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Abstract: The ability to interpret information through automatic sensors is one of the most important
pillars of modern technology. In particular, the potential of biosensors has been used to evaluate
biological information of living organisms, and to detect danger or predict urgent situations in
a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing
a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear
optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in
detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all
over the world, and biosensors have emerged as a key for providing an analysis based on physical
and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be
responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects
open up a series of options to expand the applications of optical biosensors. Nonlinearities together
with computer tools are suitable for the identification of complex low-dimensional agents. Machine
learning methods can approximate functions to reveal patterns in the detection of dynamic objects in
the human body and determine viruses, harmful entities, or strange kinetics in cells.

Keywords: optical biosensors; photonics; machine learning; nonlinear optics; SARS-CoV-2

1. Introduction

The field of biosensors is highly dynamic, with scientific research advances that have
mainly flourished in the last decades. Numerous biosensors have been developed for
nanotechnology, engineering, molecular biology, computer, and optics [1]. In general, there
are three types of biosensors: electrochemical, optical, and piezoelectric; each kind has
its own method for transducing signals [2]. Nanoscale functions have been shown to be
attractive for manufacturing biosensors [3].

A biosensor is a tool with the ability to detect and determine biological expressions
in an environment [4]. This involves a biorecognition fragment for a detailed union and
specifies the target molecules (enzymes, antibodies, proteins, cell receptors, toxins, DNA,
pharmacists, etc.) [5]. Due to the powerful optical characteristics of semiconductors, they
have provided great sensitivity and repeatability for integrated photonic biosensors based
on silicon [6]. The performance of the optical sensors in semiconductor platforms may
be impacted by two-photon absorption and free carrier dispersion, even if silicon offers
optical advantages [7]. Therefore, different scientific groups have oriented their work
to design other low-cost materials with advanced characteristics for developing optical
biosensors [8].

Optical biosensors outperform standard analytical techniques by allowing real-time,
label-free detection of biological and chemical compounds in a highly sensitive, selective,
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and cost-effective way [9]. Optical biosensors have been developed for detecting optical sig-
nals related to analytes via biocatalytic or bio-affinitive processes [10]. They are categorized
according to the mechanism for biosensing, which can be refraction, reflection, Raman
scattering, infrared emission, fluorescence, chemiluminescence, absorption, dispersion, or
phosphorescence [11].

Optical biosensors can be assisted by plasmonic effects in order to easily identify
a virus confirmed by molecules in exhaled air, or droplets such as those represented by
nasopharyngeal swabs and saliva [12]. In essence, plasmonic detection techniques act as a
viral pre-screening tool to enable the detection of infected individuals [13]. Biosensors have
demonstrated their ability to detect viruses in human blood: an example is dengue [14] or
chikungunya [15].

Surface plasmon resonance (SPR) has become the most sensitive label-free technique
for the detection of various molecular species in solution, and it is of great significance in
drug, food safety, and biological reaction studies [16]. SPR excitations are the result of free
electron density oscillations and the interaction of electromagnetic waves between dielectric
and metal film surfaces; the collective electronic excitations are the fundamental mechanism
behind SPR experiments [1]. The reflected light in SPR systems is significantly reduced
when the evanescent wave and the surface plasma wave produced by light resonate.

SPR technology has been utilized to produce biosensors for a variety of uses, including
plasmonic detectors, optical polarization encoding, sensing technologies, and bio-photonic
sensors [17]. SPR has been employed in several biosensor applications because it is highly
sensitive to the refractive index of materials nearby [18]. The oscillation of free electrons
in the conducting band of the metal is known as surface plasmons. They can only be
excited by a polarized wave that is orthogonal to the plane of incidence and the direction of
propagation of the surface plasmons [19]. Additionally, remarkable discoveries have been
reported for biosensors based on the Raman effect, which is an inflexible shift in radiation
frequency caused by optical light in vibrating molecules [20].

Plasmon-based technologies, such as SPR biosensors, have outstanding performance
and versatility, and they are one kind of biosensor that is able to detect COVID-19 [21]. An
SPR biosensor is capable of completing a reliable COVID-19 test in a matter of minutes
compared to other long PCR or antigen tests that patients must perform in medical centers
or hospitals [22]. Therefore, SPR-based techniques attract attention for developing biosen-
sors. The detailed processing in SPR simply involves excitation of the coupled-resonator
optical-waveguide at a fixed wavelength and imaging of coupled-resonator optical-out-
of-plane waveguide’s elastic light-scattering huge factor [23]. The method can make use
of a discontinuous transition of the coupled-resonator optical waveguide (CROW) eigen-
state excited at a fixed laser wavelength in response to a slight change inside the coating
refractive index [24].

Single protein detection has been achieved using several label-free optical techniques,
including two with imaging capabilities. One involves heating a protein solution with a
laser in an indirect manner while the change in the solvent’s refractive index is recorded.
Interferometric scattering is the base of another technique [25]. The typical method for
detecting the scattering light of plasmonic nanoparticles is based on scanning the spectra
of nanoparticles using dark-field microscopy, which is time-consuming, laborious, and
the small capacity of the sample regularly acts as a limitation [26]. On the other hand,
surface-enhanced Raman scattering (SERS) methods are also assisted by SPR effects pro-
vided by specific metal nanoparticles such as their main component [20]. The double
recognition biosensor SERS is an effective way to measure a variety of biological agents in
the laboratory [27].

Biosensors based on bimetallic nanostructures have demonstrated high sensitivity
in the detection of different substances, acting as an alternative for use [28]. In addition
to their portability and high detection efficiency, some biosensors based on SERS can be
reused more than three times when replacing the thread of the DNA substrate and washing
the microfluidic device again [29]. Recently, several SERS substrates have been developed
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for biosensor applications with a high signal improvement for superimposed plasmonic
fields. SERS is very attractive as an alternative method for detecting quantitative and
co-multiplexed DNA because it can generate specific molecular oscillation spectra [30].

SERS -based methods have had a high impact on biomolecular analysis due to several
factors, such as the fingerprint signal from the SERS nanotag and the stability [31]. As a rule,
when a laser illuminates nanoparticles immobilized with the Raman reporter molecule,
a local hotspot is initiated, and the Raman signal intensity of the reporter molecule is
amplified by several orders of magnitude [32]. So far, research papers have been published
demonstrating the potential of SERS-based methods for detecting sensitive and multiplexed
biomarkers [33]. The dispersion of the cross-section spectrum shows a peak whose position
also depends on the thickness of the biomolecular layer of the nanoparticles. The depen-
dence of the cross-section spectra and the corresponding maximum changes in the thickness
of the biomolecular layer are presented by a dispersing effect. Compared with the peaks of
the absorption and dispersion spectra, the position of the peak of the dispersion spectrum
is more sensitive to changes in the thickness of the biomolecule layer. The peak dispersion
change can be about 8 nm, while the saturable absorption can be 2.5 nm [34]. In previous
investigations, it has been pointed out that the optical characteristics of cadmium telluride
nanorods have a better property under laser excitement with the absorption coefficient of
two-photon absorption of 12.0 × 10−10 m/W at 100 µJ. Applications of cadmium telluride
nanorods seems to be promising for the next-generation nonenzymatic biosensors and
memory devices [35]. However, nonlinear optical (NLO) properties of semiconductors are
limited by power level requirements. Nonlinear semiconductors are designed to exhibit
high nonlinearity in refraction without effects associated with two-photon absorption; this
method allows waveguides to operate at low power levels. For example, it has been indi-
cated that silicon photon waveguide biosensors can detect variations in the transmission
spectrum at 1550 nm of the urine glucose concentration with the evaluation of the refractive
index [36].

It must be highlighted that NLO processes have opened up a variety of options for
improving biosensors. There are many important factors to consider when designing
nonlinear biosensors, including the refractive index of the optical media being used [37]. In
particular, optical biosensors based on photonic crystals have been reported for detecting
the concentration of the SARS-CoV-2 pathogen in water [38].

Moreover, in view of the need to overcome these issues, two branches of artificial
intelligence (AI): machine learning (ML) and soft computing, have achieved a notable
improvement in several research fields by providing agility and efficiency in different appli-
cations. Soft computing is an approach that incorporates the uncertainty and imprecision
inherent to real world, inspired by systems in nature, mostly the human brain. Thus, a main
process in these techniques is learning; machine learning, then, is related to the capability
of a machine to infer an approximate solution from past data or to discover patterns and
rules from unknown data.

In view of all these points, we analyzed different panoramic opportunities for optical
biosensors based on NLOs for the detection of SARS-CoV-2. In this direction, we high-
light how different NLO applications assisted by ML have increased their efficiency and
speed to carry out tasks assigned to advanced algorithms with a potential for their use in
sensing performance.

2. SARS-CoV-2 Biosensors

Compared to SARS-CoV and Middle East respiratory syndrome coronavirus, SARS-
CoV-2 has been shown to be far more contagious [39]. The virus, also known as SARS-
CoV-2, has had a significant negative impact on the environment and mankind, increasing
mortality rates and causing significant economic losses around the globe [40]. In the years
2002 to 2003, the severe acute respiratory syndrome (SARS) was spread by SARS-CoV-2, a
single-stranded RNA virus from the genus Beta coronavirus [41]. In 2021, RNA SARS-CoV-
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2 was frequently detected on surfaces in the medical environment, even in adaptive and
unrelated sewage [42].

Coronavirus disease (COVID-19) outbreaks in several communities have compelled
governments worldwide to enact stringent controls such as blockades, border closures,
and widespread screening [43]. The SARS-CoV-2 virus is compatible with the coronavirus
family with single-stranded gene RNA and surface proteins such as membranes, envelopes,
nucleocapsids, and spikes [44]. Cryo-electron microscopy was utilized to establish the
structure of the SARS-CoV-2 spike glycoprotein, which was then used for the creation of
cell-specific vaccinations [45].

The symptoms of being infected by the SARS-CoV-2 virus can be varied; some symp-
toms are coughing, discomfort, and fever [46]. Several techniques are available for rapid
measurement of antigen levels from both nasopharyngeal secretions and saliva, provid-
ing fairly satisfactory duplication of molecular assay results [47]. When performing the
standard diagnosis, RNA extraction of the nasopharyngeal swab is required, followed by
quantitative reverse transcription PCR (RT-QPCR) [48]. In recent years, some of the investi-
gations have been focused on the design of optical biosensors for the efficient and rapid
detection of the SARS-CoV-2 virus. The recognition elements of optical biosensors can be
divided into aptamers, molecular imprint polymers (MIPs), and antibodies [49]. Wenjuan
and his colleagues created the first unique microfluidic biosensor using Fresnel reflection
for the detection of SARS-CoV-2 without a label that is quick, simple, and sensitive [50].

In order to identify the SARS-CoV-2 virus, optical biosensors can generate several
wavelengths and collect data on heart rate, nitric oxide levels, pulse oximetry, and kidney
function [51]. Courtney and colleagues created a successful biosensor with the ability to de-
tect nucleic acids and with the option to improve with high convergence and mismatch [52].
Silicon nitride low-loss photonic wires have been used in the optical transmission waveg-
uide devices to develop a complementary metal-oxide semiconductor compatible with
the plasma-enhanced chemical vapor deposition process [53]. Ebola, HIV, and norovirus
viruses have been detected by optical biosensors based on resonators, optical biosensors
based on the waveguides, photonic biosensors based on crystals, and fiber-based optical
biosensors [54]. In the latest investigations, the possibility of detecting the COVID-19 virus
with a low 0.22 pm detection limit has been reported and the difference between SARS-CoV
of the SARS-CoV-2 was distinguished by a plasmonic sensor [55].

One of the most intriguing and extensively researched devices is one made by utilizing
surface nanopatterning technology. Nanopattern subwavelength characteristics promote
actions such as guided mode resonance [56], SERS [56], or localized SPR [57]. Those
structures make it possible to identify light interactions with certain biological analytes at
the sensor surface effectively.

In order to increase the sensibility of sensing materials, photonic crystals have been
proposed as periodic arrangements of dielectric materials built in an area of incoming
radiation [58]. Similar to the bandgap in semiconductors, they have a photonic bandgap
where it is forbidden for some wavelengths to pass through their structure [59].

In the past two decades, integrated photonic biosensors have become the focus of
significant study because they can be miniaturized and can effectively detect relatively
low concentrations of analytes in real time [60]. According to Srivastava and colleagues,
the magnified changes caused by the conversion to photonics are sensitive to changes in
the refraction index of the sensing medium; this makes the nanostructures an excellent
choice for a biosensor [61]. Most of the photonic integrated sensors employ the concept of
evanescent field detection, where the analyte adheres to a bioreaction layer on the surface of
the wave guide and interacts with the evanescent field of the guided wave [62]. The initial
displacement in particular biosensors may be increased by about four orders of magnitude
by utilizing preselection to choose the polarization and postselection to create destructive
interference [63]. This signal enhancement approach can simplify the optical components
and lower the cost of the sensor device in addition to measuring the spin-dependent
splitting in biosensors [64]. Furthermore, due to its distinct optical characteristics, the
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photonic spin Hall effect has generated a lot of study in recent years [62]. On-chip resonant
or interferometric devices are used to translate changes in the optical phase, which cannot
be detected directly, into changes in the optical power [63].

SPR biosensors are particularly effective in detecting bacterial viruses and pathogens
among various biodetection methodologies [65]. By using this method, slow PCR and
ELISA techniques are avoided. The first investigation by Wrapp and colleagues focused
on the high affinity of the SARS-CoV-2 protein with ACE2 [66]. More recently, a unique
localized SPR biosensor with the twin capabilities of plasmonic photothermal and sensing
transduction was presented [67].

A very efficient technique for rapid detection is worth mentioning. It is without
labels and is precise for a variety of pathogens and viruses that have been based on
SPR [68]. In the past, it was asserted that an SPR-based biosensor could recognize the feline
calicivirus in about 15 min [69]. In the same way, a very similar discovery was obtained
for human enterovirus 71 (EV71) [70]. Research has found different forms of rapid and
precise detection of COVID-19, and nanophotonic biosensors have been developed [67].
An SPR optical biosensor with a gold nanoparticle coating was successfully developed by
researchers as a COVID-19 detection device [71]. For the potential detection of coronavirus
illness, different optical biosensors with localized SPR have been presented [72].

It is possible to improve SPR platforms of localized SPR devices for the identification
of COVID-19 [73]. Ren-min and Oulton’s study demonstrated the use of the nanolaser
method as a biological optical detector [74]. For monitoring small chemical molecules,
photonic glass fiber biosensors have been integrated by using porous silicon structures [75].
In order to find comparative chemical compounds, photonic crystal fiber biosensors based
on a porous silicon have also been described [76]. Typically, the SPR biosensor is employed
to identify biological or chemical materials [77]. Previous experiments demonstrated the
potential of SPR biosensors for viral detection without real-time labels [78]. An overview of
representative works in this area is shown in Table 1.

Table 1. Representative optical biosensors papers for the detection of SARS-CoV-2.

Journal Detection Limit Analyte Types Optical Effect Year Reference

Biosensors and Bioelectronics 2 µL The genes of S, N, and
Orf1ab

Evanescent wave
fluorescence 2021 [79]

Talanta 1.0 mg/mL Immunoglobulins (G, M,
and A) Colorimetric 2021 [80]

Talanta 12.5 ng/mL IgG antibody Evanescent wave
fluorescence 2021 [81]

Sensors and Actuators B: Chemical 1 and 0.033 ng/mL Spike 1 protein Fluorescent bifunctional 2022 [82]

Chemical Engineering Journal 43.70 aM RNA-dependent RNA
polymerase gene Electrochemiluminescence 2022 [83]

Environmental Science: Nano 32.80 aM RNA-dependent RNA
polymerase gene Electrochemiluminescence 2022 [84]

Biosensors and Bioelectronics 2.75 fM
Spike protein, matrix

protein, envelope protein,
and nucleocapsid

Colorimetry
G-quadruplex 2020 [85]

Virology - Nucleocapsid protein Luminescence 2021 [86]

Talanta 59 aM Nucleic acid Electrochemiluminescence 2022 [87]

Chemical Engineering Journal 7.8 aM RNA-dependent RNA
polymerase gene Electrochemiluminescence 2022 [88]

Viruses 50 µg/mL Angiotensin-converting
enzyme 2 Bioluminescent 2021 [89]

Cold Spring Harbor Laboratory 50 µg/mL Angiotensin-converting
enzyme 2 Bioluminescent 2020 [90]

Physica Scripta 1020 nm/refractive
index unit (RIU)

Pathogens of
SARS-CoV-2 Refractive index 2022 [38]
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Table 1. Cont.

Journal Detection Limit Analyte Types Optical Effect Year Reference

Sensors and Actuators B: Chemical - Spike protein Optical interferometry 2021 [91]

SSRN Electronic Journal 833.33 nm/RIU Spike glycoprotein Refractive index 2022 [92]

Talanta 514 aM

spike protein,
nucleocapsid protein, the

RNA-dependent RNA
polymerase gene

Electrochemiluminescence 2022 [93]

Sensors 0.1 fM Open reading frames 1ab
gene Electrochemiluminescence 2022 [94]

Talanta 0.22 pM Spike protein Refractive index 2021 [55]

Analytica Chimica Acta 48 ng/mL SARS-CoV-2 spike
antigen Colorimetric 2021 [95]

Analytica Chimica Acta 1.0 × 10−6 RIU
Spike protein

receptor-binding domain Fresnel reflection 2021 [96]

2021 IEEE 15th International
Conference on Nano/Molecular

Medicine & Engineering
(NANOMED)

114.07 nm RIU−1
COVID-19 virus

detection by delivering
quick, dependable results

Refractive index 2021 [22]

Scilight ∼106 virions/mL
SARS-CoV-2 proteins
(membrane, envelope,

and spike)
Colorimetric 2021 [97]

Biosensors and Bioelectronics 17 aM
SARS-CoV-2 RNAs with

single molecule
sensitivity

Electro-optofluidic 2021 [98]

Biosensors and Bioelectronics - Nucleic-acid-based
testing Colorimetric 2021 [99]

Journal of the American Chemical
Society - Spike antigen and

cultured virus Luminescent 2022 [100]

Biosensors and Bioelectronics 370 vp/mL SARS-CoV-2 virus
particles in one step

Nanoplasmonic
resonance 2021 [101]

ACS Applied Materials & Interfaces 0.21 fM RNA-dependent RNA
polymerase gene Electrochemiluminescence 2021 [102]

In vitro models 1 µg/mL S protein of SARS-CoV-2 Colorimetric 2022 [103]

Biosensors and Bioelectronics 3 copies/µL
Two regions in

nucleocapsid gene (N1
and N2 genes)

Fluorescence polarization 2021 [104]

Biosensors and Bioelectronics 1 mg/mL Immunoglobulins G and
M Optical/chemiluminescence 2021 [105]

Viruses 100 pM Spike proteins,
nucleocapsid proteins Fluorescent 2022 [106]

Microchimica Acta 4.98 ng/mL−1 Angiotensin-converting
enzyme 2 Colorimetric 2021 [107]

From Table 1, we can observe different optical and photonic biosensors that perform
the function of detecting SARS-CoV-2. The advantage of using optical biosensors is the
ease of use. The optics tools have demonstrated with some applications the ability to
improve the resolution, speed, and efficiency of biosensors. Moreover, biosensors based
on nonlinear absorption, Raman dispersion, or SPR can present advantages in biosensing
regarding the potential for multiphoton effects. Table 2 presents these characteristics for
detection of SARS-CoV-2. Table 1 describes biosensors assisted by optical effects, while
Table 2 mentions biosensors that are related to multiphoton effects.
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Table 2. Representative multiphoton biosensors papers for the detection of SARS-CoV-2.

Journal Detection Limit Analyte Types Optical Effect Year Reference

IEEE Sensors Journal 2.5 ng/mL Nucleocapsid protein Plasmonic fiber optic
absorbance 2021 [108]

Biosensors 0.047 µg/mL SARS-CoV-2 pseudovirus Surface plasmon
resonance 2022 [109]

Biosensors and Bioelectronics 0.77 fg/mL−1 Spike protein Raman scattering 2021 [110]

Sensors and Actuators B:
Chemical 50 and 10 pfu/mL Angiotensin-converting

enzyme 2 Raman scattering 2022 [111]

ECS Meeting Abstracts - Antibodies to
SARS-CoV-2

Surface plasmon
resonance 2021 [112]

Analytical Chemistry 45.6 to 86 ng mL−1 Nucleocapsid protein Plasmonics 2022 [21]

Biosensors and Bioelectronics 2 ng/spot spike S1, spike S1 S2, and
the nucleocapsid protein Fluorescent plasmonics 2021 [113]

Sensors 4.2 µg/mL Spike protein Photonics 2021 [114]

Analyst 12 fg mL−1 Spike S1 protein Surface plasmon
resonance 2022 [115]

Biomedical Vibrational
Spectroscopy 2022: Advances in

Research and Industry
- Spike protein Raman spectroscopy 2022 [116]

Plasmonics 152◦/RIU

Spike proteins,
membrane proteins,

envelop proteins, and
nucleoprotein

Surface plasmon
resonance 2022 [117]

Sensors 250 µg/mL Spike (S1 and S2) proteins Surface plasmon
resonance 2021 [118]

IEEE SENSORS 2021 8.34 ng/mL Spike protein Surface plasmon
resonance 2021 [119]

Biosensors and Bioelectronics 1 µg/mL Nucleocapsid antibody Surface plasmon
resonance 2022 [120]

AIP Advances 54.04 RIU−1 Spike glycoprotein Surface plasmon
resonance 2021 [67]

Analytical Chemistry - Spike surface
glycoprotein

Surface-enhanced
infrared absorption 2021 [13]

Matter 10 PFU/mL Spike glycoprotein and
membrane protein Raman scattering 2022 [121]

ACS Applied Nano Materials 200 PFU/mL Spike proteins Raman scattering 2022 [122]

ACS Nano 0.22 pM RNA-dependent RNA
polymerase

Localized surface
plasmon resonance 2020 [123]

Analytical Chemistry - Angiotensin-converting
enzyme 2

Surface plasmon
resonance 2020 [124]

Biosensors and Bioelectronics 150 ng/ml Detect SARS-CoV-2
nucleocapsid proteins

Localized surface
Plasmon resonance 2022 [125]

Analytical Methods 200 µL Spike and nucleocapsid
proteins

Surface plasmon
resonance 2021 [126]

Sensors & Diagnostics 10 RU Spike protein Surface plasmon
resonance 2022 [127]

Biosensors and Bioelectronics 2 × 1011

particles/mL
Nucleocapsid

phosphoprotein gene Raman scattering 2022 [128]

BioChip Journal 1.02 pM Antibodies against
nucleoprotein

Surface plasmon
resonance 2020 [129]

Nanoscale Advances 4.5 fg/mL−1 SARS-CoV-2 spike
protein Raman scattering 2022 [130]
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Table 2. Cont.

Journal Detection Limit Analyte Types Optical Effect Year Reference

Biosensors and Bioelectronics 0.08 ng/mL SARS-CoV-2 spike
protein

Localized surface
plasmon resonance 2020 [131]

Analytical Chemistry 4 mg/mL SARS-CoV-2 spike
protein

Surface plasmon
resonance 2021 [132]

Plasmonics 1 × 1013 per m2 Thiol-tethered DNA of
SARS-CoV-2

Surface plasmon
resonance 2021 [133]

Talanta 0.046 ng/mL SARS-CoV-2 spike
protein Raman scattering 2022 [134]

Talanta 100 pg/mL−1 Measurement of
SARS-CoV-2 antibody

Photonic resonator
absorption 2021 [135]

Talanta 37 nM SARS-CoV-2 spike
glycoprotein

Surface plasmon
resonance 2021 [136]

3. Biosensors Assisted by Machine Learning

As was mentioned before, ML is a subfield of artificial intelligence (AI) that provides
another way to gain insight into complex data [137]. ML uses computational systems
to simulate human learning and gives the algorithm the ability to recognize and acquire
knowledge of the environment to improve performance [138]. Complex biological systems
are naturally compatible with ML methods that can effectively detect hidden patterns [139].
Predictive information multiplexed can be obtained by increasing analysis of responses in
a sequence [140].

ML-assisted biosensors can be used in complex environments and without having the
characteristics of a laboratory study [141]. A typical process is shown in Figure 1. Raw
data acquired by a biosensor are preprocessed (data filtering, missing values, segmentation;
normalization is also carried out early in this step to homogenize scales or data types)
according to the nature of the data. Features or characteristics are then extracted to represent
the differences in the data and also to reduce the amount of data. This features set X is called
features space. Dimensionality reduction of X is carried out to select the most significant
variables and decrease complexity. It is worth mentioning that the quality of data is relevant.
ML learns from the sample; if there is noise or the sample is not significant, overfitting will
occur and the performance of the algorithm will be poor.
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In general, three types of problems can be approximated with ML: classification,
regression, and clustering problems. Dimensionality reduction by itself is also consid-
ered a type of problem solved by ML, and clustering is commonly a previous step in a
classification problem.

According to the nature of X, the learning process in ML is divided into two main
categories: supervised and unsupervised learning (Figure 2). When the inputs X are
known or labeled, the learning process is called supervised. The objective in a problem
of classification or prediction (regression) is to approximate a function f(X) = Y + ε, to
approximate the output or labels Y with an error ε. In this learning process, ML methods
use a subset of X to train a model. Once the model has been trained, it is tested with the
rest of the available data. This step is repeated until the approximate function reaches
an error goal; then, the model is released to classify or predict new unknown data. A
balance among two types of error should be taken into account: bias, which is the result of
the assumptions of data behavior in learning the objective function, and variance, which
indicates how different the function approach will be according to the training dataset
used. Different algorithms are used for these learning processes; some of them are usually
applied to data analysis, such as linear regression. Other algorithms categorized in ML
are logistic regression, support vector machines (SVM), naïve Bayes, decision trees, and
k-nearest neighbors (KNN). On the other hand, the learning process is called unsupervised
when X is not labeled; here, the objective is to discover the patterns in the data to generate
clusters with similar features. The most popular algorithm for this learning process is
k-means.
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Figure 2. ML categories according to the nature of the features space.

Soft computing algorithms are those strictly inspired by nature, for instance, artificial
neural networks (ANNs), fuzzy systems, genetic algorithms, swarm algorithms, and
ant colony optimization algorithms. Soft computing methods are especially useful for
optimization problems; in this sense, ANNs and other ML algorithms optimize the error of
the objective function.

The acquisition of information can be enhanced by automatic learning tools [142]; in
this direction, optical biosensors have made a great contribution to medicine by being non-
invasive and ultrafast. On the other hand, ML can improve these results, simplifying the
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analysis of the raw data from the biosensors output, to approximate a solution to different
problems. For instance, (a) classification, for detection or diagnosis and treatment decisions
support; (b) regression, to predict and prevent non-desirable events; and (c) clustering, to
find groups of data that share features, such as symptoms, characteristics of a disease, or a
strange behavior in different scales (e.g., enzymes, hormones, cells, organs, systems, and
the whole body). The signals provided by the optical biosensor can be monitored in real
time to outflow tract constructions that are useful in ML methods [143].

For instance, a supervised automatic learning method with optimized characteristics
has been implemented to consider the effects of decreased enzymatic activity [144] or
glucose in a sample [145]. ML regression statistical models have been applied to estimate
the current response of a second-generation amperometry glucose oxidase biosensor [146].

Neural Networks in Biosensors

An artificial neural network (ANN) consists of a node layer that has an input layer,
one or additional hidden layers, and an output layer [147]. Every node or artificial nerve
cell connects to a different node and has acceptable weights and thresholds [148]. Once
a private node output exceeds a threshold, that node is activated and sends data to a
consequent layer within the network [149], as illustrated in Figure 3.
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There is research demonstrating the improvement in the use of neural networks (NNs)
in the enhancement of signal processing. In fact, it has been found that the combination of
spectrum in spectrograms is an effective way to classify strong signs of biosensors [150]. In
biosensors, pathogen agents and neurons associated with the disease have an important
value. In recognition of the excellent classification capacity of the convolutional neuronal
network model, it is also possible to perform the classification of a disease using biosen-
sors [151]. An example of this is Mennel and colleagues, who conducted an image detection
study applying an ANN [152].

In recent years, optical biosensors have received attention from the scientific com-
munity due to their advantages, such as detection with high sensitivity [153]. Different
fluorescent materials such as quantum dots [154] and fluorescent microspheres have been
used [155]. A technique to measure the fluorescent signal is excitation using a sensitive
fluorometer; this determines the concentration of the bacteria. Instead of determining
the target bacteria concentration, fluorescent bacteria can also be counted directly. NNs
algorithms fulfill the function of processing the images obtained from fluorescent bacteria.
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NNs processing manages to calculate the amount of fluorescent points faster to determine
the target bacteria [156].

4. NLO Processes Analyzed with ML

Prediction of nanoscale functions in multiphoton experiments is attractive for de-
scribing different NLO effects [157]. Analysis of third-order NLO techniques by ML has
conjointly progressed throughout the last decade [158], considering all-optical functions for
sensing and signal processing by ML [159]. There has been growing interest in generating
pulses with repetitive frequencies on the order of gigacycle per second with the assistance
of deep learning [160]. Measurements of ultrafast optical pulses for sensing represent
challenges for scientific research in ML methods [161].

A roadmap of representative research on NLO applying ML methods is shown in
Figure 4. ML for studying chaotic nonlinear dynamics [162], self-tuning for mode-locked
lasers [163], laser optimization [164], and the measurement of extremely short pulses;
it should be noted that their duration is much shorter than the response times of most
photodetectors [165]. Ultrashort pulses are widely used to monitor chemical reactions,
control THz radiation, cipher pulses for communication, and form optical pulses [166]. ML
has been used to measure time unit pulse duration using time unit detectors [167].

Biosensors 2022, 12, x FOR PEER REVIEW 12 of 33 
 

 

Figure 4. Roadmap of investigations based on NLO processes assisted by ML and soft computing 

[168-176].  

The most promising methodology to atone for nonlinearities in single channel sys-

tems is the digital backpropagation algorithm, which works by digitally modeling the fi-

ber channel [177] . The disadvantages of this method are the high procedure complexity 

of the time period application and also the impossibility of accurately modeling the chan-

nel because of the looks of random parameters [178]. For these reasons, analysis on non-

linear compensation is currently centered on computing techniques [179]. Extraordinarily 

short pulses are troublesome to explain due to the massive variety of the parameters con-

cerned [180]. With such systems, small changes in state variables will cause changes in 

momentum dynamics, which is particularly necessary with ML-based algorithms [168–

176] (Roadmap). 

4.1. Second-Harmonic Generation 

The second-order NLO process in which photons that interact with a nonlinear ma-

terial “combine” effectively is known as second-harmonic generation (SHG) [181]. SHG, 

which depends on a second-order NLO difference system, permits specialists to perform 

non-checking and non-horrendous imaging of tissue structures at the cell level [182]. Cur-

rently, when relevant areas in SHG images are detected, further medical actions can be 

proposed [183]. However, no simplifying assumptions or analytic solutions have been 

found to obtain SHG’s accurate spatial phase distribution [184]. The core measures em-

ployed in SHG simulation continue to be numerical techniques such as the split-step 

method and the Fourier-space algorithm [185]. 

Figure 4. Roadmap of investigations based on NLO processes assisted by ML and soft
computing [168–176].

The most promising methodology to atone for nonlinearities in single channel systems
is the digital backpropagation algorithm, which works by digitally modeling the fiber chan-
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nel [177]. The disadvantages of this method are the high procedure complexity of the time
period application and also the impossibility of accurately modeling the channel because of
the looks of random parameters [178]. For these reasons, analysis on nonlinear compensa-
tion is currently centered on computing techniques [179]. Extraordinarily short pulses are
troublesome to explain due to the massive variety of the parameters concerned [180]. With
such systems, small changes in state variables will cause changes in momentum dynamics,
which is particularly necessary with ML-based algorithms [168–176] (Roadmap).

4.1. Second-Harmonic Generation

The second-order NLO process in which photons that interact with a nonlinear ma-
terial “combine” effectively is known as second-harmonic generation (SHG) [181]. SHG,
which depends on a second-order NLO difference system, permits specialists to perform
non-checking and non-horrendous imaging of tissue structures at the cell level [182]. Cur-
rently, when relevant areas in SHG images are detected, further medical actions can be
proposed [183]. However, no simplifying assumptions or analytic solutions have been
found to obtain SHG’s accurate spatial phase distribution [184]. The core measures em-
ployed in SHG simulation continue to be numerical techniques such as the split-step
method and the Fourier-space algorithm [185].

The variation that uses SHG is simple for frequency-resolved optical gating (FROG).
In fact, the pulse-shaping community frequently employs SHG FROG in nonlinear spec-
troscopy and coherent anti-Stokes Raman diffusing to discover potential extremely complex
beats [186]. Furthermore, due to well-known trivial ambiguities, it has been mathemati-
cally demonstrated that all pulses may be uniquely predicted by SHG FROG [187]. More
recently, a nonlinear time-domain finite difference method was developed by modifying
Yee’s algorithm into a potent modeling technique that can take nonlinear phenomena such
as second- or third-harmonic generation into consideration [188]. Intrinsic signals can be
viewed as label-free using a nonlinear mode of multiphoton excitation called SHG [189].
Qun and colleagues have applied the SHG effect with the help of ML methods to develop
images of the samples of thick heart tissue [190].

Since the discovery of quartz’s piezoelectricity more than a century ago, the need for
effective materials for novel piezoelectric and NLO applications has steadily increased.
Although piezoelectric materials are supposed to have the highest electromechanical co-
efficients, excellent SHG characteristics are crucial for NLO applications [191]. ANNs
speed up optimization of genetic algorithms and store sample information that can be
easily generalized to other samples with minimal additional training [192]. Hall and col-
leagues developed an impartial and efficient algorithm to quantify the images of SHG in
tissues [193].

The continuous wave laser radiation in the UV range is often realized due to nonlinear
effects such as four-wavelength mixing or SHG [194]. ANNs speed up optimization
of genetic algorithms and store sample information that can be easily generalized to
other samples with minimal additional training [195]. Deep-ultraviolet NLO crystals for
current and upcoming basic research and technology requirements, a succinct SHG output
wavelength, and a frequency conversion ratio are crucial [196]. SHG coefficients are shown
to be inversely related to the band gap via the sum-over-states formula [197].

By using second-order NLO differential elements in SHG imaging, specialists can
conduct label-free, non-destructive studies of tissue architecture [198]. Up to the current
date, there is no published study that suggests using ML to instruct users about adjustable
NLO vulnerability and exchanging behavior for sensing [199].

4.2. Nonlinear Optical Absorption

The optical absorption coefficient of a material that depends on irradiance is known as
nonlinear optical absorption [200]. The absorption coefficient disappears at the dissipation
intensity. In other cases, absorption is observed at low intensities, but the absorption
coefficient increases or decreases at high intensities [201]. In order to address nonlin-
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ear tomographic absorption spectroscopy issues, Deng et al. looked deeper into how
well other complicated deep ANNs, such as deep belief networks and recurrent ANNs,
performed [202]. It is advantageous for photonic computing applications because of its
straightforward design, very quick operation, and high NLO coefficient [203]. However,
only basic investigations of direct absorption-spectroscopy-based deep learning algorithms
for nonlinear tomography issues have been performed [204]. Only temperature or particle
concentration may be reconstructed using the deep learning network provided [202].

4.3. Optical Kerr Effect

The Kerr nonlinearity has an NLO impact when light induces a change in the refrac-
tive index by different physical mechanisms such as electronic polarization or molecular
orientation. It can be portrayed as an induced birefringence caused by optical irradiance
and is dependent on the square of the electric field that can be supervised by ML [205].

The Kerr law of nonlinearity emerges when a light wave in an optical fiber meets
nonlinear responses because of nonharmonic mobility of electrons trapped in molecules
produced by an external electric field [206]. Solli and colleagues observed for the first time
the rogue waves in one-dimensional settings in the field of optics [207]. Chalcogenide
glass, which has a very strong Kerr effect and reacts right away to electrical stimulation,
was employed by Gopalakrishnan and colleagues to obtain experimentally meaningful
values for the above described [208]. Jhangeer and his colleagues developed an algorithm
capable of obtaining wave solutions of exact paths of complex nonlinear partial differential
equations [209]. This is achieved by improving the perturbative nonlinear Schrödinger
equation with the nonlinear Kerr effect, which is an important equation for soliton testing
in optical communication networks.

4.4. Sum Frequency Generation

A second-order NLO mechanism called sum frequency generation (SFG) works by
annihilating two input photons with each frequency ω1 and ω2 while simultaneously gener-
ating one photon with frequency ω3 [210]. When imaging self-assembled thiol monolayers
on gold using the SFG spectroscopic method, ANNs are utilized as a substitute for chemical
identification [211]. ANNs are also particularly helpful for solving issues when it is difficult
or impossible to provide realistic physical or mathematical models [212].

4.5. Self-Phase Modulation

An NLO result for the interaction between matter and the vectorial nature of light is
self-phase modulation (SPM). Due to the optical Kerr effect, a medium’s refractive index
changes when an ultrashort light pulse passes across it [213]. Since NN can adaptively
correct for distortion, NN-based digital signal processing has been researched to account for
nonlinear effects in wireless communication systems [214]. Only intensity-modulated direct
detection transmission methods have been analyzed for nonlinear distortion correction
in optical communication systems. In order to correct for the distorted multilevel optical
signal caused by SPM, Shotaro and colleagues suggested a novel nonlinear equalization
technique employing NN [215]. Caballero and colleagues developed a method with the
ability to estimate signal-to-noise linear ratio and nonlinear ratio considering SPM assisted
with an NN [216].

4.6. Raman Amplifiers

The reasonable choice of pump powers and wavelengths is a key element in accom-
plishing a wanted Raman pick-up profile. This is often a challenging assignment as the
relationship between power profile versus pump powers and wavelengths is nonlinear
and requires broad numerical reenactments to anticipate [217]. Raman amplifiers have
lately attracted fresh interest as a result of their ability to amplify broadband signals by the
assistance of ML when used in a multi-pump laser arrangement [218]. In addition, they
have reduced noise when using distributed amplifiers and ML [219]. The Raman ampli-
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fiers’ capacity to arbitrarily set the gain by varying the pump power and wavelength is
another distinctive quality improved by ML [220]. This gives optical amplifiers and optical
communication systems unprecedented flexibility and capacity for dynamic adaptation by
using deep learning techniques [221]. An example is distributed Raman amplifier (DRA),
which is an important amplification method in optical communication systems due to its
low noise figure and flexible wideband gain obtained by using ML [222]. Raman gain
design and analysis have benefited greatly from the successful use of ML in other domains
of optical communication in recent years [223].

Optimizing the pump design to obtain the appropriate gain spectrum at the amplifier
output is the key research goal of the Raman amplifier [218]. This challenging optimization
issue calls for the solution of a set of nonlinear differential equations. Many algorithms
have been developed [224], as well as ANN [225] or ML [226] to find a solution to the
conflict between the pump setting and the intended spectral gain setting. Currently, an
ML strategy has been proposed for single-mode fibers [227] and few-mode fibers [225]. A
dataset of hundreds of advantage bends made with erratic pump powers and wavelengths
is used to train an NN to consider the relationship between the pump parameters [228].

4.7. Surface-Enhanced Raman Scattering

Molecular polarizability can be used to explain Raman scattering [229]. Electrons
and nuclei are shifted when a molecule is put in an electric field [230]. An electric dipole
moment is produced in the molecule because of the separation of charged species, and the
molecule is said to be polarized [231]. A molecule scatters irradiant light from a source laser
in the Raman method, which is a light scattering technique [232]. Most of the scattered
light is of the same wavelength as the laser source and hence useless, but a tiny quantity of
light is dispersed at various wavelengths and so is beneficial [233].

The molecules can be coherently driven to a state of breath and can then generate
signals that are usually of a stronger magnitude than the spontaneous Raman disper-
sion [234]. This happens when there is a difference between the pump field and the Stokes
field in the coincidence in active vibrations of the molecules in the sample [235]. By ana-
lyzing NLO effects, a quick and efficient response is required; an example is the impact of
amplified spontaneous emission and nonlinear interference reported by Margareth and
colleagues [236].

Raman microscopy is another option for label-free imaging; however, because of the
poor effectiveness of Raman scattering, neuron imaging with ordinary spontaneous Raman
scattering needs a considerable exposure period [237]. Plasmonic materials have been
employed to boost the Raman technique’s sensitivity. Pengju and colleagues utilized a
calculation based on ML to classify the ordinary and extracellular cancer vesicles and
parties [238].

SERS, which has sensitivity down to the level of a single molecule, is perfect for
multichannel detection [239]. Based on this idea, SERS physiology was very recently
developed in order to offer speculative details about nearby cellular metabolites [240] by
accumulating time-based SERS spectra constantly. The way the data were processed also
had limitations in the original photophysiological trials for SERS. An ML method that is
adaptable was proposed by Leong and colleagues [241].

4.8. Summary of Representative Nonlinear Optical Effects Assisted by ML Algorithms

The progress and development of new research in ML has opened up the opportunity
to advance new techniques for the collection and interpretation of information in applica-
tions in different sciences. By joining the different optical processes to the interpretation of
ML data, it opens up a variety of options and applications. The development of biosensors
based on optical processes has provided the ability to detect biological agents in different
organisms, facilitating their analysis. The study of the NLO processes assisted by ML
involves the extraction of the properties that can represent fundamental information for
sensitive classifying and segmentation.
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NLO processes have been developed for the use of detection of different materials that
can be used for improving biosensors. The most used multiphoton process for the detection
of the SARS-CoV-2 virus has been Raman scattering; this is due to its advantages in the field
of optics. Table 3 shows different NLO processes that are assisted by computer systems.

Table 3. NLO processes assisted by computational methods.

Journal or Conference
Event Application Optical Effect Year Reference

Sensors Optical biosensors supported by algorithms for rigorous
monitoring and control in the identification of bacteria Light Diffraction 2020 [242]

PLOS ONE
Comparison between Marquardt Algorithm vs. Newton
Iteration Algorithm for biomolecular interaction process

between antigen and antibodies or receptors

Optical Surface Plasmon
Resonance 2015 [243]

Scientific Reports Improves the image difference between normal tissues
and tumors SHG 2021 [244]

BMC Cancer An independent predictive measure of metastasis-free
survival in patients with invasive ductal cancer SHG 2020 [245]

SPIE LASE Enhanced Pulse Extraction Algorithm FROG used
for geometry SHG 2019 [246]

Atmospheric Measurement
Techniques

Measures the error between CO and CO2 by nonlinear
absorption and fluctuations in interference coefficients Nonlinear Absorption 2013 [240]

Journal of Lightwave
Technology

A scheme allowing the soliton comb to be determined under a
specific pump scan, with an error of <8%, verified by

experimental measurements
Optical Kerr Effect 2020 [247]

SSRN Electronic Journal Tackling the effects of the intra-polarization self-phase
modulation and inter-polarization cross-phase modulation SFM 2022 [248]

Optics Express Optimizes the pump wavelength Raman Amplifiers 2020 [249]

Optical Fiber
Communication

Conference (OFC) 2020
Gains improvements for a few mode fiber amplifiers Raman Amplifiers 2020 [250]

Spectrochimica Acta Part
A: Molecular and

Biomolecular Spectroscopy
Detection of quantity of chlorpyrifos in rice. Raman Scattering 2021 [251]

Food Chemistry Quantifies the systemic fungicide residues of Benzimidazole
(Thiabendazole) in apples Raman Scattering 2021 [252]

ACS Nano Performs the measurement simultaneously from gradients, at
least eight in vitro metabolites along with different cell lines Raman Scattering 2019 [253]

2021 IEEE International
Conference on Big Data

(Big Data)

Improves rapidity in the inspection of the techniques of
images of cellular and tissue pathology Raman Scattering 2021 [254]

2018 Cross Strait
Quad-Regional Radio
Science and Wireless

Technology Conference
(CSQRWC)

Sorts different varieties of honey Raman Scattering 2018 [255]

In Proceedings of the 2021
IEEE 21st International

Conference on
Nanotechnology

Label-free method for detection of protective anthrax antigens
based on SERS Raman Scattering 2021 [256]

Table 4 shows different applications that improve the analysis of the processes of the
NLOs assisted by computer systems. Figure 5 shows the different nonlinear optical effects
mentioned in this work, with a sample of SARS-CoV-2 as an example.
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Table 4. Publications about NLO processes assisted by ML.

Journal Application Algorithm Nonlinear Optical Year Reference

Journal of Lightwave
Technology A standard for optical quality

A new approach to
direct-learning-based

pre-distortion using ANN

High throughput
coherent optical 2020 [257]

2017 International
Conference on Orange
Technologies (ICOT)

Using a Computer-Aided
Diagnosis (CAD) system, stem

cells in the stratum basale
are studied

Convolutional ANN Third-harmonic
generation 2017 [258]

Optical and Quantum
Electronics

Optimizing the wavelength
conversion for four-wave mixing
in a quantum dot semiconductor

optical amplifier

A fresh method based on
ANN and genetic algorithms Four-wave mixing 2021 [176]

IEEE Photonics Journal
Extrapolates helpful

characteristics and details from
the SERS signal

A novel approach to enhance
SERS signals using principal
component analysis as an ML

approach

Raman scattering 2020 [259]

Applied Optics Encryption scheme

A fresh nonlinear picture
encryption method using the
Fresnel transform domain’s

Gerchberg–Saxton phase
retrieval algorithm

Fresnel transform
domain 2014 [260]

Micromachines
In optical micro-resonators,

achieves high-fidelity
harmonic production

Algorithm Broyden Fletcher
Goldfarb Shanno

High-fidelity
harmonic 2020 [261]

APL Photonics

A unique method for eliminating
Cross-Phase Modulation (XPM)

coherent artifacts in
ultrafast pumping

XPMnet algorithm Cross-phase
modulation 2021 [262]

IEEE Photonics Journal
Showcases an optical phase
conjugation photoelectric

nonlinear compensation method
Complex-valued deep NN Optical phase

conjugation 2021 [263]

Optics Express

The deep residual network is
used to forecast the Raman

spectra of ice and water to detect
the ice-water contact as an

identification challenge

Deep-learning-based
component identification for

mixed Raman spectra
Raman scattering 2019 [264]

Environmental Science
and Pollution Research

Examines the impact of the
fungicide difenoconazole on the

quality of rat sperm

Compare the effectiveness of
three categorization

algorithms
Raman scattering 2019 [265]

IEICE
Communications

Express

Improved performance in terms
of bit error rate and error vector

magnitude by effectively
compensating for the nonlinear

distortion brought on by
cross-phase modulation

A cutting-edge digital signal
processing method based on

ANN for cross-phase
modulation correction

Cross-phase
modulation 2018 [266]

Optics
Communications

Creates empirical physical
formulations based on

experimental evidence for the
light-scattering amplitude

response functions of nematic
liquid crystals, which are

intrinsically nonlinear

Layered feedforward ANN Light-scattering 2011 [267]

IEICE
Communications

Express

Compensates nonlinear distortion
in optical communication systems A three-layer ANN Self-phase

modulation 2017 [268]

Scientific Reports
SHG coefficients of NLO crystals

with different diamond-like
features are being studied

Random forests regression Second-harmonic
generation 2020 [269]

IEEE Journal of
Selected Topics in

Quantum Electronics

A nonlinear activation function in
a feed forward optical NN Optical ANN Electro-optic 2019 [270]
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Table 4. Cont.

Journal Application Algorithm Nonlinear Optical Year Reference

2019 9th International
Conference on Cloud

Computing

Provides scenarios that
demonstrate the relationship

between quantum computers and
a light of light in the NLO

Algorithm assisting photonic
operations

Four-wave mixing
and cross-phase 2019 [271]

Chemical
Communications

Ratiometric analysis is used to
provide a model for the

prediction of the depth of two
“flavors” of SERS active nanotags

buried inside pig tissue

A proof-of-concept approach
for the prediction Raman scattering 2022 [272]

International Journal of
Optics

Inference abilities for the task of
classifying images

The deep NN with all-optical
diffraction Nonlinear diffraction 2021 [273]

Advanced Photonics

Enhancement of the third-
harmonic generation in optimized
metasurfaces and contributes to

improving the amplitude of
optomechanical vibrations

Deep learning techniques for
the inverse design of

nanophotonics

Third-harmonic
generation 2020 [274]

Conference on Lasers
and Electro-Optics

Performs image and audio
classification

A universal algorithm for
backpropagating

Second-harmonic
generation 2021 [275]

Optical Materials
Express

Activation functions for fully
connected ANN, emulated in

tensor flow
Photonic ANN

Induced transparency
and reverse saturated

absorption
2018 [276]

Optik
Encryption security has been

improved to the greatest extent
possible to fend off attempts

Modified Gerchberg Saxton
Iterative Algorithm

Optical nonlinear
cryptosystem 2021 [277]

Optics and Lasers in
Engineering

Checks the security of a dual
random-phase-coding-based

nonlinear optical cryptosystem

chosen-plaintext attack
algorithm and

known-plaintext attack
algorithm modifications

Based on double
random phase

encoding, the NLO
cryptosystem

2021 [278]
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5. Perspectives

Optical biosensors have evolved to visualize biological functions as a microscope
has evolved to identify effects of energy. Some optical biosensors can focus the impact of
optical and multiphoton nonlinearities to detect the SARS-CoV-2 virus. The optical effect
of fluorescence has been used to identify the SARS-CoV-2 virus as well as bacteria, cancer
cells, and other viruses. The signature of optics in biosensors has taken advantage of the
collection of more information for the detection of biological agents as a non-invasive tool.

Due to the frequency and phase-changing capabilities of the laser light that interacts
with NLO materials, they rank among the most intelligent materials of our time [264]. A
cutting-edge topic of study for the theoretical and experimental community is the creation
of NLO documents [279]. Organic materials must have relatively nonlinear properties due
to electrons moving to orbits π − π [280]. This expectation explains the extensive research
on NLO materials for developing biocrystals.

The use of organic crystals as NLO materials has been increasingly promoted by the
easy manipulation of these crystals, allowing control of the NLO properties of the material.
Compounds exhibiting strong nonlinearity are of great interest to the field of nonlinear
optics, as they are used to fabricate devices operating at high speeds [281]. Researchers
have been able to produce silicon-organic hybrid waveguides with bandwidths as high as
100 Gbit per second using organic NLO materials [282].

Optical biosensors can be applied to acquire information from remote sensing and one
of the tools used for the interpretation of information can be based on ML. The function of
the use of ML in biosensors allows automating the device to perform an action depending
on the information collected. The diverse forms of emission and optical absorption in
nonlinear biosensors are fascinating and are unexplored in several conditions that can be
addressed by ML techniques for describing biological functions.

The disadvantage of AI derivatives is that there is a paucity of existing information
on studies with NLO effects and nanomaterials, but this opens up an opportunity for new
discoveries.

In the collection of information, different algorithms were found that analyze NLO
effects. In Table 4, some algorithms are observed in different applications; NLO processes
are unexplored for designing platforms related to biosensing performance, but they have
promising potential.

6. Conclusions

ML has the potential to fundamentally change the practice of data analysis. Optical
biosensors are well positioned to take advantage of ML, which leads to greater efficiency
and precision. By combining the ML analysis tools and multiphotonic effects for the
increase in applications in optical biosensors, it is clear that there is potential for a better
interpretation of biological agents. In this work, a perspective for optical biosensors in
virus detection is described.

The processing and classification of large amounts of data allowed by ML lead to
extraordinary interpretations and unique predictions in the study with optical biosensors.
In this work, optical biosensors assisted by ML for virus detection are proposed, specifically
for SARS-CoV-2. By applying different NLO phenomena, the use of ML can optimize the
biosensing performance due to its ability to handle large amounts of information. It was
pointed out that there is still a vast field of research regarding the party effect of ML on
nonlinear optical biosensors.

In this work, it is observed that ML can be useful for estimating different NLO
interactions, although the current limited evidence does not support the superiority of
ML and automation over study analysis in NLO processes. However, the handling and
classification of large amounts of data allow envisioning that ML can play a crucial role in
predictions of NLO-based biosensors. In this work, various studies that can be envisioned
for the classification and organization of information in experiments with AI are proposed.
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