sensor

mounted on an Unmanned Aerial Vehicle (UAV) is introduced in [38], Other examples can be found

in [39–41] and references therein.

Some monitoring and early warning devices for climatic epidemics of crops have been employed

in China, such as the potato late blight real-time monitoring [42] and early warning system adopted by

Chongqing (City of China) which relies on sensor devices deployed in the farm to collect important

environmental parameters, such as humidity, temperature, wind speed and rainfall [43]. Then, these

parameters are uploaded to a cloud data center through wireless networks, and the server uses the

pre-established model based on big data analytic methods to analyze the probability of occurrence of

plant diseases, and provides an early warning to formers [44]. In [45], the authors perform a review

on current studies and research works in agriculture which employ the recent practice of big data

analysis, in order to solve various relevant problems.

However, with regard to the current research and application of IoT technology in the agricultural

pests-monitoring field, the IoT monitoring technology is not mature enough, and there is still a gap

between the standards and demands for large-scale promotion. The factors restricting the application

of agricultural IoT technology have not been fully solved yet, e.g., energy supply, data fusion and

communication, etc. Moreover, the IoT technology used to monitor pests and diseases has not yet

formed a unified standard in terms of interfaces, services and equipment development. At present,

most of the existing IoT monitoring technologies are still at the stages of demonstration and experiment,

failing to build a complete IoT monitoring platform for pests and diseases.

3. System Model

3.1. The Agricultural IoT Platform

The occurrence of plant diseases and pests is closely related to many weather paraments [46],

such as the pests of crop surviving in some unusual weather conditions. At the same time, rainfall and
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high humidity will affect the propagation and spread of pathogens significantly [47]. Wind can not

only affect the spread of spores, but also increase the risk of pests and diseases for crops. Therefore, for

analyzing the reasons causing the occurrence of diseases and pests of crops, a modern agricultural IoT

platform is designed for monitoring plant pests and diseases. In the system, the primary role of the

agriculture IoT platform is to collect the information and monitor the weather parameters of the farm.

Considering a farm is open and in outdoor generally, the agricultural IoT platform mainly contains

the following parts: energy supplying devices, IoT base stations, gateways, a cloud data center, and APP

(Application) software. An overview of the system is given in Figure 1. A smart solar power system

based on angle perception of sun illumination is designed to provide power for the platform, the detail

of energy supplying system is provided in Section 3.2. The IoT base station is mainly composed of TV

White Spaces (TVWS) and LoRa sensor connection modules. LoRa technology with a long transmission

range is used for collecting data from multiple sensors and transmitting the data to the gateway. TVWS

technology with high-bandwidth is utilized for transmitting the videos or images from UAVs equipped

with special optical sensors. The communication of IoT base stations is introduced in Section 3.3.

The cloud data center is responsible for providing services of data fusion and data analysis. Since

the cloud data center is generally far away from the farms, the data from LoRa devices and TVWS

will first be forwarded to the gateway. Currently, wired networks or wireless networks are widely

deployed in China. According to the “CT China 2008 High Level Forum”, the 4G network covers

more than 98% of the population and 95% of the country’s land area of China [48]. Therefore, the

gateway can be deployed in farmer houses to forward these data to cloud data centers relying on

these networks. In cloud data centers, the data collected by LoRa devices are used for monitoring

weather parameters, and the information provided by the TVWS communication system is utilized

for generating a precision map and planning the UAV path. It is important to note that the cloud

data center is one of the most important parts of the framework and is responsible for processing the

data. The results of data analysis will provide the real-time conditions of crops for farmers; details are

provided in Sections 3.4 and 4.2. The system also provides an APP interface, which is more convenient

for farmers to control their farms.
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Figure 1. Overview of the agricultural IoT platform.

3.2. Energy Supply Based on an Automatic Rrotary Alignment Device

The energy system uses a solar panel to generate electricity and power sensor devices.

The harvesting energy is under the influence of weather conditions. For instance, when a sensor

lies in direct sunlight at 12 am, the power density can reach 3700 µW/cm2, energy harvesting rate is

370 mW, and the duty cycle achieved by the Crossbow MICAz can reach about 45%. When the sensor

node lies indoors, the power density is about 320 µW/cm2, the energy harvesting rate is 320 µW, and

the duty cycle is estimated to be about 0.04% [49]. Therefore, the energy harvesting sensor networks

are environment-dependent networks. Figure 2 shows the affordable duty cycle of a node in three
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different weather conditions in spring. From the empirical measurement results, a node can only

operate about 3.5 hours continuously if its duty cycle is over 20%.
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Figure 2. A solar powered sensor is deployed in outdoor.

For improving energy-harvesting rates, an OpenWeather API [50] interface is applied in the

energy system to obtain the future possible weather in the next few days (e.g., 3 days). According to

the obtained information, the system regulates its energy consumption by controlling its duty-cycles.

At the same time, an Automatic Device based on Angle Perception of sun illumination, named AD–AP,

is used to control a solar panel rotating with the movement of the sun, which guarantees that the

solar panel is always perpendicular to the sun. The principle of AD–AP imitates the living habits of

sunflowers, which maximize the utilization of solar energy. The AD–AP consists of a sun tracker, a

height angle axis, a speed reducer, two motors, an upper pedestal, a lateral axis, and a lower pedestal.

The structure of the AD–AP is shown in Figure 3.

1.Sun tracker 

2.Height angle axis 

3.Motor1 

4.Reducer

5.Upper pedestal

6.Lateral axis 

7.Motor2

8.Lower pedestal

2

6

5

1

7

Figure 3. Model of automatic rotary alignment device based on angle perception of sun illumination.

To meet the requirement for the solar panels to always be perpendicular to the sun, the turning

part of the equipment must satisfy the free rotation of the east–west and north–south directions.

At the same time, the principles of low cost, high reliability and simple structure should be achieved.

In our design, the automatic solar tracker has double degrees of freedom structure: the translational

structure and the lifting structure. Firstly, the tracker analyzes the position of sunlight by obtaining the

information from photoresistors. Second, the tracker calculates the angle that it should be adjusted

to for harvesting more energy. Finally, the tracker utilizes the translational structure and the lifting

structure to change its direction.

The shape of the sun tracker is hemispherical and the entire device adopts an opaque semi-circular

outer casing, so that the photoresistor is not affected by the light of the surrounding environment

during its operation, which can improve the measurement accuracy significantly. The operating

principle of sun tracker is shown in Figure 4a. For allowing sunlight to shine into the panel, a small

square hole is left at top of the tracker. Nine photoresistors is placed on the bottom and arrange them
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in an alignment 3 × 3, where the photoresistor with identifier 5 locates in the center and the size of

photoresistor is equal to the size of the hole. The enlarged plan view of the photoresistors is shown in

Figure 4b, where, the dark box in the figure indicates the shape in which the sun shines through the

top hole on the device. The tracker can detect the sunlight that hits the bottom of the device each few

minutes. When the dashed box coincides with the No.5 photoresistor, the device is perpendicular to

the sunlight, and vice versa.

The sunB A

5
1

4

7

2 3
6

8 9

 A hole

(a) view (b) projection

Figure 4. The principle of sun tracking.

Figure 4a plots the scenario of sunlight hitting the photoresistors. When the sun is in position

A, the sunlight will shine through the aperture and coincide with resistor 5, which indicates that the

tracking device is perpendicular to the sunlight and can harvest more solar energy. While the sun

moves to position B, the incoming sunlight obtained by the tracking device deviates from photoresistor

5, which means that the energy harvesting rate declines. For keeping the device perpendicular to the

sunlight, the angle of the device needs to be adjusted. We assume that the length of each small square

in the figure is M, then the area of each small square is S = M2.

For calculating the angle that should be adjusted of the sun tracker, in Figure 4b, we assume that

the length of four sides for the dark square are X1, X2, Y1, Y2, respectively. The four areas of the dark

square are Sa = X1 × Y1, Sb = X2 × Y1, Sc = X1 × Y2, Sd = X2 × Y2. The value of each small area in

the system can be obtained based on the amount of information returned by all photoresistors after

sunlight exposure. The amount of information for each small area is expressed as: Xa, Xb, Xc, Xd.

The following relationship can be obtained: Xa = Sa/S, Xb = Sb/S, Xc = Sc/S, Xd = Sd/S. Moreover,

it is known that X1 + X2 = Y1 + Y2 = M. Therefore, X2, Y1 can be expressed as:

X2 =
(Sb + Sd)× M

S
(1)

Y1 =
(Sa + Sb)× M

S
(2)

Depending on Equations (1) and (2), the θ can be calculated as,

θ = arctan
X2

Y1
(3)

For adjusting the direction of the sun tracker, the graph is switched into three-dimensional

coordinates in the sphere for their benefit, as shown in Figure 5. The dot in Figure 4b is point C in

Figure 5, and h is the distance from the bottom of the device to the apex of the device. We have

tan β =

√

X2
2 + Y2

1

h
(4)
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where, β can be formulated as:

β = arctan

√

( (Sb+Sd)×M
S )2 + ( (Sa+Sb)×M

S )2

h
(5)

Z

Y

X

H

β

C

Figure 5. A three-dimensional coordinate when the device is not perpendicular to the sunlight.

For keeping the AD–AP perpendicular to the sunlight, the device can first move θ angle in the

X-axis, and then move β angle in the opposite direction of the Z-axis to ensure that the device is

perpendicular to the sunlight again. In order to save energy, the direction of the tracker should be

adjusted back to the initial state at night and then remain unchanged. On cloudy days, the tracker

does not need to rotate for saving energy. After the tracker adjusts its position, a reasonable period of

time is set to initiate another adjustment, e.g., ten minutes or one hour, etc. In some special situations,

if the tracker can not adjust to a normal position in the period of time, it can be considered that the

remaining energy of AD–AP can not support its action, e.g., the weather is cloudy or rainy. In this

situation, the tracker should try to adjust the position after another period of time until the sun tracker

is perpendicular to the sunlight again.

3.3. Communication Systems of the Agricultural IoT Platform

In the design, the communication system contains two parts: LoRa technology and TVWS

technology. LoRa technology is a point-to-point communication mode with low power consumption,

low data transmission rate and long transmission range, where, the transmission distance can reach

15 km in the unobstructed situation, while the transmission range is only about 100 meters for ZigBee

devices (e.g., MICAz, TelosB) [51]. As a gateway, a LoRa device can connect a certain number of

wireless sensor nodes for data collection, which replaces the traditional General Packet Radio Service

(GPRS) module (monthly fee, e.g., about 2 dollars every month in China). Therefore, in the long run,

LoRa technology can effectively reduce communication costs by replacing GPRS as the gateway.

When LoRa devices are used as relay nodes in a multi-hop LoRa mode, data can reach hundreds

of kilometers through multiple-hop forwarding at low rates without the help of satellites or base

stations, which is sufficient for data transmission in modern agricultural fields. In some countries,

LoRa technology has been employed in some agricultural cooperations, e.g., intelligent irrigation

systems [52]. LoRa technology is utilized for collecting information by connecting the sensors deployed

in the farm, and transmitting the collected data to the base station/gateway. In the system, multiple

LoRa devices are deployed in the farm, as is shown in Figure 6. A base station or gateway generally

is equipped with high energy power and transmission ability. Thence, all packets will be forwarded

to farmer’s home by multiple gateways. For processing received data, the cloud data center is built

and stores all collection data. However, the cloud data center is usually far away from the farmer’s

home, and there are many obstacles between them to hinder the transmission of information. It is
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dificult to accomplish the task of data transmission relying using traditional methods (e.g., ZigBee,

LoRa, Bluetooth).

Figure 6. Multiple LoRa devices are deployed in farmland.

The White Space is a blank TV signal band, which refers to a radio video segment that is allocated

for broadcast utilization but is out of use. It has the advantages of large user volume and low cost.

TVWS has also been applied internationally. For example, the United States is actively deploying

farm super Wi-Fi by virtue of TVWS technology [53]. Due to its low frequency and support for

high-bandwidth data transmission, TVWS technology fully meets the requirement of high-bandwidth

connections between UAVs and gateways. In China, due to the popularity of digital TV, traditional

wireless TV has gradually faded out of sight, which makes the TVWS band free, and can fully utilize

this band for high-bandwidth data transmission.

In the communication system, on the one hand, the compatibility of distinct communication

technologies (e.g., ZigBee, LoRa, TVWS) should be guaranteed. On the other hand, the requirement of

long-distance communication and the high-bandwidth connection should be achieved simultaneously.

Therefore, a hybrid network based on two-layers for data transmission is adopted in the work. At the

first layer, TVWS is used to connect the system of farmers’ homes with IoT base stations on the farm.

In the second layer, the LoRa module with long transmission distance and strong anti-interference

ability is used to achieve information collection between the base station and sensors deployed in

farmland, which ensures that a minimum of sensor nodes can check the maximum farm area. Data

communication architecture is shown in Figure 7. Currently, a wired network or wireless network is

widely deployed in farmers’ houses of China. Hence, the existing Wi-Fi infrastructure can be exploited,

and these existing Wi-Fi devices can be employed to undertake the tasks for data forwarding from the

farmer to the cloud data center.

Figure 7. A two-layers data communication architecture from sensors to farmer.

3.4. The Path Planning of Unmanned Aerial Vehicle

In the design, the UAVs are used to detect the pests and diseases on the farms by periodically

capturing the images of crops with a spectral camera. Afterwards, these images will be transmitted

to the cloud data center and stored for data analysis. With the aid of image processing technology,

these images can be analyzed to determine whether there are pests and diseases or not. Currently,

a UAV usually is equipped with a smaller fuel tank, which causes the flight time to be short, so that the

flight time of a UAV is generally about 30 min in China. For improving energy utilization efficiency,
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the flight path of the drone is planned previously. When UAVs take photographs on farms, they fly

from the initial point to the target point automatically depending on the planned paths. Therefore, it is

crucial to plan the flying routes for prolonging the flight time. At the same time, the planning paths

are restricted by height, the field of view of the camera, and the required image quality, etc.

Multiple flight paths can be designed to check the entire farmland, where one of them is preferred

and other paths are set as potential flying paths. Intuitively, for a UAV, the shortest path is the best

choice to achieve the longest flight time. However, considering weather conditions, especially factors

such as wind speed and wind direction, the planning path with the highest proportion of downwind

can ensure the maximum utilization of wind force. At the same time, during the flight, the speed of

the drone can be adjusted dynamically to save energy and extend the flight time of a UAV. When a

drone flies on the farm, without considering the wind force, if the flight speed of the drone is Vw and

the flight distance is S, the flight time can be calculated as:

t =
S

vw
(6)

The farmlands usually cover large areas and are open, where wind force exists commonly. When

a drone flies in such a scenario and the wind force has not been utilized efficiently, it may cause

unnecessary energy waste and reduce the flight time. Therefore, considering the wind force on the

farm, a flight mode is designed to save energy and prolong the fight time of UAVs. When there is

an angle between the wind direction on the farm and the planning path of the drone, as shown in

Figure 8, if the flight time of the drone is required to be held in this planning path, or in other words, if

the original energy expenditure rate is required to remain constant, the flight speed and flight direction

of the drone should be adjusted dynamically.

Figure 8. When consider the wind speed and wind direction, how to control the flight speed and

direction of UAV.

The drone is equipped with special sensors for acquiring the wind direction and wind speed.

Thus, the Vf is available depending on the surface sensor in the drone. The symbols that used in

Figure 8 are summarized as in Table 1.

Table 1. Symbol List of Figure 8.

Symbol Description

Vf the wind speed on the farm

Vh the actual flight speed, which combination of
the speed of drone and the wind

Vs the planing flight speed of the drone
θ the angle between Vf and Vh

β the angle between Vs and Vh

According to Equation (6), the equality Vh = Vw is achieved. For calculating the Vs and β, we find

that Vs = Vs1, Vf = Vf 1. Therefore, Vs1 can be formulated as:

Vs1 =
√

V2
f + V2

h − 2 × Vf × Vh × cos θ (7)
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According to Equation (7), the β angle is expressed as:

β = arccos
V2

h + V2
s − V2

f

2 × Vf × Vh

(8)

According to Equations (7) and (8), the direction and the speed of the drone in actual flight are

known. If the energy consumption is expected to be reduced by the drone, the speed of the drone

should satisfy Vs < Vw. Since Vw = Vh, we can find that inequality Vs < Vh holds. According to

Equations (7) and (8), in order to save energy of a drone, the following constraints need to be satisfied:

Vf < 2 × Vh × cos θ (9)

Although the wind speed and wind direction on a farm can not be controlled artificially, the angle

between the wind and the flight path can be controlled. At the same time, the flight speed of drone can be

adjusted dynamically according to the wind speed. Therefore, it is necessary to design the flight path

of the drone in combination with the actual conditions. It is interesting to note that it is a challenge for

the stability of a drone in some special scenarios with strong wind. However, note that we would only

require long flight times when the pests and diseases occur in farms and we only use the UAV to collect

the information of crops. Hence, a sunny day can be selected to arrange the flight or in a day with slight

wind, which is different than if the UAV is used in military fields with time-tight requirements.

4. Analysis

4.1. Energy Harvesting Analysis

A solar panel, two eZ430-RF2500T target boards and one AAA battery pack is used for outdoors,

which is rechargeable and can be recharged repeatedly. The target board comprises the TIMSP430

microcontroller, CC2500 radio transceiver and an on-board antenna. The CC2500 radio transceiver

operates in the 2.4 GHz band with data rate of 250 kbps and is designed for low power wireless

applications. The harvested energy is stored in EnerChip, a thin-film rechargeable energy storage

device with low self-discharge manufactured by Cymbet. Figure 9 plots the energy harvesting power

of our design, a differential pressure sun tracker device [54], and a fixed solar panel. For the fixed solar

panel, it means that the solar panel is fixed and it does not whirligig with time. The superiority of the

fixed solar panel model is that the energy for powering the motor to whirligig the solar panel is saved.
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Figure 9. Comparison of energy harvesting power of three devices.

Based on the fixed solar panel, the optimal energy acquisition power in the sunrise and sunset time

range of the Yangtze River basin in mid-March was tested. From Figure 9, the harvesting energy based

on a fixed solar panel is higher than the other two schemes from 11 am to 1:30 pm. The reason is that

extra energy is not needed to power the fixed solar panel. While before 11 am and after 1:30 pm, for the
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fixed solar panel, the harvesting energy is lower than AD–AP and the model of [54]. According to the

investigation, the differential pressure solar tracker [54] can use the pressure difference of the medium in

the container to slowly adjust the device back to a state perpendicular to the sunlight. This tracker has a

simple structure, but it is limited to a single-axis tracker with low precision. From Figure 9, the incident

angle between the sunlight and the fixed solar panel is close to 0 and the energy acquisition power is at a

maximum from 11:00 to 14:30. The installation of an automatic rotary alignment device proposed in our

system enables the energy harvesting power to reach its peak value at around 9 o’clock in advance, and

can increase the energy acquisition power by about 38% in one day.

4.2. Generating Accurate Maps for Farms

For detecting the emergence of pests and diseases in agriculture precisely, it is necessary to

analyze the data of the accurate farm maps taken by a drone, which means that the entire farm has a

specific distribution of characteristics based on image analysis. The agricultural IoT platform supports

a novel and accurate map generation method that utilizes the aerial imagery of drones and the data

returned by sensors placed on the farm. Specifically, the system uses the images generated by the

drone video and the values observed by the sensors planted in the soil to predict the possibility of

occurrence of diseases and pests. The system’s gateway embeds a machine learning pipeline that

draws on probabilistic graphical models that embed Gaussian processes [55].

Hyperspectral imagery was acquired using a HySpex ODIN-1024 (Norway), as shown in Figure 10.

The hyperspectral sensor recorded data cubes of 427 spectral bands in the visible and near-infrared

(VNIR) range (400–2500 nm) with a 3 nm spectral interval and a 6.1 nm spectral resolution (full width

at half maximum (FWHM) with 10 µm slit). This camera is equipped with a calibrated f/1.8 4.8 mm

Schneider lens, which results in a 50.7 deg field of view over 1024 pixels. The collected hyperspectral

data cubes are synchronised with a GPS/inertial navigation system (INS) positioning and orientation

information in order to perform data cubes orthorectification and multiple data cube mapping; the

detail of HySpex ODIN-1024 can be seen in [56].

Figure 10. Hyperspectral sensor on-board a DJI T600 unmanned aerial vehicle (UAV).

The key to this model is visual and spatial smoothness. For visual smoothness, since the

monitoring area presents spatial continuity, it indicates that the monitoring areas that look similar

have identical values of weather paraments and possibility of pests, such as a recently irrigated area

looking darker and it can be easily inferred that this area has more moisture. For spatial smoothness,

considering the physical properties of the soil and the environment, the sensor readings in the nearby

area will be similar. The map generated by the above technique is shown in Figure 11.

In our design, the system uses accurate maps as units of data aggregation and sends them to

the cloud data center. There are at least two advantages to using this approach. Firstly, it integrates

sensor data from the farm into drone videos. Secondly, it can be compressed to two or three orders of

magnitude, much smaller than directly transmitting images. Consequently, aerial imagery is suitable

for providing farmers with a detailed overview of the farm, while accurate maps are more suitable for

long-term storage and transmission.



Sensors 2020, 20, 1487 12 of 18

Figure 11. The analysis results of pests for a UAV image.

4.3. Pests and dIseases of Crops Are Analyzed Through Reflection Spectrum

If crops are infected by pests and diseases, their coverage, biomass, Leaf Area Index (LAI),

leaf cell structure, nitrogen, moisture, pigment content, and appearance will change, which leads to

changes in the reflectance spectrum of the visible to thermal infrared spectrum. In particular, the

spectral characteristics of the infrared and red regions are different from those of healthy crops. Then,

by monitoring the reflectance spectrum of crops, whose disease statuses can be obtained. Figure 12

shows the spectral characteristics of healthy and diseased wheat. The spectral reflectance of healthy

wheat produces a trough in the red region (“red valley”) due to the large amount of radiation absorbed

by chlorophyll. In the green zone, the absorption of chlorophyll is reduced, resulting in a robust green

reflection zone (“green peak”).
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Figure 12. Spectral characteristics of wheat under different degrees of disease.

Regarding quantitative analysis, the relationship between chlorophyll content and spectral

response, red edge parameters area of red edge and position of red edge in the first derivative

of reflectance curve were obtained at bands of 680–760 nm. Similarly, green peak and red valley

parameters were defined to reflect spectral character. The detail of red valley and green peak is

introduced in [57]. As can be seen from Figure 12, as the degree of disease continues to increase, the

spectrum changes significantly. It can be clearly found that the “red valley” in the red light range and

the “green peak” in the green light range gradually disappear. In the near-infrared region, the spectral

reflectance of infected wheat is significantly lower than that of healthy wheat. Through the analysis

of the spectrum, the degree of damage of pests and diseases can be monitored to provide timely and

accurate information for pest control.
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Depending on the image processing technology, aerial pictures can be used to detect the occurrence of

pests and diseases in crops. As shown in Figure 13, the crop is suffering from the disease, and the yellower

the picture, the more serious the disease; the greener, the lighter the disease. Through sensors deployed

in the farmland, the comprehensive environment around the crops can be analyzed, the temperature is

17 ◦C, the relative humidity is 68%, the wind speed is 2.3 m/s, and the light intensity is 554 W/m2. After

experiments and analysis of the above factors, if the crops grow in this environment or a relatively closed

environment, the crops have a higher probability of occurrence of pests and diseases.

Figure 13. Low-altitude remote sensing image of pest monitoring.

4.4. Relationship between Pests/Diseases and Weather Parameters

The real-time monitoring technologies of pests and diseases are generally divided into two

categories: indirect monitoring schemes and direct monitoring schemes [58]. A direct monitoring

scheme is by analyzing the images of crops through the reflection spectrum of plants [59], while

an indirect monitoring scheme is to analyze the weather parameters and get the probability of crop

pests and diseases [60]. Generally, in a special temperature range, the growth rate of most pests is

accelerated and the growth cycle of pests is shortened with temperature increasing, and vice versa [61].

Temperature also affects the number of pests, migration, reproduction, and longevity. Rain and

humidity are other key factors leading to the occurrence of pests and diseases. Studies have shown

that the increasing rainfall in spring and winter leads to the prevalence of powdery mildew of wheat

in the Yangtze River region of China [48].

As another critical factor, wind force also affects the emergence and diffusion of pests and diseases.

Relevant surveys have shown that the prevalence of wheat powdery mildew in the Yangtze River basin

is positively correlated with the average wind speed during wheat growth. Through the comprehensive

analysis of the surrounding environment of the above crops, the probability of pests and diseases of

crops can be obtained. From April to May of 2017 in China, the temperature in most winter wheat

regions was close or slightly higher than that of 2016. In the northern Huang-Huai-Hai, southern

North China and most southwestern wheat regions, the temperatures were 0.5 ◦C–1 ◦C higher than

those of 2016, which provided favorable environmental conditions for the occurrence and reproduction

of aphids and pathogens such as powdery mildew and sheath blight in the region.

In 2017, the total area of wheat aphids in China was about 250 million acres, which mainly

contains the Huang-Huai-Hai agricultural region and the Yangtze River region. Powdery mildew

takes over about 120 million acres, and sheath blight has a cumulative area of about 90 million acres.

Depending on the data obtained by the sensors in the farm, the relationship between the occurrence

of pests/diseases and the farm environment is analyzed deeply. Take wheat powdery mildew as an

example in Yangtze River Zone of China from 2017 to 2018. The Yangtze River is the largest river and

the Yangtze River Zone has a large population and is one of the most economically developed areas in

China, which is also a major food producing area. The main environmental factors affecting wheat
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powdery mildew were analyzed during the critical period of wheat growth from sowing to maturity.

The results are shown in Figures 14 and 15.
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Figure 14. The rainfall and wheat incidence in Yangtze River Zone of China from 2017 to 2018

During early spring (April to May), the temperature ranges from 15 ◦C to 20 ◦C and is favorable for

growing crops. At the same time, the temperature is beneficial to the occurrence of pests and diseases.

From Figure 15, the risk of pests increased with temperature and rainfall increasing significantly, and vice

versa. In summary, when the temperature is low and precipitation is high, the weather condition is not

conducive to wheat growth. The wheat will grow slower and is easily invaded by pests and diseases.
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Figure 15. The temperature and wheat incidence in Yangtze River Zone of China from 2017 to 2018.

If the humidity is considered for the occurrence of diseases, the spores of pathogens can germinate

in the humidity ranging from 0% to 100%. Higher humidity is more favorable for the spread of bacteria.

When the relative humidity reaches 65% or more, it may cause a massive outbreak of wheat powdery

mildew, as shown in Figure 16. If the rainfall is large and concentrated, it can destroy the pathogens

that are parasitic on wheat.

For measuring the disease damaging degree to crops, a degree of growth condition of the crops is

applied in this work, where level 0 indicates crop health, level 1 indicates that the symptoms of the

disease are not obvious, and level 2 indicates obvious symptoms on leaves or straw, but the area of the

disease does not exceed 50%. Level 3 indicates apparent symptoms on the leaves or straw, and the area

of the disease is more than 50%. Level 4 indicates that the whole plant is damaged and level 5 indicates

that the rot occurs. We note that this measurement is widely used in agriculture fields for judging

the growth condition of crops and the detail of it is shown in [62]. Precipitation and temperature

are related to the occurrence and prevalence of wheat powdery mildew. Wheat is susceptible to this

disease when the temperature is between 14 ◦C and 16 ◦C. In this temperature range, the germination
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rate of conidia is the highest and the mycelial growth rate is also the fastest. Temperature affects

the rate of propagation of fungal spores, and rainfall affects the spread of wheat powdery mildew,

as shown in Figure 17.
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Figure 16. The relative humidity and wheat incidence in Yangtze River Zone of China from 2017 to 2018.
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Figure 17. Effect of spring temperature and rainfall on the occurrence of disease

5. Conclusions And Future Planning

In this work, for providing energy to our IoT framework in remote farms, an automatic

rotary-device based on angle perception of sun illumination is added for improving the utilization of

solar energy, prolonging the use time of the sensor, and ensuring that the data collected by the sensor

are valid in real time. The main contributions for the aspect of drones in this article are: (i) planing the

flight route of the drone, (ii) adjusting the flight speed of the drone, (iii) making full use of the farm

wind force, and (iv) extending the flight time of the drone to meet the low-altitude remote sensing

demand for pests and diseases on large outdoor farms. It represents the macro and micro perspectives

of modern agricultural techniques of low-altitude remote-sensing technology and IoT technology for

monitoring pests and diseases of crops.

Through the analysis of large amounts of data obtained by drones and sensors, we provide an insight

into the specific relationship between the occurrence of pests and the farm environment. The prevention

and control of agricultural pests and diseases is a systematic project and a significant challenge for farmers

and researchers; it requires long-term observation and analysis using information technology. Through

more extended data accumulation and analysis of large amounts of data, a long-term pest and disease

prediction model will be established. Based on agriculture, the model proposed in this work will be verified

in practical applications. Note that, on the one hand, the pests and diseases of crops can be monitored in

real time based on the framework. On the other hand, the occurrence of pests and diseases can be studies

by analyzing climate changes, and some precautions against pests can be implemented in advance.
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