A Framework for Classifying Peer-to-Peer
Technologies

Krishna Kant, Ravi Iyer
Server Performance Architecture
Enterprise Architecture Lab
Intel Corporation, OR

Abstract— Popularized by Napster and Gnutella file shar-
ing solutions, peer-to-peer (P2P) computing has suddenly
emerged at the forefront of Internet computing. The basic
notion of cooperative computing and resource sharing has
been around for quite some time, although these new ap-
plications have opened up possibilities of very flexible web-
based information sharing. This article provides a frame-
work for classifying current and future P2P technologies.
The main motivation for the classification is to identify basic
characteristics of P2P applications so that the infrastructure
to support P2P computing can concentrate on these basic
characteristics.

Keywords: peer-to-peer computing, distributed sys-
tems, network-of-workstations, taxonomy, file sharing, cy-
cle sharing.

I. INTRODUCTION

Last one year or so has seen an explosive growth in
the use of file-sharing software in order to exchange dig-
ital audio, video and other types of files. The trend
was started by Napster (www.napster.com), which allows
sharing of MP3 music files among an arbitrary set of
users. Napster quickly led to numerous variants of file-
sharing software including Wrapster (a slight generaliza-
tion of Napster) and Morpheus (which provides general file
sharing with optimized download algorithms using mul-
tiple copies based on the FastTrack protocol). Concur-
rently, distributed versions of file-sharing have also been
developed, including Gnutella (gnutella.wego.com) and
Freenet (freenet.sourceforge.net).

These early developments sparked a new interest and
flurry of activity in the so-called peer-to-peer (P2P) com-
puting space, including its application to improve the cur-
rent web infrastructure. Although a lot of issues relevant
for P2P computing have been examined in the traditional
parallel /distributed computing areas, the availability of
vast resources via the Internet requires a re-examination
of many issues to address problems of scalability to mil-
lions of nodes and coping with restricted addressability and
intermittent connectivity. In this article, we provide an
introduction to the major recent developments that have
brought P2P computing to the forefront of Internet com-
puting and propose a framework for classifying P2P com-
puting services. Such a classification reduces the current
and developing P2P applications into a set of basic charac-
teristics and thus is expected to simplify the job of support-
ing these applications. The classification is also expected

Vijay Tewari
Distributed Systems Architecture
Distributed Systems Lab
Intel Corporation, OR

to reveal “holes” in both the application space and the in-
frastructure needed.

We note here that because of the relative novelty of the
P2P computing field, the classification framework proposed
here is to be considered only as tentative; as the P2P com-
puting area matures, the classification itself may need to
be revisited. Also, the classification proposed here is purely
from the application environment perspective; it is surely
possible to examine other aspects such as social issues,
pricing, business-model and legal issues, which are not ad-
dressed here. The classification is also nmot intended for
product evaluations. For example, by virtue of their imple-
mentation methods certain products may provide better
security, local autonomy, fault-tolerance, etc. than other
products covering the same space, but the dimensions cho-
sen in the classification are not designed to reflect these
differences.

II. EMERGING PEER-TO-PEER USAGE MODELS AND
SERVICES

In this section, we provide a brief overview of many in-
stances of P2P computing usage scenarios.

A. Content Sharing

The Napster solution enables MP3 file sharing under the
control of a centralized directory server which maintains
basic addressability and availability information about the
user nodes and the meta-information about the shared files.
The centralization allows a quick search for the requested
file(s) and assists in identifying the most suitable location
to download the files. The actual file transfer still happens
over a direct TCP connection between the requester and
owner nodes.

Unlike Napster, the Gnutella community is based on a
fully distributed approach and can be thought of as an
ad-hoc network set up among a set of peers. Figure 1
shows a pictorial representation of traditional client-server,
Napster-style, and Gnutella-style methods of satisfying a
query. A peer A initially needs to know the IP address of
at least one member, say B, of an existing Gnutella commu-
nity. Once A connects to B, A obtains information on all
the nodes that B is aware of and thus can establish direct
TCP/IP connections to those that it finds most interesting.
Each Gnutella node specifies a set of local folders as shared
which can be searched based on partial or full match on the
desired file names. The search starts towards all connected

Server

>
NS %
Q}Q A & 1)
& &L . i &
N : 9 N
> 9 &
Q S » &
€ N Ve N2
Q°
. ° ° client .
client ° ® client @
o .
client

(a) Traditional Client-Server Computing

Fig. 1.

neighbors of the originating node and progresses recursively
up to some predetermined number of hops. Each search
message is stamped with a globally unique ID to prevent
duplicate responses for the same request. Based on the
responses received, the user selects appropriate file(s) for
downloading and initiates an HTTP-like connection with
each owner node.

Like Gnutella, Freenet uses a fully distributed model but
introduces a number of innovations (anonymity, caching,
etc) that merit some discussion. A Freenet node shares
storage (rather than files or objects) by designating a local
“shared” directory where the files can be inserted by any of
the peers. Each file is identified (not necessarily uniquely)
via a key that reflects the file content (and, in general, could
include other information such as access rights). Each node
retains locally stored files in an LRU file cache and main-
tains the metadata of all local and some remote files in
another LRU cache. The remote file information accumu-
lates because when a local file is deleted, the corresponding
metadata is still retained along with likely location of the
file. When a node receives a search request for such a file,
the metadata can be used to efficiently direct the search
to the node that potentially holds the file. If the node re-
ceiving a search request cannot find any match on the local
metadata, it directs the request to some number of nodes
whose stored key is “close” to the request key [5]. This
process is repeated only up to a certain hop-count; a fail-
ure is indicated if no match is found within the specified
hop-count.

When a match is found, the requested object is returned
backwards along the request path (different from Gnutella,
where the object retrieval requires another explicit request
based on search results.) In Freenet, each node in the path
caches the response object in order to satisfy future re-
quests more quickly. The object insertion follows a similar
procedure, in that a local insertion at a node results in au-
tomatic propagation of the object to neighboring nodes up
to a given hop-count.

Although these applications and their derivatives con-
centrate only on the file-sharing aspect of P2P computing,

Directory Server

=5

(4) Responseg

O

client

(b) Napster—style Computing

©

peer

©

A\ / 0/ d
| . / ° peer
(3) Request Q Q ° Q

peer
client o) 0 i

[]
@ -

(1) Search, (2) Location
(3) Request, (4) Response

(c) Gnutella/Freenet-style Computing

File Sharing Approaches: An illustration

the same approach can also be used for the purposes of
“web crawling”, distributed auctioning and e-library appli-
cations. One of the fundamental problems in these early
peer-to-peer content sharing applications is the lack of ef-
ficient and scalable content addressability. Some recent
studies have addressed this issues by designing scalable
data location protocols [19], [9], [18], [15]. For example,
the emphasis in Chord [19] is to map keys onto nodes us-
ing consistent hashing techniques. The intention of this
work is that content sharing applications can be built on
top of Chord by associating a key with each data item and
storing the key/data item pair at the node to which the
key maps. Similar attempts have been made in Past[10],
OceanStore [15] and CAN [18].

B. Hardware Resource Sharing

One of the early drivers for P2P computing was the
realization that a typical home PC is mostly idle and
thus could be harnessed for solving complex computa-
tional problems. The idea is to decompose the prob-
lem into large chunks that can run concurrently with
very little interaction, referred by some as ”embarrass-
ingly parallel” computation [21]. Perhaps the best known
(but simplest) examples of this “CPU cycle sharing” us-
age are SETIQHOME (setiathome.ssl.berkeley.edu)
and its variants (www.entropia.com, www.ud.com). A
pictorial comparison of traditional compute servers ver-
sus the SETIQGHOME approach is shown in Figure 2.
Recently the SETIQHOME model has been successfully
used by Oxford University team in reducing the possi-
ble anthrax treatment compounds from 3.5 billion to a
more manageable 300,000. The data set was searched in
a relatively short period (4 weeks) as opposed to years
(www.newscientist.com/news/news.jsp?id=ns99991953).
Similar ideas have been tried with other complex prob-
lems such as finite-element analysis, climate change models,
graphical rendering of complex scenes, etc. Examples in-
volving sharing of other hardware resources (e.g., memory
or disk) also abound. For example, peer-to-peer extension
of the popular i-drive service (www.idrive.com) provides

Server Farm / Supercomputers
Master Server

@

i

RN

<& N
R .
O © O cesns ()
) ° o -
client [] client []

o
Q "idle” clients

(b) "SETI@Home"-style Computing

* O
client

(a) Traditional Client-Server Computing

Fig. 2. Resource Sharing Approach: An illustration

the potential to store huge amounts of data (perhaps in
a replicated manner) without corresponding investment in
storage equipment.

C. Collaborative Computing and Communications

Collaborative computing refers to a usage model of dis-
tributed computing which primarily enables users to work
together in arriving at a solution to problem. The geo-
graphic dispersion of organizations has led to software so-
lutions which enable people to collaborate together. So-
cially collaboration is person to person activity and the
P2P computing model closely mimics this activity. Groove
(www.groove.net) is one such decentralized collaborative
platform which enables small group interaction. The
Groove communication framework is essentially P2P with
server intervention in the case of network discontinuities
like firewalls, proxies and NAT’s. Additionally the need to
communicate amongst people has also led to significant ad-
vances in instant messaging, which is a quintessential P2P
application.

III. P2P AND DISTRIBUTED COMPUTING

In the past several years, a number of projects have at-
tempted to provide flexible environments to support ar-
bitrary parallel computing in environments ranging from
tightly coupled clusters to a wide-area heterogeneous en-
vironments. Somewhere in between lies the notion propa-
gated by projects such as network of workstations (NOW)
where the environment is more controlled than the hetero-
geneity of the Internet but the coupling is not as tight as in
the case of clusters. Several prototype systems have been
built (including O/S support, languages and tools) over
the last 10-15 years. One such early system is Amoeba [17]
that supports dynamic migration of programs. Other no-
table projects are Berkeley NOW [1] and Iowa’s Batrun
system [20]. References to a number of key papers on
the subject may be found in [13], which describes a sys-
tem for distributing and executing a parallel program on
a distributed system. Sharing of other resources such as
disk space and main memory has also been explored exten-
sively. For example, reference [8] proposes the use of client
main-memory for network file-caching.

3

The emergence of P2P computing and Internet requires
re-examining these applications on a much wider-scale and
in heterogeneous environments. The basic idea of these is
to provide an abstraction of a parallel machine. The ul-
timate vision of many of these projects is to essentially
provide a single virtual parallel machine by hiding (to
the extent desired by the programmer) all the complex-
ities associated with vastly different machines, local op-
erating systems, communication protocols, local resource
management, access control and security policies, wide
variations in machine and network speeds and loading
levels, failures, etc. A few such attempts are the Le-
gion at Univ. of Virginia (now owned by Avaki Corp;
www.avaki.com), Globe www.cs.vu.nl/~steen/globe/)
and Globus (www.globus.org). Reference [12] provides
an overview of large-scale resource sharing using Legion.
These projects use a distributed object model, where each
object provides a specific service and encodes information
about how to work with the local environment where it
is deployed (local O/S, access control and security poli-
cies) and how to deal with failures, exceptions, delays, etc.
Selection of appropriate objects, their behavior and their
location is handled by some sort of object request bro-
ker service much like CORBA www.corba.org) or DCOM
(www.microsoft.com/com/tech/DCOM.asp). With an all-
encompassing WAN O/S,; the Internet can be thought of
as a “service grid” much like an electrical power-grid, i.e.,
the desired service can be located and supplied in an unin-
terrupted way irrespective of any local difficulties such as
failures, delays, access problems, etc.

The basic consideration in designing grid O/S’s is
a complete site autonomy. The designers of Legion
(www.cs.virginia.edu/~legion) used the following ba-
sic design objectives namely, easy to use, seamless compu-
tational environment, local autonomy, high performance
via parallelism, persistent namespace, security for both
users and providers of resources, manage and exploit re-
source heterogeneity and minimum impact on resource
owner’s local computation. To ensure security, Legion uses
sophisticated access control mechanisms and encryption.
Granularity is at the “method level” for access control,
thereby giving a fair amount of flexibility for enforcing
varying security policies. The Legion system is respon-
sible for finding the appropriate resources, coordinating
and executing required processes, and returning results.
It abstracts the complexities associated with a distributed
system by providing transparent scheduling, data manage-
ment, fault tolerance, site autonomy, and various security
options.

The Globus toolkit (www.globus.org) attempts to solve
a class of problems called the Grid problem which is
defined as ”flexible, secure coordinated resource sharing
among dynamic collections of individuals and resources”.
The Globus organization has articulated a clear vision
about the architecture which would provide a solution
for problem statement. In addition, the Globus toolkit
is an open source implementation of the architectural vi-
sion. Its componentized architecture enables using the

appropriate blocks for the problem at hand. The latest
blueprint for the Globus toolkit, referred to as the Open
Grid Services Architecture (OGSA) [22], reflects the con-
vergence of the Grid computing model and the “Web-
services” distributed computing model. The Bayanihan
project (www.cag.lcs.mit.edu/bayanihan) is another at-
tempt to explore and develop the idea of volunteer com-
puting and uses web services as the underlying technology
to make it happen.

Recently, a number of companies have announced prod-
ucts to support complex P2P applications in their re-
spective application environments. Some specific ex-
amples include MAGI (www.endeavors.com), Groove
(www.groove.net), Sun’s JXTA (www.jxta.org), and Mi-
crosoft’s .NET (www.microsoft.com/net. MAGI (Micro-
Apache Generic Interface) is an extension of Apache
project and uses WebDAV (IETF RFC 2518) and SWAP
(simple workflow access protocol) to provide sophisticated
services for e-business automation. Groove provides a
small-scale collaborative computing environment in Mi-
crosoft Windows environment. .NET supports XML based
web services via SOAP (www.w3.org/TR/SOAP) protocol.
JXTA provides low-level mechanisms (but not policies) for
peers to interact with one another.

IV. A ProPOSED CLASSIFICATION FOR PEER-TO-PEER
COMPUTING

Before delving into a classification of P2P services, we
first need to define what “P2P computing” really means.
Unfortunately, there is currently no widely accepted def-
inition of the concept, except for the general notion that
the processing is spread over a large number of “agents”
(or participating nodes) with minimal central control. We
can describe P2P computing as a collective computing en-
vironment where an “agent” is not only able to act as both
a “client” and a “server”, but can also interact with other
agents in more complex ways to accomplish the task at
hand. However, not every agent can be required to have all
these capabilities. Some agents (e.g., laptops or hand-held
mobile devices) may be unsuitable as service providers,
whereas others (e.g., fixed functionality servers) may not
need to act as clients. In any case, one important aspect
of P2P networks their ad-hoc nature: it should be possi-
ble for agents to join and leave P2P communities in a very
dynamic fashion.

With P2P computing seen as a generalization of the
client-server paradigm, the taxonomy presented here is
identified from the perspective of major characteristics of
the applications that traditionally have been viewed as
“client-server” type, but could be cast to varying degrees
in P2P paradigm. The taxonomy is not concerned with
the details of the object model used, or with the overall
distributed system that supports the application. In this
respect, our focus is different from the one in [16], which
presents a comprehensive hierarchy for classifying entire
distributed computing systems. Also, as stated earlier, the
classification proposed here is to be considered tentative
and may need to evolve with P2P computing itself. It

4

would be noted that not all applications encompassed by
the taxonomy are peer-to-peer; this is unavoidable and ac-
tually desirable; the purpose of the taxonomy is to not only
classify legitimate P2P applications but also to show how
they fit in the larger scheme of things.

A. Classifying Dimensions

In approaching the classification, we identify the fol-
lowing dimensions of the problem, and in each case indi-
cate certain extreme values. Note that the extreme values
are only illustrative; real implementations will typically fall
somewhere in-between these extreme values.

1. Resource (or data) storage: organized or scattered.!

2. Resource control: organized or scattered.?

3. Resource usage: isolated or collaborative.

4. Global state control: loose or tight.

5. QoS constraints: loose (e.g., non real-time), moderate
(e.g., online query /response), or tight (e.g., streaming me-
dia).

Here we have used the term “resource” for the entity of
interest in order to cover the entire spectrum from hard-
ware resources (e.g., CPU cycles, main memory, disk space,
etc.) all the way up to arbitrary objects that are designed
to provide some complex service (e.g. an object that can
interact with a local database system). We also informally
refer to resources as “data”’, mainly to distinguish them
from “control” or “meta-data”, which refers to the infor-
mation needed for locating and accessing the resources.

Resource Storage: The first dimension refers to the way
resources are stored. The two extremes here are (a) “orga-
nized” storage, where the resources are located in one or
more globally known locations (or nodes), and (b) “scat-
tered” storage, where the resources are stored under the
control of the requesting agents themselves. Note that
by saying “under the control of requesting agents”, we al-
low for the data storage either by the agent nodes them-
selves or at some auxiliary nodes known only to the agents.
The “organized” storage can also be viewed as the tradi-
tional server-based storage as well, where the servers are
the “globally known locations”. Note that the centralized
storage of all the data (as in traditional web-servers) is
merely a special case of organized storage with only one
globally known location containing all the data.

Each resource needs a “handle” so that it can be ac-
cessed. If the resources are distributed among several
nodes, there is the problem of associating handles with ad-
dresses (e.g., node address, subsystem address, etc.) in
order to access the resource. In general, the requester may
not specify the handle directly, but instead identify the
resources of interest by means of some other information
(name, properties, etc.), which eventually gets translated
into one or more resource instances. In any case, one or
more levels of mapping (e.g., mapping resource name into

I1We avoided the use of more familiar terms like “centralized” and
“distributed” since we want to emphasize the control aspect (service-
provider controlled vs. user controlled data) as opposed to the num-
ber of locations storing the data.

2See previous footnote.

handle, and handle into its current address) may be needed
in order to locate the resource of interest. This mapping
can be considered as “metadata” or “control information”,
which also needs to be located and resolved. In the current
web-context, the URL (uniform resource locator) typically
acts both as a resource identifier and the address, which
makes the metadata rather trivial to deal with.

Resource Control: In a P2P environment, a well thought
out scheme for organizing, maintaining and accessing meta-
data is crucial for locating all desired resources and retriev-
ing them efficiently. The second dimension in our taxon-
omy relates to this metadata, and we again identify the two
extremes as “organized” and “scattered”. As with data, an
“organized” storage relates to the metadata being avail-
able in one or more globally known locations (or nodes),
whereas “scattered” storage refers to metadata also under
the control of the agents and hence not known globally.
Many systems are organized hierarchically from the con-
trol perspective. For example, individual agents or nodes
might be grouped into a set of “domains”, and these do-
mains further grouped into higher level domains, and so on.
In such a structure, every domain at each level must have
a “manager” node which is responsible for access to the
domain members and for communicating with its parent
domain manager. This leads to a tree structure for stor-
age of control information. We consider this an admissible
form of “organized” control. Reference [6] defines a wide-
area video-conferencing implementation that uses this form
of control.

Resource Usage: Once the required resources are lo-
cated, we need to identify how they are used. In the current
web context, each resource is accessed individually using a
request-response paradigm. This is, of course, inadequate
for implementing sophisticated services. In general, several
resources (perhaps located at different nodes) may need to
work concurrently in order to accomplish the task at hand.
It is expected that before the work “session” starts, the in-
voking application will provide some parameters or data to
set up the context for resource usage, and at the end of the
work session, collect the results together. However, during
the work session itself, simple applications may use each
resource in isolation with no message exchanges or inter-
dependencies. We call this the “isolated” usage mode. The
current request-response type of web usage can be consid-
ered as a special case of this isolated usage mode. On
the other extreme, the agents providing the resources of
interest may collaborate via arbitrary multi-party interac-
tions. We call this extreme as “collaborative” usage and it
includes multicasting, multi-party synchronization, remote
procedure calls, call backs, etc.

Global State Control: The next dimension refers to the
global state control requirements of the P2P application. In
the popular file-sharing applications like Gnutella/Freenet,
there is little need for trying to maintain a global view of
the P2P network or to address related issues of consistency,
synchronization and local autonomy. In these applications,

5

not only the peers but also the data (files, metadata) they
contribute can change willy-nilly and thus there is little in
the way of global state to speak of. Other applications,
such as hosting of web-pages or collaborative computing
would typically require a more coordinated approach. For
example, every new content type or copies of existing con-
tent type may have to “registered” before being used.? As
an extreme case, a database hosted in parts over a large
ad-hoc network of nodes can be considered as a P2P ap-
plication, but would need to do an elaborate global state
management in order to ensure ACID properties.

An important determinant of state management require-
ments is the consistency model for the hosted data and
metadata. Restrictive models such as one-copy serializabil-
ity will require considerable bookkeeping and coordination
and may be impractical. The current web-infrastructure
already shows that weaker consistency constraints may be
quite acceptable in return for better performance. The un-
derstanding of P2P nature of the service on the part of
the users may allow for weaker consistency constraints for
many applications than those in traditional client-server
implementations. For example, instead of ensuring serializ-
ability, it may be enough to ensure that a later transaction
from the same user does not access a staler information
than what was found before (of course, subject to a “even-
tual progress” type of constraint). Such weak consistency
constraints apply not only to data but also to metadata,
but the consequences could be quite different.

Although collaborative applications (classified according
to the Resource Usage dimension) may require more elab-
orate global state control than isolated ones, the two di-
mensions are independent. For example, one can envision
very tight global state control even though the peer action
is limited to simple query-response.

QoS Constraints: Timing, and more generally quality of
service (QoS) requirements during the resource usage phase
(i.e., excluding the initial setup and final windup phases)
determine to a large extent whether a P2P solution is feasi-
ble in a given environment and how to provide it. In some
cases (e.g., solution of large scientific problems), there are
really no QoS requirements to speak of and a best effort
service works just fine. These define the low end of the
“QoS requirements” dimension. The next large class along
the QoS dimension are the online query/response type of
applications that have “moderate” QoS requirements, e.g.,
a good response time coupled with a rather low failure/loss
rate. The high end of the QoS dimension (or “tight require-
ments”) is occupied by applications that involve transfer
of a continuous stream of bits. Real-time audio and video
are typical applications that require that the stream starts
flowing within a few seconds of the request and have very
low delay, delay jitter, packet loss and failure probability.

B. Environmental Attributes

In addition to the basic nature of P2P applications,
the environment in which the application operates has a

3 “Registration” doesn’t necessarily imply a centralized control.

tremendous influence on the design and usefulness of the
application. For example, implementing a collaborative ap-
plication in a laboratory LAN environment may be rela-
tively straightforward, but making it usable among a set of
home PC’s that intermittently connect to public Internet
may be plain infeasible. A characterization of the operat-
ing environment involves many distinct attributes, some of
which may be more important than others depending on
the application requirements. The major attributes in this
regard are listed below:

1. Network latency: Ranges from uniformly low (e.g., for
a high-speed LAN) to highly variable (e.g., for general
WAN).

2. Security concerns: Ranges from low (e.g., corporate in-
tranet) to high (e.g., public WAN).

3. Scope of failures: Ranges from occasional isolated fail-
ures (e.g., a laboratory network of workstations) to fre-
quent failures, possibly including massive failures that re-
sult in network partitions.

4. Connectivity: Ranges from always-on (e.g., nodes in a
business LAN) to occasional-on (e.g., laptops and other
mobile devices).

5. Heterogeneity: Ranges from complete homogeneity to
complete heterogeneity (in hardware, O/S, protocol stack,
services and application interfaces).

6. Addressability: Ranges from easy (e.g., all nodes directly
accessible and have DNS entries) to very difficult (e.g.,
nodes behind a different NATs/fire-walls and no DNS en-
tries).

The distinction between application dimensions and en-
vionmental attributes may appear a bit arbitrary but was
motivated by inherent application characteristics vs. tech-
niques to make the application robust. For example, coping
with intermittent connectivity requires certain techniques,
which could be applied to any application domain. How-
ever, the security dimension does appear to straddle appli-
cation/environment boundary. One could attempt to clas-
sify applications according to their security needs, which
would make it a dimension. On the other hand, one could
also focus on the level of difficulty in providing security or
on the kinds of security threats that must be dealt with,
which would make security an environmental attribute.
We take the latter view since a single application (e.g.,
e-commerce) may require a range of security measures de-
pending on the sensitivity of the information being ma-
nipulated. Also, the provision of various levels of security
involves the same basic issues including authentication, in-
tegrity, nonrepudiation and access control.

For the purposes of application classification, it is use-
ful to identify the two extremes of these attributes as
“friendly” and “hostile”. A friendly environment is typ-
ically synonymous with a LAN, but may extend to WAN
as well depending on the application requirements. For ex-
ample, a wide-area corporate intranet that uses VPN (vir-
tual private networks) to provide security and SLAs (ser-
vice level agreements) to provide assured bandwidth for
inter-site communications may be almost as friendly as a
LAN environment. On the other hand, harnessing the idle

6

computing power of home-PC’s necessarily requires dealing
with a very hostile environment. It is possible to consider
the friendliness of the environment as yet another dimen-
sion in our taxonomy; however, because of the multifaceted
nature of the “friendliness”, such a classification may not
be very revealing.

C. Classification of Emerging Services

Let the ordered 5-tuple (x;,% = 1..5) represent a point in
the taxonomy space with x; =“-” indicating a don’t care.
In defining the dimensions above, we only listed 2 or 3
values in each case mainly to convey some idea about the
range of each dimension. It is understood that real applica-
tions could fall anywhere within the indicated ranges along
each dimension. Nevertheless, it is useful to place known
applications in this rather limited, discretized space for il-
lustrative purposes. Figure 3 shows the first 3 dimensions
pictorially and indicates some applications and application
environments in each category. For ease in depiction, we
have represented both first and second dimensions along
the x-axis by using the combinations (org, org), (scat, org)
(org, scat), and (scat, scat) where “org” stands for orga-
nized and “scat” for scattered. The boxes corresponding
to the combination (org, scat) does not have any entries as
we do not know of any such applications. However, this
represents an interesting class, where the data is hosted on
a set of globally known nodes, but access to the data scat-
tered among the agents. The reason to do this may be to
provide tight control over the data access. The hosted data
may contain parts owned by individual agents, or different
data views may be accessible to different agents.

We acknowledge here that some applications (and par-
ticularly the application environments like Legion, Globe,
Magi, JXTA, etc.) may cover several boxes in Fig. 3,
but are shown in only one place. Thus, the placement
shown here should be considered purely illustrative rather
than judgmental about the relative merits of the products
mentioned.

The current web-browsing service can be represented
by (organized, organized, isolated, loose, moderate) and
the e-commerce service is represented by (organized, or-
ganized, collaborative, tight, moderate).* In the latter
case, the resources of interest are located in the web-server,
LDAP servers, search server, database server, personaliza-
tion server, etc. and these might interact in complex ways
(although normally most interactions are handled either by
the web-server or by the middleware).

The Napster computing model can be classified as (scat-
tered, organized, isolated, —, loose), and Gnutella/Freenet
as (scattered, scattered, isolated, —, loose). The dis-
tributed hardware resource sharing models (e.g., sharing
of spare CPU cycles and disk capacity) can also be de-
scribed as (scattered, organized, isolated, —, loose) since
the “client” has complete knowledge of all the agents that
currently host the resource and either there is no inter-

4E-commerce typically requires more stringent QoS constraints
than web-browsing, but as stated above, we are characterizing ap-
plications here only in terms of stated extreme values.

Isolated Collaborative
AT TTT T 2 2 2 7l A 2 2 2 71
2 a a a S 7 a a SO
| ! |
! | | | | ! N | | |
streLaming tel«%medicine } } : cllj‘ster vigeo } Mulki-party : Stream
Stream 1 virails I I | Comm}gr’c’on.férencmg I Gémes |
media server 1 1 1 /1 7 Al 1 1 /1
R Lo Lo Lo R 2 Lo Lo Lo
! | | | | | | | | 1 Transac
! | | | | | | | | |
| I I I I I multiparty I I I —tional
I " I I I | e~ | I I |
Transac ﬁv(;/:,z,- i |-drive i i Le cornmerce chgtl M i i !
. |
~tional e e e e e) e e e
| 7/ ‘ 7/ ‘ 7/ ‘ e e | ‘ 7/ ‘ 7/ ‘ e
! | | | ‘] 0 ‘ i I Non-
| | .
| | [realtime
Tradjitional Napster | Gurelia/ : [egion/ } } |
Non- e L] __L____ _ Ereenet _ _ | _ _, Lo—__J__Glhe _}__1____| [T N
) compating sefi@home , ’ s py / , , 7z
realtime . £ , , . . , , , .
/ , , , ; ; , , , /

(org, org) (scat, org) (org, scat) (scat, scat)

(org, org) (scat, org) (org, scat) (scat, scat)

Fig. 3. A pictorial representation of the proposed taxonomy (Along the x-axis, first dimension is data, and second is control)

action between the resource usage at various nodes (as in
SETIQ@HOME model) or only one instance is used at a time
(as in a i-drive like model where a client can store some or
all of its files at multiple places).

Past work on network of workstations has attempted to
provide interactive resource usage in a friendly environment
using both organized and scattered control. The recent
work on WAN operating systems has addressed provision
of interactive services in a hostile environment. These can
be described as (scattered, organized, collaborative, tight,
moderate). Here we indicate the global state model as
“tight” since generally all instances of an object are closely
tracked. Legion provides an object based service model
such that objects can be replicated and located arbitrar-
ily transparently. It achieves this by a three level naming
scheme which maps human readable names to Legion Ob-
ject Identifiers (Globally unique in time and space) which
map at run-time to address and port of an active instance
of the object. Globe also provides a similar separation
between object name and address. These WAN operat-
ing systems stress flexible resource usage in a distributed
environment and thus not geared towards lightweight com-
putation or tight real-time constraints.

In the current Internet, providing services that require
tight real-time constraints has been quite a challenge. For
certain services such as delivery of streaming audio/video,
the standard solution is to download the “files” in ad-
vance to “edge servers” that are closer to the points of
consumption. Such a scheme provides better timing prop-
erties during the play by introducing a startup delay at
the beginning. Recently, a P2P approach for handling this
has been proposed (See www.vtrails.com/product.htm).
Here, users with broadband connections that hit the origi-
nal web-site cache the webcast locally so that others could
be served using this copy. This can be classified as (scat-
tered, organized, isolated, loose, tight) operating in a hos-
tile environment. Note that in this application, there is
only one way delivery of information and there is no inter-
action between various recipients.

Another P2P application indicated in Fig. 3 is so called

Virtual Private Web (VPW) which allows a private group
of people (e.g., family) to share content (pictures, videos,
etc.) without outside exposure or explicit searches of what
is located where. This application can be classified as
(scattered, scattered, isolated, loose, loose) and must be
designed for a hostile environment.

More general multiparty interaction is an important
emerging category of applications. For example, multi-
party chat and instant messaging (IM) are already well
entrenched, except that they are currently implemented
using a client-server paradigm. P2P computing is ideally
suited for these applications. Assuming a primarily textual
interaction, these applications can be classified as (scat-
tered, organized, collaborative, tight, moderate). If a sig-
nificant use of audio is allowed, the last attribute would
be “stream”. Multiparty games over the Internet are also
a rapidly expanding application and is ideally suited for
P2P paradigm [11], [7]. Assuming a substantial use of live
video and audio, these would be classified as (scattered,
scattered, collaborative, tight, tight).

In video conferencing implementations, the control may
be either centralized (i.e., performed at a manager node) [6]
or distributed (performed cooperatively by all partici-
pants) [2]. However, the participants do not discover one-
another via any sort of search, instead, the information
about the ongoing video conference is either known a priori,
or can be found through some central place. Thus, video
conferencing can be classified as (scattered, organized, col-
laborative, tight, tight) in our taxonomy.

Telemedicine is a vast emerging area that facilitates ac-
cess to patient records from all sources, remote diagnosis
based on such records, cooperative diagnosis by involving
a number of remotely located physicians, remote checkup
and diagnosis of live patients, and even remote surgery us-
ing virtual reality (VR) displays perhaps involving multi-
ple surgeons. References [4], [3] discuss some applications
of patient record pooling and cooperative diagnosis which
could be recast in P2P paradigm. In case of live check-
ups and diagnosis, the simplest case would involve a point
to point channel between a physician and a patient capa-

ble of transmitting streaming audio (e.g., heart-beat) and
video data. This would be considered as an “isolated” class
of applications in our taxonomy. In more sophisticated
cases, multiple physicians may be involved simultaneously,
thereby resulting in a “collaborative” type of application.
In either case, it is expected that the location of the physi-
cian(s) and patient(s) would be based on some a-priori in-
formation, and thus this application can also be considered
as (scattered, organized). We have also considered this as
one with tight QoS constraints by assuming that that the
interaction between physicians involves real-time transmis-
sion of audio and video. In such cases, the timing, relia-
bility, and accuracy requirements of this application are so
stringent that this application cannot be reasonably sup-
ported by the current Internet and is considered as one of
the drivers for the Internet2 project (www.Internet2.edu).

V. SUMMARY AND RESEARCH ISSUES

In this article, we proposed a taxonomy to classify the
evolving peer-to-peer (P2P) computing paradigm and its
associated applications. In the taxonomy, we classified P2P
applications based on five dimensions: resource (data) lo-
cation, control (metadata) location, resource usage, global
state control, and QoS constraints. We also discussed en-
vironmental attributes (including friendliness, security and
connectivity) to address implementation issues for P2P ap-
plications. The examination of P2P landscape according to
the proposed taxonomy points to regions that are not well
explored (e.g., empty boxes in Fig. 3) and this could lead
to new P2P applications and application platform capabil-
ities. The taxonomy also points to a number of interesting
research issues that need to be explored in order to achieve
the potential of P2P computing.

Briefly, some of the important research issues include (a)
devising intelligent and efficient mechanisms for propagat-
ing queries and response through the network, (b) data
propagation through the network to enhance search effi-
ciency without attendant problems of instabilities, oscil-
lations, or unnecessary overhead, (c) devising new consis-
tency models, synchronization mechanisms and other sup-
port needed for scalable management of global peer state,
(d) coping with network address translation and fire-walls
in providing interaction between peers, (e) coping with in-
termittent connectivity and presence, (f) lightweight and
nimble migration protocols for quickly relinquishing re-
sources from a P2P participant when the machine owner
requires those resources exclusively, (g) ensuring robust-
ness, security, authentication and access control in a very
hostile environment, (h) user-level (instead of device-level)
security and authentication, and (i) performance charac-
terization of P2P computing environment to enable com-
parative evaluation of many design choices.

A more detailed discussion on these issues can be
found in the detailed version of the paper available at
kkant.ccwebhost.com/download.html. Reference [14]
presents a random graph model and shows some prelim-
inary results to address issue (i). In addition to these,
many of the traditional distributed systems issues (e.g.,

naming, binding, synchronization, fault tolerance, state
management, discovery, security, authentication, auto-
configuration, task-migration, etc.) need to be revisited
since we now want solutions that must scale to millions of
nodes spread over networks with unknown characteristics.

REFERENCES

[1] T.E. Anderson, et. al., “A case for NOW (Network of worksta-
tions)”, IEEE Micro, vol 15, no 1, Feb 1995, pp54-64.

[2] I. Beier and H. Koenig, “GCSVA — A multiparty video confer-
encing system with distributed group and QoS management”,
Proc. of 7th Intl. conference on computer communications and
networks, 1998, pp594-598.

[3] R.D. Bella, et. al., “An inter/intranet multimedia service for
telemedicine”, Proc. of 23rd Euromicro conf, 1997, pp379-386.

[4] T. Bui and S. Sankaran, “Group Decision and Negotiation in
Telemedicine: An application of Intelligent mobile agents as
nonhuman teleworkers”, Proc. of 30th Hawaii Intl. conference
on system sciences, Vol 4, 1997, pp120-129.

[5] I Clarke, “A Distributed Decentralized Information Storage and
Retrieval system.” M.S. Thesis, Division of Informatics, Univ of
Edinburgh, UK, 1999.

[6] S.T. Chanson, A. Hui and E. Siu, “OCTOPUS — A scalable
global multiparty video conferencing system”, Proc. of 8th Intel.
conference on computer communications and networks, 1999,
pp97-102.

[71 R. Corchuelo, D. Ruiz, M. Toro, and A. Ruiz, “Implementing
multiparty interactions on a network computer”, Proc. of 25th
Euromicro conference, Vol 2, 1999, pp458-465.

[8] M. Dahlin, et al., “Cooperative file caching: Using remote client
memory to improve file system performance”, Proc. of first con-
ference on O/S/ design and implementation, Nov 1994.

[9] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems”.

IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware), Heidelberg, Germany, pages 329-350,

November, 2001.

P. Druschel and A. Rowstron, ”PAST: A large-scale, persistent

peer-to-peer storage utility”, HotOS VIII, Schoss Elmau, Ger-

many, May 2001.

L. Gautier, C. Diot, and J. Kurose, “End to end transmission

control mechanisms for multiparty interactive applications on

the Internet”, Proc. of IEEE INFOCOM, 1999, Vol 3, pp1470-

1479.

A. Grimshaw, et al., “Wide-Area Computing: Resource sharing

on a large scale”, IEEE Computer, May 1999, pp1-9.

R.K. Joshi and D.J. Ram, “Anonymous Remote Computing: A

paradigm for parallel programming on interconnected worksta-

tions”, IEEE Trans on software engineering, Vol 25, No 1, Jan

1999, pp75-90.

K. Kant and R. Iyer, “A Performance Model for Peer-to-Peer

File Sharing Services”, kkant .ccwebhost.com/download.html.

J. Kubiatowicz, D. Bindel et al., “OceanStore: An architecture

for global-scale persistent storage,” Proceedings of the 9th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 2000) (Boston,

MA, November 2000), pp. 190201.

B.E. Martin, C.H. Pedersen, and J.B. Roberts, “An object based

taxonomy for distributed computing systems”, IEEE Computer,

Aug 1991, ppl7-27.

S.J. Mullender, G. Rossum, et. al., “Amoeba: A distributed

operating system for the 1990s”, IEEE Computer, vol 23, no 5,

pp44-53, May 1990.

S. Ratnasamy, P. Francis et al., “A Scalable Content-

Addressable Network,” ACM SIGCOMM’2001, San Diego, Aug

2001.

I. Stoica, R. Morris, et al.,, “Chord: A Scalable Peer-to-

Peer Lookup Service for Internet Applications,” ACM SIG-

COMM’2001, San Diego, Aug 2001.

F. Tandiary, et. al., “Batrun: Utilizing idle workstations for

large-scale computing”, IEEE parallel and distributed technol-

ogy, Summer 1996, pp41-49.

Roy D Williams et. al., “Parallel Computing Works” Morgan

Kaufmann Publishers.

Tan Foster, Carl Kesselman, Jeffrey M Nick and Steven Tuecke,

http://www.globus.org/research /papers/ogsa.pdf

(10]

[11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

[22]

