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A large number of call graph construction algorithms for object-oriented and functional languages
have been proposed, each embodying different tradeoffs between analysis cost and call graph preci-
sion. In this article we present a unifying framework for understanding call graph construction algo-
rithms and an empirical comparison of a representative set of algorithms. We first present a general
parameterized algorithm that encompasses many well-known and novel call graph construction
algorithms. We have implemented this general algorithm in the Vortex compiler infrastructure, a
mature, multilanguage, optimizing compiler. The Vortex implementation provides a “level playing
field” for meaningful cross-algorithm performance comparisons. The costs and benefits of a number
of call graph construction algorithms are empirically assessed by applying their Vortex implemen-
tation to a suite of sizeable (5,000 to 50,000 lines of code) Cecil and Java programs. For many of
these applications, interprocedural analysis enabled substantial speed-ups over an already highly
optimized baseline. Furthermore, a significant fraction of these speed-ups can be obtained through
the use of a scalable, near-linear time call graph construction algorithm.
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1. INTRODUCTION

Frequent procedure calls and message sends serve as important structuring
tools for object-oriented languages; but they can also severely degrade appli-
cation runtime performance. This degradation is due to both the direct cost
of implementing the call and to the indirect cost of missed opportunities for
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compile-time optimization of the code surrounding the call. A number of tech-
niques have been developed to convert message sends into procedure calls (to
statically bind the message send) and to inline statically bound calls, thus
removing both the direct and indirect costs of the call. However, in most pro-
grams, even after these techniques have been applied, there will be some re-
maining nonstatically bound message sends and noninlined procedure calls.
If the presence of these call sites forces an optimizing compiler to make overly
pessimistic assumptions, then potentially profitable optimization opportunities
can be missed, leading to significant reductions in application performance.

Interprocedural analysis is one method for enabling an optimizing com-
piler to more precisely model the effects of noninlined calls, thus enabling it
to make less pessimistic assumptions about program behavior and reduce the
performance impact of noninlined call sites. An interprocedural analysis can be
divided into two logically separate subtasks. First, the program call graph,
a compile-time data structure that represents the runtime calling relation-
ships among a program’s procedures, is constructed. In most cases this is done
as an explicit prephase before performing the “real” interprocedural analysis,
although some analyses interleave call graph construction and analysis, and
others may only construct the call graph implicitly. Second, the “real” anal-
ysis is performed by traversing the call graph to compute summaries of the
effect of callees at each call site and/or summaries of the effect of callers at
each procedure entry. These summaries are then consulted when compiling and
optimizing individual procedures.

In strictly first-order procedural languages, constructing the program call
graph is straightforward: at every call site, the target of the call is directly evi-
dent from the source code. However, in object-oriented languages and languages
with function values, the target of a call cannot always be precisely determined
solely by an examination of the source code of the call site. In these languages,
the target procedures invoked at a call site are at least partially determined by
the data values that reach the call site. In object-oriented languages, the method
invoked by a dynamically dispatched message send depends on the class of the
object receiving the message; in languages with function values, the procedure
invoked by the application of a computed function value is determined by the
function value itself. In general, determining the flow of values needed to build
a useful call graph requires an interprocedural data and control flow analysis
of the program. But interprocedural analysis in turn requires that a call graph
be built prior to the analysis being performed. This circular dependency be-
tween interprocedural analysis and call graph construction is the key technical
difference between interprocedural analysis of object-oriented and functional
languages (collectively called “higher-order” languages) and interprocedural
analysis of strictly first-order procedural languages. Effectively resolving this
circularity is the primary challenge of the call graph construction problem for
higher-order languages.

The main contributions of this work are the following:

—We developed a general parameterized algorithm for call graph construc-
tion. The general algorithm provides a uniform vocabulary for describing
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call graph construction algorithms, illuminates their fundamental similar-
ities and differences, and enables an exploration of the algorithmic design
space. The general algorithm is quite expressive, encompassing algorithms
with a wide range of cost and precision characteristics.

—We implemented the general algorithm in the Vortex compiler infrastruc-
ture. The definition of the general algorithm naturally gives rise to a flexible
implementation framework that enables new algorithms to be easily imple-
mented and assessed. Implementing all of the algorithms in a single frame-
work within a mature optimizing compiler provides a “level playing field” for
meaningful cross-algorithm performance comparisons.

—We experimentally assessed a representative selection of call graph construc-
tion algorithms. The Vortex implementation framework was used to test each
algorithm on a suite of sizeable (5,000 to 50,000 lines of code) Cecil and Java
programs. In comparison to previous experimental studies, our experiments
cover a much wider range of algorithms and include applications that are
an order of magnitude larger than the largest used in prior work. Assessing
the algorithms on larger programs is important because some of the algo-
rithms, including one that was claimed scalable in previous work cannot be
practically applied to some of our larger benchmarks.

This article is organized into two major parts: a presentation of our general
parameterized call graph construction algorithm (Sections 2 through 5) and
an empirical assessment of a representative set of instantiations of the general
algorithm (Sections 6 through 11). Section 2 begins by reviewing the role of class
analysis in call graph construction. Sections 3 and 4 are the core of the first half
of the article; they formally define call graphs and the call graph construction
problem and present our general parameterized algorithm. Section 5 describes
our implementation of the algorithm in the Vortex compiler infrastructure: it
focuses on our design choices and how key primitives are implemented.
Section 6 begins the second half of the article by describing our experimental
methodology. Sections 7 through 10 each describe and empirically evaluate a
category of call graph construction algorithms. Section 11 concludes the second
half of the article by summarizing our experimental results. Section 11 also
uses the insights gained from defining each algorithm as an instance of our
general algorithm to partially order algorithms based on the relative precision
of the call graphs they compute. Finally, Section 12 discusses some additional
related work and Section 13 concludes.

2. THE ROLE OF INTERPROCEDURAL CLASS ANALYSIS

In object-oriented languages, the potential target method(s) of many calls can-
not be precisely determined solely by an examination of the call site source
code. The problem is that the target methods that will be invoked as a result
of the message send are determined by the classes of the objects that reach
the message send site at runtime, and thus act as receivers for the message.
In general, the flow of objects to call sites may be interprocedural, and thus
precisely determining the receiver class sets needed to build the call graph
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requires an interprocedural data and control flow analysis of the program. But
interprocedural analysis in turn requires that a call graph be built prior to the
analysis being performed. There are two possible approaches for handling the
circular dependencies among the receiver class sets, the program call graph,
and interprocedural analysis:

—We can make a pessimistic (but sound) assumption. This approach breaks
the circularity by making a conservative assumption for one of the three
quantities and then computing the other two. For example, a compiler could
perform no interprocedural analysis, assume that all statically type-correct
receiver classes are possible at every call site, and in a single pass over
the program construct a sound call graph. Similarly, intraprocedural class
analysis could be performed within each procedure (making conservative as-
sumptions about the interprocedural flow of classes) to slightly improve the
receiver class sets before constructing the call graph. This overall process
can be repeated iteratively to further improve the precision of the final call
graph by using the current pessimistic solution to make a new, pessimistic
assumption for one of the quantities, and then using the new approximation
to compute a better, but still pessimistic, solution. Although the simplicity of
this approach is attractive, it may result in call graphs that are too imprecise
to enable effective interprocedural analysis.

—We can make an optimistic (but likely unsound) assumption, and then iterate
to a sound fixed-point solution. Just as in the pessimistic approach, an initial
guess is made for one of the three quantities giving rise to values for the
other two quantities. The only fundamental difference is that because the
initial guess may have been unsound, after the initial values are computed
further rounds of iteration may be required to reach a fixed point. As an
example, many call graph construction algorithms make the initial optimistic
assumption that all receiver class sets are empty and that the main routine1

is the only procedure in the call graph. Based on this assumption, the main
routine is analyzed, and in the process it may be discovered that in fact
other procedures are reachable and/or some class sets contain additional
elements, thus requiring further analysis. The optimistic approach can yield
more precise call graphs (and receiver class sets) than the pessimistic one,
but is more complicated and may be more computationally expensive.

This article presents and empirically assesses call graph construction al-
gorithms that utilize both approaches. The data demonstrate that call graphs
constructed by algorithms based on the first (pessimistic) approach are substan-
tially less precise than those constructed by algorithms that utilize the second
(optimistic) approach. Furthermore, these differences in precision impact the
effectiveness of client interprocedural analyses, and in turn substantially im-
pact bottom-line application performance. Therefore, Sections 3 and 4 concen-
trate on developing formalisms that naturally support describing optimistic

1We define the main routine of a program as the union of all program entry points and static data
initializations.
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algorithms that integrate call graph construction and interprocedural class
analysis (although the formalisms can also describe some pessimistic algo-
rithms).

3. A LATTICE THEORETIC MODEL OF CALL GRAPHS

This section precisely defines the output domain of the general integrated call
graph construction and interprocedural class analysis algorithm. Section 3.1
informally introduces some of the key ideas. Section 3.2 formalizes the intu-
ition of Section 3.1 using ideas drawn from lattice theory. Finally, Section 3.3
discusses the termination and soundness of call graph construction algorithms.

3.1 Informal Model of Call Graphs

In its standard formulation, a call graph consists of nodes, representing proce-
dures, linked by directed edges, representing calls from one procedure to an-
other. However, this formulation is insufficient to accurately capture the out-
put of a context-sensitive interprocedural class analysis algorithm. Instead,
each call graph node will represent a contour: an analysis-time representa-
tion of a procedure. In context-insensitive call graphs, there is exactly one
contour for each procedure; in context-sensitive call graphs, there may be an
arbitrary number of contours representing different analysis-time views of
a single procedure. Figure 1(b) shows the context-insensitive call graph2 for
the example program from Figure 1(a). Figure 1(c) depicts the call graph con-
structed by a context-sensitive algorithm that has created additional contours
to separate the flow of Circle and Square objects from their creation points in
methods A and B to their use as receivers of the area message in the sumArea

method.
Abstractly, every contour contains three components: an identifier that en-

codes which program construct the contour represents; a contour key that en-
codes the contexts in which the contour applies; and analysis information to
associate with the program construct in the contexts encoded by the contour
key. Typically, the program constructs represented by contours are the proce-
dures of a program. However, as described below, contours can also be used
to represent classes and instance variables to obtain context-sensitive analy-
sis of polymorphic data structures. In the example program, determining that
sumArea called from A can only invoke the area method of the Circle class (and
cannot invoke Square::area) and requires the use of class and instance vari-
able contours to more precisely represent the flow of values through the first

and second instance variables of the SPair class.
For the purposes of interprocedural class analysis, a procedure contour con-

tains the following analysis information

—Class sets represent the result of interprocedural class analysis. Every con-
tour contains class sets for formal parameters, local variables, and the result
of the procedure. These sets of classes represent the possible classes of ob-
jects stored in the corresponding variable (or returned from the procedure)

2To simplify the figure, all calls to constructors are omitted.
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Fig. 1. Context-insensitive vs. context-sensitive call graph.
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during program execution. If the analysis has computed that an instance of
some class C could be stored in a program variable x, then the class set for
x will contain C. If some subclass of C, D is not contained in the set, then the
analysis has determined that instances of D cannot be stored in x.

—Call graph edges record for each call site a set of possible callee contours.

Interprocedural class analysis also needs to record sets of possible classes for
each instance variable, in a manner similar to the class sets for local variables
recorded in procedure contours. Array classes are supported by introducing a
single instance variable per array class to model the elements of the array. An
instance variable contour associates a single class set representing the poten-
tial classes of values stored in the instance variable with an instance variable
identifier and contour key pair.

To more precisely analyze polymorphic data structures, including array
classes, some interprocedural class analysis algorithms introduce additional
context sensitivity in their analysis of classes and instance variable content. For
example, by treating different instantiation sites of a class as leading to distinct
(analysis-time) classes with distinct instance variable contours, an analysis can
simulate the effect of templates or parameterized types without relying on ex-
plicit parameterization in the source program. Thus, a single source-level class
may be represented during analysis by multiple class contours. A class con-
tour does not contain any additional analysis information, and thus consists of
just a class identifier and a contour key. In the literature, using multiple class
contours is sometimes described as tagging classes with their creation points.
All previously described class information, for example the class sets recorded
in procedure and instance variable contours, is generalized to be class contour
information.

One of the most commonly used forms of context sensitivity is to use a vector
of the k enclosing calling procedures as a contour key (the “call strings” approach
of Sharir and Pnueli [1981]). Using call strings with k = 1 as the contour keys
for procedure and class contours and using the class contours themselves as the
contour keys for instance variable contours, would define one (of many possible)
context-sensitive call graph construction algorithm that would compute the call
graph of Figure 1(c). For this example, the key to obtaining a precise call graph
is to accurately model the flow of values through the instance variables of the
SPair class. The analysis creates two class contours 〈SPair, A〉 and 〈SPair, B〉

to represent SPair instances created in A and B, respectively. Instance variable
contours for first and second are created for each class contour. The class sets
of the instance variable contours with the key 〈SPair, A〉 contain only Circle;
those of 〈SPair, B〉 contain only Square. The class set of the formal parameter
p of contour SumArea0 (which represents sumArea called from A) contains only
〈SPair, A〉, and thus the analysis can determine that only Circle::area could
be invoked from SumArea0.

The global scope can be represented by a special “root” procedure contour: its
local variables are the program’s global variables and its body is the program’s
main routine. Since, unlike a procedure, the global scope cannot be analyzed
context-sensitively, exactly one contour is created to represent it.
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To analyze languages with lexically nested functions, we can augment pro-
cedure contours with a lexical parent contour key that encodes the contours’
lexical nesting relationship. This information is used to allow contours repre-
senting lexically nested procedures to access the class sets of free variables from
the appropriate contour(s) of the enclosing procedure.

Informally, the result of the combined call graph construction and interpro-
cedural class analysis algorithm, defined in Section 4, is a set of procedure
contours and a set of instance variable contours. Together, the content of these
two sets define a contour call graph (the call graph edges component of the pro-
cedure contours) and class contour sets for all interesting program constructs
(the class set component of the procedure and instance variable contours).

3.2 Formal Model of Call Graphs

This section uses lattice-theoretic ideas to formally define the contour-based
model of context-sensitive call graphs. A lattice, D = 〈SD, ≤D〉, is a set of ele-
ments SD and an associated partial ordering ≤D of those elements such that,
for every pair of elements, the set contains both a unique least-upper-bound
element and a unique greatest-lower-bound element. A downward semilattice
is like a lattice, but only greatest-lower-bounds are required. The set of possi-
ble call graphs for the pair of a particular input program and a particular call
graph construction algorithm forms a downward semilattice; we sometimes use
the term “domain” as shorthand for a downward semilattice. As is traditional
in dataflow analysis [Kildall 1973; Kam and Ullman 1976] (but opposite to the
conventions in programming language semantics and abstract interpretation
[Cousot and Cousot 1977]), if A ≤ B then B represents a better (more optimistic)
call graph than A. Thus, the top lattice element, ⊤ , represents the best possi-
ble (most optimistic) call graph, while the bottom element, ⊥ , represents the
worst possible (most conservative) call graph. Not all elements of a call graph
domain will be sound (safely approximate the “real” program call graph);
Section 3.3.2 formally defines soundness and some of the related structures
of call graph domains.

3.2.1 Supporting Domain Constructors. The definition of the call graph
domain uses several auxiliary domain constructors to abstract common pat-
terns, thus making it easier to observe the fundamental structure of the call
graph domain. (Some readers may want to skip ahead to Section 3.2.2 to see
how the constructors are used before reading the remainder of this section).

The constructor Pow maps an input partial order D = 〈SD, ≤D〉 to a lat-
tice DPS = 〈SDPS, ≤DPS〉, where SDPS is a subset of the powerset of SD de-
fined as SDPS = {Bottoms(S)|S ∈ PowerSet(SD)}, where Bottoms(S) = {d ∈

S|¬(∃d ′ ∈ S, d ′ ≤D d )}. The partial order ≤DPS is defined in terms of ≤D, as
dps1 ≤DPS dps2 ≡ ∀d2 ∈ dps2, ∃d1 ∈ dps1 such that d1 ≤D d2. If S1 and S2 are
both elements of SDPS, then their greatest lower bound is Bottoms(S1∪S2). Pow

differs subtly from the standard powerset domain constructor, which maps an
unordered input set to a lattice whose domain is the full powerset of its input
with a partial order based solely on the subset relationship. The more complex
definition of Pow preserves the relationships established by its input partial
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order. For example, if a≤Db then {a}≤pow(D){b}, but under the standard power-
set domain constructor, {a} and {b} are unordered. Bottoms(S) removes those
elements that are redundant with respect to ≤D from S.

The constructor Map is a function constructor that takes as input a set X and
a partial order Y = 〈SY , ≤Y 〉, and generates a new partial order M = 〈SM , ≤M 〉

where SM = { f ⊆ X × SY | (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2} and the partial
order ≤M is defined in terms of ≤Y as m1≤M m2 ≡ ∀(x, y2) ∈ m2, ∃(x, y1) ∈ m1

such that y1≤Y y2. If the partial order Y is a downward semilattice, then M is
also a downward semilattice; if m1 and m2 are both elements of SM , then their
greatest lower bound is GLB1 ∪ GLB2 ∪ GLB3 where

GLB1 = {(x, y) | (x, y1) ∈ m1, (x, y2) ∈ m2, y = glbY ( y1, y2)}

GLB2 = {(x, y) | (x, y) ∈ m1, x 6∈ dom(m2)}

GLB3 = {(x, y) | (x, y) ∈ m2, x 6∈ dom(m1)}

The constructor Union takes two input partial orders D1 = 〈S1, ≤1〉 and
D2 = 〈S2, ≤2〉 where S1 ∩ S2 = Ø, and generates a new partial order U =

〈SU , ≤U 〉 where SU = S1 ∪ S2 and a≤U b ⇔ a≤1b∨ a≤2b. If the input par-
tial orders are downward semilattices, then U is also a downward semilat-
tice. If two elements of SU are drawn from the same input partial order, their
greatest lower bound is the greatest lower bound from that partial order; if
they are drawn from different input partial orders then their greatest lower
bound is ⊥.

Each member of the family of constructors kTuple, ∀k ≥ 0, is the standard
k-tuple constructor that takes k input partial orders Di = 〈Si, ≤i〉, ∀i ∈ [1..k],
and generates a new partial order T = 〈ST , ≤T 〉 where ST is the cross prod-
uct of the Si and ≤T is defined in terms of the ≤i pointwise 〈d11, . . . , dk1〉 ≤T

〈d12, . . . , dk2〉 ≡ ∀i ∈ [1..k], di1 ≤i di2. If the input partial orders are downward
semilattices, then T is also a downward semilattice; the greatest lower bound of
two tuples is the tuple of the pointwise greatest lower bounds of their elements.

Finally, the constructor Seq takes an input downward semilattice D =

〈SD, ≤D〉 and generates a downward semilattice V = 〈SV , ≤V 〉 by lifting the
union of the k-tuple domains of D. The elements of SV are ⊥, all elements
of 1Tuple(D), all of, 2Tuple(D, D), all of 3Tuple(D, D, D), and so on, and the
partial order ≤V is the union of the individual k-tuple partial orders with the
partial order {(⊥, e) | e ∈ SV }. If m1 and m2 are both elements of SV and are
both drawn from the same k-tuple domain of D, then their greatest lower bound
is the greatest lower bound from that domain, otherwise their greatest lower
bound is ⊥.

3.2.2 Call Graph Domain. Figure 3 utilizes the domain constructors spec-
ified in the previous section to define the call graph domain for each pair of a
particular input program and a particular call graph construction algorithm.
This definition is parameterized by the sets and partial orders listed in Figure 2
that encode program features and algorithm-specific context-sensitivity polices.
The ordering relation on the ProcKey, InstVarKey, and ClassKey partial orders
(and all derived domains) indicates the relative precision of the elements: one
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Fig. 2. Parameters of the call graph domain construction (see Figure 3).

Fig. 3. Construction of the CallGraph domain for a program and call graph construction algorithm
pair.

element is less than another if and only if it is less precise (more conservative)
than the other.

The two components of a call graph are maps describing the instance variable
contours and procedure contours contained in the call graph. Instance variable
contours enable the analysis of dataflow through instance variable loads and
stores, and procedure contours are used to represent the rest of the program.
The components of these contours serve three functions:

—The first component of both instance variable and procedure contours serves
to identify the contour by encoding the source level declaration the con-
tour is specializing and the restricted context to which it applies. The third
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component of a ProcID identifies a chain of lexically enclosing procedure con-
tours that is used to analyze references to free variables. For each procedure,
the third component of all of its contours’ ProcIDs is restricted to sets of
sequences of exactly length n, where n is the lexical nesting depth of the pro-
cedure. InstVarContourMap and ProcContourMap are constrained such that
for each key k, the contour that k is mapped to has k as its first component.

—The second component of both the instance variable and procedure contours
records the results of interprocedural class analysis. In instance variable
contours, it is simply a class contour set that represents the set of class
contours stored in the instance variable contour. In procedure contours, it is
a mapping from each of the procedure’s local variables and formal parameters
to a set of class contours representing the classes of values that may be stored
in that variable. The variable mapping also contains an entry for the special
token return, which represents the set of class contours returned from the
contour.

—The remaining components of a procedure contour encode the intercontour
flow of data and control caused by procedure calls, instance variable loads,
and instance variable stores, respectively. The third component, which maps
call sites to elements of Pow(ProcID), encodes the traditional notion of call
graph edges.

The definition of ClassContour is somewhat complicated by the overloading
of class contours to represent both objects and closure values. In both cases,
the first component identifies the source-level class or closure associated with
the contour. For classes, the second component of a class contour contains an
element of the ClassKey domain. For closures, the second component contains
a sequence of ProcKeys that encode the lexical chain of procedure contours that
should be used to analyze any references to free variables contained in the
closure. This lexical chain information is used when the closure is invoked and
a procedure contour is created for the closure to initialize the third component
of its ProcID.

For example, the 0-CFA algorithm is the classic context-insensitive call graph
construction algorithm for object-oriented and functional languages [Shivers
1988; 1991]. It can be modeled by using the single-point lattice, {⊥}, to in-
stantiate the ProcKey, InstVarKey, and ClassKey partial orders. Thus, each
call graph has at most one procedure and instance variable contour. Another
common context-sensitivity strategy is to create analysis-time specializations
of a procedure for each of its call sites (Shivers’s 1-CFA algorithm). This cor-
responds to instantiating the ProcKey partial order to the Procedure set, and
using the single-point lattice for InstVarKey and ClassKey. As a final exam-
ple, the 1-CFA algorithm can be extended to support the context-sensitive
analysis of instance variables by tagging each class with the procedure in
which it was instantiated and maintaining separate instance variable con-
tours for each class contour. This context-sensitivity strategy is encoded by
using the Procedure set to instantiate the ProcKey and ClassKey partial or-
ders and elements of ClassContour as elements of the InstVarKey partial
order.
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3.3 Properties

3.3.1 Termination. A call graph construction algorithm is monotonic if its
computation can be divided into some sequence of steps, S1, S2, . . . , Sn, where
each Si takes as input a call graph Gi and produces a call graph Gi+1 such
that Gi+1 ≤cg Gi (≤cg is the call graph partial order defined by the equa-
tions of Figure 3). A call graph construction algorithm is bounded-step if each
Si is guaranteed to take a finite amount of time. If a call graph construction
algorithm is both monotonic and bounded-step and its associated call graph do-
main is of finite height,3 then the algorithm is guaranteed to terminate in finite
time. Furthermore, the worst-case running time of the algorithm is bounded by
O(LatticeHeight × StepCost).

All of the sets specifying program features are finite (since the input
program must be of finite size), but the three algorithm-specific partial orders
may be either finite or infinite. If the parameterizing partial orders are finite,
then the call graph domain will have a finite number of elements, and thus
a finite height. This result follows immediately from the restriction on call
graphs to contain at most one InstVarContour for each InstVarID and at most
one ProcContour for each ProcID, the restriction that the third component of a
ProcID be a set of sequences of a length that exactly matches the lexical nesting
depth of their procedure, and the absence of any mutually recursive equations
in Figure 3. However, some context-sensitive algorithms introduce mutually
recursive definitions that cause their call graph domain to be infinitely tall.
In these cases, care must be taken to incorporate a widening operation
[Cousot and Cousot 1977] to ensure termination. For example, the Cartesian
product [Agesen 1995] and SCS [Grove et al. 1997] algorithms, described in
Section 9.1.2, both use elements of the ClassContour domain as part of their
ProcKey domain elements. In the presence of closures (represented by the anal-
ysis as class contours), this can lead to an infinitely tall call graph domain when
a closure is recursively passed as an argument to its lexically enclosing proce-
dure. Agesen terms this problem recursive customization, and describes several
methods for detecting it and applying a widening operation [Agesen 1996].

3.3.2 Soundness. Figure 4 depicts the structure of the interesting portions
of a call graph domain. If call graph B is more conservative than call graph A,
i.e., B ≤cg A, then A will be located in the cone above B in the diagram, and
likewise B will be located in the cone below A. The call graphs that exactly
represent a particular execution of the program are located in the region labeled
Optimistic. Because the call graph domain is a downward semi-lattice, we can
define a unique call graph Gideal as the greatest lower bound over all call graphs
corresponding to a particular program execution. For a call graph to be sound,
it must safely approximate any program execution, hence Gideal is the most
optimistic sound call graph, and a call graph G is sound iff it is equal to, or
more conservative than, Gideal, i.e., G ≤cgGideal. Unfortunately, in general it is
impossible to compute Gideal directly, as there may be an infinite number of
possible program executions, so this observation does not make a constructive

3A lattice’s height is the length of the longest chain of elements e1, e2, . . . , en such that ∀i, ei < ei−1.
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Fig. 4. Regions in a call graph domain.

test for the soundness of G. Note that not all call graphs are ordered with
respect to Gideal ; Figure 4 only depicts a subset of the elements of a call graph
domain.

4. A PARAMETERIZED CALL GRAPH CONSTRUCTION ALGORITHM

This section specifies our general integrated call graph construction and inter-
procedural class analysis algorithm for the small example language defined in
Section 4.1. The general algorithm is parameterized by four contour key selec-

tion functions that enable it to encompass a wide range of specific algorithms;
the role of and requirements for these functions is explored in Section 4.2.
Section 4.3 defines additional notation and auxiliary functions. Section 4.4
specifies the analysis performed by the algorithm using set constraints, and
Section 4.5 discusses methods of constraint satisfaction.

4.1 A Simple Object-Oriented Language

The analysis is defined on the simple statically typed object-oriented language
whose abstract syntax is given by Figure 5.4 It includes declarations of types,
global and local mutable variables, classes with mutable instance variables,
and multimethods; assignments to global, local, and instance variables; and
global, local, formal, and instance variable references, class instantiation oper-
ations, closure instantiation and application operations, and dynamically dis-
patched message sends. The inheritance and subtyping hierarchies are sepa-
rated to enable the modeling of languages such as Cecil that separate the two
notions; languages with a unified subtyping and inheritance hierarchy can be
modeled by requiring that all subtyping and inheritance declarations be par-
allel. Multimethods generalize the singly-dispatched methods found in many
object-oriented languages by allowing the classes of all of a message’s argu-
ments to influence which target method is invoked. A multimethod has a list
of immutable formals. Each formal is specialized by a class, meaning that the

4Terminals are in boldface, and braces enclose items that may be repeated zero or more times,
separated by commas.
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Fig. 5. Abstract syntax for simple object-oriented language.

method is only applicable to message sends whose actuals are instances of the
corresponding specializing class or its subclasses. We assume the presence of
a root class from which all other classes inherit, and specializing on this class
allows a formal to apply to all arguments. Multimethods of the same name
and number of arguments are related by a partial order, with one multimethod
more specific than (i.e., overriding) another if its tuple of specializing classes is
at least as specific as the other one (pointwise). When a message is sent, the set
of multimethods with the same name and number of arguments is collected,
and, of the subset that are applicable to the actuals of the message, the unique,
most specific, multimethod is selected and invoked (or an error is reported if
there is no such method). Singly dispatched languages can be simulated by not
specializing (i.e., by specializing on the root class) all formals other than the
first, commonly called self, this, or the receiver in singly dispatched languages.
Procedures can be modeled by methods, none of whose formals is specialized.
The language includes explicit closure instantiation and application operations.
Closure application could be modeled as a special case of sending a message, as
is actually done in Cecil, but including an explicit application operation simpli-
fies the specification of the analysis. Other realistic language features can be
viewed as special versions of these basic features. For example, literals of a par-
ticular class can be modeled with corresponding class instantiation operations
(at least as far as class analysis is concerned). Other languages features, such as
super-sends, exceptions, and nonlocal returns from lexically nested functions,
can easily be accommodated, but are omitted to simplify the exposition. The
actual implementation in the Vortex compiler supports all of the core language
features of Cecil and Java, with the exception of reflective operations such as dy-
namic class or method loading and perform-like primitives, and multithreading
and synchronization.

We assume that the number of arguments to a method or message is bounded
by a constant that is independent of program size and that the static number
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Fig. 6. Signatures of contour key selection functions.

of all other interesting program features (e.g., classes, methods, call sites, vari-
ables, statements, and expressions) is O(N ) where N is a measure of program
size.

4.2 Algorithm Parameters

The general algorithm is parameterized by four contour key selection functions

that collaborate to define the context-sensitivity policies used during inter-
procedural class analysis and call graph construction. The algorithm has two
additional parameters, a constraint initialization function and a class con-
tour set initialization function, which enable it to specialize its constraint
generation and satisfaction behavior. By giving different values to these six
strategy functions, the general algorithm can be instantiated to a wide range
of specific call graph construction algorithms. The signature of the general
algorithm is

Analyze(PKS, IVKS, CKS, EKS, CIF, SIF)(Program) → CallGraph(PK, IVK, CK)

The required signatures of the four contour key selection functions are shown
in Figure 6. These functions are defined over some of the constituent domains
of the call graph domain, and their codomains are formed by applying the Pow

domain constructor to (sequences of) the call graph domain’s three parameter-
izing partial orders. Thus, the contour key selection functions for an algorithm
can be viewed as implying the call graph domains, from which the result of an
algorithm instantiation is drawn.

The particular roles played by each contour key selection function follow:

—The procedure contour key selection function (PKS) defines an algorithm’s
procedure context-sensitivity strategy. Its arguments are the contour spe-
cializing the calling procedure, a call site identifier, the sets of class contours
being passed as actual parameters, and the callee procedure. It returns a set
of procedure contour keys that indicate the contours of the callee procedure
that should be used to analyze this call. If the call site has multiple possible
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callee procedures, then the analysis will select contour keys for each in turn
by invoking the PKS function once for each potential callee.

—The instance variable contour key selection function (IVKS) collaborates with
the class contour key selection function to define an algorithm’s data struc-
ture context-sensitivity strategy. IVKS is responsible for determining the set
of instance variable contours that should be used to analyze a particular in-
stance variable load or store. Its arguments are the instance variable being
accessed and the class contour set of the load or store’s base expression (the
object whose instance variable is being accessed). It returns a set of instance
variable contour keys.

—The class contour key selection function (CKS) determines the class contours
that should be created to represent the objects created at class instantiation
sites. Its arguments are the class being instantiated, the instantiation site,
and the procedure contour containing the instantiation site. It returns a set
of class contour keys.

—The environment contour key selection function (EKS) determines what con-
tours of the lexically enclosing procedure should be used to analyze any ref-
erence to free variables contained in a closure. Its arguments are the closure
being instantiated and the procedure contour in which the instantiation is
analyzed. It returns a set of sequences of procedure contour keys that encode
the lexical nesting relationship. When a class contour representing a closure
reaches an application site, this information is used to initialize the lexi-
cal parent information (the third component of the ProcID) of any contours
created to analyze the application (see the ACS function in Figure 8).

Contour key selection functions may ignore some (or all) of their input in-
formation in computing their results. The main restriction on their behavior
is that contour selection functions must be monotonic5 and that for all inputs
their result sets must be nonempty. Contour key selection functions return sets
of contour keys (rather than just a single contour key) to enable algorithms
to decompose the analysis of a program construct in a particular context into
multiple cases, each handled by a different contour.

The general algorithm has two additional parameters, whose roles are dis-
cussed in more detail in subsequent sections. The first of these, the constraint
initialization function (CIF), allows the algorithm to choose between generating
an equality, bounded inclusion, or inclusion constraint, to express the relation-
ship between two class contour sets (see Section 4.3). The last parameter, the
class contour set initialization function (SIF), allows the algorithm to specify
the initial value of a class contour set (see Section 4.5).

4.3 Notation and Auxiliary Functions

This section defines the notational conventions and auxiliary functions in the
algorithm specification of Figure 9.

During analysis, sets of class contours are associated with every expression,
variable (including formal parameters), and instance variable in the program.

5A function F is monotonic iff x ≤ y ⇒ F (x) ≤ F ( y).
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The class contour set associated with the program construct PC in contour κ is
denoted [[PC]]κ . The algorithm’s computation consists of generating constraints
that express the relationships among these class contour sets and determin-
ing an assignment of class contours to class contour sets that satisfies the
constraints. The constraint generation portion of the analysis is expressed by
judgments of the form κ ⊢ PC ⇒ C, which should be read as the analysis of
program construct PC in the context of procedure contour κ gives rise to the
constraint set C. These judgments are combined in inference rules, which can
be understood informally as inductively defining the analysis of a program con-
struct in terms of the analysis of its subcomponents. For example, the [Seq] rule
in Figure 9 describes the analysis of a sequence of statements in terms of the
analysis of individual statements:

κ ⊢ s1 ⇒ C1
κ ⊢ s2 ⇒ C2

κ ⊢ s1; s2 ⇒ C1 ∧ C2

To analyze the program construct S1; S2, the individual statements S1 and S2

are analyzed, and any resulting constraints are combined.
The generalized constraints generated by the algorithm are of the form

A ⊇p B, where p is a nonnegative integer. The value of p is set by the algo-
rithm‘s constraint initialization strategy function (CIF), and encodes an upper
bound on how much work the constraint satisfaction subsystem may perform
to satisfy the constraint. Section 5.4 discusses in more detail how the value of
p influences constraint satisfaction in the Vortex implementation of the algo-
rithm. The key idea is that the constraint solver has two basic mechanisms for
satisfying the constraint that A is a superset of B: it can propagate class con-
tours from B to A, or it can unify A and B into a single set. The solver is allowed
to attempt to propagate at most p classes from B to A before it is required to
unify them. If 0 < p < ∞, then the generalized constraint is a bounded inclu-
sion constraint, and will allow a bounded amount of propagation work to occur
on its behalf. If p = 0, then the generalized constraint is a pure equality con-
straint and sets are unified as soon as the constraint is created between them.
Finally, if p = ∞, then the generalized constraint is a pure inclusion constraint
and will never cause the unification of the two sets. A generalized constraint
may optionally include a filter set f , denoted A ⊇ f

p B, which restricts the flow
of class contours from B to A to those class contours whose Class component
is an element of f . Filters are used to enforce restrictions on dataflow which
arise from static type declarations and method specializers.

A number of auxiliary functions are used to concisely specify the analysis.
Figure 7 lists auxiliary functions for manipulating program constructs and
accessing components of the call graph domain (defined in Figure 3). Figure 8
defines four additional helper functions.

—ExpVar encapsulates the details of expanding references to free variables. It
expands the lexical parent contour chain to find all procedure contours used
to analyze a reference to variable V made from procedure contour K.
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Fig. 7. Named k-tuple and map accessors for call graph domain constituents.

Fig. 8. Auxiliary functions.

—ICVS determines the target contours for an instance variable load or store on
the basis of a class contour set of the base expression. It uses the algorithm-
specific strategy function IVKS.

—MCS and ACS determine the callee contours for a message send or closure ap-
plication based on the information currently available at the call site and the

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



Framework for Call Graph Construction Algorithms • 703

algorithm-specific strategy function PKS. Two helper functions, Invoked and
Applicable, encapsulate the language’s dispatching and application seman-
tics. Based on the message name (or closure values) and the argument class
contours, Invoked computes a set of callee procedures (or closures). Given a
callee procedure and a tuple of argument class contours, Applicable returns
a narrowed tuple of class contours that includes only those class contours
that could legally be passed to the callee as arguments. The main difference
between MCS and ACS is their computation of the encoded set of possible
lexical parents for the callee contours. MCS simply uses the root contour,
since the example language nests all methods in the global scope. In con-
trast, ACS must extract the set of lexical chains from the second component
of the closure class contours.

4.4 Algorithm Specification

Figure 9 defines the general algorithm by specifying, for each statement and
expression in the language, the constraints generated during analysis; decla-
rations are not included because they do not directly add any constraints to the
solution (however, declarations are processed prior to analysis to construct the
class hierarchy and method partial order).

Static type information is used in the analysis of statements to ensure that
variables are not unnecessarily diluted by assignments; sets of classes corre-
sponding to right-hand sides are filtered by the sets of classes that conform
to the static type of left-hand sides. This occurs both in the rules for explicit
assignments, [VAssign] and [IVarAssign], and in the implicit assignments of
actuals to formals and return expressions to result in the [Send], [Apply],
and [Body] rules. Even if all assignments in the source program are statically
type-correct, this explicit filtering aimed at assignments can still be beneficial
because some algorithm instantiations may not be as precise as the language
static type system.

The [Program] rule is the entry to the analysis; the top-level statements and
expression are analyzed in the context of κroot, the contour representing the
global scope. Statement sequencing, [Seq], is as expected: analysis of a sequence
of statements entails adding the constraints generated by the analysis of each
statement.

Assignment statements are handled by the [VarAssign] and [IVarAssign]
rules. In both rules, the right-hand side is analyzed, yielding some constraints,
and a constraint is added from the set of class contours representing the right-
hand side, [[E ]] κ , to each of the sets of class contours representing the left-hand
side. In the [VarAssign] rule, the left-hand side class contour sets are computed
by using the auxiliary function ExpVar to expand the encoded contour lexical
parent chain. In the [IVarAssign] rule, the left-hand side contours are computed
by using the instance variable contour selector (IVCS). The [IVarAssign] rule
also adds the additional constraints generated by analyzing the base expression
of the instance variable access.

Basic expressions are handled by the next four rules. Variable and instance
variable references use their respective auxiliary functions to find a set of target
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Fig. 9. Specification of general algorithm.

contours, and then add constraints from the appropriate class contour set of
each target contour to the set of class contours corresponding to the referencing
expression ( [[V ]] κ or [[B.F ]] κ ). As in the assignment rules, [IVarRef] also adds any
constraints generated by analyzing the base expression (B) of the instance
variable access. Analyzing a class instantiation, the [New] rule, entails adding
a constraint from a set of class contours implied by the ClassKeys computed by
the class contour key selection function to the set of class contours representing

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



Framework for Call Graph Construction Algorithms • 705

the new expression ( [[new C ]] κ ). The [Closure] rule is similar to the [New] rule,
but it uses the environment contour key selection function to compute a set of
sequences of ProcKey that encode the lexical chain of procedure contours that
will be used to analyze references to free variables.

The constraints generated by the [Send] rule logically fall into two groups:

(1) The argument expressions to the send must be analyzed, and their con-
straints included in the constraints generated by the send (∧iCi).

(2) For each callee procedure contour (κ j ), three kinds of constraints are
generated:

—actuals are assigned to formals: Formal(i, κj ) ⊇ f
(i,κj )

p [[Ei ]] κ ,

—the callee’s body is analyzed: Cj ,

—and a result is returned: [[sendl Msg (E1 . . . En) ]] κ ⊇p Var(result, κj ).

The auxiliary function MCS (message contour selector) is invoked during
the analysis of a message send expression to compute the set of callee con-
tours from the information currently available at the call site. As the avail-
able information changes, additional callee contours and constraints are added.
Thus, the constraint graph is lazily extended as new procedures and pro-
cedure contours become reachable from a call site. Call graph nodes and
edges are created and added to the evolving solution to satisfy the constraint
that CallSites(κ)(sendl Msg (E1 . . . En)) ⊇ MCS(κ, l , Msg, 〈 [[E1 ]] κ . . . [[En ]] κ〉). Sim-
ilarly the intercontour flow of data via instance variable loads and
stores is represented by the constraints LoadSites(κ)(B. F) ⊇ IVCS(F, [[B ]] κ ) and
StoreSites(κ)(B. F) ⊇ IVCS(F, [[B ]] κ ).

The analysis of closure applications is quite similar to that of message sends.
The key differences are that the [Closure] rule must include the analysis of the
function value (E0) and the apply contour selector (ACS) is invoked to compute
the set of callee contours.

Finally, the [Body] rule defines the analysis of the bodies of both methods
and closures.

To allow varying levels of context sensitivity to coexist safely in a single
analysis, some additional constraints are required to express a global safety
condition:

∀κ1, κ2 ∈ InstVarContour, ID(κ1) ≤ ID(κ2) ⇒ Contents(κ1) ≤ Contents(κ2)

∀κ1, κ2 ∈ ProcContour, ID(κ1) ≤ ID(κ2) ⇒ VarMap(κ1) ≤ VarMap(κ2)

The first rule states that if the identifiers of two instance variable contours
are related, which implies that they represent the same source level instance
variable, then if the key of the first is at least as conservative as the key of
the second, then the contents of the first must also be at least as conservative
as the contents of the second. The second rule imposes a similar constraint on
the class set map component of procedure contours. These constraints ensure
that different degrees of context sensitivity can coexist, by requiring that when
a class contour is stored in a set at one level of context sensitivity, then it
(or some more conservative class contour) appears in the corresponding set of
all more conservative views of the same source program construct. All of the
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algorithms described in subsequent sections trivially satisfy the second rule,
and only k-l -CFA for l > 0 requires effort to satisfy the first.

4.5 Constraint Satisfaction

Computing a final solution to the combined interprocedural class analysis and
call graph construction problem is an iterative process of satisfying the con-
straints already generated by the analysis and adding new constraints as class
contour sets grow and new procedures and/or procedure contours become reach-
able at call sites. The desired final solution is the greatest (most optimistic) call
graph that satisfies the constraints. A number of algorithms are known for solv-
ing systems of set constraints [Aiken 1994]. Section 5 discusses the constraint
satisfaction mechanisms used by the Vortex implementation framework.

The initial values assigned to the sets can also have a large impact on both
the time required to compute the solution and the quality (precision) of the so-
lution. An algorithm class contour set initialization function (SIF) determines
the initial value assigned to all class contour sets other than those found on the
right-hand side of the constraints generated by the [New] and [Closure] rules
(whose initial values are computed by the class key contour selection function).
The most common strategy is to initialize all other class contour sets to be
empty; this optimistic assumption will yield the most optimistic (most precise)
final result. However, there are other interesting possibilities. For example, if
profile-derived class distributions are available, then they could be used to seed
class contour sets, possibly reducing the time consumed by constraint satisfac-
tion without negatively impacting precision. Another possibility is to selectively
give pessimistic initial values in the hope of greatly reducing constraint satis-
faction time with only small losses in precision. For example, since it is common
in large programs for polymorphic container classes, such as arrays, lists, and
sets, to contain tens or even hundreds of classes, and since class set informa-
tion tends to be most useful for program optimization when the cardinality of
the set is small, an algorithm might initialize the class contour sets of all con-
tainer classes’ instance variable contours to bottom, i.e., the set of all classes
declared in the program. This may result in faster analysis time, since the anal-
ysis of code manipulating container classes should quickly converge to its final
(somewhat pessimistic) solution, without significant reductions in the bottom-
line performance impact of interprocedural analysis. Also, some noniterative
pessimistic algorithms can be modeled by initializing all class contour sets to
bottom.

5. VORTEX IMPLEMENTATION FRAMEWORK

The goals of this section are to provide a high-level outline of the Vortex imple-
mentation, discuss its role as an implementation framework, highlight some of
the design choices, and briefly describe the implementation of several key prim-
itives. Aspects of the Vortex implementation of interprocedural class analysis
and/or call graph construction are described in several previous papers [Grove
1995; Grove et al. 1997; DeFouw et al. 1998; Grove 1998].
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5.1 Overview

The Vortex implementation of the general call graph construction algorithm
closely follows the specification given in Section 4.4. It is divided into two main
subsystems: constraint generation and constraint satisfaction.

The constraint generation subsystem is implemented directly from the spec-
ification in Figure 9, with extensions to support Cecil and Java language fea-
tures. A method is defined on each kind of Vortex abstract syntax tree (AST)
node to add the appropriate local constraints and to recursively evaluate any
constituent AST nodes to generate their constraints. As implied by the MCS

and ACS functions, constraints are generated lazily; no constraints are gen-
erated for a contour/procedure pair until the class contour sets associated
with the procedure’s formal parameters are non-empty, signifying that the
contour/procedure pair has been determined to be reachable by the analysis.

The core of the constraint satisfaction subsystem is a worklist-based algo-
rithm that at each step removes a “unit of work” from the worklist and performs
local propagation to ensure that all of the constraints directly related to that
unit are currently satisfied. This unit of work may be either a single node in
the dataflow graph or an entire procedure contour, depending on whether the
algorithm instance uses an explicit or implicit representation of the program’s
dataflow graph (Section 5.3.1). Satisfying the constraints directly related to
a single node simply entails propagating class contours, as necessary, to all
of the node’s immediate successors in the dataflow graph. Satisfying the con-
straints directly related to an entire procedure contour entails local analysis
of the contour to reconstruct and satisfy the contour’s local (intraprocedural)
constraints and the propagation (as necessary) of the resulting class contour
information along all of the contour’s outgoing intercontour (interprocedural)
dataflow edges, which may result in adding contours to the worklist.

5.2 An Implementation Framework

The implementation of the general call graph construction algorithm consists
of 9,500 lines of Cecil code. Approximately 8,000 lines of common code imple-
ment core data structures (call graphs, dataflow graphs, contours, class sets,
etc.), the constraint generation and satisfaction subsystems, the interface ex-
ported to other Vortex subsystems, and abstract mix-in classes that implement
common procedure, class, and instance variable contour selection functions. In-
stantiating this framework is straightforward; each of the algorithms described
and empirically evaluated in subsequent sections is implemented in Vortex by
75 to 250 lines of glue code that combine the appropriate mix-in classes and
resolve any ambiguities introduced by multiple inheritance.

In addition to enabling easy experimentation, the implementation frame-
work provides a “level playing field” for cross-algorithm comparisons. For all
algorithms, the call graph and resulting interprocedural summaries are uni-
formly calculated and exploited by a single optimizing compiler. The algorithms
all use the same library of core data structures and analysis routines; although,
depending on whether the algorithms use an implicit or explicit representation
of the intraprocedural dataflow graph (discussed below), their usage of some
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portions of this library will be different. This flexibility is not free; parameter-
izability is achieved by inserting a level of indirection (in the form of message
sends) at all decision points. However, we believe that this overhead affects the
absolute cost of call graph construction only, not the relative cost of algorithms
implemented in the framework or the asymptotic behavior of the algorithms.

5.3 Design Choices

5.3.1 Implicit vs. Explicit Dataflow Graphs. One of the most important
considerations in the implementation of the framework is managing time/space
tradeoffs. Most previous systems explicitly constructed the entire (reachable)
interprocedural data and control-flow graphs. Although this approach may be
viable for smaller programs or simple algorithms, even with careful, memory-
conscious design of the underlying data structures, the memory requirements
can quickly become unreasonable during context-sensitive analysis of larger
programs. One feature of the Vortex implementation is the ability of algorithms
to choose between an explicit or an implicit representation of the program’s
dataflow graph. In the implicit representation, only those sets of class con-
tours that are visible across contour boundaries (those corresponding to for-
mal parameters, local variables that are accessed by lexically nested functions,
procedure return values, and instance variables) are actually persistently rep-
resented. All derived class sets and all intra- and interprocedural data and
control-flow edges are (re)computed on demand. This greatly reduces the space
requirements of the analysis but increases computation time, since dataflow
relationships must be continually recalculated and the granularity of reanal-
ysis is larger. An additional limitation of the implicit dataflow graph is that
it does not support the efficient unification-based implementation of equality
and bounded inclusion constraints discussed in Section 5.4.2. Because reduc-
ing memory usage is very important, the Vortex implementations of algorithms
that only generate inclusion constraints (0-CFA, k-l -CFA, CPA, and SCS) utilize
the implicit representation.

5.3.2 Iteration Order. A key component of the constraint satisfaction sub-
system is the worklist abstraction used to drive its iteration. Some possible
implementations of a worklist include an implicit work stack via recursive func-
tions, an explicit work stack, and an explicit work queue. For algorithms that
use the implicit dataflow graph representation, and thus have a coarse-grained
unit of work, the choice of worklist implementation can have a large impact
on analysis time. A stack-based implementation yields a depth-first ordering of
work, whereas a queue-based implementation yields a breadth-first ordering.
Intuitively, a depth-first traversal has the advantage that the analysis of all
callee contours is done before the analysis of the caller contour, thus ensur-
ing that up-to-date sets of classes for the results returned from the callees are
available in the analysis of the caller. On the other hand, a breadth-first traver-
sal has the advantage of potentially batching multiple reanalyses of a contour.
For example, a contour is initially enqueued for reanalysis, since during the
analysis of one of its callers it was determined that the argument class sets
passed to the contour had grown, thus causing new elements to be added to
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the class contour sets representing the contour’s formal parameters. While the
contour is still enqueued, analysis of another one of its callers may result in an
additional widening of the enqueued contour’s formals. Both of these updates
will be handled in a single reanalysis of the contour when it finally reaches the
front of the queue. Informal performance tuning revealed that both of these
effects are important and, as a result, the Vortex implementation uses a hybrid
mostly-FIFO ordering. It uses a work queue, but the first time a contour is en-
countered, it is immediately analyzed via recursion rather than being enqueued
for later analysis.

5.3.3 Program Representation. Interprocedural class analysis operates
over a summarized AST representation of the program.6 The summarized AST
abstracts the program by collapsing all nonobject dataflows and by ignoring all
intraprocedural control flow. Nonobject dataflow is the portion of a procedure’s
dataflow that is statically guaranteed to consist only of values that cannot di-
rectly influence the targets invoked from a call site, i.e., the values are not ob-
jects or functions, and thus cannot be sent messages or applied. For example, an
arbitrary side-effect-free calculation using native (nonobject) integers would be
represented only by a reference to the integer AST summary node. The second
part of the summary removes all side-effect-free computations whose results
are only used to influence control flow.

Because the summarized AST representation is control-flow-insensitive,
summarizing all nonobject dataflow cannot degrade analysis precision. How-
ever, using a control-flow-insensitive representation will at least theoretically
result in less precise results than using a control-flow-sensitive representation.
To assess the importance of intraprocedural control-flow-sensitivity for class
analysis, we analyzed several Cecil and Java programs using both the summa-
rized AST representation and a (control-flow-sensitive) control-flow graph rep-
resentation. We found that there was no measurable difference in bottom-line
application performance in programs analyzed with the two different repre-
sentations, but that the flow-insensitive AST-based analysis was roughly twice
as fast.

5.4 Implementation of Key Primitives

5.4.1 Bounded Inclusion Constraints. Equality constraints have been used
to define near-linear-time binding-time [Henglein 1991] and alias [Steensgaard
1996] analyses. In both of these algorithms, as soon as two nodes in the dataflow
graph are determined to be connected, they are collapsed into a single node,
signifying, respectively, that the source constructs represented by the two nodes
either have the same binding-time or are potentially aliased. Although these
algorithms are fast and scalable, they can also be quite imprecise. Bounded
inclusion constraints attempt to combine the efficiency of equality constraints
with the precision of inclusion constraints by allowing a bounded amount of

6This is an AST form of the compiler’s language-independent internal repersentation, shared by
Cecil and Java programs.
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Fig. 10. Unification.

propagation to occur across an inclusion constraint before replacing it with an
equality constraint.

In the Vortex implementation, algorithms using either equality or bounded
inclusion constraints must use the explicit dataflow graph representation. Each
edge in the dataflow graph has a counter that is initialized to match the p value
of its associated generalized inclusion constraint, ⊇p. Each time the constraint
satisfaction subsystem attempts7 to propagate a class contour across an edge,
the edge’s counter is decremented. When the counter reaches 0, the bounded
inclusion constraint effectively becomes an equality constraint.

5.4.2 Satisfaction of Effective Equality Constraints. An effective equality

constraint is either an equality constraint or a bounded inclusion constraint
whose counter has been decremented to 0. Because the constraint satisfaction
subsystem is not allowed to incur any propagation costs on the behalf of ef-
fective equality constraints, an alternative satisfaction method must be used.
Hence, once two nodes in the dataflow graph are linked by effective equality
constraints, they are unified into a single node using fast union-find data struc-
tures [Tarjan 1975]. Because unifying the nodes in the dataflow graph also
causes the class contour sets associated with each node to be combined, any
constraint between them will be satisfied with no additional work, since the
two logical sets are now represented by the same actual set.

Figure 10 depicts the effect of unification on a portion of a program dataflow
graph; nodes represent sets of class contours and directed edges between nodes
indicate bounded inclusion constraints. In Figure 10(b), propagation has oc-
curred along the dashed edge between nodes A and B a sufficient number of
times to trigger the unification of A and B; the resulting dataflow graph is shown
in Figure 10(c). In the final graph, class contours flowing along edge 1 into the
new A/B node can be propagated to the original node B’s successors, D and E,

7The edge may have a filter which actually blocks the class contour from begin propagated across
the edge. Regardless of whether or not the class passes the filter, the edge’s counter decremented
in order to maintain the guarantee of p-bounded work.
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without incurring the cost of crossing the now nonexistent edge 3. However,
any class contours flowing along edge 2 into the new A/B node will be propa-
gated to all three of its successor nodes, C, D and E. In the initial graph, class
contours arriving at B via edge 2 could not reach node C; unification of A and B

has potentially reduced the precision of the final results of the analysis.

5.4.3 Lazy Constraint Generation and Unification. As discussed in
Section 2, in an optimistic analysis the circular dependency among receiver
class sets, the program call graph, and interprocedural analysis is resolved via
iteration to a fixed-point. In this process, constraints are generated lazily as
procedures are proven to be reachable, and thus the constraint generation and
constraint satisfaction phases overlap. Therefore, it may become necessary to
add a constraint A ⊇p B when the “source” node B has already been collapsed
out of the dataflow graph by unification. This can be done safely by adding a
constraint A ⊇p Bunif, where Bunif is the node in the dataflow graph that cur-
rently represents the set of unified nodes that includes B, and ensures that all
class contours currently in Bunif’s class contour set are propagated along the
new edge. Our implementation actually takes a simpler approach and forcibly
unifies A and all nodes downstream of A with Bunif. If there were no filter edges
in the dataflow graph and all edges had uniform p values, then these two ap-
proaches would be equivalent. All of the algorithms that we have implemented
so far do use uniform values for p, but since there are filters on at least some
edges in the graph, our forcible unification approach is overly pessimistic.

6. EXPERIMENTAL METHODOLOGY

This section describes our experimental methodology. The data presented in
Sections 7 through 10 is a selected subset of that found in Grove’s Ph.D. thesis
[Grove 1998]. This article focuses on answering two primary questions:

—What are the costs of constructing a program’s call graph using a particular
call graph construction algorithm?

—To what extent do differences in call graph precision impact the effectiveness
of client interprocedural analyses?

6.1 Benchmark Description

Experiments were performed on the Cecil [Chambers 1993] and Java [Gosling
et al. 1996] programs described in Table I. With the exception of two of the
Cecil programs, all of the applications are substantial in size. Before these
experiments, experimental assessments of call graph construction algorithms
have almost exclusively used benchmark programs consisting of only tens or
hundreds of lines of source code; only a few of the previous studies included
larger programs that ranged in size up to a few thousand lines of code. Program
size is an important issue, since many call graph construction algorithms have
worst-case running times that are polynomial in the size of the program. The
data presented in Sections 8 and 9 demonstrate that these bounds are not just
of theoretical concern; in practice, many of the algorithms exhibit running times

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



712 • D. Grove and C. Chambers

Table I. Description of Benchmark Programs

Program Linesa Description

richards 400 Operating systems simulation

deltablue 650 Incremental constraint solver

instr sched 2,400 Global instruction scheduler

typechecker 20,000b Typechecker for the old Cecil type system

new-tc 23,500b Typechecker for the new Cecil type system

compiler 50,000 Old version of the Vortex optimizing compiler (circa 1996)

cassowary 3,400 Constraint solver

toba 3,900 Java bytecode to C translator

java-cup 7,800 Parser generator

espresso 13,800 Java source to bytecode translatorc

javac 25,500 Java source to bytecode translatorc

pizza 27,500 Pizza compiler

aExcluding standard libraries. The Cecil versions of richards and deltablue include a 4,850-line subset

of the standard library; all other Cecil programs include the full 10,700-line standard libray. All Java

programs include a 16,400-line standard library.
bThe two Cecil typecheckers share approximately 15,000 lines of common support code, but the type

checking algorithms themselves are completely separate and were written by different people.
cThe two Java translators have no common nonlibrary code and developed by different people.

J
a

v
a

C
e
ci

l

were

that appear to be super-linear in program size, and thus cannot be practically
applied to programs of more than a few thousand lines of code. Conversely, all of
the algorithms are quite successful at analyzing programs of several hundred
lines of code, suggesting that benchmarks need to be a certain minimal size
(and contain enough interesting polymorphic code) before they are useful tools
for assessing call graph construction algorithms.

6.2 Experimental Setup

All experiments were conducted using the Vortex compiler infrastructure [Dean
et al. 1996; Chambers et al. 1996]. The basic methodology was to augment
an already optimized base configuration with several interprocedural analyses
performed over the call graph constructed by one of the algorithms. Because
profile-guided class prediction [Hölzle and Ungar 1994; Grove et al. 1995] was
demonstrated to be an important optimization for some object-oriented lan-
guages, but may not be desirable to include in every optimizing compiler, all of
the experiments used two base configurations: one purely static and one with
profile-guided class prediction. Benchmark programs were compiled using the
following configurations:

—The base configuration represents an aggressive combination of intraproce-
dural and limited interprocedural optimizations, including intraprocedural
class analysis [Johnson et al. 1988; Chambers and Ungar 1990]; hard-wired
class prediction for common messages (Cecil only) [Deutsch and Schiffman
1984; Chambers and Ungar 1989]; splitting [Chambers and Ungar 1990];
class hierarchy analysis [Fernandez 1995; Dean et al. 1995; Diwan et al.
1996]; inlining, static class prediction [Dean 1996]; closure optimizations
that identify and stack-allocate LIFO-closures and sink partially-dead
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closure creations (Cecil only); and a suite of traditional intraprocedural opti-
mizations such as common subexpression elimination, constant propagation
and folding, dead assignment elimination, and redundant load and dead store
elimination.

—The base+pgcp configuration augments base with profile-guided class pre-
diction [Hölzle and Ungar 1994; Grove et al. 1995]. For all programs with
nontrivial inputs, different input sets were used to collect profile data and to
gather other dynamic statistics (such as application execution time).

—For each call graph construction algorithm A, the base+IPA configuration
augments base with the interprocedural analyses listed below, which enable
the intraprocedural optimizations included in base to work better: more de-
tails on the individual interprocedural analyses, and experiments assessing
their effectiveness, can be found in Grove [1998].

—Class analysis: As a side-effect of constructing the call graph, each formal,
local, global, and instance variable is associated with a set of classes whose
instances may be stored in that variable. Intraprocedural class analysis
exploits these sets as upper bounds that are more precise than “all possible
classes,” enabling better optimization of dynamically dispatched messages.

—MOD analysis: This interprocedural analysis computes, for each procedure,
a set of global variables and instance variables that are potentially mod-
ified by calling the procedure. Intraprocedural analyses can exploit this
information to more accurately estimate the potential effect of noninlined
calls on local dataflow information.

—Exception detection: This interprocedural analysis identifies those proce-
dures guaranteed not to raise exceptions during their execution. This in-
formation can be exploited both to streamline their calling sequences and
to simplify the intraprocedural control-flow calls downstream to exception-
free routines.

—Escape analysis: Interprocedural escape analysis identifies first-class func-
tions guaranteed not to out-live their lexically enclosing environment, thus
enabling the function objects and their environments to be stack-allocated
[Kranz 1988]. The analysis could be generalized to enable the stack allo-
cation of objects as well, but the current Vortex implementation only op-
timizes closures and environments, and thus escape analysis only applies
to the Cecil benchmarks.

—Treeshaking: As a side-effect of constructing the call graph, the compiler
identifies those procedures unreachable during any program execution.
The compiler does not compile any unreachable procedures, often resulting
in substantial reductions both in code size and compile time.

—The base+IPA+pgcp configuration augments the base+IPA configura-
tion with profile-guided class prediction. We used the same dynamic pro-
file data (derived by iteratively optimizing, profiling, and reoptimizing the
base+pgcp configuration) for all pgcp configurations. This methodology
may slightly understate the benefits of profile-guided class prediction in the
base+IPA+pgcp configurations, since any additional inlining enabled by
interprocedural analysis would result in longer inlined chains of methods.
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Thus, potentially more precise call-chain8 profile information could be ob-
tained by iteratively profiling the base+IPA+pgcp configuration. How-
ever, this effect should be quite small, and by using the same profile data
for every configuration of a program, one variable is eliminated from the
experiments.

All experiments were performed on a Sun Ultra 1 Model 170 SparcSta-
tion with 384 MB of physical memory and 2.3 GB of virtual memory run-
ning Solaris 5.5.1. For all programs/configurations, Vortex compiled the input
programs to C code, which was then compiled using gcc version 2.7.2.1 with
the -O2 option.

6.3 Metrics

In this article we focus on the direct costs of call graph construction and the
bottom-line impact of call graph precision on the effectiveness of interprocedu-
ral optimizations. Previous work [Grove 1998] contained much more extensive
experimental results, including several metrics for call graph precision, and
for secondary effects like the impact of call graph precision on interprocedural
analysis time and the relative contributions of each of the five interprocedural
analyses to improvements in application performance.

The primary cost of a call graph construction algorithm is the compile time
expended running the algorithm. Hence, the primary metric to assess the direct
cost of a particular algorithm is the CPU time9 consumed constructing the call
graph. An additional concern is the amount of memory consumed during call
graph construction; if the working set of a call graph construction algorithm
does not fit into the available physical memory, then, due to paging effects,
CPU time will not accurately reflect the real (wall clock) time required for
call graph construction. Algorithm memory requirements are approximated by
measuring the growth in compiler heap size during call graph construction;
this metric is somewhat conservative, since it does not account for details of
the garbage collection algorithm, and thus may overestimate an algorithm’s
peak memory requirements.

Call graph precision can affect the quality of the information computed by the
interprocedural analyses, thus affecting bottom-line application performance.
To assess the importance of call graph precision, we focus on changes in appli-
cation runtime (CPU time). Note that minor variations in application runtime
may not be significant because instruction caching effects can cause applica-
tion runtime to vary noticeably, independent of any optimizations enabled by
interprocedural analysis. For example, simply running the strip10 utility on
an executable was observed to yield changes of up to +/−8% in application
runtime.

8More information on call chain porfiles, their interactions with inlining, and the details of profile-
guided receiver class prediction in Vortex can be found elsewhere [Grove et al. 1995].
9Combined system and user mode CPU time as reported by rusage.
10strip simply removes the symbol table and relocation bits from the executable.
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7. LOWER AND UPPER BOUNDS ON THE IMPACT OF CALL

GRAPH PRECISION

This section establishes lower and upper bounds for the potential importance
of call graph precision on the bottom-line impact of the five interprocedural
analyses for the programs in the benchmark suite. By providing an estimate of
the total potential benefits of an extremely precise call graph, and the fraction
of those benefits achievable by very simple call graph construction algorithms,
this section provides context for the experimental assessment of the other call
graph construction algorithms found in Sections 8 through 10.

7.1 Algorithm Descriptions

7.1.1 “Lower Bound” Algorithms. A true lower bound on the benefit of call
graph precision could be obtained by interprocedural analysis using G⊥, the
call graph in which every call site is assumed to invoke every procedure in
the program. However, G⊥ is needlessly pessimistic; a much more precise call
graph, Gselector, can be constructed with only superficial analysis of the program.
Gselector improves G⊥ by removing call edges between call sites and procedures
with incompatible message names or numbers of arguments. (Because Vortex’s
front ends use name mangling11 to disambiguate any static overloading of mes-
sage names, Gselector also takes advantage of some static type information.)

Limited analysis of the program can be used to improve the precision of
Gselector along two axes. First, class hierarchy analysis (GCHA) could be used to
improve Gselector by exploiting the information in static type declarations (only
methods that are applicable to classes that are subtypes of the receiver can be
invoked) and specialized formal parameters (if a message within the body of a
method is sent to one of the specialized formals of the enclosing method, then
only methods that are applicable to the specializing class, or its subclasses, can
be invoked). In statically typed languages, with unified inheritance and type
hierarchies, exploiting specialized formal parameters is just a special case of
exploiting static type declarations; but in languages like Cecil, the two sources
of information can be different. A number of systems have used class hierarchy
analysis to resolve message sends and build program call graphs [Fernandez
1995; Dean et al. 1995; Diwan et al. 1996; Bacon and Sweeney 1996; Bairagi
et al. 1997]. Second, rather than assuming that all methods declared in the pro-
gram are invocable, the call graph construction algorithm could optimistically
assume that a method is not reachable until it discovers that some reachable
procedure instantiates a class to which the method is applicable (Greachable).
This optimistic computation of method and class liveness is the novel idea of
Bacon and Sweeney’s Rapid Type Analysis (GRTA), a linear-time call graph con-
struction algorithm that combines both class hierarchy analysis and optimistic
reachability analysis to build a call graph [Bacon and Sweeney 1996].

Finally, as in Diwan’s Modula-3 optimizer [Diwan et al. 1996], intraproce-
dural class analysis could be used to increase the precision of Gselector, GCHA,

11Name mangling extends function names to include an encoding of the static types of the argu-
ments and/or return value. For example, a method foo(x:int,y:int):float might have a mangled name
foo I I rF.
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Greachable, or GRTA by improving the analysis of any messages sent to objects
created within the method.

7.1.2 “Upper Bound” Algorithms. The use of Gideal as the basis for inter-
procedural analysis would provide an upper bound on the potential benefits
of call graph precision for interprocedural analysis, since by definition Gideal

is the most precise sound call graph. Unfortunately, Gideal is generally uncom-
putable. However, a loose upper bound can be established by using profile data
to build some Gprofi

, an exact representation of the calls that occurred during
one particular run of the program. Gprofi

is not a sound call graph, but does
conservatively approximate the program’s behavior on a particular input (all
of our benchmarks are deterministic). To obtain an upper bound on the perfor-
mance benefits of call graph precision, the optimizer is instructed to assume
that Gprofi

is sound and the resulting optimized program is rerun on the same

input. If the IP-Gprofi
optimized program was run on any other input, it could

compute an incorrect result.
In theory, Gprofi

is at least as precise as Gideal. However, limitations in Vortex’s
profiling infrastructure12 prevent us from gathering fully context-sensitive
profile-derived class distributions, and thus the actual profile-derived call graph
Gprof that Vortex builds is less precise than Gprofi

. It is, however, at least as pre-
cise as the ideal context-insensitive call graph. In the other direction, Gprofi

may also be too loose an upper bound if the single run does not fully exercise
the program. We believe that this second concern (too loose an upper bound) is
unlikely to be a significant problem for these benchmark programs. The input
data sets we chose should exercise most portions of the program, and most of
the programs are compiler-like applications, whose behavior is not highly de-
pendent on the details of their input. To partially support this claim, we built a
second Gprof configuration for the compiler program that used a less optimistic
call graph, constructed by combining the profile data gathered from six differ-
ent runs of the program. Optimization based on this combined Gprof resulted in
only a 2% slowdown relative to the single-run Gprof.

7.2 Experimental Assessment

To establish lower and upper bounds on the bottom-line impact of call graph
precision, interprocedural analysis was done using two of the call graph
construction algorithms discussed above: Gselector and Gprof. Figure 11 dis-
plays normalized execution speeds for the base, base+IPselector, base+IPprof,
base+pgcp, base+IPselector+pgcp, and base+IPprof+pgcp configurations of
each application. Throughout this article we use the convention of stacking the
bars for the two configurations that differ only in the presence or absence of
profile-guided class prediction, with the static bar shaded and the additional
speedups enabled by profile-guided class prediction, shown by the white bar.

12Vortex’s profiling infrastructure is described in more detail elsewhere [Grove et al. 1995]. The
key issue is that the profile-derived class distributions grathered by Vortex are tagged with finite-
length segments of the dynamic call chain, limited by the degree of method inlining. Building a
context-sensitive Gprofi may require profile data to be tagged with arbitrarily long finite segments
of the dynamic call chain.
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Fig. 11. Upper and lower bounds on the impact of call graph precision.

The absence of the white bar indicates that profile-guided class prediction had
no impact on performance; the case in which x+pgcp is measurable slower
than x is explicitly noted in the text. To emphasize that base is already highly
optimized, an unopt configuration in which no Vortex optimizations were per-
formed (but the resulting C files were still compiled by gcc -O2) is shown as well;
the difference between the unopt and base configurations indicates the effec-
tiveness of Vortex’s basic optimization suite. The difference between the base

and IPprof configurations approximates the maximum speedup achievable in
the current Vortex system by an arbitrarily precise call graph construction al-
gorithm. The IPselector configurations illustrate how much of this benefit can be
obtained by an extremely simple and cheap call graph construction algorithm.
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More ambitious call graph construction algorithms may be profitable if there is
a substantial performance gap between the IPselector and IPprof configurations.

For almost all the programs, the performance difference between
base+IPselector and base+IPprof was almost as large as that between base

and base+IPprof, indicating that more aggressive call graph algorithms than
Gselector are required to reap the potential benefits of interprocedural analy-
sis. For the Cecil programs, the potential benefit is quite large. base+IPprof

dominates base+pgcp, and on the four larger benchmarks yields speedups
ranging from a factor of 1.9 to 2.6 over base. The potential improvements for
the Java benchmarks are much smaller; this is not entirely unexpected, since
the combination of Java’s hybrid object model and its static type system both
make unopt more efficient than it is in Cecil, and make the optimizations in
the base configuration more effective, thus leaving even less overhead for in-
terprocedural analysis to attack. For cassowary, base+IPprof is roughly 25%
faster than base, and the potential benefits are smaller for the remainder of
the Java programs.

8. THE BASIC ALGORITHM: 0-CFA

The 0-CFA algorithm is the classic context-insensitive, dataflow-sensitive call
graph construction algorithm. It produces a more precise call graph than
Gselector, and the other “lower bound” algorithms of Section 7.1.1, by performing
an iterative interprocedural data and control flow analysis of the program dur-
ing call graph construction. The resulting, more precise, call graph may enable
substantial improvements over those provided by Gselector. The 0-CFA algorithm
was first described in the context of control flow analysis for Scheme programs
by Shivers [1988, 1991]. The basic 0-CFA strategy has been used in a number
of call graph construction algorithms; Palsberg and Schwartzbach’s basic, algo-
rithm [1991]; Hall and Kennedy’s [1992], call graph construction algorithm for
Fortran; and Lakhotia’s [1993] algorithm for building a call graph in languages
with higher-order functions are all derived from 0-CFA.

8.1 Algorithm Description

0-CFA uses the single-point lattice (the lattice with ⊥ value only) for its ProcKey,
InstVarKey, and ClassKey partial orders. The general algorithm is instantiated
to 0-CFA by the following parameters:

PKS(caller : ProcContour, c : CallSite, a : AllTuples(ClassContourSet),

callee : Procedure) → {⊥}

IVKS(i : InstVariable, b : ClassContourSet) → {⊥}

CKS(c : Class, n : NewSite, p : ProcContour) → {⊥}

EKS(c : Closure, p : ProcContour) → {⊥}

CIF : p = ∞

SIF : Ø

For every procedure, instance variable, and class, the 0-CFA contour key
selection functions return the singleton set {⊥}, resulting in the selection of the
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Fig. 12. Costs of 0-CFA call graph construction.

single contour that is the only analysis-time representation of the procedure,
instance variable, or class. By uniformly setting p = ∞, 0-CFA always gener-
ates simple inclusion constraints, and all nonspecified class contour sets are
optimistically initialized to the empty set.

8.2 Experimental Assessment

Figure 12 reports the costs of using the 0-CFA algorithm by plotting call graph
construction time and heap space growth as a function of program size, mea-
sured by the number of call sites in the program. Note that both y-axes use a log
scale. For the three largest Cecil programs, call graph construction was a sub-
stantial cost, consuming roughly 10 minutes of CPU time for typechecker and
new-tc and just over three hours for compiler. These large analysis times were
not due to paging effects. Although heap growth during call graph construction
was substantial, 60 MB for typechecker and new-tc and 200 MB for compiler,
there were 384 MB of physical memory on the machine and CPU utilization av-
eraged over 95% during call graph construction. The 0-CFA algorithm exhibited
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much better scalability on the Java programs: even for the largest programs,
call graph construction only consumed a few minutes of CPU time. Although
the largest Java program is significantly smaller than the largest Cecil pro-
gram (23,000 call sites vs. 38,000), this may not explain the apparent qualita-
tive difference in the 0-CFA call graph construction times. To reliably compare
the scalability of the 0-CFA algorithm in Cecil and Java, a few larger Java
programs (40,000+ call sites) are required. For comparably sized programs,
it appears that 0-CFA call graph construction takes roughly a factor of four
longer for Cecil than for Java. We suspect that a major cause of this differ-
ence is the heavy use of closures in the Cecil programs, which results in a much
larger number of analysis time “classes” in Cecil programs, and so increases the
amount of propagation work. For example, typechecker contains 635 classes and
3,900 closures for an effective total of 4,535 classes, while javac contains only
297 classes and no closures.

Figure 13 shows the bottom-line performance impact of 0-CFA by display-
ing the execution speeds of the two IP0-CFA configurations of each benchmark
(the third pair of bars). The execution speeds obtained by the base, IPselector,
and IPprof configurations are repeated to enable easy comparison. For the two
smallest Cecil programs, 0-CFA enables almost all of the potentially available
speedup embodied in the IPprof configuration. In the four larger Cecil programs,
0-CFA enables roughly half of the potentially available speedup: it substantially
outperforms base, but the remaining large gap between it and IPprof indicates
that context sensitivity might enable additional performance gains. The critical
difference between the small and large Cecil programs is the amount of truly
polymorphic code. Although all six programs use the same generic hash table,
set, etc., library classes, richards and deltablue are too small to contain multi-
ple clients that use polymorphic library routines in different ways, i.e., to store
objects of different classes. As the programs become larger, 0-CFA’s inability to
accurately analyze polymorphic code becomes more and more important. The
performance impact of 0-CFA on Java programs was fairly bi-modal: for some
programs it enables speedups comparable to those of IPprof, and for others it
is ineffective.

9. CONTEXT-SENSITIVE ALGORITHMS

In contrast to the 0-CFA algorithm, context-sensitive algorithms create more
than one contour for some (or all) of a program’s procedures, instance vari-
ables, and classes. This section defines and assesses three context-sensitive
algorithms: k-l -CFA, CPA, and SCS. All of these algorithms generate only
simple inclusion constraints, ⊇∞.

9.1 Algorithm Descriptions

9.1.1 Context Sensitivity Based on Call Chains. One of the most commonly
used forms of context sensitivity is to use a vector of the k enclosing calling pro-
cedures at a call site to select the target contour for the callee procedure (the
“call strings” approach of Sharir and Pnueli [1981]). If k = 0, then this degen-
erates to the single-point lattice and a context insensitive algorithm (0-CFA);
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Fig. 13. Performance impact of 0-CFA.

k = 1 for ProcKey corresponds to analyzing a callee contour separately for each
source-level call site, and k = 1 for ClassKey corresponds to treating each dis-
tinct source-level instantiation site of a class as giving rise to a separate class
contour. An algorithm may use a fixed value of k throughout the program, as in
Shivers’s k-CFA family of algorithms for Scheme [Shivers 1988; Shivers 1991];
Oxhøj’s 1-CFA extension to Palsberg and Schwartzbach’s algorithm [Oxhøj et al.
1992], or various other adaptations of k-CFA to object-oriented programs [Vitek
et al. 1992; Phillips and Shepard 1994]. More sophisticated adaptive algorithms
try to use different levels of k in different regions of the call graph to more flex-
ibly manage the tradeoff between analysis time and precision [Plevyak and
Chien 1994; Plevyak 1996]. Finally, a number of algorithms based on arbitrar-
ily large finite values for k have been proposed: Ryder’s call graph construction
algorithm for Fortran 77 [Ryder 1979]; Callahan’s extension to Ryder’s work to
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support recursion [Callahan et al. 1990]; and Emami’s alias analysis algorithm
for C [Emami et al. 1994] all treat each acyclic path through the call graph
as creating a new context. Alt and Martin developed an even more aggres-
sive call graph construction algorithm, used in their PAG system, that first
“unrolls” levels of recursion [Alt and Martin 1995]. Steensgaard developed an
unbounded-call-chain algorithm that handles nested lexical environments by
applying a widening operation to class sets of formal parameters at entries to
recursive cycles in the call graph [Steensgaard 1994].

For object-oriented programs, Shivers’s k-CFA family of algorithms can be
extended straightforwardly to the k-l -CFA family of algorithms where k denotes
the degree of context sensitivity in the ProcKey domain and l denotes the degree
of context sensitivity in the ClassKey domain [Vitek et al. 1992; Phillips and
Shepard 1994]. The partial orders used as contour keys by these algorithms are
detailed below:

Algorithm ProcKey InstVarKey ClassKey

k-0-CFA where k > 0 Seq(Procedure) single-point lattice single-point lattice

k-l -CFA where k > 0 and l > 0 Seq(Procedure) ClassContour Seq(Procedure)

The contour key selection functions are defined using two auxiliary func-
tions ⊕ and Fw, where x ⊕ 〈 y1, . . . , yk〉 = 〈x, y1, . . . , yk〉 and Fw(x, 〈 y1, . . . ,
yw, . . . , yk〉) = 〈x, y1, . . . , yw−1〉. The general algorithm is instantiated with
the following parameters for the k-l -CFA family of algorithms:

PKS(caller : ProcContour, c : CS, a : AT(CCS), callee : P )

→ {Fk(Proc(ID(caller)), Key(ID(caller)))}

IVKS(i : InstVariable, b : ClassContourSet) →

(

{⊥}, l = 0
b, otherwise

CKS(c : Class, n : NewSite, p : ProcContour)

→

(

{⊥}, l = 0
{〈F1(Proc(ID(p)), Key(ID(p)))〉}, otherwise

EKS(c : Closure, p : ProcContour)

→

(

{⊥}, if c contains no non-global free variables
{Key(ID(p)) ⊕ lc | lc ∈ Lex(ID(p))}, otherwise

CIF : p = ∞

SIF : Ø

Thus, the procedure context-sensitivity strategy used in the k-l -CFA fam-
ily of algorithms is identical to that in the original k-CFA algorithms. If l > 0,
the IVKS and CKS functions collaborate to enable the context-sensitive anal-
ysis of instance variables. CKS tags classes with the contour in which they
were created. A separate class contour set (representing the contents of an in-
stance variable) is maintained for each Class and ClassKey pair. IVKS uses the
ClassContourSet of the base expression of the instance variable load or store
to determine which instance variable contours should be used to analyze the
access. Note that in practice l ≤ k + 1, since ClassKeys are based on ProcKeys,
and larger values of l do not have any additional benefit.
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9.1.2 Context Sensitivity Based on Parameters. Another common basis for
context-sensitive analysis of procedures is some abstraction of the actual pa-
rameter values passed to the procedure from its call sites. For example, an
abstraction of the alias relationships among actual parameters was used as the
basis for context sensitivity in algorithms for interprocedural alias analysis
[Landi and Ryder 1991; Wilson and Lam 1995]. Similarly, several call graph
construction algorithms for object-oriented languages use information about
the classes of actual parameters as the critical input to their procedure contour
key selection functions. These algorithms attempt to improve on the brute-force
approach of call-chain-based context sensitivity by using more sophisticated no-
tions of which callers are similar, and so can share the same callee contour, and
which callers are different enough to require distinct callee contours.

Two such algorithms are the Cartesian Product Algorithm (CPA) [Agesen
1995] and the Simple Class Set algorithm (SCS) [Grove et al. 1997]. The pri-
mary difference in the algorithms is their procedure contour key selection func-
tion. CPA uses AllTuples(ClassContour) as its ProcKey partial order, but SCS
uses AllTuples(ClassContourSet). Both algorithms use the single-point lattice
for their InstVarKey and ClassKey partial orders, both generate inclusion con-
straints (p = ∞), and both initialize class contour sets to the empty set. The
two algorithms share the following common parameters:13

IVKS(i : InstVariable, b : ClassContourSet) → {⊥}

CKS(c : Class, n : NewSite, p : ProcContour) → {⊥}

EKS(c : Closure, p : ProcContour)

→

(

{⊥}, if c contains no non-global free variables
{Key(ID(p)) ⊕ lc | lc ∈ Lex(ID(p))}, otherwise

CIF : p = ∞

SIF : Ø

For its procedure contour key selection function, CPA uses

PKS(caller : ProcContour, c : CS, a : AllTuples(ClassContourSet),

callee : Proc) → CPA(a)

where CPA(〈S1, S2, . . . , Sn〉) = S1 × S2 × . . . × Sn

while SCS uses

PKS(caller : ProcContour, c : CS, a : AllTuples(ClassContourSet),

callee : Proc) → {a}

In CPA, for each callee procedure, the procedure contour key selection func-
tion computes the cartesian product of the actual parameter class contour sets
and a procedure contour is selected/created for each element. In SCS, for each

13Agesen’s implementation of CPA for Self actually uses a more complex EKS function that reduces
the number of closure contours by “fusing” closure contours that reference the same subset of its
enclosing procedure’s formal parameters. This optimization is difficult to express in our framework,
and is not included in the Vortex implementation of CPA; see section 4.4 of Agesen [1996] for more
details.
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callee procedure, the procedure contour key selection function returns a single
contour key, which is exactly the tuple of actual parameter class contour sets
a, thus only a single contour per callee procedure is selected for the call site.

To obtain contour reuse, CPA breaks the analysis of a callee procedure into
a number of small pieces, in the hope that there will be other call sites of the
procedure with overlapping tuples of class contour sets that will be able to reuse
some of the contours generated by the first call site. In contrast, SCS can only
reuse a callee contour if there are two call sites that have identical tuples of
class contour sets passed as actual parameters. On the other hand, CPA may
create a large number of contours to analyze a callee that will not benefit from
the more precise formal class contour sets.

To illustrate the context-sensitivity strategies of CPA and SCS, Figure 14
contains a program and the resulting SCS and CPA call graphs. Each node
represents a contour and is labeled with the Procedure and ProcKey compo-
nents of its ProcID. If multiple contours were created for a procedure, they
are grouped by a dashed oval. Notice that in the SCS call graph at most one
contour per procedure can be invoked from each call site. This example also
illustrates one way in which CPA may produce a more precise result than SCS.
In the CPA call graph, the contours representing twice(@num) only invoke con-
tours for +(@int,@int) and +(@float,@float). However in the SCS call graph,
twice(@num) also invokes a contour for +(@num,@num).

In the worst case, CPA may require O(Na) contours to analyze a call site,
where a is the number of arguments at the call site. Under the assumption that
a is bounded by a constant, the worst-case analysis time of CPA is polynomial
in the size of the program [Agesen 1996]. In the worst case, SCS may require
O(N Na

) contours to analyze a program. To avoid requiring an unreasonably
large number of contours in practice, Agesen actually implements a variant
of CPA, which we term bounded-CPA (or b-CPA) that uses a single context-
insensitive contour to analyze any call site at which the number of terms in the
cartesian product of the actual class sets exceeds a threshold value.14 Similarly,
a bounded variant of SCS, b-SCS, can be defined to limit the number of con-
tours created per procedure by falling back on a context-insensitive summary
when the procedure’s contour creation budget is exceeded. The experimental
results in Section 9.2 only present data for the b-CPA and SCS algorithms.
Unbounded CPA does not scale to large Cecil programs [Grove et al. 1997].
Bounded SCS is not considered because, for the majority of our benchmark pro-
grams, unbounded SCS actually required less analysis time than b-CPA despite
its worst-case exponential time complexity.

In the presence of lexically nested functions, both CPA and SCS are vulner-
able to recursive customization, since the class contour key selection function
for the closure class must encode the lexically enclosing contour. This leads
to a mutual recursion between the ProcKey and ClassKey partial orders, which
results in an infinitely tall call graph domain. Agesen defines the recursive cus-
tomization problem and gives three methods for conservatively detecting when
it occurs (thus enabling a widening operation to be applied in the procedure

14Our implementation of b-CPA uses a threshold value of 10.
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Fig. 14. CPA and SCS example.
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contour key selection function) [Agesen 1996]. The Vortex implementations of
CPA and SCS use the weakest of these three methods: programmer annotation
of methods that may induce recursive customization.

Other context-sensitive call graph construction algorithms for object-
oriented languages were defined by exploiting similar ideas. The “eager split-
ting” used as a component of each phase of Plevyak’s iterative refinement algo-
rithm [Plevyak 1996] is equivalent to unbounded CPA; thus an implementation
of Plevyak’s algorithm would also not scale to large Cecil programs. Pande’s al-
gorithm for interprocedural class analysis in C++ [Pande and Ryder 1994] is
built on Landi’s alias analysis for C [Landi and Ryder 1991] and uses an ex-
tension of Landi’s conditional points-to information as the basis for its context
sensitivity. Prior to developing CPA, Agesen proposed the hash algorithm to
improve the analysis of Self programs [Agesen et al. 1993]. The hash algorithm
makes context-sensitivity decisions by hashing a description of the calling con-
text; call sites of a target method that compute the same hash value will share
the same callee contour. The original hash algorithm computed a simple hash
function from limited information that returned a single value (thus restrict-
ing the analysis to only a single callee contour per call site), but Agesen later
extended the hash algorithm to allow the hash function to include the current
sets of argument classes as part of its input and to return multiple hash values
for a single call site [Agesen 1996].

9.2 Experimental Assessment

The time and space costs of a subset of the context-sensitive call graph con-
struction algorithms are plotted as functions of program size in Figure 15; for
comparison, the costs of the 0-CFA algorithm are also included. For many of the
program and algorithm combinations, call graph construction did not complete
in 24 hours of CPU time. In particular, none of the context-sensitive algorithms
could successfully analyze compiler—only 1-0-CFA completed on typechecker
and new-tc, and higher values of k-l -CFA failed to complete on the three largest
Java programs. The more intelligent context-sensitivity strategies of CPA
and SCS resulted in lower analysis-time costs than the brute-force approach
of k-l -CFA.

Figure 16 shows the bottom-line benefits of the additional call graph pre-
cision enabled by context-sensitive interprocedural class analysis; for compar-
ison, the speedups obtained by IP0-CFA and IPprof are also shown. The bars
are grouped into three sets: the base, IPselector, and IP0-CFA configurations,
the IPk-l-CFA configurations, and the IPb-CPA, IPSCS, and IPprof configurations.
Missing bars indicate combinations that did not complete. Overall, despite some
improvements in precision, none of the context-sensitive analyses enabled a
reliably measurable improvement over 0-CFA on the three smallest Cecil pro-
grams or on the Java programs. For typechecker and new-tc, 1-0CFA did improve
over 0-CFA, but did not reach the performance of the IPprof configurations, sug-
gesting that further improvements may be possible if a scalable and more pre-
cise context-sensitive algorithm could be developed. Overall, at least for these
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Fig. 15. Costs of context-sensitive call graph construction.

programs, current context-sensitive call graph construction algorithms are not
an attractive option. Either no significant speedups over 0-CFA were enabled,
or call graph construction costs were prohibitively high.

10. APPROXIMATIONS OF 0-CFA

The goal of the context-sensitive algorithms, discussed in the previous section,
is to build more precise call graphs than those built by 0-CFA, thus enabling
more effective interprocedural analysis and larger bottom-line application im-
provements. The algorithms in this section take the opposite approach: rather
than trying to improve the precision of 0-CFA, they attempt to substantially
reduce call graph construction time while preserving as much as possible of the
bottom-line performance benefits obtained by 0-CFA.
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Fig. 16. Performance impact of context-sensitive algorithms.

10.1 Algorithm Descriptions

The 0-CFA algorithm only generates inclusion constraints. The basic constraint
satisfaction method for inclusion constraints is to propagate class contour infor-
mation from sources to sinks in the program dataflow graph until a fixed point is
reached. This solution method results in a worst-case time complexity of O(N3),
where N is a measure of program size. This follows from the fact that there are
O(N 2) edges in the dataflow graph, and O(N ) class contours may need to be
propagated along each edge. Heintze and McAllester describe an alternative
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solution method for 0-CFA, based on constructing the subtransitive dataflow
graph, that requires only O(N ) time to compute a solution [Heintze and
McAllester 1997]. However, it applies only to programs with bounded-size types,
and may require O(N 2) time to answer a query about the results. In contrast
to subtransitive 0-CFA, the approximation techniques defined in this section
are applicable to any program, but yield less precise analyses than 0-CFA.

10.1.1 Unification. The first approximation is to replace the inclusion con-
straints generated by 0-CFA with bounded inclusion constraints, ⊇p, where p

is some constant non-negative integer. The two families of algorithms defined
in Section 10.1.6 use a uniform value of p throughout their constraint graph,
but a number of other strategies are possible [Grove 1998]. As described pre-
viously (in Section 5.4.2), once p distinct class contours are propagated across
a p-bounded inclusion constraint, the source and sink nodes connected by the
constraint are unified, thus guaranteeing that the constraint is satisfied, while
avoiding any further propagation work between the two nodes. However, unify-
ing two nodes may result in the reverse propagation of class contours through
the dataflow graph, degrading the precision of the final analysis result (unifi-
cation makes the analysis partially dataflow-insensitive).

Equality constraints, which unify nodes as soon as they are connected by
dataflow, have been used to define near-linear time algorithms for binding time
analysis [Henglein 1991] and alias analysis [Steensgaard 1996]. Ashley ex-
plored reducing propagation costs by utilizing bounded inclusion constraints
in a control flow analysis of Scheme programs [Ashley 1996, 1997]. In addi-
tion to approximating 0-CFA, he also applied the same technique to develop an
approximate 1-CFA analysis. Shapiro and Horwitz have developed a family of
alias analysis algorithms that mixes propagation and unification in a different
way, to yield more precise results than Steensgaard’s algorithm while still sub-
stantially improving on the O(N 3) complexity of a purely propagation-based
algorithm [Shapiro and Horwitz 1997]. But instead of using bounded inclusion
constraints, Shapiro and Horwitz randomly assign each node in the dataflow
graph to one of k categories. If two nodes in the same category are connected
by an edge, they are immediately unified, but nodes in different categories are
never unified. Because the initial assignment of nodes to categories can have
a large effect on the final results of analysis, they propose a second algorithm
that runs their basic algorithm several times, each time with a different random
assignment of nodes to categories.

10.1.2 Static Unification. Recent algorithms proposed by Tip and Palsberg
[2000] use static criteria to a priori unify nodes before the propagation phase
begins. No nodes are dynamically unified during propagation, thus avoiding
the complexity of implementing unification via fast union-find data structures
[Tarjan 1975]. Their algorithms have the same O(N3) worst-case time complex-
ity as 0-CFA, but in practice may scale more effectively because the a priori

unification can significantly reduce the magnitude of N . They propose and em-
pirically evaluate four algorithms (static unification criteria):
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—CTA maintains one distinct node for each class in the program. In effect, it
unifies the nodes of all program constructs that have the same declaring/
containing class.

—MTA maintains one distinct node for each class and each instance variable
in the program. In effect, for each class it unifies the nodes of all variables
declared in the class’s methods into a single summary node for the class.

—FTA maintains one distinct node for each class and each method in the pro-
gram. In effect, it unifies the nodes of all instance fields declared in the same
class into a single node that represents all instance variables of the class. It
also unifies the nodes of all variables declared in a method into a single node
that summarizes the method.

—XTA maintains one distinct node for each instance field and method in the
program. In effect, it unifies the nodes of all variables declared in a method
into a single node that summarizes the method.

They experimentally evaluated their algorithms on a suite of Java programs
and determined that XTA represented the best cost/precision tradeoff of the
four. All four of their algorithms unify (at least) all of the nodes representing a
method’s variables. An important benefit of this approximation in the context
of Java is that it allows them to avoid analyzing the method’s bytecodes to
discover its intraprocedural dataflow.

Declared-type analysis (DTA) combines additional pessimistic assumptions
described below (Section 10.1.5) with static unification of all local variables that
have the same declared type [Sundaresan et al. 2000].

10.1.3 Call Merging. Call merging asymptotically reduces the number of
edges in the dataflow graph by introducing a factoring node between the call
sites and callee procedures of each selector.15 Figure 17 illustrates call merg-
ing; Figure 17(a) shows the unmerged connections required to connect four
call sites with the same selector to three callee procedures with that selector;
Figure 17(b) shows the connections required if call merging is utilized. To sim-
plify the picture, only a single edge is shown connecting each node; in the actual
dataflow graph, this single edge would expand to a set of edges connecting each
actual/formal pair and the return/result pair.

Call merging reduces the number of edges in the program dataflow graph
from O(N 2) to O(N ), and so enables a reduction in worst-case analysis time of
O(N ) [DeFouw et al. 1998]. However, this analysis time reduction may come at
the cost of lost precision. In the merged dataflow graph, if a callee procedure
is reachable from any one of a selector’s call sites, it is deemed reachable from
all of the selector’s call sites, leading to a potential dilution of the class contour
sets and subsequent additional imprecisions in the final program call graph.

Call merging can be modeled as a prepass that transforms the program
source prior to running the call graph construction algorithm. The prepass

15A selector encodes the message name and number of arguments; for example, the selector for a
send of the union message with two arguments is union/2. Note that because Vortex’s front ends
use name mangling to encode any static overloading of message names, selectors also encode some
information from the source language’s static type system.
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Fig. 17. Dataflow graph without and with call merging.

creates one method for each selector (with a new, unique name) that contains
direct calls to all of the selector’s methods. The result of the selector method is
the union of the result of all of its “normal” callees. All call sites of the original
program are replaced by direct calls to the appropriate selector method.

10.1.4 Closure Merging. Closure merging reduces the number of classes
in the program. Rather than creating a unique class for each source level
closure, all closures with the same number of arguments are considered to be
instances of a single class, whose apply method is a union of the apply methods
of the individual reachable closures with the appropriate number of arguments.
This approximation does not change the asymptotic worst-case complexity of
an algorithm, but can still make a substantial impact on analysis time. For
example, in typechecker, closure merging reduces the number of classes in the
program from 4,535 to 655. Vortex implements both families of algorithms from
Section 10.1.6 with and without closure merging; previous experiments have
shown that closure merging reduces analysis time by roughly a factor of two,
while in almost all cases having no measurable impact on bottom-line applica-
tion performance.

10.1.5 Pessimistic Assumptions. As discussed in Section 2, the circular de-
pendencies between receiver class sets, the program call graph, and interproce-
dural analysis could be broken by making a conservative assumption about one
of the quantities and then computing the other two. In variable-type analysis
(VTA) [Sundaresan et al. 2000], an initial call graph is constructed using Rapid
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Type Analysis (RTA) [Bacon and Sweeney 1996]. Based on this call graph,
0-CFA style constraints between program variables are constructed, any
strongly connected components in the resulting dataflow graph are collapsed,
and class information is propagated in a single noniterative pass. Although
collapsing the strongly connected components enables VTA to avoid iteration,
it precludes using filters to exploit static type information. Sundaresan et al.
empirically demonstrate that VTA is significantly more precise than RTA, but
do not compare it to 0-CFA. Thus, it is unclear how much precision is lost or
analysis time is gained by their approximations.

10.1.6 Algorithms. We present two families of algorithms that approxi-
mate 0-CFA using combinations of unification, call merging, and closure merg-
ing. Both families of algorithms use a simplistic strategy for generating bounded
inclusion constraints, with a uniform constant value of p to control unification
vs. propagation decisions. The two families are distinguished by the presence
or absence of call merging: the first, p-Bounded, does not use call merging,
whereas the second, p-Bounded Linear-Edge, does.

For constant values of p, instances of the p-Bounded algorithm have a
worst-case time complexity of O(N2α(N, N ))16 and instances of p-Bounded
Linear-Edge have a worst-case time complexity of O(Nα(N , N )). If p = ∞,
then no unification will be performed. The ∞–Bounded algorithm is exactly
0-CFA (no approximation will be performed) and has a worst-case time com-
plexity of O(N3). The ∞-Bounded Linear-Edge algorithm has a worst-case
time complexity of O(N 2); DeFouw et al. [1998] called this degenerate case of
p-Bounded Linear-Edge, Linear-Edge 0-CFA.

The 0-Bounded Linear-Edge algorithm is very similar to Bacon and
Sweeney’s Rapid Type Analysis (RTA) [Bacon and Sweeney 1996]. The key
difference between the two algorithms is that RTA builds a single global set of
live classes, whereas 0-Bounded Linear-Edge maintains a set of live classes for
each disjoint region of the program’s dataflow graph. Due to its simpler unifica-
tion scheme, RTA is less precise than 0-Bounded Linear-Edge but has a slightly
better worst-case time complexity of only O(N ). However, with the exception of
a few small programs, the theoretical differences between the two algorithms
do not seem to result in any significant differences in either analysis time or
bottom-line performance benefit [DeFouw et al. 1998].

10.2 Experimental Assessment

The experimental results, one pair of graphs per program, are found in
Figure 18. Each graph plots two lines, one for p-Bounded and one for p-Bounded
Linear-Edge, as p varies from 0 to ∞ (denoted N ) along the x-axis. Analysis
cost is reported by the first graph in each pair, which shows call graph con-
struction time in CPU seconds. The second graph in each pair reports appli-
cation execution speed (normalized to base). In the second graph, lines are
plotted for both the base+IP and base+IP+pgcp configurations. Memory

16α(N, N ) is the inverse Ackermann’s function introduced by the fast union-find data structures.
In practice, α(N, N ) ≤ 4.
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Fig. 18. Approximations of 0-CFA.
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usage is not shown. For constant values of p, memory was not a concern for the
p-Bounded Linear Edge algorithm; for example, the compiler program required
between 25 and 35 MB. Memory was more of an issue for the p-Bounded al-
gorithm. For constant values of p, call graph construction for the compiler pro-
gram consumed over 200 MB, and for p = ∞ did not terminate (memory usage
quickly grew to over 1 GB, and after three days of thrashing the configuration
was killed). For the typechecker and new-tc programs, ∞-Bounded consumed
just over 400 MB during call graph construction. The excessive memory con-
sumption of the ∞-Bounded algorithm indicates the importance of a careful
choice between implicit and explicit representations of the program’s dataflow
graph (Section 5.3.1). The ∞–Bounded algorithm is semantically identical to
0-CFA, but in our implementation 0-CFA uses an implicit representation of
the dataflow graph. Using a different representation enabled 0-CFA to analyze
new-tc in 56 MB, typechecker in 107 MB, and compiler in 201 MB.

Surprisingly, across all the benchmarks, the additional precision of the near-
quadratic-time p-Bounded algorithm does not enable any measurable perfor-
mance improvement over that obtained by the near-linear-time p-Bounded
Linear-Edge algorithm. However, as one would expect, the near-linear time al-
gorithm is significantly faster and requires less memory, and therefore should
be preferred. The additional call graph precision enabled by using bounded in-
clusion constraints instead of equality constraints (p = a small constant vs.
p = 0) translates into significant improvement in bottom-line application per-
formance. Finally, for many programs, there is an interesting inverse-knee in
the analysis time curves for intermediate values of p. This effect is caused
by the interactions between propagation and unification. As p increases, more
propagation work is allowed along each edge in the dataflow graph, tending to
increase analysis time. However, larger values of p also result in more precise
call graphs, thus making the dataflow graph smaller by removing additional
unreachable call graph nodes and edges and reducing analysis time. This sec-
ond effect requires a moderate degree of propagation before it becomes signif-
icant (that gets larger as program size increases, and thus the knee gradually
shifts to the right as programs increase in size). Thus, for intermediate values
of p, the dataflow graph does not become significantly smaller, but more prop-
agation work can be incurred along edges between dataflow nodes before they
are eventually unified.

11. SUMMARY COMPARISON OF CALL GRAPH

CONSTRUCTION ALGORITHMS

Figure 19 depicts the relative precision of all the call graph construction algo-
rithms described in this article (some of which are not actually implemented
in the Vortex compiler). Algorithm A is more precise than algorithm B if, for
all input programs, GA is at least as precise as GB, and there exists some input
program such that GA is more precise than GB. This (transitive) relationship is
depicted by placing GA above GB and connecting them with a line segment.

All sound algorithms construct call graphs that are conservative approxima-
tions of Gideal, the optimal sound call graph which is the greatest lower bound
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Fig. 19. Relative precision of computed call graphs.
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over all Gprof i
. All context-sensitive call graph construction algorithms produce

call graphs at least as precise as those produced by 0-CFA, and thus are depicted
above it in the lattice. As a convention, the k in various algorithm names stands
for an arbitrarily large finite integer value; infinite values of a parameter are
represented by ∞. The relationships between instances of the same parame-
terized family of algorithms is implied by the values of their parameters. For
example, the k-l -CFA family of algorithms form an infinitely tall and infinitely
wide sublattice. Increasing the degree of context sensitivity in the analysis of
data structures and procedures improves call graph precision along indepen-
dent axes, therefore there is no relationship between pairs of algorithms such as
2-0-CFA and 1-1-CFA. Similarly, the p-Bounded and p-Bounded Linear-Edge
families of algorithms form two parallel infinitely tall sublattices positioned
between RTA and 0-CFA. The implications of call merging and unification are
different, and thus there is no relationship between n-Bounded and (n + 1)-
Bounded Linear-Edge; there exist programs for which each produces a more
precise call graph than the other.

One of the most interesting portions of the lattice is that depicting the rela-
tionships among CPA, SCS, k-0-CFA, and ∞-0-CFA. Unfortunately, the lattice-
theoretic definition of call graphs presented in Section 3.2 cannot be used to
determine the relationship between pairs of algorithms with incomparable
ProcKey partial orders, so this discussion is informal and somewhat specu-
lative (shown by dotted lines in Figure 19). All four of these algorithms use
the same (context-insensitive) strategy to analyze data structures. Therefore,
any precision differences are due to their handling of polymorphic functions.
By itself, context-sensitive analysis of functions can only increase call graph
precision by increasing the precision of some procedure’s formal class sets by
creating distinct contours to distinguish between two call sites with different
argument class sets. By definition, CPA and SCS create new contours when-
ever argument class sets differ, so they should construct call graphs that are
at least as precise as those generated by either k-0-CFA or ∞-0-CFA. For some
programs, CPA and SCS produce call graphs that are more precise than k-
0-CFA. More interestingly, there are programs for which CPA generates call
graphs that are more precise than those produced by ∞-0-CFA. Figure 20(b)
depicts a program in which SCS, CPA, and ∞-0-CFA compute more precise call
graphs than k-0-CFA. The k +1 levels of wrapper procedures result in k-0-CFA
determining that the +(@num,num) method could be invoked from the call site
in wrap k. None of the other three algorithms make this mistake. Figure 20(c)
repeats the example from Section 9.1.2 that was used to illustrate how CPA can
be more precise than SCS. Applying SCS, k-0-CFA, or ∞-0-CFA to this program
results in a call graph in which +(@num,num) is a possible callee of twice. The
CPA call graph does not contain this inaccuracy. We conjecture that CPA is more
precise than the other three algorithms and that SCS and ∞-0-CFA are equally
precise.

To summarize the costs and benefits of using different call graph construc-
tion algorithms as the basis for interprocedural analysis and subsequent opti-
mization, we repeat a subset of the experimental results. The Gselector and Gprof
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Fig. 20. Example programs for call chain vs. parameter context sensitivity.

algorithms (Section 7) represent lower and upper bounds on the performance
impact achievable in Vortex through interprocedural analysis. The 8-Bounded
Linear-Edge (Section 10), 0-CFA (Section 8), and SCS (Section 9) algorithms
each represent substantially different regions in the algorithmic design space,
ranging from fairly fast but imprecise algorithms to slow but fairly precise al-
gorithms. The choice of p = 8 for the p-Bounded Linear Edge algorithm was
made based on the performance of the algorithm on the largest Cecil bench-
marks. Optimal values for p vary from program to program (for example, on
cassowary p = 8 results in virtually no improvement over base, but p = 16
shows some benefits, and p = 32 almost matches 0-CFA), but for these bench-
marks typically 2 < p < 16.

Figure 21 shows the normalized execution speeds obtained by the base+IP

and base+IP+pgcp configurations of the five call graph construction algo-
rithms. The base and base+pgcp configurations are also shown for compar-
ison. Figure 22 shows call graph construction costs plotted as a function of
program size. In these programs, context-sensitive analysis did not enable sig-
nificant performance improvements over 0-CFA, although call graph construc-
tion costs were often significantly higher in the context-sensitive algorithms.
The 8-Bounded Linear-Edge algorithm only enabled a portion of the speedup
of 0-CFA, but did so at a fraction of the analysis time costs.

Figure 23 combines the previous two graphs by plotting execution speedup
of the base+IP configuration as a function of call graph construction time. To
generate this graph, the 0-CFA algorithm was arbitrarily chosen as the unit
of comparison. Then, for each benchmark program and algorithm pair, a point
was plotted to show the cost/benefit of the algorithm relative to the cost/benefit
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Fig. 21. Execution speed summary.

of 0-CFA for that program. Only points whose x and y values are between 0 and
200 are shown. For example, on compiler, 8-Bounded Linear Edge call graph
construction took 55 seconds and enabled a 16% speedup over base; 0-CFA
call graph construction took 11,781 seconds (3.25 hours) and enabled a 28%
speedup over base. Therefore, a point is plotted for 8-Bounded Linear Edge at
(0.5,57). The Cecil plot is quite telling. For those programs on which it actually
completed, the context-sensitive analysis (SCS) usually increased call graph
construction costs with little benefit. For the three largest Cecil programs, the
points corresponding to 8-Bounded Linear-Edge are clustered part way up the
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Fig. 22. Call graph construction costs summary.

y-axis very close to the axis: for these programs the near-linear time algorithm
achieved a significant portion of the 0-CFA benefits at a very small fraction of
the 0-CFA cost. For the Java programs, the results are less dramatic, but some
of the same trends can be observed. Of the three algorithms, 8-Bounded Linear
Edge was the fastest, and SCS was the slowest. SCS speedups were fairly
equivalent to those enabled by 0-CFA. The performance results for 8-Bounded
Linear Edge were mixed, but on all the Java programs some p value between
4 and 32 was sufficient to enable virtually all of the 0-CFA speedups.

At least for the purposes of interprocedural analysis in Vortex, the p-Bounded
Linear Edge algorithm with p = a small constant, clearly represents an excel-
lent tradeoff between analysis time and call graph precision. The algorithm
is fast and scalable, and it produces call graphs that are sufficiently pre-
cise to enable significant speedups over an already highly optimized baseline
configuration.
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Fig. 23. Cost/benefit tradeoffs of call graph construction algorithms.

12. OTHER RELATED WORK

Closely related to our analysis framework are four parameterized control flow
analyses for higher-order functional languages [Stefanescu and Zhou 1994;
Jagannathan and Weeks 1995; Nielson and Nielson 1997; Palsberg and
Pavlopoulou 1998]. Like our framework, all of these frameworks are param-
eterized to allow them to express a variety of context-sensitive analyses. Due
to their focus on higher-order functional core languages, the other four frame-
works only have parameterized procedure contour selection function, and do
not directly address context-sensitive analysis of data structures. Thus, they
are unable to express some of the algorithms, e.g., k-l -CFA with l > 0,
which can be expressed in ours. Additionally, all four of these frameworks
only utilize inclusion constraints and do not have a mechanism for choosing
the initial value assigned to a class set; this prevents them from expressing
unification-based algorithms (algorithms using equality and bounded inclu-
sion constraints) and pessimistic algorithms. On the other hand, the analysis
framework of Nielson and Nielson [1997] includes rules for analyzing explicit
let-bound polymorphism, and thus can be instantiated to express polymorphic
splitting [Wright and Jagannathan 1998], an analysis which is not directly
expressible in our analysis framework. The analysis framework of Nielson
and Nielson [1997] also includes additional parameterization over environ-
ments, which play a similar role as the class contour selection function at clo-
sure creation sites in our analysis. Unlike the other analysis frameworks, our
framework is implemented in an optimizing compiler and utilized as the basis
for an extensive empirical evaluation of a number of call graph construction
algorithms.

Polymorphic splitting [Wright and Jagannathan 1998] is a control flow anal-
ysis that relies on the syntactic clues provided by let-expressions to guide its
context-sensitivity decisions; since let-expressions are not included in the core
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object-oriented language defined in Section 4.1. The analysis in Section 4.4 does
not define how to analyze them. However, our analysis framework could be
extended to support polymorphic splitting by incorporating the rules for let-
expressions used by Wright and Jagannathan.

Agesen used templates as an informal explanatory device in his description of
constraint-graph-based instantiations of several interprocedural class analysis
algorithms [Agesen 1994]. Templates are similar to contours, in that they serve
to group and summarize all of the local constraints introduced by a procedure.
Agesen does not formally define templates, and only considers context-sensitive
analysis of procedures, not of instance variables or class instantiations.

Our analysis framework encompasses only those algorithms that monoton-
ically converge on their final solution. A different class of algorithms, some-
times referred to as “iterative” algorithms, do not behave this way, but rather
iterate phases of monotonic and nonmonotonic behavior. In previous work, we
informally defined an algorithmic framework that encompassed both mono-
tonic and nonmonotonic call graph construction algorithms [Grove et al. 1997].
However, only monotonic algorithms are currently supported in the Vortex im-
plementation framework. In the terminology of our previous work, the analysis
framework of this article is a precise definition of the Monotonic Refinement
component of a more general call graph construction algorithm. Iterative al-
gorithms add a Non-Monotonic Improvement component that allows them
to discard pieces of an intermediate solution call graph and re-execute por-
tions of the analysis to compute a more precise final call graph. Iterative
algorithms are derived from Shivers’s proposal for reflow analysis [Shivers
1991]. Currently, the only iterative algorithm that has actually been imple-
mented is Plevyak’s iterative algorithm [Plevyak and Chien 1994; Plevyak
1996]. In previous work, we proposed one possible approach for designing a
less aggressive iterative algorithm based on exact unions [Grove et al. 1997;
Grove 1998].

A number of papers proposing new call graph construction algorithms have
empirically assessed the effectiveness of their algorithm by implementing them
in an optimizing compiler and using the resulting call graphs to perform one or
more interprocedural analyses. In some cases, comparisons are made against
other call graph construction algorithms, while others simply compare against
a baseline system which performs no interprocedural analysis. One empirical
assessment of interprocedural analysis that is somewhat different is Hölzle
and Agesen’s comparison of the effectiveness of interprocedural class analysis
based on the Cartesian Product Algorithm and profile-guided class prediction
for the optimization of Self programs [Hölzle and Agesen 1996]. They found
that there was very little performance difference (less than 15%) between three
optimizing configurations: one using only profile-guided class prediction, one
using only interprocedural class analysis, and one using both techniques. Our
results in Cecil, a language approximately equivalent to Self in terms of the
challenges it presents to an optimizing compiler, were somewhat different.
We found that for small programs interprocedural class analysis dominated
profile-guided class prediction. On the larger programs, in isolation profile-
guided class prediction enabled larger speedups than interprocedural class
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analysis, but the combination of the two enabled larger speedups than either
technique alone.

13. CONCLUSIONS

In this article we presented a unifying framework for understanding call graph
construction algorithms and an empirical comparison of a representative set
of algorithms. Our parameterized call graph construction algorithm provides
a uniform vocabulary for describing call graph construction algorithms, illu-
minates their fundamental similarities and differences, and enables an explo-
ration of the design space of call graph construction algorithms. The general
algorithm is quite expressive, encompassing a spectrum of algorithms that
ranges from imprecise near-linear time algorithms to a number of context-
sensitive algorithms. Using the implementation of the general algorithm in the
Vortex compiler infrastructure, we empirically evaluated a number of call graph
construction algorithms on a suite of sizeable object-oriented programs. In com-
parison to previous experimental studies, our experiments cover a much wider
range of call graph construction algorithms and include applications that are
an order of magnitude larger than the largest work prior to ours. For many of
these applications, interprocedural analysis enabled substantial speedups over
an already highly optimized baseline. Furthermore, a significant fraction of
these speedups can be obtained through the use of a scalable, near-linear-time
call graph construction algorithm.

We assessed call graph construction algorithms in the context of supporting
effective interprocedural analysis in an optimizing compiler for object-oriented
languages. Our analysis framework is directly applicable to functional lan-
guages, although it unclear to what degree the empirical results on the relative
costs and benefits of particular call graph construction algorithms will be appli-
cable for a functional language. One important aspect of our study is relevant
both to the call graph construction algorithms and more generally to the empir-
ical assessment of any interprocedural analysis. It is critical to evaluate algo-
rithms on large programs, since doing so may lead to quite different conclusions
than if only small programs are considered. Finally, call graphs can be utilized
by a variety of other common programming environment tools. The experimen-
tal data on call graph construction costs could be used to guide the selection of
the appropriate call graph construction algorithm for inclusion in such tools.
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HÖLZLE, U. AND UNGAR, D. 1994. Optimizing dynamically-dispatched calls with run-time type

feedback. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design

and Implementation. ACM SIGPLAN Not. 29, 6 (June), 326–336.
JAGANNATHAN, S. AND WEEKS, S. 1995. A unified treatment of flow analysis in higher-order lan-

guages. In Proceedings of the Conference Record of the 22nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. ACM, New York, NY, 393–407.
JOHNSON, R. E., GRAVER, J. O., AND ZURAWSKI, L. W. 1988. TS: An optimizing compiler for Smalltalk.

In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages and Applications. ACM SIGPLAN Not. 23, 10 (Oct.).
KAM, J. B. AND ULLMAN, J. D. 1976. Global data flow analysis and iterative algorithms. J. ACM

23, 1 (Jan.), 158–171.
KILDALL, G. A. 1973. A unified approach to global program optimization. In Proceedings of the

Conference Record of the First ACM Symposium on Principles of Programming Languages. ACM,
New York, NY, 194–206.

KRANZ, D. 1988. Orbit: An optimizing compiler for scheme. Ph.D. thesis, Res. Rep. 632, Yale Univ.,
Dept. of Computer Science.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



Framework for Call Graph Construction Algorithms • 745

LAKHOTIA, A. 1993. Constructing call multigraphs using dependence graphs. In Proceedings of

the Conference Record of the Twentieth ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, New York, NY, 273–284.
LANDI, W. AND RYDER, B. G. 1991. Pointer-induced aliasing: A problem classification. In

Proceedings of the Conference Record of the Eighteenth Annual ACM Symposium on Principles

of Programming Languages. ACM, New York, NY, 93–103.
NIELSON, F. AND NIELSON, H. R. 1997. Infinitary control flow analysis: A collecting semantics for

closure analysis. In Proceedings of the Conference Record of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, New York, NY, 332–345.
OXHøJ, N., PALSBERG, J., AND SCHWARTZBACH, M. I. 1992. Making type inference practical. In Pro-

ceedings ECOOP ’92, O. L. Madsen, Ed., LNCS 615, Springer, New York, NY, 329–349.
PALSBERG, J. AND PAVLOPOULOU, C. 1998. From polyvariant flow information to intersection and

union types. In Proceedings of the Conference Record of the 25th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages. ACM, New York, NY, 197–208.
PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-oriented type inference. In Proceedings of the

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applica-

tions. ACM SIGPLAN Not. 26, 10 (Oct.), 146–161.
PANDE, H. D. AND RYDER, B. G. 1994. Static type determination for C++. In Proceedings of Sixth

USENIX C++ Technical Conference.
PHILLIPS, G. AND SHEPARD, T. 1994. Static typing without explicit types. Unpublished report, Dept.

of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, Ont.,
Canada.

PLEVYAK, J. 1996. Optimization of object-oriented and concurrent programs. Ph.D. thesis, Univ.
of Illinois at Urbana-Champaign.

PLEVYAK, J. AND CHIEN, A. A. 1994. Precise concrete type inference for object-oriented languages.
In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages and Applications. ACM SIGPLAN Not. 29, 10 (Oct.), 324–340.
RYDER, B. 1979. Constructing the call graph of a program. IEEE Trans. Softw. Eng. 5, 3, 216–

225.
SHAPIRO, M. AND HORWITZ, S. 1997. Fast and accurate flow-insensitive points-to analysis. In Pro-

ceedings of the Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. ACM, New York, NY, 1–14.
SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In Pro-

gram Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds. Prentice-Hall,
Englewood Cliffs, NJ, Ch. 7, 189–233.

SHIVERS, O. 1988. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN ’88 Conference

on Programming Language Design and Implementation. ACM SIGPLAN Not. 23, 7 (June), 164–
174.

SHIVERS, O. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, Tech. Rep. CMU-
CS-91-145, Carnegie Mellon Univ., Pittsburgh, PA.

STEENSGAARD, B. 1994. A polyvariant closure analysis with dynamic abstraction. Unpublished
manuscript.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the Conference

Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages. ACM, New York, NY, 32–41.
STEFANESCU, D. AND ZHOU, Y. 1994. An equational framework for the flow analysis of higher-order

functional programs. In Proceedings of the ACM Symposium on Lisp and Functional Program-

ming. ACM, New York, NY, 190–198.
SUNDARESAN, V., HENDREN, L., RAZAFIMAHEFA, C., VALLÉE-RAI, R., LAM, P., GAGNON, E., AND GODIN,
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