
A Framework for Assertion-based Debugging
in Constraint Logic Programming

Germán Puebla, Francisco Bueno, and Manuel Hermenegildo

{german,bueno,herme}@fi.upm.es
Department of Computer Science

Technical University of Madrid (UPM)

A b s t r a c t . We propose a general framework for assertion-based debugging of constraint
logic programs. Assertions are linguistic constructions which allow expressing properties
of programs. We define assertion schemas which allow writing (partial) specifications for
constraint logic programs using quite general properties, including user-defined programs.
The framework is aimed at detecting deviations of the program behavior (symptoms) with
respect to the given assertions, either at compile-time or run-time. We provide techniques
for using information from global analysis both to detect at compile-time assertions which
do not hold in at least one of the possible executions (i.e., static symptoms) and assertions
which hold for all possible executions (i.e., statically proved assertions). We also provide
program transformations which introduce tests in the program for checking at run-time
those assertions whose status cannot be determined at compile-time. Both the static and
the dynamic checking are provably safe in the sense that all errors flagged are definite
violations of the specifications. Finally, we report on an implemented instance of the
assertion language and framework.

1 Introduction

As (constraint) logic programming (CLP) systems [19] mature and larger applications are built,
an increased need arises for advanced development and debugging environments. Such environ-
ments will likely comprise a variety of tools ranging from declarative diagnosers to execution
visualizers (see, for example, [1] for a more comprehensive discussion of tools and possible de­
bugging scenarios). In this paper we concéntrate our attention on the particular issue of program
validation and debugging via direct static and/or dynamic checking of user-provided assertions.

We assume that a (partial) specification is available with the program and written in terms
of assertions [5, 4, 12, 13, 22]. Classical examples of assertions are the type declarations used
in languages such as Gódel [18] or Mercury [25] (and in functional languages). However, herein
we are interested in supporting a more general setting in which, on one hand assertions can
be of a more general nature, including properties which are statically undecidable, and, on the
other, only a small number of assertions may be present in the program, i.e., the assertions are
optional. In particular, we do not wish to limit the programming language or the language of
assertions unnecessarily in order to make the assertions statically decidable.

Consequently, the proposed framework needs to deal throughout with approximations [6,
10, 17]. It is imperative that such approximations be performed in a safe manner, in the sense
that if an "error" (more formally, a symptom) is flagged, then it is indeed a violation of the
specifications. However, while the system can be complete with respect to statically decidable
properties (e.g., certain type systems), it cannot be complete in general, in the sense that when
statically undecidable properties are used in assertions, there may be errors in the program
with respect to such assertions that are not detected at compile time. This is a tradeoff that
we accept in return for the greater flexibility. However, in order to detect as many errors
as possible, the framework combines static (i.e., compile-time) and dynamic (i.e., run-time)
checking of assertions. In particular, run-time checks will be generated for assertions which
cannot be determined to be true or false statically.

Our approach is strongly motivated by the availability of powerful and mature static ana-
lyzers for (constraint) logic programs (see, e.g., [5, 7, 15, 16, 21] and their references), generally
based on abstract interpretation [10]. These systems can statically infer a wide range of proper­
ties (from types to determinacy or termination) accurately and efliciently, for realistic programs.

Fíg. 1. A Combined Framework for Program Development and Debugging

Thus, we would like to take advantage of standard program analysis tools, rather than devel-
oping new abstract procedures, such as concrete [4, 12, 13] or abstract [8, 9] diagnosers and
debuggers, or using traditional proof-based methods [2, 3, 11, 14, 26].

Figure 1 presents the general architecture of the type of debugging environment that we
propose.1 Hexagons represent the different tools involved and arrows indicate the communi-
cation paths among such tools. It is a design decisión of the framework implementation that
most of such communication be performed in terms of assertions, and that, rather than having
different languages for each tool, the same assertion language be used for all of them (due to
space limitations, we cannot present the assertion language itself - see [22] for details). This
facilitates communication among the different tools, enables easy reuse of information (i.e.,
once a property has been stated there is no need to repeat it for the different tools), and makes
such communication understandable for the user. Note that not all tools need to be capable
of dealing with all properties expressible in the assertion language. Rather, each tool will only
make use of the part of the information given as assertions which the tool "understands."

As mentioned before, we assume that a (partial) specification of the intended meaning or
behavior of the (possibly partially developed) program (i.e., the user requirements) is available
and written in terms of assertions. Because these assertions are to be checked we will refer to
them as "c/iecfc" assertions.2 All these assertions (and those which will be mentioned later) are
written in the same syntax, with a preñx denoting their status (check, trust, ...). The program
analyzer generates an approximation of the actual semantics of the program, expressed in
the form of true assertions (in the case of CLP programs standard analysis techniques -e.g.,
[16, 15]- are used for this purpose). The comparator, using the analyzer's abstract operations,
compares the user requirements and the information generated by the analysis. This process
produces three different kinds of results, which are in turn represented by three different kinds
of assertions:

— Verified requirements (represented by checked assertions).
— Requirements identified not to hold (represented by false assertions). In this case an abstract

symptom has been found and diagnosis should start.
— None of the above, i.e., the analyzer/comparator pair cannot prove that a requirement holds

ñor that it does not hold (and some assertions remain in check status). Run-time tests are
then introduced to test the requirement (which may produce "concrete" symptoms during
program testing). Clearly, this may introduce significant overhead and can be turned off
after program testing.

1 The implementation (to be described later) includes also other techniques, such as traditional pro-
cedural debugging and visualization, which are however beyond the scope of the work presented in
this paper.

2 The user may optionally provide additional information to the analyzer by means of "entry" asser­
tions (which describe the external calis to a module) and "trusf assertions (which provide abstract
information on a predícate that the analyzer can use even if it cannot prove it) [5, 23].

Given this overall design, in the rest of the paper we first define formally a series of assertions
and the notions of correctness and errors of a program with respect to those assertions. We then
present and prove correct techniques for static and dynamic checking of the assertions. Finally,
we report on the implementation of the framework, and present some preliminary performance
results.

2 Preliminaries and Notation

A constraint is essentially a conjunction of predeñned predicates (such as term equations or
inequalities over the reals) whose arguments are constructed using predeñned functions (such
as real addition). We let 3w9 be constraint 9 restricted to the variables W.

An atom has the form p(t\, —,tn) where p is a predicate symbol and the ti are terms. A
literal is either an atom or a primitive constraint. A goal is a finite sequence of literals. A rule is
of the form H: -B where H, the head, is an atom with distinct variables as arguments and B,
the body, is a possibly empty finite sequence of literals. A constraint logic program, or program,
is a finite set of rules. The definition of an atom A in program P, defnp(A), is the set of
variable renamings of rules in P such that each renaming has A a s a head and has distinct new
local variables.

We assume that all rule heads are normalized. This is not restrictive since programs can
always be normalized.

The operational semantics of a program is in terms of its "derivations" which are sequences
of reductions between "states". A state (G I 9) consists of the current goal G and the current
constraint 9. A state (L :: G I 9) where L is a literal can be reduced as follows:

1. If L is a primitive constraint and 9 A L is satisfiable, it is reduced to (G I 9 A L).
2. If L is an atom, it is reduced to (B :: G I 9) for some rule (L:-B) e defnp(L).

where :: denotes concatenation of sequences and we assume for simplicity that the underlying
constraint solver is complete. A derivation from state S for program P is a sequence of states
5*o ~>p Si ~^>p ... ~-*p Sn where SQ is S and there is a reduction from each S¿ to S¿+i.
Given a non-empty derivation D, we denote by currstate(D) and currstore(D) the last state
in the derivation, and the store in such last state, respectively. E.g., if D is the derivation
So "^p Sn with Sn = {G I 9) then currstate(D) = Sn and currstore(D) = 9. A query is a
pair (L, 9) where L is a literal and 9 a store for which the CLP systems starts a computation
from state (L I 9). The set of all derivations from Q for P is denoted derivations(P, Q). We will
denote sets of queries by Q. We extend derivations to opérate on sets of queries as follows:
derivations(P, Q) = \jQderivations(P,Q).

The observational behavior of a program is given by its "answers" to queries. A finite
derivation from a state S for program P is finished if the last state in the derivation cannot be
reduced. A finished derivation from a state S is successful if the last state has form (nil I 9).
The constraint 3vars(s)9 is a n answer to S. A finished derivation is failed if the last state is not
of the form (nil I 9).

3 Assertions

Assertions are linguistic constructions which allow expressing properties of programs. The prop-
erties can relate to the program execution, particular derivations, or execution states.

Definition 3.1 [Assertion] An assertion A for a program P is a pair (appA,valA) s.t. both
appA and VÜIA are first-order logic formulae and appA(D) and valA(currstore(D)) are decid-
able for any derivation D for P.

Note that this is a very open definition of assertions. In the following we provide some more
speciñc schemas for assertions which correspond to the assertions traditionally used: i.e., pre
and post conditions. For each of these schemas we provide the meaning of the logic formulae
associated to app and val corresponding to the assertion. An example program annotated with
assertions of this kind is shown in Figure 2, where two assertions Al and A2 are provided in the
schema oriented syntax that we use herein, as well as in the program oriented syntax of [22].

:- success qsort(A,B) : list(A) => list(B), sorted(B) . */, Al
'/. Al: { success(qsort(A,B) , list(A) , list(B) and sorted(B)) }

qsort([X|L],R) :-

partition(L,X,Ll,L2),
qsort(L2,R2), qsort(L1.R1),
append(Rl,[XIR2], R) .

qsor t ([] , []) .

: - c a l i s parti t ion(A,B,C,D) : l i s t (A) . */, A2
*/, A2: { c a l i s (parti t ion(A,B,C,D) , l i s t (A)) }
p a r t i t i o n ([] ,B,[] , []) .
p a r t i t i o n ([E | R] , C , [E l L e f t l] , R i g h t) : - E < C, !,

pa r t i t i on (R ,C ,Le f t l ,R igh t) .
p a r t i t i o n ([E | R] , C , L e f t , [E l R i g h t l]) : - E >= C,

pa r t i t i on (R ,C ,Le f t ,R igh t l) .

s o r t e d ([]) . l i s t ([]) .
s o r t e d ([_]) . l i s t ([_ |L]) : -
so r ted([X,Y|L]) : - X =< Y, sor ted([Y|L]) . l i s t (L) ,

Fig. 2. An Example Program Annotated with Assertions

In the figure, Al expresses that if qsor t is called with its first argument being a list then upon
success (if it succeeds) its second argument is a sorted list, and A2 expresses that p a r t i t i o n is
expected to be called with its first argument a list. These assertions refer to particular execution
states in derivations in which qsor t (resp. p a r t i t i o n) are involved. We say that these assertions
are "evaluable" only in such states.

Definition 3.2 [Evaluation of an Assertion for a Derivation] Given an assertion A =
(appA,valA) for program P, the evaluation of A for a derivation D is

solve(A,D,P) = Vr : appA(r(D)) —>• val A{currstare{r{D))).
where r is a variable renaming which relates the variable ñames in A with the variables in a
concrete derivation D.

3.1 Assertion Schemas

Assertion Schemas are expressions which produce an assertion A = (appA,valA) given a syn­
tactic object AS, by syntactic manipulation only. Assertions described using the given assertion
schemas will be denoted as AS in order to distinguish them from the actual assertion (i.e., a
pair of logic formulae) A = (appA,vaÍA)- We use schema(AS) = (appAs,valAs) to denote that
(appAs,vaÍAs) is the result of the translation of AS.

Calis Assertions: This assertion schema is used to describe execution states of the possible
calis to a predicate. Given an assertion AS = calls(p,Precond), appAs and val AS are defined
as follows:

/ n \ _ J true if currentstate(D) = {p :: G I 9)
apPcaUs(p,Precond){U) - j j a l g e otherwise

valcaUs(Píprecond)(0) = Precond(3vars(p)0)

Clearly, there is no way a calis assertion calls(p, Precond) can be violated unless the next
predicate to be executed, i.e., the leftmost literal in the goal of the current state, is p.

Success Assertions: Success assertions are used in order to express postconditions of pred-
icates. These postconditions may be required to hold for any cali to the predicate, i.e., the
precondition is true, or only for calis satisfying certain preconditions.

{ true if currentstate(D) = (G\6) and
3{p :: G 19') e D and Pre{3vars{p)9')

false otherwise

VQ,lsuccess(p,Pre,Post)\") — * OSt\zivars^O)

Note that, for a given assertion A and derivation D, several states of the form (p :: G I 9')
may exist in D. As a result, the assertion A will have to be checked several times with different
renamings so that the variables of the assertion are related to different states in D.

3.2 Assertions and Debugging

Assertions have often been used for performing debugging with respect to partial correctness,
Le., to ensure that the program does not produce unexpected results. In this section we provide
several simple definitions which will be instrumental in the rest of the paper.

Definition 3.3 [Error Set] Given an assertion A, the error set of A in program P for a set of
queries Q is E(A,P, Q) = {D e derivations{P, Q)\-*solve(A,D,P)}.

Definition 3.4 [Checked Assertion] An assertion A for program P and set of queries Q, is
checkediS E(A, P,Q) = 0.

Definition 3.5 [True Assertion] An assertion A for program P, A is true iff MQ : E(A, P, Q) =
0.

Definition 3.6 [False Assertion] An assertion A for program P and set of queries Q, is false
i&E(A,P,Q)¿®

It is clear that given a program P and a set of queries Q, any assertion A is either false or
checked. Also, any assertion which is true is also checked.

Definition 3.7 [Partial Correctness] A program P is partially corred w.r.t. a set of assertions
A and a class Q of queries iff [J ^ E(A, P, Q) = 0.

Our goal is to prove that a program is partially correct w.r.t. a set of assertions when it indeed
is, and to detect the assertions which are false otherwise. There are two kinds of approaches
to doing this. One is based on actually trying all possible execution paths (derivations) for all
possible queries. When it is not possible to try all derivations an alternative is to explore a
hopefully representative set of them. This approach is explored in Sections 4 and 5. The second
approach is to use global analysis techniques and is based on computing safe approximations
of the program behavior statically. This approach is studied in Section 6.

4 Run-Time Checking of Assertions

The main idea behind run-time checking of assertions is, given a program P and a set of asser­
tions A, to directly apply Definitions 3.4 and 3.6 in order to determine whether the assertions
in A are checked or false. It is not to be expected that Definition 3.5 can be used to determine
that an assertion is true as this would require checking the derivations from all possible queries
(to any predicate) which is in general an infinite set and thus checking may not terminate.

An important observation is that in constraint logic programming, and under suitable as-
sumptions, it is possible to use the underlying logic inference system for checking whether the
given assertions (logic formulae) hold or not. In order to be able to perform run-time check­
ing in this way, we require that Precond(9) of an assertion calls(p, Precond), and Pre(9) and
Post(9) of an assertion success(p, Pre, Post) can be computed in the CLP system. To this end,
we restrict the admissible pre and post conditions of assertions to those which can be expressed
as CLP programs. We argüe that this is not too strong a restriction given the high expressive
power of CLP languages. Note that the approach also implies that the program P must contain
the definitions for the pre and post conditions used in assertions (Figure 2). We believe that this
choice of a language for writing conditions is in fact of practical interest because it facilitates
the job of programmers, which do not need to learn a specification language in addition to the
CLP language.

For simplicity, in the formalization (but not in the implementation) pre and post conditions
are assumed to be literals (rather than for example goals or disjunctions of goals). Note, however,

that this is not a restriction since given a logic expression built using literals, conjunctions,
and disjunctions, it is always possible to write a predicate whose (declarative) semantics is
equivalent to the such logic expression. Also, it is crucial to ensure that run-time checking
does not introduce non-termination into terminating programs. As a result, not all possible
predicates which can be written in a CLP language can be used as properties in assertions:

Definition 4.1 [Test] A literal L is a test iff V# : derivations(P, (L, 9)) is imite.

Only tests are admissible as pre and post conditions in assertions.

Definition 4.2 [Trivially Succeeds] A literal L trivially succeeds for 9 in P, denoted
9 =>p i , if 3 a successful derivation for {L I 9) with answer 9' s.t. 3va,rs(L)Q' = Q-

Theorem 4.3 [Checking of Tests] Let t be a test defined in a program P. t{9) holds iff 9 =^p t.

Theorem 4.3 guarantees that checking of pre and post conditions, which are required to be
tests, is complete since the set of derivations (search space) is finite.

We now provide an operational semantics which checks whether assertions hold or not while
computing the derivations from a query. A check literal is a syntactic object check(L, A) where
L is either an atom or a constraint and A (an identifier for) the assertion which generated the
check literal. In this semantics, a literal is now an atom, a constraint, or a check literal. A CLP
program with assertions is a pair (P,A), where P is a program, as defined in Section 2 and A
is a set of assertions.3

A finished derivation for a query Q in a CLP program P may be either successful (with
answer 9) or failed. In the case of programs with assertions, we consider a third case for finished
derivations which we refer to as erroneous. We introduce a class of distinguished states of the
form (e, A) which cannot be further reduced. A finished derivation is erroneous if the last state
in the derivation is of the form (e, A), where A is (an identifier for) an assertion. Erroneous
derivations indicate that the assertion A has been violated.

A state (L :: G\9), where L is a literal can be reduced as follows:

1. If L is a primitive constraint and 9 A L is satisfiable, it is reduced to (G I 9 A L).
2. If L is an atom,

— if 3 A = calls(p, Cond) e A s.t. 9 ^>p Cond, then it is reduced to (e I A).
— otherwise if 3(L:-B) € defnp(L) it is reduced to (B :: PostCond :: G\9) where

PostCond = {check(S, A)\3A = success(L, C,S) €A A 9 =>P C}.
3. If L is a check literal check(prop, A),

— if 9 =>p prop then it is reduced to (G I 9)
— otherwise it is reduced to (e I A).

Note that the relative order of the check literals in PostCond is not fixed in the semantics.
However, this order is irrelevant as they may be checked in any order. We will write deriva­
tions using the operational semantics for programs with assertions as (G I 9) ~^(P,A) • • • ^*(P,A)

(G' \9') in order to distinguish them from derivations using the operational semantics of Sec­
tion 2. Also, the set of derivations from a set of queries Q in a program P using the semantics
with assertions is denoted derivationsA(P, 0)-

Theorem 4.4 [Run-time Checking] Given a program P, a set of assertions A, and a set of
queries Q,

A is false iff 3 D e derivationsA(P, Q) with currentstate(D) = (e,A)

Theorem 4.4 guarantees that we can use the proposed operational semantics for programs
with assertions in order to detect violation of assertions.

Corollary 4.5 Given a program P, a set of assertions A, and a set of queries Q, A is checked
iff V D g derivationsA(P, Q) '• D is not erroneous.

3 Program point assertions can be introduced by just allowing check literals to appear in the body of
rules [22]. However, for simplicity we do not discuss program point assertions in this paper.

Corollary 4.5 is a direct consequence of Theorem 4.4. However, proving V D €
derivationsiP, Q) : D is not erroneous is often not feasible in practice as in general Q is
infinite. Furthermore, for a single query Q derivationsA(P, Q) may also be infinite. The ap-
proach usually taken in practice is to take a finite S'C Q (the test set) which is considered
to be representative of Q. Then, (a subset of) derivations(P, Q') is computed. If an erroneous
derivation is found, diagnosis is started. Otherwise, P is (unsafely) assumed to be correct w.r.t
A though it has not actually been proved, or more testing is performed. Furthermore, this se-
mantics can also be used to obtain answers to the original query, as stated by Theorem 4.6
below.

Theo rem 4.6 Let P be a program, A a set of assertions, and Q set of queries. If P is partially
correct w.r.t. „4then derivations(P,Q) = derivationsiP, Q).

5 Run-Time Checking with Existing CLP Systems
Even though the semantics for programs with assertions presented in the previous section can
be used to perform run-time checking, an important disadvantage is that existing CLP system
do not implement such semantics. Modification of a CLP system with that aim is not a trivial
task due to the complexity of typical implementations. Thus, it seems desirable to be able to
perform run-time checking on top of existing systems without having to modify them. Writing a
meta-interpreter which implements this semantics on top of a CLP system is not a difncult task.
However, the drawback of this approach is its inefficiency due to the overhead introduced by the
meta-interpretation level.4 A second approach, which is the one used in our implementation, is
based on program transformation. Given a program P, another program P' is obtained which
checks the assertions while running on a standard CLP system. The meta-interpretation level
is eliminated since the process of assertion checking is compiled into P'.

The program transformation from P into P' given a set of assertions A is as follows. Let
new(P,p) denote a function which returns an atom of a new predicate symbol different from
all predicates defined in P with same arity and arguments as p. Let renaming(A,p,p') denote
a function which returns a set of assertions identical to A except for the assertions referred to
p which are now referred to p', and let renaming(P,p,p') denote a function which returns a
set of rules identical to P except for the rules of predicate p which are now referred to p'. We
obtain P' = rtchecks(A,P), where:

, , , , , w í rtchecks(A', P') if A = {A} U A"
rtchecks(A, P) = i P ÚA = $

where

A' = renaming(A" ,p,p')
P1 = renaming(P,p,p') U {CL}
p' = new(P,p)
~j _ í p:-check(C,A), p'. if A = calls(p,C)

~ \p:-(ts(C)->p', check{S,A) ; p'). iíA = success(p,C,S)

As usual, the construct (cond-> then ; else) is the Prolog if-then-else. The program above
contains two undefined predicates: check(C,A) and ts(C). check(C,A) must check whether C
holds or not and raise an error if it does not. ts(C) must return true iff for the current constraint
store 9, 9 =>p C. As an example, for the particular case of Prolog, check(C, A) can be defined
as "check(C,A) : - (ts(C) -> t r u e ; error(A)) . " where e r ro r (A) is a predicate which
informs about the false assertion A. ts(C) can be defined as "ts(C) : - copy_term(C,Cl) ,
c a l l (C l) , va r i an t (C ,C l) . " .

Theo rem 5.1 [Program Transformation] Let P be a program and A a set of assertions. Let
P' = rtchecks(A, P). If during the execution of P' for a query Q a literal error (A) is executed
then A is false and E(A, P, Q) ^ 0.

Theorem 5.1 guarantees correctness of the transformed program, i.e., if the transformed
program detects that an assertion is false, it is actually false.
4 Partial evaluation may be used to reduce such overhead for those parts of the program in which no

assertion is to be checked.

6 Compile-Time Checking

In this section we present some techniques which allow in certain cases determining at compile-
time the results of run-time assertion checking. With this aim, we assume the existence of a
global analyzer, typically based on abstract interpretation [10] which is capable of computing at
compile-time certain characteristics of the run-time behavior of the program. In particular, we
consider the case in which the analysis provides safe approximations of the calling and success
patterns for predicates. Note that it is not to be expected that all assertions are checkable at
compile-time, either because the properties in the assertions are not decidable at compile-time
or because the available analyzers are not accurate enough. Those which cannot be checked at
compile-time should, in general, be checked at run-time.

6.1 Abstract Interpretation

Abstract interpretation [10] is a technique for static program analysis in which execution of the
program is simulated on an abstract domain (Da) which is simpler than the actual, concrete
domain (D). For this study, abstract interpretation is restricted to complete lattices over sets
(i.e., power domains, in general) both for the concrete {D,C) and abstract (Da,\Z) domains.
As usual, the concrete and abstract domains are related via a pair of monotonic mappings
abstraction a : D i-y Da, and concretization 7 : Da i-y D, such that

V I É B : 7(a(x)) D x and My G Da : a(~f(y)) = y.

In general Q is induced by C and a (in such a way that VA, A' € Da : A Q A' 44> 7 (A) C
7(A')), and is not equal to set inclusión. The operations of least upper bound and greatest lower
bound in the abstract domain are denoted U and n respectively. Also, as usual in abstract
interpretation, _L denotes the abstract substitution such that 7(_L) = 0.

Definition 6.1 [Calling Context] Consider a program P, a predicate p and a set of queries Q.
The calling context of p for P and Q is C(p,P, Q) = { 3vars^9\ 3D G derivations(P, Q) with
currentstore(D) = (p :: G\9) }.

Definition 6.2 [Success Context] Consider a program P, a predicate p, a constraint store 8,
and a set of queries Q. The success context of p and 9 for P and Q is S{jp,6,P, Q) = { 3vars^9'\
3D g derivations(P, Q) with D = • • • ^>P {p :: G I 9) ~» P • • • ^P (G I 9').

We can restrict the constraints in the calling and success contexts to the variables in p since
this does not affect the behavior of calis and success assertions.

Goal dependent abstract interpretation takes as input a program P, a set Qa of pairs (j)j,\j),
where pj is a predicate symbol (denoting one of the exported predicates) and Xj a restriction
of the initial stores for p expressed as an abstract substitution A in the abstract domain Da,
and which represents the set of concrete queries Q = 7(Qa)- Such an abstract interpretation
computes a set of triples Analysis(P, Qa,Da) = {{pi, AJ, AJ) , . . . , (p„, A°, A*)}.

For each predicate p i n a program P not detected to be dead code, we assume that the
abstract interpretation based analysis computes a tupie (p, Ac, As). Correctness of abstract in­
terpretation guarantees that 7(AC) D C(p,P, Q) and 7(AS) ~D \Jge^(\c) S(p,9,P, Q).

6.2 Exploiting Information from Abstract Interpretation

Before presenting the actual sufficient conditions that we propose for performing compile-time
checking of assertions, we present some definitions and results which will then be instrumental.

Definition 6.3 [Trivial Success Set] Given a literal L and a program P we define the trivial
success set oí L in P as

TS(L,P) = {3vars(L)9\0^PL}

This definition is an adaptation of that presented in [24], where analysis information is used
to optimize automatically parallelized programs.

Definition 6.4 [Abstract Trivial Success Subset] An abstract substitution X^SÍL P) ^S a n °^'

stract trivial success subset of L in P iff 7(A^SÍL p-.) C TS(L, P).

Lemma 6.5 Let A be an abstract substitution and let XTS(L p^ be an abstract trivial success
subset of L in P .

1. if A C A T S (L p) then V 0 G 7(A) : 8 =>F L

2. if A n A T S (L P) ^ -L then 3 0 e 7(A) :0^PL

Definition 6.6 [Abstract Trivial Success Superset] An abstract substitution X^SÍL P) *S a n

abstract trivial success superset of L in P iff 7 (A+ s (L p)) 2 TS(£, P) .

Lemma 6.7 Let A be an abstract substitution and let X^SÍL P) ^ e a n abstract trivial success
superset of L in P .

1. if XTS(L,P) ^ A t h e n V 6> : if (9 =>P L then 0 e 7 (A) .
2. if An A + s (L p) = _L then V0 e T(A) :0i>PL

In order to apply Lemmas 6.5 and 6.7 effectively, accurate A j s / L p-, and A^s/L p-, are

required. Finding a correct, and hopefully accurate ^SÍL P) c a n simply be done by analyzing

the literal L and taking X^SÍL P)
 = ^" ^ t he analysis information for L is (L, Ac, As). Correctness

of the analysis guarantees that As is a superset approximation of TS(L, P) .
Unfortunately, obtaining a (non-trivial) correct ^SÍL p) m a n automatic way is not so easy,

assuming that analysis provides superset approximations. In [24], correct ^TS(L P) ^or built-in
predicates were computed by hand and provided to the system as a table of "builtin abstract
behaviors". This is possible because the semantics of built-ins is known in advance and does
not depend on P (also, computing by hand is well justified in this case because, in general, code
for built-ins is not available since for efficiency they are often written in a lower-level language
-e.g., C- and analyzing their deñnition is thus not straightforward).

In the case of user deñned predicates, precomputing AyS(L p, is not possible since their
semantics is not known in advance. However, the user can provide trust assertions which provide
this information. Also, since in this case the code of the predicate is present, analysis of the
definition of L can also be applied and will be effective if analysis is precise for L, i.e., 7(AS) =
Ueg7(A=) S(Pi®->Pi 2) rather than 7(AS) D Ueg7(A=) S(Pi®->Pi 2)- ^n t n i s situation we can use
As as (the best possible) ^TSÍL p)- R<e(luirmg that the analysis be precise for any arbitrary
literal L is not realistic. However, if the success set of L corresponds exactly to some abstract
substitution A¿, i.e. TS(L,P) = 7(A¿), then analysis can often be precise enough to compute
(L, AC,AS) with As = XL- This implies that not all the tests the user could write are checkable
at compile-time, but only those of them which coincide with some abstract substitution. This
means that if we only want to perform compile-time checking, then it is best to use tests which
are perfectly captured by the abstract domain. An interesting situation in which this occurs is
the use of regular programs as type deñnitions (as in Figure 2). There is a direct mapping from
type deñnitions (i.e., the abstract valúes in the domain) to regular programs and vice-versa
which allows accurately relating any abstract valué to any program deñning a type (i.e., to any
regular program). In our implementation of the framework the user can choose whether to use
type deñnitions or regular programs for defining tests. In the ñrst case, the corresponding regular
program is automatically generated if run-time checking is to be performed. Unfortunately, in
general there is no such straightforward mapping from abstract substitutions to programs for
a given arbitrary abstract domain.

6.3 Checked Assertions

In this section we provide sufficient conditions for proving at compile-time that an assertion is
never violated. Detecting checked assertions at compile-time is quite useful. First, if all assertions
are found to be checked, then the program has been validated. Second, even if only some
assertions are found to be checked, performing run-time checking for those assertions can be
avoided, thus improving efficiency of the program with run-time checks. Finally, knowing that
some assertions have been checked also allows the user to focus debugging on the remaining
assertions.

Theorem 6.8 [Checked Calis Assertion] Let calls(p, Precond) be an assertion, P a program,
and (p, Ac, As) the analysis information for p and a class of queries Q. If Ac C A^ s ,P r e c o n d P)
then A is checked.

Theorem 6.9 [Checked Success Assertion] Let success(p, Pre, Post) be an assertion, and P
a program. Let (p, Ac, As) be the analysis information for p and a class of queries Q. If

1. AC n ><TS(Pre,P) = -1"' OT

2. As C. ATS(.post jP)

then A is checked.

Theorem 6.9 states that there are two situations in which a success assertion is checked.
Case 1 indicates that the precondition is never satisñed, and thus the postcondition does not
need to be tested. Case 2 indicates that the postcondition holds for all stores in the success
contexts, which is a superset of the applicability set of the assertion.

6.4 True Assertions

As with checked assertions, if an assertion is true then it is guaranteed that it will not raise
any error at run-time. Thus, there is no need to consider it when performing run-time checking.
However, there is an important difference between them. Assertions which are checked will
not raise errors for the considered (class of) queries, but may not hold for other queries. True
assertions hold for any possible query and thus can be used as a (goal-independent) property
of the program, regardless of the query. Thus, true assertions can be used to express analysis
information, as already done, for example, in [5]. This information can then be reused when
analyzing the program for different queries.

Note that, due to the definition of true assertions, an assertion calls(p, Precond) can never
be found to be true, as the calling context of p depends on the query. If we pose no restriction
on the queries we can always find a calling state which violates the assertion, unless Precond
is a tautology.

Theorem 6.10 [True Success Assertion] Let success(p, Pre, Post) be an assertion, and P a
program. Let (p, Ac, As) be the analysis information for p and a class of queries Q. If

1- \s(Pre,p) E Ac, and
2. As C AT S (.p o s t P)

then A is true.

Condition 1 guarantees that As describes any store which is a descendent of a calling state of
p which satisñed the precondition. Condition 2 ensures that any store described by As satisnes
the postcondition. Thus, any store in the success context originated from a calling state which
satisñed the precondition satisnes the postcondition.

6.5 False Assertions

The aim of this section is to find sufficient conditions which ensure statically that there
is an erroneous derivation D e derivations(P, Q), i.e., without having to actually compute
derivations(P, Q). Unfortunately, this is a bit trickier than it may seem at first sight if analysis
over-approximates computation states, as is the usual case.

Theorem 6.11 [False Calis Assertion] Let calls(p, Precond) be an assertion, and P a program.
Let {p, Ac, As) be the analysis information for p and a class of queries Q. If C(p, P,Q) ^ 0 and
Ac n A¿ c /D , D Í = 1 then A is false.

T 3 (Precond, P)

In order to prove that a calis assertion is false it is not enough to prove that ^rsíPrecond P) '-
Ac as the contexts which viólate the assertion may not appear in the real execution but rather
may have been introduced due to the loss of accuracy of analysis w.r.t. the actual computation.
Furthermore, even if Ac and ^rstPrecond p) a r e m c o m P a t i b l e , it may be the case that there are
no calis for predicate P in derivations(P, Q) (and analysis is not capable of detecting so). This
is why the condition C(p, P, Q) ^ 0 is also required.

Prog
ann
palin
progeom
queen
warplan

Ps
66

6
10
6

31

Types
Props

514
28
58
28

132

Infer
9.64
0.56
0.70
0.23
8.33

Símp
0.55
0.19
0.65
0.09
0.12

Modes
Props

265
15
56
26
71

Infer
1.60
0.18
0.08
0.05
1.83

Símp
1.22
0.02
0.06
0.03
0.07

Aliasing
Props

419
22
57
28
98

Infer
2.22
0.21
0.06
0.04
2.35

Símp
6.57
0.02
0.06
0.04
0.10

Fíg. 3. Analysis/Checking Performance

Theorem 6.12 [False Success Assertion] Let success(p, Pre, Post) be an assertion, and P a
program. Let (p, Ac, As) be the analysis information for p and a class of queries Q. If

1. Ac n A T S (P í , e P) T¿ _L, and

2. As n A + s (P o r f P) = J_ and 3 9 e 7(A
C n A T S (P r e P)) : S[p,9,P, Q) * 0-

then A is false.

Now again, As is an over-approximation, and in particular it can approximate the empty
set. This is why the extra condition 3 6 £ 7(AC n ^síPre f)) : ^(P> ^' -PJ 2) T̂ ^ is required.

If an assertion A is false then the program is not correct w.r.t. A. Detecting the mininal
part of the program responsible for the incorrectness, i.e., diagnosis of a static symptom is an
interesting problem. However, such static diagnosis is out of the scope of this paper.

7 Implementation

We have implemented the schema of Figure 1 as a generic framework. This genericity means that
different instances of the tools involved in the schema can be incorporated in a straightforward
way. Currently, two different experimental debugging environments have been developed using
this framework: ciaopp, the CIAO system preprocessor, developed by UPM, and f dtypes, an
assertion-based type inferencing and checking tool developed by Pawel Pietrzak at the U. of
Linkóping, in collaboration with UPM. Also, an assertion-based preprocessor for ProloglV has
been developed by Claude Lai of ProloglA extending the work of [26], which is based on the
same overall design, but separately coded and using simpler analysis techniques. These three
environments share the same source language (ISO-Prolog + finite domain constraints) and the
same assertion language [23], so that source and output programs (annotated with assertions
and/or run-time tests) can be easily exchanged. f dtypes has been interfaced by Cosytec with
the CHIP system (adding a graphical user interface) and is currently under industrial evaluation.

ciaopp uses as analyzers both the CLP versión of the PLAI abstract interpreter [16] and
adaptations of Gallagher's type analysis [15], and works on the domains of moded types, def-
initeness, freeness, and grounding dependencies (as well as more complex properties, such as
bounds on cost or non-failure for Prolog programs). This tool is currently an integral part of
the CIAO system.

The actual evaluation of the practical beneñts of these tools is beyond the scope of this
paper, but we believe that the signiñcant industrial interest shown is encouraging. Also, it has
certainly been observed during use by the system developers and a few early users that these
tools can indeed detect some bugs much earlier in the program development process than with
any previously available tools. Interestingly, this has been observed even when no specifications
are available from the user: in these systems the system developers have included a rich set
of assertions inside library modules (such as those defming the system built-ins and standard
librarles) for the predicates deñned in these modules. As a result, symptoms in user programs
are often flagged during compilation simply because the analyzer/comparator pair detects that
assertions for the system library predicates are violated by program predicates.

It is also not our current purpose to perform a detailed evaluation of the performance of
these systems. However, preliminary results also show that the performance is quite reasonable.
Figure 3 presents results for ciaopp, inferring types (using Gallagher's type analyzer [15]),
modes (using a variant of the Sharing+Freeness domain [20]), and variable aliasing (using the

Prog
ann
palin
progeom
queen
warplan

With Run-time Checks
Types

Props
514
28
58
28
132

Slowdown
2.95
15.0
104

6.10
190

Modes
Props

265
15
56
26
71

Slowdown
3.55
6.00
65.0
6.10
151

Aliasing
Props

419
22
57
28
98

Slowdown
3.50
9.00
66.0
6.10
177

Fig. 4. Run-Time Checking Cost

standard Sharing+Freeness). Analysis times are relatively well understood for these domains.
The assertion processing time (normalization, simplification, etc.) obviously depends on the
number of assertions in the input program. Given the lack at this point of a standardized set
of benchmarks including assertions, for our preliminary evaluation we have opted for a simple
and repeatable method of generating assertions automatically: previous to our measurements,
we have run the analyzer on the program, producing t rue assertions which express the analysis
results, rewritten such assertions into check assertions, and used this program as input for
the system. Prog is the program being debugged and Ps the number of predicates, and, thus,
of assertions (analysis variants were collapsed into one per predicate) in the program. Props
is the number of properties which appear in the program assertions. Infer the analysis time,
and Simp the time taken by the comparator to simplify the input assertions. These times are
relative to the time taken by the standard (SlCStus-)Prolog compiler to compile the program
without assertions. For example, a 2 for Infer means that analysis time is twice the normal
Prolog compiler time for the benchmark.

Clearly, in our case all assertions should be proven to be checked statically (and, indeed
ciaopp does so). Figure 4 provides some data on the run-time cost of the assertions eliminated.
It shows the slowdowns incurred when running the programs with the assertions relative to
the running times of the original programs without assertions. Prog and Props are as before.
Obviously, in our stylized case, when running the programs with assertions through ciaopp no
slowdowns occur, since all run-time checks are eliminated.

Again, the purpose of presenting these results is just to give a flavor for the behavior of
the system. Clearly, the results should be contrasted with those obtained in an exhaustive
evaluation, using more realistic, user provided assertions, which is left as future work.

References

1. A. Aggoun, F. Benhamou, F. Bueno, M. Carro, P. Deransart, W. Drabent, G. Ferrand,
F. Goualard, M. Hermenegildo, C. Lai, J.Lloyd, J. Maluszynski, G. Puebla, and A. Tessier. CP
Debugging Tools: Clarification of Functionalities and Selection of the Tools. Technical Report
D.WP1.1.M1.1-2, DISCIPL Project, June 1997.

2. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through types to
assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

3. K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG programs. Informa­
tion and Computation, 1(106):109-157, 1993.

4. J. Boye, W. Drabent, and J. Maluszynski. Declarative diagnosis of constraint programs: an
assertion-based approach. In Proc. of the Srd. Int'l Workshop on Automated Debugging-
AADEBUG'97, pages 123-141, Linkoping, Sweden, May 1997. U. of Linkoping Press.

5. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard Prolog Pro­
grams. In European Symposium on Programming, number 1058 in LNCS, pages 108-124, Sweden,
April 1996. Springer-Verlag.

6. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and
G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Constraint
Logic Programs. In Proc. of the 3rd. Int'I, Workshop on Automated Debugging-AADEBUG'97,
pages 155-170, Linkoping, Sweden, May 1997. U. of Linkoping Press.

7. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract Inter­
pretaron Algorithm for Prolog. ACM Transactions on Programming Languages and Systems,
16(1):35-101, 1994.

8. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs by ab­
stract diagnosis. In M. Dams, editor, Analysis and Verification of Múltiple-Agent Languages, 5th
LOMAPS Workshop, number 1192 in Lecture Notes in Computer Science, pages 22-50. Springer-
Verlag, 1996.

9. M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In L. Fribourg and
F. Turini, editors, Proc. Logic Program Synthesis and Transformation and Metaprogramming in
Logic 1994, volume 883 of Lecture Notes in Computer Science, pages 440-450, Berlin, 1994.
Springer-Verlag.

10. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Symposium on
Principies of Programming Languages, pages 238-252, 1977.

11. P. Deransart. Proof methods of declarative properties of definite programs. Theoretical Computer
Science, 118:99-166, 1993.

12. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in Algorithmic De­
bugging. In Proceedings of the Intl. Conf. on Fifth Generation Computer Systems, pages 573-581,
1988.

13. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with assertions. In
(H. Abramson and M.H.Rogers, editors, Meta-programming in Logic Programming, pages 501-522.
MIT Press, 1989.

14. G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177-198, 1987.
15. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic programs.

In Pascal Van Hentenryck, editor, Proceedings of the Eleventh International Conference on Logic
Programming, pages 599-613. The MIT Press, 1994.

16. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Global Analysis of Constraint Logic Programs. ACM Transactions on Programming
Languages and Systems, 18(5):564-615, 1996.

17. M. Hermenegildo and the CLIP Group. Programming with Global Analysis. In Proceedings of
ILPS'97. MIT Press, October 1997. (abstract of invited talk).

18. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge MA, 1994.
19. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic Program­

ming, 19/20:503-581, 1994.
20. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of Pro­

gram Variables Through Abstract Interpretation. In 1991 International Conference on Logic Pro­
gramming, pages 49-63. MIT Press, June 1991.

21. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Using
Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347, July 1992. Originally
published as Technical Report FIM 59.1/IA/90, Computer Science Dept, Universidad Politécnica
de Madrid, Spain, August 1990.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of Constraint
Logic Programs. In Proceedings of the ILPS'97 Workshop on Tools and Environments for (Con­
straint) Logic Programming, October 1997.

23. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of Constraint
Logic Programs. Technical Report CLIP2/97.1, Facultad de Informática, UPM, July 1997.

24. G. Puebla and M. Hermenegildo. Abstract Specialization and its Application to Program Par-
allelization. In J. Gallagher, editor, VI International Workshop on Logic Program Synthesis and
Transformation, number 1207 in LNCS, pages 169-186. Springer-Verlag, 1997.

25. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an emcient purely
declarative logic programming language. JLP, 29(1-3), October 1996.

26. E. Vetillard. Utilisation de Declarations en Programmation Logique avec Constraintes. PhD thesis,
U. of Aix-Marseilles II, 1994.

