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Abstract

The use of smartphone-based location data to quantify behavior longitudinally and passively is rapidly gaining traction

in neuropsychiatric research. However, a standardized and validated preprocessing framework for deriving behavioral

phenotypes from smartphone-based location data is currently lacking. Here, we present a preprocessing framework

consisting of methods that are validated in the context of geospatial data. This framework aims to generate context-

enriched location data by identifying stationary, non-stationary, and recurrent stationary states in movement patterns.

Subsequently, this context-enriched data is used to derive a series of behavioral phenotypes that are related to

movement. By using smartphone-based location data collected from 245 subjects, including patients with

schizophrenia, we show that the proposed framework is effective and accurate in generating context-enriched

location data. This data was subsequently used to derive behavioral readouts that were sensitive in detecting

behavioral nuances related to schizophrenia and aging, such as the time spent at home and the number of unique

places visited. Overall, our results indicate that the proposed framework reliably preprocesses raw smartphone-based

location data in such a manner that relevant behavioral phenotypes of interest can be derived.

Introduction

The ability to objectively quantify different aspects of

human behavior is essential for studies that aim to

understand variations in human behavior and their

underlying biological mechanisms. To date, such studies

predominantly rely on subjective research methods such

as in-person interviews, questionnaires and self- or proxy-

rated measures. Subsequently, these behavioral pheno-

typic measures are used to examine interactions with an

array of biological parameters, such as genotypes, brain

activity patterns or structural brain data to study the

biological underpinnings of the observed behavior. While

such studies have led to numerous important insights, the

current methods for behavioral phenotyping also have

their limitations that preclude their objectivity. Most

notably, these methods rely on the subject’s (or the sub-

ject’s proxy) account of behavior, and are invariably

obtained post hoc, i.e. questionnaire measures of behavior

are virtually never real-time. Observational assessments

are real-time, but they occur nearly always in a non-

natural (e.g., clinical) setting.

As a consequence, current behavioral assessment

methods are susceptible to a wide variety of method and

response biases1. These biases can cause systematic and

random measurement errors2, thereby impeding the

validity and interpretation of findings3. For example, when

specific symptoms, such as cognitive dysfunction or lack

of disease insight affect the subjective report of behavioral
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components, comparison between groups is severely

hampered. Also, translational animal studies cannot use

questionnaires, hence introducing additional divergence

between animal and human assessments.

Recently, researchers have started to explore the utili-

zation of smartphones as a more objective methodology

to quantify human behavior4. Contemporary smartphones

are equipped among others with sensors, such as a Global

Positioning System (GPS), accelerometer, Bluetooth, Wi-

Fi, microphone. These sensors can be used to collect a

high-resolution trace of behavioral data, which can then

be used to derive relevant behavioral markers. This

method is increasingly referred to as “digital phenotyp-

ing”5 or “passive behavioral monitoring”6. Recent studies

are already starting to reveal the clinical potential of the

approach in the context of neuropsychiatric research7–12.

The promise of this methodology is that the derived

behavioral markers may provide unprecedented and

unique insights into human behavior. Key features are (1)

data is collected in real-time, 92) in the subject’s natural

environment, and 93) without the need for any self- or

proxy reporting, thereby addressing some of the most

important challenges inherent to current behavioral

research. Further adding to the appeal of using the

smartphone is the relatively low-cost of this approach

combined with the fact that the majority of people in

western societies nowadays owns a smartphone13.

One of the most frequently used smartphone sensors in

passive behavioral monitoring is the so-called GPS. The

location data collected by this sensor primarily informs

about the physical activity of participants but can also be

used to explore different aspects of social behavior related

to mobility. However, any single location data point in its

raw state can only inform about the location in a two-

dimensional space. In contrast, the analysis of multiple

data points collected over time allows the inference of

context. Contextualization, e.g., whether one is commut-

ing between A and B, at home or visiting another location,

is the basis for deriving relevant behavioral phenotypes

from location data. This is acquired by a sequence of

preprocessing procedures that enriches the raw location

data. In addition, the process requires that a certain level

of uncertainty in location data collected by smartphones is

taken into account. Relevant behavioral phenotypes are

subsequently derived by additional calculations on this

context-enriched location data.

One major challenge in the utilization of smartphone-

based location data for behavioral monitoring in research

is the lack of a validated preprocessing framework to

generate context-enriched location data. Previous studies

that utilized smartphone-based location data9–11,14–16 to

quantify behavior employed various generic preprocessing

procedures that are not exclusively developed for location

data. These methods are often not validated in context of

location data and therefore often unable to deal with the

uncertainty in location data. As a consequence, the use of

these generic methods to preprocess location data might

generate misleading behavioral phenotypes. In the present

study, we (1) describe and evaluate the efficiency of a

preprocessing procedure specifically developed for raw

location data collected by smartphones, (2) describe a

series of behavioral measures that are derived from these

context-enriched location data, and (3) validate the sen-

sitivity of the derived phenotypes in detecting behavioral

nuances that are characteristic for specific populations

samples (Fig. 1).

To achieve these goals, we collected location data by

using a passive behavioral monitoring application called

BEHAPP6,17 in three different samples. First, we collected

data in a relatively small sample of healthy individuals

(sample 1; n= 10) to optimize and evaluate the efficiency

of the preprocessing procedures. Subsequently, these

optimized preprocessing procedures were applied on data

obtained in two additional samples (samples 2 and 3; n=

193 and n= 42 respectively) to generate context-enriched

location data (Fig. 1c). The context-enriched location data

from sample 2 and 3 was used to derive a set of six

behavioral phenotypes that relate to several basic aspects

of mobility and daily activities. Samples 2 and 3 were

selected based on specific phenotypes (ageing and schi-

zophrenia, respectively) known to be associated with cer-

tain behavioral characteristics, including relative changes

in mobility patterns. Increasing age (sample 2) is char-

acterized, for example, by a deterioration of the skeletal

and muscular system which is known to impede mobi-

lity18. For this reason, we expected a relative decrease in

mobility as a function of ageing. For schizophrenia (sample

3) it is known that the negative symptoms, which include

decreased social engagement19 and initiative20,21, are

associated with decreased mobility patterns10. Therefore,

we expect mobility patterns to be affected in some of the

derived phenotypes (e.g., time spent at home and visiting

new places) for our sample of patients with schizophrenia

relative to their age- and sex-matched controls.

In summary, we propose a preprocessing framework on

smartphone-derived location data to allow contextualiza-

tion and the inference of mobility-related phenotypes.

Subsequently, we evaluated whether the smartphone-

derived phenotypic measures of mobility were suffi-

ciently sensitive to detect differences relative to controls

and accordance with expectations given the impact of age

or the presence of schizophrenia.

Methods

Participants

We recruited three different samples of participants to

develop and evaluate the efficiency of the preprocessing

framework (sample 1) and validate the sensitivity of the
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derived behavioral phenotypes (samples 2 and 3) in

detecting sample-related behavioral changes (see Supple-

mentary Materials and Supplementary Table 1 for sample

specifications). The data in sample 2 and 3 was collected

with approval from the concerned institutional ethics review

boards and written informed consent was provided by

al subjects.

Data collection

The location (GPS) data used for this study was col-

lected by the BEHAPP22 application (see Supplementary

Materials for further details, including an example of

geospatial coordinates collected by smartphones in sup-

plementary table 2).

Preprocessing procedures

The primary aim of our preprocessing procedure is to

differentiate between stationary and non-stationary states,

and cluster those stationary states that are recurrent over

time. Examples of stationary states include being at home,

visiting a relative or being at work. Movements within these

stationery states are still considered stationary. Traveling

from work to home or from work to a supermarket are

examples of non-stationary states. We identified these

stationary states by employing a stay point detection algo-

rithm23 on raw location data that is filtered on accuracy.

This stay point detection algorithm requires two parameters,

a distance parameter θd , and a time threshold parameter

θt . These threshold parameters θt and θd were fixed at

60min for θt and 350m for θd . With these parameters, a

single stay point is detected by the algorithm if a group of

geospatial coordinates remains stationary for 60min within

an area of 350m. A further description of the preprocessing

procedures is provided in the Supplementary Materials.

Smartphone-based behavioral phenotypes

In the Supplementary Materials we provide a full

description of the behavioral phenotypes that are derived

from the context-enriched location data. This context-

enriched location data is extracted from the raw location

data by using the optimized preprocessing procedure

described above. The described phenotypes are proven to

be sensitive in detecting behavioral nuances related to

neuro-psychiatric disorders9,11.

Statistical analysis groupwise comparisons

For sample 2 we used a one-way ANOVA with a Tukey

post hoc test to study the association between the age bins

Fig. 1 Overview experiments and utilization of the samples. a Sample 1 is used to develop and evaluate the preprocessing procedure used to

contextualize raw location data collected by smartphones. b Samples 2 and 3 are used to validate the sensitivity of the derived behavioral readouts in

detecting sample specific deviations of behavior. c Visualization of preprocessing procedure used to derive context-enriched location data. The raw

location data (left figure) contains limited behavioral information and requires preprocessing to extract contextual information. Location data plotted

over time combined with contextual information as derived by the preprocessing procedure (right figure). In this figure we can easily identify several

stay points with repeated visits over time, the home location and travel patterns. This information is used to derive behavioral phenotypes such as

the number of places visited (red and green), amount of home stay (blue) and the frequency of traveling (gray).
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and the derived behavioral phenotypes. In order to

approach normality for the derived phenotypes we used a

log transformation on those phenotypes that deviated

from normality. Visual inspection of each phenotype was

performed to assess normality.

For the SZ sample (sample 3) we performed a Poisson

generalized linear model with a Tukey post hoc test to

study the difference between the SZ and their controls

on the number of stay points, trajectories and the

number recurrent stay points. For the remaining phe-

notypes (percentage of home stay, normalized entropy

and diurnal movement) we used a one-way ANOVA

with a Tukey post hoc test to evaluate the difference

between SZ and controls. For both sample 2 and 3 the

assumptions of the used statistical methods were

checked prior to analysis.

Prior to analyzing the phenotypes in sample 2 and 3 we

adjusted the count-based phenotypes for the length of

data collection by using the residuals of a linear model.

Additionally, the effect of gender was also assessed for

sample 1 and 2 on each phenotype by using a t-test and

the results revealed a non-significant effect of gender and

was therefore, not included in any further analysis.

Results

Preprocessing procedures (sample 1)

The preprocessing procedure serves (1) to enrich raw

smartphone-based location data with contextual infor-

mation by identifying non-stationary and stationary states

and (2) to identify clusters of the latter that are recurrent

over time. User confirmed validation of stationary states

from five subjects collected over a period of 2 weeks

showed that the accuracy (percentage correct) of the stay

point detection algorithm23 in correctly identifying sta-

tionary states is 94%(μ) ± 8%(sd). The accuracy of the

algorithm ranged between 100% and 95% for four out of

five subjects (95%, 95%, 98%, 100%). The performance of

the algorithm was substantially less for one subject with

an accuracy of 81%. Closer inspection revealed that the

collected location data from this subject was relatively

more precise (Fig. 2a). The precision of geospatial coor-

dinates is denoted by their confidence in meters. This

confidence is interpreted as the 68% probability that the

true location is within a specific range of proximity to the

measured coordinates. The average confidence of this

subject was with 24.9 m considerably lower than the

129.3, 108.9, 46.1, and 167.7 m that were observed for the

remaining four subjects. Somewhat counter intuitively,

the higher level of precision of GPS data in this subject led

to a relatively lower accuracy of the stay point detection

algorithm. These results suggest that the current defini-

tions of the algorithm parameters (see “Methods”) tend to

be more favorable on relative less precise GPS raw data.

The density-based clustering24 (DBSCAN) approach

aimed at identifying recurrent stationary locations as a

single entity. Our results revealed that by considering

locations within a range of 150 m (2 parameter; Fig. 2b) as

a single entity, 87% ± 13% of the stationary locations

with corresponding contextual meanings were correctly

clustered together. This accuracy is defined as the

Fig. 2 Evaluation and optimization preprocessing procedures. a Accuracy of the geospatial coordinates for each participant represented by the

confidence in meters (colored in 25% quantiles). The confidence of each geospatial coordinate is interpreted as the 68% probability that true location

is within the distance in meters. b Adjusted Rand Index for each epsilon value combined with the standard error. The optimal 2 value is 150m with

an Adjusted Rand Index of 0.87, this point is marked by the arrowed line.
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percentage of stationary locations with corresponding

contextual meaning correctly clustered together.

Count-based phenotypes (samples 2 and 3)

Count-based behavioral phenotypes such as the number

of places visited in total, unique places visited and tra-

jectories, are directly derived from the preprocessed

location data.

For sample 2 (ageing; n= 193), these count-based

behavioral phenotypes revealed (Fig. 3a–c) significant

differences between the middle aged (35–65 years) to

elderly (65–90 years) subjects and the younger (<35 years)

subjects. We found that relative to the younger group,

middle aged and elderly subjects visited significant fewer

places per day (young: 4.04 ± 2.26; middle: 2.76 ± 1.69;

elderly: 2.41 ± 1.35) and traveled significant less on a daily

Fig. 3 Behavioral phenotypes based on geospatial data for different age groupings. a Comparison of the number of places visited for three

age bins showed that relative to the <35 the 35–65 (p= 0.012) and 65–90 (p < 0.001) group visited significant fewer places [F(2,190)= 7.14,

p= 0.001]. b Number of unique places visited revealed non-significant differences for the three age bins [F(2,190)= 0.98, p= 0.378]. c Comparison of

the number of trajectories revealed that number of trajectories was higher for the <35 relative to the 35–65 (p= 0.002) and 65–90 (p < 0.001) group

[F(2,190)= 7.64, p < 0.001]. d Percentage of home stay is gradually and significantly increasing (p= 0.027, p= 0.017) with age [F(2,161)= 4.06,

p= 0.019]. e Comparison of the normalized entropy measure revealed lower scores for the 35–65 (p < 0.001) and 65–90 (p < 0.001) group [F(2,190)=

12.03, p < 0.001]. f For the diurnal movement measure we did not find any significant differences. However, noteworthy is the difference in variance

between the age groups which seems to increase by age [F(2,190)= 1.96, p= 0.144].
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basis (young: 2.10 ± 1.22; middle: 1.06 ± 0.84; elderly:

0.99 ± 0.82). With regard to the number of unique places

visited, we found no difference between the elderly sub-

jects and the other two age groups (young: 1.20 ± 1.13;

middle: 1.02 ± 0.63; elderly: 0.94 ± 0.58).

For sample 3 (Schizophrenia (SZ); n= 42), these phe-

notypes showed that relative to the age- and sex-matched

healthy control (HC) subjects the SZ subjects visited

significant fewer places (HC: 43.35 ± 23.72; SZ 34.55 ±

19.44) (Fig. 4a). In addition to this, our results also showed

that SZ subjects visited significant less unique places (HC:

15.25 ± 6.16; SZ: 11.44 ± 6.18; Fig. 4b) and traveled sig-

nificant less often (HC: 25.25 ± 20.70; SZ: 15.00 ± 12.99;

Fig. 4c).

Home Stay (samples 1, 2, and 3)

To estimate the amount of home stay we used a

heuristic-based rule (i.e. predefined rule) to identify the

home location from a set of clustered stationary states as

identified by the preprocessing procedure. We evaluated

the accuracy of this heuristic-based rule by using the user

confirmed clustered stationary states as provided by the

Fig. 4 Behavioral phenotypes based on geospatial data for SZ and HC subjects. a Comparison of the number of places visited* for SZ and HC

subjects showed that HC subjects visited significant more places [χ2 1ð Þ ¼ 18:813; p ≤ 0:001]. b HC subjects visited significant more unique places*

[χ2 1ð Þ ¼ 10:289; p ¼ 0:001]. c Comparison of the number of trajectories* showed that HC subjects travel significant more than SZ subjects

[χ2 1ð Þ ¼ 25:837; p< 0:001]. d Percentage of home stay revealed that SZ subjects spent significant more time at home compared to HC’s

[χ2 1ð Þ ¼ 7:3878; p ¼ 0:006]. e The results of the normalized entropy measure revealed that SZ subjects tend to spent significantly more time on a

small set of stationary locations [χ2 1ð Þ ¼ 4:1058; p ¼ 0:04]. f Comparison of the diurnal movement measure revealed a non-significant difference

between SZ and HC subjects. (*Counts are adjusted for the number of days data collected).
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subjects from sample 1. The results of this evaluation

revealed that with an accuracy of 100% all home locations

were correctly identified. Subsequently, we used this rule

to infer the home location in sample 2 and 3, and sub-

sequently, to determine the amount of home stay.

We used the amount of home stay per day to evaluate

the association between home stay and increasing of age

in sample 2. Our results revealed that the observed

amount of home stay per day is significantly less in the

younger subjects relative to the middle and elderly aged

groups (young: 12.95 ± 2.67; middle: 15.15 ± 3.46; elderly:

15.25 ± 3.42; Fig. 3d). The observed amount of home stay

between the middle (35–65) and elderly aged (65–90) did

not differ significantly.

For sample 3, we used the same heuristic-based rule to

estimate the percentage of home stay. Our results

revealed that subjects diagnosed with SZ on average spent

15% (i.e. 3.6 h) more time at home as compared to HC’s

(HC: 65% ± 18%; SZ: 80% ± 15%; Fig. 4a).

Normalized entropy (samples 2 and 3)

Normalized entropy quantifies the variability of time

spent at different stationary states9,11,25. Lower scores are

observed on this measure when stay times are restricted

to a small set of stationary states. Higher scores are

observed when the time spent at different stationary states

is more uniformly distributed across these stationary

states. Given this definition, we found, as expected, a

negative association between the normalized entropy

measure and the percentage of home stay (Fig. 5, r(191)=

−0.72, p < 0.001). This strong association is explained by

the fact that spending more time at home leaves less time

to visit other locations.

For the three age groups (sample 2), our results revealed

significant differences relative to the younger subjects

(<35). The results indicated greater inequality in the time

spent across different stationary locations between the

younger subjects and the middle and elderly aged subjects

(Fig. 3e). For the younger group we observed an average

normalized entropy of 0.52 ± 0.09 vs an average of 0.39 ±

0.14 and 0.36 ± 0.14 for the 35–60 and 60–90 groups,

respectively.

The normalized entropy was also significantly different

between SZ patients and age- and sex-matched HC’s

(sample 3; Fig. 4e). It revealed a greater inequality in the

time spent across different stationary locations for sub-

jects diagnosed with SZ. The normalized entropy measure

was on average 0.13 points higher in the HC group (HC:

0.51 ± 0.21; SZ: 0.38 ± 0.18).

Diurnal movement (sample 2 and 3)

The regularity in movement patterns is measured by the

diurnal movement phenotype11. Higher scores on this

behavioral phenotype are observed in subjects with a

repetitive and regular movement pattern within a 24-h

period over a consecutive assessment of multiple days11

(including weekday and weekend). Results revealed that

the regularity in movement patterns is similar for the

three age groups (7.25 ± 1.40 vs 6.68 ± 1.38 vs 6.51 ± 1.69)

(Fig. 3f).

We observed a small difference in the regularity of

movement patterns between SZ and HC; (HC: 7.25 ± 1.67;

SZ: 7.13 ± 1.47; Fig. 4f) respectively. However, this dif-

ference was not statistically significant.

Discussion

The availability of objective and real-world behavioral

phenotypes represents a fundamental change in our

ability to study variation in human behavior. Here, we

propose a framework to process raw smartphone col-

lected geospatial data. We demonstrate that objective

behavioral phenotypes of human behavior can be derived

that are clinically relevant and are effective in detecting

behavioral nuances consistent with expectation in specific

Fig. 5 Normalized entropy measure plotted against the amount of home stay per day. The dashed line represents the linear model that was

used to test the association between normalized entropy and the amount of home stay (β ¼ �0:57; p< 0:001). These results suggest that lower

scores on the normalized entropy measure is correlated with increased home stay (r(191)=−0.72, p < 0.001).
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population samples. This framework provides an impor-

tant next step in the era of digital phenotyping, namely

that of systematic pre-processing and validating passively

monitored longitudinal raw data sets to deliver biologi-

cally relevant behavioral phenotypes of interest.

The sensitivity and usability of these behavioral phe-

notypes in detecting behavioral deviations is dependent

on the efficiency of the preprocessing procedures. We

demonstrate the efficiency of a two-step preprocessing

procedure that utilizes a set of methods that are validated

in the context of geospatial data26,27. Evaluation of this

framework in terms of efficiency revealed an overall high

accuracy in detecting stationary, non-stationary and

recurrent stationary states correctly. We show that the

stay point detection algorithm23 is able to detect sta-

tionary and non-stationary states with relatively high

efficiency. Despite the relatively small size of sample 1

(n= 10), these results are in accordance with earlier

findings that demonstrated the efficiency of this same

algorithm in accurately detecting stationary and non-

stationary states from smartphone-based location

data26,27. Importantly, we found that the efficiency of the

stay point detection algorithm is dependent on the

interaction between the parameters as used by the algo-

rithm and the precision of the collected geospatial coor-

dinates. Our results suggest that under the current

conditions the algorithm was less efficient on location

data with relatively high precision. These findings indi-

cated that the choice of these parameters should depend

on the precision of the data that is used as input for the

algorithm.

In addition, we used density-based clustering

(DBSCAN24) with an optimized set of parameters to

identify recurrent stationary states with identical entities.

We showed that with these optimized parameters we were

able to identify recurrent stationary states with high

accuracy (87%). This finding is consistent with results of

earlier work that demonstrated the efficiency of the

DBSCAN in clustering stationary states with identical

entities together28. It is important to bear in mind that

this approach remains relatively limited when it comes to

differentiating between two distinct stationary states that

are close in space. This limitation is due to the range

parameters in DBSCAN that takes into account the

variability in coordinates for stationary states with an

identical entity. As a consequence, stationary states with

distinct entities that are close in space are likely to be

identified as a single entity due to the uncertainty that is

introduced by this range parameter.

Overall, our results suggest that the proposed pre-

processing steps (stay point detection and DBSCAN

clustering) are efficient and reliable in detecting sta-

tionary and recurrent stationary states. Given that non-

stationary states are defined as the inverse of stationary

states, our results also provide evidence that non-

stationary states are effectively identified by these pre-

processing procedures.

We utilized these stationary and non-stationary states

to formulate a set of behavioral phenotypes, which

subsequently proved to be sensitive in detecting impor-

tant behavioral nuances in our population samples. In

the sample that included subjects across a wide age range

(sample 2), our results revealed changes in these phe-

notypes that are likely associated with processes of aging.

For example, relative to the younger subjects, we found

that the middle and elderly aged subjects visited fewer

places, traveled less and spent more time at home. Our

findings did not reveal a difference between the middle

and elderly aged subjects. We had expected a difference

in mobility patterns, since the elderly group could be

hypothesized to have a weaker fitness due to age-related

physical changes in the skeletal and muscular system18

and elderly could be expected to be less active since they

most often have retired from work. The difference

between the results and these initial expectations are

likely related to the fact that we did not take into account

that the elderly group is likely to be more active due to

retirement, while the context of work in the middle-aged

group is likely associated with a higher frequency of

sedentary lifestyle due to employment status. which is in

accordance with earlier findings29. Arguably, one could

still expect differences in certain aspects of mobility that

were not captured by the phenotypic endpoints mea-

sured in the current study.

In addition, we found significant differences between SZ

and HC subjects. For instance, we showed that subjects

diagnosed with SZ significantly visited fewer unique pla-

ces, traveled less and spent more time at home as com-

pared to their age- and gender-matched controls. These

significant differences may be indicators of reduced social

behavior and may relate to the known diminished social

functioning in the SZ group20,30 and other psychiatric

disorders31. These findings are comparable to an earlier

location data based phenotype of decreased exploratory

behavior in patients with depression who are also known

to suffer from social withdrawal9,11. Alternatively, these

findings could also be driven by a different attitude of

patients with schizophrenia towards smartphones (e.g.,

averse due to paranoid tendencies) or cognitive impair-

ments that cause patients to leave their smartphone at

home. Therefore, while our findings are consistent with

what is known about social behavior in schizophrenia,

alternative explanations exist which are unrelated to the

social functioning of a patient. Additional studies

addressing parallel social functioning and smartphone

monitoring assessments are needed to extend the vali-

dation of digital measures of social behavior in these

patient cohorts.
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It is important to emphasize that we used age and

neuropsychiatric disease status to demonstrate that the

location-based derived behavioral phenotypes are suffi-

ciently sensitive to detect behavioral nuances char-

acteristic to specific populations. While our results

evidently demonstrate this sensitivity, it also suggests

the importance of taking into account demographical

factors when using these phenotypes for groupwise

comparisons. Demographical factors such as age,

employment status, living in a rural or urban area, or

disability status have the potential to affect the derived

phenotypes. For example, employment status and living

in a rural area might affect the distance travelled and

factors such as age have an effect on the number of

places visited and the amount of time spent at home as

showed in this paper. Without the availability of subjects

matched on the basis of several demographical factors,

the ability to compare these phenotypes between dif-

ferent populations/groups is limited and might lead to

wrong conclusions.

It is also noteworthy that the interpretation of the

derived phenotypes is limited to the definition of how the

stationary locations are identified here. While we have

shown that the stay point detection algorithm23 as used

here is accurate in detecting stationary locations, the

movement within stationary locations (i.e. buildings) is

not registered by this approach. With regard to the

derived phenotypes this indicates that the movement

within stationary locations is not taken into account by

the derived phenotypes. This restricts the behavioral

interpretation of these phenotypes and is therefore, lim-

ited to the definition of a stationary location. This inability

to detect movement within stationary locations is due to

the constraint that smartphone-based location data solely

reflects movement with a degree of uncertainty and pro-

vides a rough estimation of the true location. Additional

smartphone sensors such as the accelerometer could

potentially be utilized to quantify movement with sta-

tionary locations and enrich the information used to

derive phenotypes.

We expect that passive monitoring strategies have an

important potential for both research and clinical care

related to human behavior and mental health. For

research, implementation of these methods will generate

behavioral data that is unlike any of the currently existing

data in this field in terms of their objective nature, their

high resolution and their acquisition in a natural, real

world setting. There is also clinical potential; we speculate

that objective measures of mobility can provide, at least

theoretically, clinically relevant insights in a patient’s

physical exercise and may also be related to their level of

social engagement. Accuracy of the latter may be

improved by combining GPS data with other data

retrievable from smartphones related to communication

(e.g. frequency of phone calls or texting). We identify two

important next directions for further research towards

validation of these potential clinical applications of passive

monitoring strategies.

First, it is important to note that our findings for schi-

zophrenia do not necessarily extrapolate to other psy-

chiatric disorders. While we hypothesize that passive

monitoring strategies will likely generate relevant insights

for all psychiatric disorders, we expect that both nature

and effect size of changes in mobility and social behavior

patterns may reveal a combination of differentiating and

overlapping signatures across disorders32. Therefore, an

important next step in this field will be to validate this

strategy for all major psychiatric disorders, and to evaluate

differences and similarities between the observed beha-

vioral patterns.

Second, for a clinical application it will be vital to also

explore the extent to which changes in individual passive

monitoring data patterns may be used to identify transi-

tions in mental health status; for instance someone reco-

vering from a depressive mood episode may be showing a

gradual increase in mobility. Another example may be the

detection of decrease in social interaction through passive

monitoring a possible early warning signal for an

impending recurrent psychotic episode in an individual

diagnosed with schizophrenia.

In sum, we propose a framework to derive digital

quantitative measures of human mobility that can be

assessed in a longitudinal and objective manner in the

real-world environment. Following preprocessing raw

smartphone location data, human behavioral phenotypes

have been developed, validated through user confirma-

tion, and successfully applied to assess the effects of

ageing and schizophrenia on these measures. We suggest

that provided data is adequately processed, digital phe-

notyping has the potential to provide a new entry into the

quantitative and more objective assessment of behavior in

humans, allowing to expand our knowledge of the bio-

logical mechanisms that drive these behaviors. For neu-

ropsychiatric disorders, this is the first step towards a

scalable and more objective measure of behavior, which

will be a critical step forward to improve our under-

standing of mental illness.
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