
A framework for black-box SLO tuning of multi-tenant
applications in Kubernetes

Matthijs Kaminski, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse, Wouter Joosen
imec-DistriNet, KU Leuven

firstname.lastname@cs.kuleuven.be

Abstract

Resource management concepts of container orchestration plat-

forms such as Kubernetes can be used to achieve multi-tenancy

with quality of service differentiation between tenants. However,

to support cost-effective enforcement of Service Level Objectives

(SLOs) about response time or throughput, an automated resource

optimization approach is needed for mapping custom SLOs of differ-

ent tenants to cost-efficient resource allocation policies. We propose

a versatile tool for cost-effective SLO tuning, named k8-resource-

optimizer, that relies on black-box performance tuning algorithms.

We illustrate and validate the tool for optimizing different resource

configuration properties of a simple job processing application.

Our experiments showed that k8-resource-optimizer can find near-

optimal configurations for different multi-tenant deployment set-

tings and different types of resource parameters. However an open

research challenge is that, when the number of parameters in-

creases, the total tuning cost may also increase beyond what is

acceptable for contemporary cloud-native applications. We shortly

discuss three possible complementary solutions to tackle this chal-

lenge.

CCS Concepts · Software and its engineering → Software

performance; Cloud computing; Software as a service orchestration

system.

Keywords Black-box optimization, Container orchestration plat-

forms, Multi-tenancy

ACM Reference Format:

Matthijs Kaminski, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse, Wouter

Joosen. 2019. A framework for black-box SLO tuning of multi-tenant applica-

tions in Kubernetes. In 5th International Workshop on Container Technologies

and Container Clouds (WOC ’19), December 9ś13, 2019, Davis, CA, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3366615.3368352

1 Introduction

Cloud-native platform and application providers face the constant

challenge of offering their products at the best service level for the

most competitive price. To furtherminimize their costs, the architec-

tural design principle of multi-tenancy is employed. Multi-tenancy

attempts maximizing the sharing of resources among multiple cus-

tomers organizations, referred to as tenants [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

WOC ’19, December 9ś13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7033-2/19/12. . . $15.00
https://doi.org/10.1145/3366615.3368352

The cost-effective management of custom service-level agree-

ments (SLAs) for different tenants typically requires dealing with

two challenges: (i) offering custom SLAs to different tenants (QoS

differentiation) and (ii) achieving improved resource utilization of

servers (cost-efficiency) [10].

Recently, container technology and container orchestration frame-

works have been positioned as a possible solution for support-

ing QoS differentiation with improved cost-efficiency by means of

finding the minimal cluster size to fit tenants with heterogeneous

workloads [19]. However, this approach assumes that application

managers must specify optimal resource allocation policies for the

application components so that SLOs can be met in a cost-effective

manner. A user study conducted by Microsoft [9] found that 70%

of jobs submitted to a production cluster were over-provisioned.

And for 20% of the jobs 10x more resources than necessary were

allocated.

The problem of finding a cost-effective assignment of resource

allocation policies so that an SLA can be met, has been referred

to as the SLA-decomposition problem [2]. However, existing SLA-

decomposition techniques are not easy to reuse across different

deployment settings of the same application due to the fact that a

performance model of the deployed application must be created in

advance based on proven theories such as queuing theory; moreover

this model might be wrong and thus will lead to incorrect resource

allocations. For example, the developer needs to know if the model

is quadratic or linear but predicting this has shown to be a difficult

task with a large number of application components in deployments.

Lastly, the performance models often require the configuration of

hyper-parameters, which is a tuning problem itself [24].

In this paper we explore how the SLA-decomposition problem

can be solved for container-based applications by applying black-

box performance optimization algorithms. Such algorithms test a

limited number of container resource configurations of a running

application in order to find a near optimal resource configuration.

For this purpose we have designed and implemented a resource op-

timization framework, named k8-resource-optimizer, that is capable

of automatically deriving a cost-efficient SLA-decomposition using

existing black-box optimization algorithms such as the BestConfig

algorithm [24] and bayesian optimization [1].We have implemented

k8-resource-optimizer on top of Kubernetes, the leading platform

in container orchestration and we have evaluated the feasibility of

the approach in the context of a simple job processing application.

Of course, black-box performance optimization is not a new

idea. It has been researched extensively for performance tuning

of middleware and databases [21, 24] and bayesian optimization

has been shown effective in the selection of VM-instances for data-

analytics [1, 8]. However, deploying and running black-box perfor-

mance optimization techniques is not trivial and actually requires

quite some expertise from the user. Therefore, the main contri-

bution of k8-resource-optimizer is that it offers a certain level of

7

https://doi.org/10.1145/3366615.3368352
https://doi.org/10.1145/3366615.3368352

WOC ’19, December 9ś13, 2019, Davis, CA, USA M. Kaminski et al.

abstraction and automation to facilitate the process of employing

these techniques for multi-tenant container deployments.

The remainder of this paper is structured as follows. Section 2

presents the necessary background information for the paper. Sec-

tion 3 discusses relevant related work and gives insights into the

several black-box optimization techniques that can be used for SLA-

decomposition. Section 4 presents the design and implementation

of the k8-resource-optimizer framework. Next, in Section 5 the

performance of the k8-resource-optimizer framework is evaluated

in the context of a multi-tenant SaaS application for job processing.

Subsequently, Section 6 presents possible solutions for reducing

the total tuning cost. Finally, our conclusion and future work are

presented in Section 7. A demo version of k8-resource-optimizer is

available as Docker image decomads/k8-resource-optimizer at

Docker Hub.

2 Background

2.1 Kubernetes

Kubernetes [6] is one of themost popular and adopted orchestration

platforms. Kubernetes introduces a number of concepts for both

containers and cluster resources [16]. It allows to setup and man-

age container-based applications via declarative configuration files.

Below are the most relevant configuration concepts introduced.

These concepts are also supported by other container orchestration

platforms such Docker Swarm and Mesos [16].

Pods. A pod is the smallest unit of deployment within Kubernetes.

It is a group of containers that logically belong together and are

always executed on the same node. A pod is also a unit of failure.

Deployments. A Deployment controller manages a ReplicaSet of

pods. A ReplicaSet allows pods to be replicated across multiple

nodes. A Deployment object is used to specify the desired state of

pods (e.g. number of replica’s) [3].

Namespaces. Namespaces allow to partition resources of a physical

cluster among multiple tenant organizations. Each namespace gets

a share of the resources of the cluster, via resource quotas. Resource

quotas are supported for CPU, memory and persistent volumes [4].

Resource requests and limits. Kubernetes allows the allocation of

compute resources to both containers and the enclosing Pods by

means of guaranteed resource requests andmaximum resource limits.

The currently supported compute resources are CPU, memory and

storage within the root partition of the local node [5].

There are possible multi-tenant deployment strategies to em-

ploy the above container orchestration concepts. These strategies

differ in the chosen trade-off between cost-efficiency and security

isolation [17]:

Namespace per tenant. Each tenant is assigned to its own sepa-

rate, dedicated namespace. This allows specifying the exact re-

source requests and limits of pods needed to satisfy the SLOs of the

tenant. The advantage of this approach is improved security and

performance isolation between tenants, but this approach is less

cost-efficient. Typically this strategy is most suitable for Platform-

as-a-Service.

Namespace per SLA class. Tenants are grouped in different SLA

classes (e.g. gold, bronze). A separate, dedicated namespace with

the corresponding quota is created for all the tenants in each SLA

class. The advantage of the approach is that the sharing of a con-

tainer among tenants of the same SLA class allows for a higher

Parameter X

Pa
ra

m
et

er
 Y

Figure 1. Illustration of BestConfig’s DDS on a 2D parameter space.

Dots represent all combination of sampled parameter spaces. Blue

lines indicate sampling intervals. Green dots are the selected dots

after random divergence.

resource utilization, but there is no container security and perfor-

mance isolation between different tenants that belong to the same

SLA class. This strategy is most suitable for Software-as-a-Service

applications with a front-end rate limiter for admission control of

aggressive tenants, but some tenants of the SaaS application may

still prefer the isolation of a separate container [17].

The SLA-decomposition problem for container orchestration

platforms can then be defined as follows: Given (1) different Deploy-

ments that belong to different Namespaces, (2) a specific workload for

each of these Deployments, and (3) a custom SLO for each Deployment,

find the minimum resource requests and limits for the Pods in each

Deployment, so that the SLOs of the Deployments are met.

2.2 BestConfig

In this paper we use a variant of hypercube-sampling, named Best-

Config [24], for solving the above SLA-decomposition problem.

This technique treats the application as a black box and does not

require the upfront construction of a performance model of the

application. Its algorithm optimizes towards a single, scalar per-

formance metric. This metric is calculated by an utility function

that has user-concerned performance goals such as latency and

resource cost as input parameters.

BestConfig consists of an effective samplingmethod called divide-

and-diverge sampling (DDS) and recursive-bound-and-search (RBS),

a search-based optimization algorithm.

2.2.1 Divide-and-diverge

BestConfig can support a high-dimensional parameter space in order

to handle systems with a lot of performance-sensitive parameters.

To limit the number of required samples k , the high-dimensional

parameter space is divided into subspaces. Given n parameters,

each parameter’s range is divided into k intervals, resulting into kn

possible parameter combinations that can be sampled. The authors

show that a good coverage of these parameter combinations can

be attained by divergence of the sample set, i.e. representing each

interval of each parameter exactly once in the sample set. Figure 1

illustrates divergence: the green dots are the k selected samples to

be tested.

2.2.2 Recursive Bound & search

RBS is a search-based performance optimization algorithm that de-

fines the area of the parameter space near the sample Ci ∈ C0..k−1

that has been awarded the highest score by the utility function.

This area is referred to as the bounded space for the next iteration of

8

Black-box SLO tuning of multi-tenant applications in Kubernetes WOC ’19, December 9ś13, 2019, Davis, CA, USA

DSS. When DDS cannot find a better optimum than Ci , BestConfig

will backtrack to the bounded space of the previous iteration.

3 Related work

Black-box tuning for best VM instance selection and con-

tainer resource scalingThe closest work to k8-resource-optimizer

are black-box auto-tuning approaches for the selection of VM in-

stances under performance guarantees while minimizing costs.

Ernest [18] can select VM sizes within a given instance family for

various machine learning applications by training a common per-

formance model with a small number of samples. CherryPick [1] uti-

lizes Naive bayesian optimization, a technique for optimizing black-

box functions, to find optimal or near-optimal VM instances for

recurring big data analytics jobs. Arrow [8] introduces Augmented

Bayesian Optimization which modifies off-the-shelf bayesian opti-

mization by integrating low-level performance information (e.g.,

CPU utilization or work memory allocation) to faster find near-

optimal solutions. Recent works in the space of container-based

cluster computing extend a static performance optimization phase

with adaptive resource reconfiguration at run-time. MIRAS [23]

employs model-based reinforcement learning to reduce the number

of performance tests. MEER [22] even dismisses the feasibility of

performance optimization based on utility functions. Instead, it

only requires two static performance tests to determine statistical

confidence intervals for the optimal memory resource limit of con-

tainers in Apache Spark; these intervals are further fine-tuned at

run-time. For multi-tenant container-based SaaS applications [17],

however, static performance optimization remains an important

tool for SLO management provided that performance SLOs enforce

a maximum request rate upon tenants.

Black-box tuning of program configuration parameters to-

wards a specific performance objective is an active research domain.

BestConfig [24](see also Section 2.2) tunes general systems with

high-dimensional parameter spaces using a recursive search with

stratified sampling. Similarly, Latin Hypercube Sampling (LHS) is

able to tune a large-number of orthogonal parameter spaces [21].

These techniques are relevant as container-based applications also

have a larger multi-dimensional search space (multiple types of

resources, multiple types of Pod deployments) and the numerical

ranges for CPU and memory are also more fine-grained. The main

difference between k8-resource-optimizer and the above works is

that the latter mainly focuses on optimizing performance, whereas

we focus on optimizing performance ànd resource cost.

4 K8-resource-optimizer

4.1 Architecture and implementation

This section presents the architecture of k8-resource-optimizer (see

Figure 2). The k8-resource-optimizer framework consists of two ma-

jor components, SLA-decomposer and Bench. The SLA-decomposer

is responsible for the translation of SLOs to resource allocation

policies for a container-based multi-tenant application. It takes a

user-specified input configuration file and transforms it to a bench-

mark plan. The Bench-component uses this benchmark plan to

search for the optimal resource configuration using a sequence of

performance tests. The Bench component can simultaneously test

different resource configurations in multiple namespaces. It further

depends on the deployment manager for the process of shutting

down and restarting containers with a new resource configuration

while maintaining loose coupling with the underlying container

orchestration framework. Finally it depends on a load testing frame-

work for testing the performance of a resource configuration.

SLA-decomposer Bench

Deployment
manager

Load testing
framework

1) specifies

2) deploy

3) test

4) results

Figure 2. The architecture of k8-resource-optimizer.

Listing 1. Input for the SLA-decomposer.

−−−

c h a r t s :

− name : my−app

c h a r t d i r : / exp / con f / helm / mychart

s l a s :

− name : s i l v e r

c h a r t : my−app

j o b s i z e : 500

throughput : 0 . 5

nbOfTenants : 3

pa rame te r s :

− name : workerCPU

s e a r ch sp a c e :

min : 200

max : 750

g r a n u l a r i t y : 5

p r e f i x :

s u f f i x : m

− name : wo rke rRep l i c a s

s e a r c h s p a c e :

min : 2

max : 4

g r a n u l a r i t y : 1

− name : bronze

c h a r t : my−app

j o b s i z e : 250

throughput : 0 . 5

nbOfTenants : 2

pa rame te r s :

− name : workerCPU

. . .

− name : wo rke rRep l i c a s

. . .

n amespaceS t r a t egy : NSPSLA

op t im i z e r : b e s t c o n f i g

n bO f I t e r a t i o n s : 2

n bO f S amp l e s P e r I t e r a t i o n : 2

u t i l F u n c : r e s ou r c eBa s ed

ou tpu tD i r : d a t a s e t s /my−app / b e s t c o n f i g

9

WOC ’19, December 9ś13, 2019, Davis, CA, USA M. Kaminski et al.

This architecture and its Kubernetes-specific instantiation have

been implemented in the Go programming language. Existing load

testing frameworks can be integrated into the Bench component. In

this paper we use the Locust framework, which is a distributed user

load testing framework intended for load-testing different types

of systems [11]. The implementation of the deployment manager

component relies on Helm [7].

4.2 SLA-decomposition

To illustrate the concepts of SLA decomposition, Listing 1 shows

an example of an input configuration for the SLA-decomposer com-

ponent. A configuration consists of an application specification

that is to be deployed in one or more namespaces. Kubernetes

applications are specified as Helm charts [7].

Thereafter one or more SLAs are specified. Each SLA specifies

the following options: Service Level Objectives to be met and the

amount of tenants. The service level objectives such as throughput

and job size are application-specific and are therefore supported by

an application-specific workload generator within the load testing

framework.

Then the resource parameters to be tuned are specified. For

each parameter, a search space is defined which restricts the upper

and lower bounds of the parameter, and a granularity for iterating

over the values in this space. It is also possible to specify a necessary

prefix or suffix for the parameter (e.g., suffix m for 500m CPU). The

Kubernetes-specific extension of the Deployment manager can

non-intrusively set the values of any numerical parameters in any

Kubernetes configuration files by relying on the chart template

feature of Helm, which expects that all tunable parameters are

specified in a separate Values file. For example, the workerCPU

parameter is nested inside a regular Kubernetes YAML file for a

Deployment as follows:

replicas: {{.Values.workerReplicas}}

...

resources:

requests:

cpu: {{.Values.workerCPU}}

memory: 500Mi

limits:

cpu: {{.Values.workerCPU}}

Then, the multi-tenant deployment strategy is configured.

This is either Namespace per SLA or Namespace per tenant as de-

scribed in Section 2.

The next part of the input configuration concerns the selection

of the optimization algorithm and the number of iterations and

samples that the optimization algorithm must take. The bench com-

ponent currently supports the following algorithms. Hereby the

notion of iterations and samples is generic enough to subsume the

different algorithmic structures:

• BestConfig: during each iteration, divide-and-diverge sam-

pling first takes the given number samples in the given pa-

rameter search space. Then, recursive-bound-and-search is

applied to narrow down the search space around the best

sample or backtrack to the previous search space.

• BayesianFmfn: for the implementation of bayesian optimiza-

tionwe rely on a popular open-source Python library. During

each iteration, one sample configuration is selected bymeans

of the expected improvement acquisition function [15].

• Random (incremental) search: iterations map to the amount

of samples tested. The samples argument has no effect. In-

cremental search means that values of the same parameter

across successive iterations are always incremented, but

which parameter to increment is randomized.

• Exhaustive search: samples are calculated based on the total

possible combinations of parameters to be tuned.

Finally, the utility function is a scalar function. It translates

multiple user-concerned performance goals to a single value. In

the case of SLA-decomposition where SLOs have to be met with

a minimal set of resources, the utility function first dismisses con-

figurations for which the SLA is violated. For the configurations

that do satisfy the SLA, the utility function creates a scalar value in

terms of resource consumption. In this function, a lower resource

consumption leads to a better score and each resource parameter

can be assigned a weight according to the preference of the user:

f ([]SLOmetrics, []resoureLimits) =

0 if SLA is violated
∑len(r esourceLimits)
r=1 (1 −

current (ri)
upperbound (ri)

) ×weiдht(ri)

if SLO is met

5 Evaluation

We have evaluated the correctness and performance of k8-resource-

optimizer in for multiple resource parameters, multiple tenants and

multiple specific SLAs. Due to space limitations, the evaluation is

restricted to the scenario where multiple parameters for multiple

tenants with the same SLA are optimized1. All experiments are

conducted with the BestConfig algorithm (see Section 2.2) on a

single-node Kubernetes cluster (version 1.8.0) inside a VM using

Minikube [13] (version 0.24.1). The VM is allocated 4 cores and 8192

MB memory. The underlying hardware utilizes a 2.6GHz hyper-

threading quad-core processor.

5.1 Application scenario

We have implemented a simple job processing application to evalu-

ate the feasibility of k8-resource-optimizer. The application consists

of two major components: the Queue and Workers. The design is

shown in Figure 3.

Figure 3. Design simple job processing application.

The components of the application are implemented as restful

web services in the Java Spring Boot Framework. The queue offers

a REST API for pushing jobs on the queue and pulling tasks from

the queue: a job consists of a certain amount of tasks. The worker

will poll in fixed time interval (1 second) or after completing the

current task.

We assume that all tasks are the same. This assumption is valid

for traditional cluster scheduling frameworks such as Hadoop

1The thesis text, which presents all validated scenarios, is available at
https://github.com/k8-scalar/k8-resource-optimizer/

10

Black-box SLO tuning of multi-tenant applications in Kubernetes WOC ’19, December 9ś13, 2019, Davis, CA, USA

but not for contemporary frameworks such as Spark [22]. More-

over we assume tasks are CPU-intensive. As such, workers imple-

ment a CPU-stressing computation that is inspired by the work of

Matthews et al. [12] on quantifying the performance isolation of

virtualization systems. The authors suggest to utilize a tight loop

of integer arithmetic operations; more specifically the factorial of

30 is recursively calculated in the loop. The number of loops can

be configured.

Note, k8-resource-optimizer does not only focus on applications

of the job type, but also targets user-facing web applications where

the SLO is specified in terms of response latency.

5.2 Multiple parameters, multiple tenants with same SLA

The goal of the following experiment is to test if k8-resource-

optimizer can be used to tune two different types of resource param-

eters simultaneously: workerCPU and workerReplicas. For CPU,

Kubernetes requests are set equal to limits to ensure proper

CPU isolation between containers when the number of co-located

containers on a node evolves.

Experiment setup For this experiment, an SLA-decomposition

is performed for three silver tenants but no bronze tenants. The

used performance SLO and multi-tenancy strategy are shown in

Listing 1). The namespace per SLA class strategy is employed as

multi-tenancy strategy. Therefore, all tenants submit requests to the

same application instance. The search space for the workerCPU pa-

rameter is 200 - 750 and 2 - 4 for the workerReplicas parameter.

This bounds for this search space have been chosen bymeans of trial

and error. To speed-up the optimization, a constraint must be added

to exclude wasteful resource configurations from the parameter

surface. The constraint is 300 < workerCPU × workerReplicas <

2000. This constraint is currently to be implemented directly into

the Bench component. With a granularity for CPU of 5 Millicores,

there remain 254 combinations of the two parameters. The optimiza-

tion will perform 5 iterations. Each iteration tests 3 configurations

samples (pair of silver and bronze setting). Resulting in 15 configu-

rations to be tested in total.

Results The results produced by k8-resource-optimizer are shown

in Table 1. The increase in best score is given. During each iteration

the bounded search space determined by DDS becomes more nar-

row as samples are located more closely together. The best score

is found by RDS during the fifth iteration. The execution of the

experiment took approximately 2 hours.

6 Towards fast optimization in continuous
delivery

The experimental findings with a job processing application in

multiple Kubernetes deployment scenarios have shown that k8-

resource-optimizer is capable of finding cost-effective SLA-decom-

positions for two parameters in a limited number of samples.

Whilst further evaluation with different applications is needed,

k8-resource-optimizer seems to have potential in the testing phase

of a continuous delivery pipeline that is typically used in mature

DevOps organizations. To make k8-resource optimizer itself cost-

effective in this DevOps context, however, the total auto-tuning

time when targeting high-dimensional parameter spaces must be

significantly reduced. As demonstrated in section 3, a vast amount

Table 1. Experiment 2: Results of k8-resource-optimizer on 15 sam-

ples in 5 iterations. Job size is 500 tasks and the targeted throughput

is 0.5 jobs per second.

ITERATION: 1

workerReplicas workerCPU Score Throughput (Jobs/s) Total CPU

2 635 3.18 0.63 1270

4 255 0 0.33 1020

3 380 0 0.46 1140

ITERATION: 2

workerReplicas workerCPU Score Throughput (Jobs/s) Total CPU

2 615 3.22 0.6 1230

2 640 3.17 0.63 1280

3 390 0 0.47 1170

ITERATION: 3

workerReplicas workerCPU Score Throughput (Jobs/s) Total CPU

3 510 0 0.49 1530

2 595 3.26 0.59 1190

2 440 0 0.4 880

ITERATION: 4

workerReplicas workerCPU Score Throughput (Jobs/s) Total CPU

2 580 3.29 0.55 1160

2 520 0 0.49 1040

3 605 2.57 0.75 1815

ITERATION: 5

workerReplicas workerCPU Score Throughput (Jobs/s) Total CPU

2 560 3.34 0.56 1120

2 530 3.42 0.51 1060

3 590 2.6 0.77 1770

of work has already proposed faster optimization algorithms for se-

lecting optimal VMs. Still, we believe it is worthwhile to explore the

following three complementary improvements that can be applied

together to tackle this open challenge.

The first possible solution is to apply sensitivity analysis al-

gorithms to distinguish performance-sensitive parameters from

those parameters that are not sensitive to trade-offs between re-

source cost and performance, and only apply optimization to the

former. For example, we ran k8-resource-optimizer with the well-

known elementary effects algorithm [14] on an extended version

of the job processing application. It took approximately 70 perfor-

mance tests of 8 minutes in order to obtain significant measures

for 6 resource parameters (cpu / memory of 3 Pods). Thus, existing

sensitivity analysis algorithm are also too costly in finding good

samples. Surprisingly, there is little current research on improving

the performance of sensitivity analysis.

A second solution starts from the hypothesis that which opti-

mization algorithm is the fastest in finding a good enough resource

configuration, depends on the specific application. Therefore, it

is plausible to perform a once-off effort to statistically compare

different algorithms in terms of their trade-off between the num-

ber of required samples and the distance to the optimal resource

configuration. With this end in view, k8-resource optimizer can be

executed in off-line mode, i.e. samples are taken from a database

with exhaustively collected performance tests within a reduced

search space that is determined by the aforementioned sensitivity

analysis algorithm. For this comparison, we recommend an utility

function that also allows to distinguish resource configurations that

only slightly violate the SLO. For example, the function can assign

a score 1 + d where d is equal to the distance between the 99th per-

centile of the measured performance and the SLO. Configurations

that do satisfy the SLO should be assigned a score between [0, 1],

where the lower resource allocation cost receives a lower score.

Figure 4 shows for all algorithms a statistical summary of the 10

worst results out of 1000 off-line runs for the extended version of

the job processing application using this utility function. The Y-axis

shows the 99th percentile distance with the optimal configuration

11

WOC ’19, December 9ś13, 2019, Davis, CA, USA M. Kaminski et al.

Job Queue

Samples
0.00 25.00

9
9
th

 p
er

ce
n
ti

le
 d

is
ta

n
ce

 t
o
 o

p
ti

m
u
m

0.0

0.4

0.8

1.2
randominc

random
bestconfig

bayesianEI
SLO

Figure 4. Comparing the worst-case efficacy of optimization meth-

ods in finding the near-optimal configurations in the reduced search

space. The Y-axis shows the 99th percentile of distance to the opti-

mum solution (99% of the runs find similar of better configurations).

as found by exhaustive search. This distance is calculated as the

difference in respective utility scores. The area below the purple-

dashed horizontal line corresponds with all resource configurations

for which the SLO is satisfied. BestConfig is shown to be the fastest

in finding configurations that are close to the cost-optimal one.

Moreover bayesian optimization is fast in finding configurations

that meet the SLO but is not able to find cost-optimal configura-

tions at all. This is because bayesian optimization has no automatic

backtracking as BestConfig does (see Section 2.2). Therefore, runs

with bad seeds may get stuck in a local optimum. As Figure 4 plots

the 99th percentile distance, the performance of these bad runs is

essentially shown.

The third possible solution is to develop application-specific

deployment tactics so it becomes possible to apply the optimiza-

tion to coarse-grained deployment units of the application instead

of fine-grained resource parameters. For example, specifically re-

lated to job processing applications, jobs could be executed by a

small set of heterogenous Worker deployments that are ranked

in terms of CPU and memory size from small sized Pods to large-

sized pods. The optimization boils then down to finding the optimal

amounts of Pod replicas for each of the deployments. Generic sup-

port for application-specific customizations to optimization algo-

rithms (such as the additional constraint in the second experiment)

also falls under the scope of this solution.

7 Conclusion

Existing approaches for SLA-decomposition require extensive do-

main expertise and struggle with the conceptual gap between

the performance model of the application and the true perfor-

mance characteristics of the application. As a result, black-box

optimization algorithm that do not require a model of the applica-

tion have gained increasing attention in recent research. This paper

has proposed the k8-resource-optimizer framework that is specifi-

cally designed for SLA-decomposition in multi-tenant container-

based cloud environments. K8-resource-optimizer works with mul-

tiple black-box optimization algorithms and has been implemented

and evaluated in Kubernetes. Moreover, the k8-resource-optimizer

framework can also be customized for other container orchestra-

tion platforms and it can be integrated with multiple performance

testing tools. An open research challenge involves managing the

trade-off between reducing the total tuning cost and finding near-

optimal resource configurations. In ongoing work we explore mul-

tiple complementary roads to this problem.

Acknowledgments

We thank the reviewers for their helpful comments. This research

is partially funded by the Research Fund KU Leuven and the IWT-

DeCoMAds project.

References
[1] Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang,

M. Cherrypick: Adaptively unearthing the best cloud configurations for big data
analytics. In NSDI (2017).

[2] Chen, Y., Iyer, S., Liu, X., Milojicic, D., and Sahai, A. SLA decomposition:
Translating service level objectives to system level thresholds. In Autonomic
Computing, 2007. ICAC’07. Fourth International Conference on (2007), IEEE.

[3] Foundation, C. N. L. Kubernetes deployments, 2018. https://kubernetes.io/docs/
concepts/workloads/controllers/deployment/.[Online; Accessed May 18, 2018].

[4] Foundation, C. N. L. Kubernetes namespaces, 2018. https://kubernetes.io/docs/
concepts/overview/working-with-objects/namespaces/.[Online; Accessed May
18, 2018].

[5] Foundation, C. N. L. Managing compute resources for con-
tainers, 2018. https://kubernetes.io/docs/concepts/configuration/
manage-compute-resources-container/.[Online; Accessed May 18, 2018].

[6] Foundation, C. N. L. What is kubernetes?, 2018. https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/.[Online; Accessed May 18, 2018].

[7] Helm. Helm - the kubernetes package manager, 2018. https://helm.sh/.[Online;
Accessed May 17, 2018].

[8] Hsu, C.-J., Nair, V., Freeh, V. W., and Menzies, T. Arrow: Low-level augmented
bayesian optimization for finding the best cloud vm. In 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS) (2018), IEEE.

[9] Jyothi, S. A., Curino, C., Menache, I., Narayanamurthy, S. M., Tumanov, A.,

Yaniv, J., Mavlyutov, R., Goiri, I., Krishnan, S., Kulkarni, J., et al. Morpheus:
Towards automated slos for enterprise clusters. In OSDI (2016).

[10] Krebs, R., Momm, C., and Kounev, S. Metrics and techniques for quantifying
performance isolation in cloud environments. Science of Computer Programming
90 (2014).

[11] Locust.io. Locust: An open source load testing tool, 2018. https://locust.io/.
[Online; Accessed July 16, 2018].

[12] Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamil-

ton, G., McCabe, M., and Owens, J. Quantifying the performance isolation
properties of virtualization systems. In Proceedings of the 2007 workshop on
Experimental computer science (2007), ACM.

[13] Minikube developers. Minikube: running kubernetes cluster locally, 2018.
https://github.com/kubernetes/minikube. [Online; Accessed July 16, 2018].

[14] Morris, M. D. Factorial sampling plans for preliminary computational experi-
ments. Technometrics 33, 2 (1991).

[15] Noguiera, F. Bayesian optimization. https://github.com/fmfn/
BayesianOptimization, 2019.

[16] Truyen, E., Van Landuyt, D., Preuveneers, D., Lagaisse, B., and Joosen,

W. A Comprehensive Feature Comparison Study of Open-Source Container
Orchestration Frameworks. Applied Sciences 9, 5: 931 (2019).

[17] Truyen, E., Van Landuyt, D., Reniers, V., Rafiqe, A., Lagaisse, B., and Joosen,

W. Towards a container-based architecture for multi-tenant saas applications. In
Proceedings of the 15th International Workshop on adaptive and reflective middle-
ware (December 2016), ARM 2016, ACM.

[18] Venkataraman, S., Yang, Z., Franklin, M. J., Recht, B., and Stoica, I. Ernest:
Efficient performance prediction for large-scale advanced analytics. In NSDI
(2016).

[19] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes,

J. Large-scale cluster management at Google with Borg. In Proceedings of the
Tenth European Conference on Computer Systems (2015), ACM.

[20] Walraven, S., Truyen, E., and Joosen, W. A middleware layer for flexible and
cost-efficient multi-tenant applications. Middleware 2011 LNCS 7049 (2011).

[21] Xi, B., Liu, Z., Raghavachari, M., Xia, C. H., and Zhang, L. A smart hill-
climbing algorithm for application server configuration. In Proceedings of the
13th international conference on World Wide Web (2004), ACM.

[22] Xu, G., and Xu, C. MEER : Online Estimation of Optimal Memory Reservations
for Long Lived Containers in In-Memory Cluster Computing. In ICDCS 2019
(2019).

[23] Yang, Z., Nguyen, P., Jin, H., andNahrstedt, K.MIRAS :Model-based Reinforce-
ment Learning for Microservice Resource Allocation over Scientific Workflows.
In ICDCS 2019 (2019).

[24] Zhu, Y., Liu, J., Guo, M., Bao, Y., Ma, W., Liu, Z., Song, K., and Yang, Y. BestCon-
fig: tapping the performance potential of systems via automatic configuration
tuning. In Proceedings of the 2017 Symposium on Cloud Computing (2017), ACM.

12

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://helm.sh/
https://locust.io/
https://github.com/kubernetes/minikube
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

	Abstract
	1 Introduction
	2 Background
	2.1 Kubernetes
	2.2 BestConfig

	3 Related work
	4 K8-resource-optimizer
	4.1 Architecture and implementation
	4.2 SLA-decomposition

	5 Evaluation
	5.1 Application scenario
	5.2 Multiple parameters, multiple tenants with same SLA

	6 Towards fast optimization in continuous delivery
	7 Conclusion
	References

