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Abstract—As the amount of data generated by the Internet of
the Things (IoT) devices keeps increasing, many applications
need to offload computation to the cloud. However, it often
entails risks due to security and privacy issues. Encryption and
decryption methods add to an already significant computational
burden. In this paper, we propose a novel framework, called
SecureHD, which provides a secure learning solution based on
the idea of high-dimensional (HD) computing. We encode orig-
inal data into secure, high-dimensional vectors. The training
is performed with the encoded vectors. Thus, applications can
send their data to the cloud with no security concerns, while
the cloud can perform the offloaded tasks without additional
decryption steps. In particular, we propose a novel HD-based
classification algorithm which is suitable to handle a large
amount of data that the cloud typically processes. In addition,
we also show how SecureHD can recover the encoded data
in a lossless manner. In our evaluation, we show that the
proposed SecureHD framework can perform the encoding and
decoding tasks 145.6× and 6.8× faster than a state-of-the-art
encryption/decryption library running on the contemporary
CPU. In addition, our learning method achieves high accuracy
of 95% on average for diverse practical classification tasks
including cloud-scale datasets.
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I. INTRODUCTION

Internet of Things (IoT) applications often analyze col-

lected data using machine learning algorithms. As the amount

of the data keeps increasing, many applications send the

data to powerful systems, e.g., data centers, to run the

learning algorithms [1], [2], [3]. On the one hand, sending

the original data is not desirable due to privacy and security

concerns [4], [5], [6], [7]. On the other hand, many machine

learning models require unencrypted (plaintext) data, e.g.,

original images, to train models and perform inference.

When offloading the computation tasks, sensitive information

is exposed to the untrustworthy cloud system which is

susceptible to internal and external attacks [8], [9], [10]

. In many IoT systems, the learning procedure should be

performed with the data that is held by a large number of

user devices at the edge of the Internet. These users may be

unwilling to share the original data with the cloud and other

users [11], [12], [13], [14].

An existing strategy applicable to this scenario is exploiting

Homomorphic Encryption (HE). HE enables encrypting the
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raw data and allowing certain operations to be performed

directly on the ciphertext without decryption [15]. However,

this approach significantly increases computation burden

in addition to the costly learning procedures. For example,

in our evaluation, with Microsoft SEAL, a state-of-the-art

homomorphic encryption library [16], it takes around 14 days

to encrypt all of the 28x28 pixel images in the entire MNIST

dataset, and increases the data size by 28 times. More recently,

Google presented a protocol for secure aggregation of high-

dimensional data that can be used in federated learning [17].

This approach enables training Deep Neural Networks (DNN)

when data is distributed over different users. In this technique,

the users’ devices need to perform the DNN training task

locally to update the global model. However, IoT edge devices

often do not have enough computation resources to perform

complex DNN training.

This paper proposes a novel secure technique that enables

efficient, scalable, and secure collaborative learning in high-

dimensional space. Instead of using conventional machine

learning algorithms, we exploit High-Dimensional (HD)

computing [18] to perform the learning tasks in a secure

domain. HD computing does not require complete knowledge

for the original data that the conventional learning algorithms

need – it runs with a mapping function that encodes a

given data to a high-dimensional space that mimics massive

numbers of neurons and synapses in brains. The original

data cannot be reconstructed from the mapped data without

knowing the mapping function, since a single value can be

represented with extremely huge possibilities in the high-

dimensional space.

Along with the attractive properties for secure learning,

HD computing also offers additional benefits. HD provides an

efficient learning strategy without complex computations such

as back propagation in neural networks. In addition, the HD-

based learning models are extremely robust in the presence

of hardware failures due to the independence of dimensions

in the computation. Prior work shows that HD computing

can be applied to many cognitive tasks such as analogy-

based reasoning [19], latent semantic analysis [20], language

recognition [21], [22], and speech/object recognition [23],

[24].

We address several technical challenges to enable HD-

based trustworthy, collaborative learning. For example, to

map the original data into high-dimensional vectors, called

hypervectors, it exploits a set of base hypervectors which



are randomly generated. Since the base hypervectors can be

used to estimate the original data, every user has to have

different base hypervectors to ensure the confidentiality of

the data. However, in this case, the HD computation cannot

be performed with the data provided by different users. The

other challenge is that the existing HD learning methods

do not scale with the size of data. This highly limits the

applicability to HD-based computing on cloud-scale services.
In this paper, we design a novel framework, called

SecureHD, which fills the gap between the existing HD

computing and trustworthy, collaborative learning. We present

the following contributions:
i) We design a novel secure collaborative learning protocol

that securely generates and distributes public and secret

keys. SecureHD utilizes Multi-Party Computation (MPC)

techniques which are proven to be secure when each party

is untrusted [25]. With the generated keys, the user data are

not revealed to the cloud server, while the server can still

learn a model based on the data encoded by users. Since

MPC is an expensive protocol, we carefully optimize it by

replacing a part of tasks with two-party computation. In

addition, our design leverages MPC only for a one-time

key generation operation. The rest of the operations such

as encoding, decoding, and learning are performed without

using MPC.
ii) We propose a new encoding method that maps the

original data with the secret key assigned to each user.

Our encoding method significantly improves classification

accuracy as compared to the state-of-the-art HD work [22],

[26]. Unlike existing HD encoding functions, the proposed

method encodes both the data and the metadata, e.g., data

types and color depths, in a recover-friendly manner. Since

the secret key of each user is not disclosed to anyone,

although one may know encoded data of other users, they

cannot be decoded.
iii) SecureHD provides a robust decoding method for the

authorized user who has the secret key. We show that the

cosine similarity metric widely used in HD computing is not

suitable to recover the original data. We propose a new

decoding method which recovers the encoded data in a

lossless manner through an iterative procedure.
iv) We present scalable HD-based classification methods

for many practical learning problems which need the col-

laboration of many users, e.g., human activity and face

image recognition. We propose two collaborative learning

approaches, cloud-centric learning for the case that end-node

devices do not have enough computing capability, and edge-

based learning that all the user devices participate in secure

distributed learning.
v) We also show a hardware accelerator design that signifi-

cantly minimizes the costs paid for security. This enables se-

cure HD computing on less-powerful edge devices, e.g., gate-

ways, which are responsible for data encryption/deception.
We design and implement the proposed SecureHD frame-

work on diverse computing devices in IoT systems, including

a gateway-level device, a high-performance system, and our
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Figure 1. Motivational scenario

proposed hardware accelerator. In our evaluations, we show

that the proposed framework can perform the encoding and

decoding tasks 145.6× and 6.8× faster than a state-of-the-art

homomorphic encryption library when both are running on

the Intel i7-8700K. The hardware accelerator further improves

the performance efficiency by 35.5× and 20.4× as compared

to the CPU-based encoding and decoding of SecureHD. In

addition, our classification method presents high accuracy

and scalability for diverse practical problems. It successfully

performs learning tasks with 95% average accuracy for six

real-world workloads, ranging from datasets collected in a

small IoT network, e.g., human activity recognition, to a large

dataset which includes hundreds of thousands of images for

the face recognition task. Our decoding method also provides

high quality in the data recovery. For example, SecureHD

can recover the encoded data in a lossless manner, where

the size of the encoded data is 4 times smaller than the one

encrypted by the state-of-the-art homomorphic encryption

library [27].

II. MOTIVATION AND BACKGROUND

A. Motivational Scenario

Figure 1 shows the scenario that we focus in this paper.

The clients, e.g., user devices, send either their sensitive

data or partially trained models in an encrypted form to the

cloud. The cloud performs a learning task by collecting the

encrypted information received from multiple clients. In our

security model, we assume that a client cannot trust the cloud

as well as other clients. When requested by the user, the

cloud sends back the encrypted data to clients. The client

then decrypts the data with its private key.

As an existing solution, homomorphic encryption enables

processing on the encrypted version of data [15]. Figure 2

shows the execution time of a state-of-the-art homomorphic

encryption library, Microsoft SEAL [16], for MNIST training

dataset, which includes 60000 images of 28×28 pixels. We

execute the library on two platforms that a client in IoT

systems may use, a high-performance computer (Intel i7-

8700K) and a Raspberry Pi 3 (ARM Cortex A53). The result

shows that, even with the simple dataset of 47 MBytes, it

takes significantly large execution time, e.g., more than 13

days on ARM to encrypt.
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Another approach is to utilize secure Multi-Party Compu-

tation (MPC) techniques [25], [28]. In theory, any function,

which can be represented as a Boolean circuit with inputs

from multiple parties, can be evaluated securely without

disclosing each party’s to anyone else. For example, by

describing the machine learning algorithm as a Boolean

circuit with learning data as inputs to the circuit, one can

securely learn the model. However, such solutions are very

costly in practice and are computation and communication

intensive. In SecureHD, we only use MPC to securely

generate and distribute users’ private keys which is orders of

magnitude less costly than performing the complete learning

task using MPC. The key generation step is a one-time

operation so the small cost associated with it is quickly

amortized over time for future tasks.

B. Background: HD Computing

Brain-inspired high-dimensional (HD) computing performs

cognitive tasks using ultra-wide words – that is, with very

high-dimensional vectors, also known as hypervectors [18],

[29]. Hypervectors are holographic and (pseudo)random with

independent identically distributed (i.i.d.) components. A

hypervector may contain multiple values by spreading them

across its components in full holistic representation. In this

case, no component in a hypervector is more responsible for

storing any piece of information than others. These unique

features make hypervectors robust against errors in their

components.

Hypervectors are implemented with high-dimensional oper-

ations, such as binding that forms a new hypervector which

associates two hypervectors, and bundling that combines

hypervectors into a single composite hypervector. (i) The

binding of two hypervectors A and B is denoted as A ∗B.

The result of the operation is a new hypervector that is

dissimilar to its constituent vectors. For bipolar hypervectors

({−1,+1}D), the component-wise multiplication performs

the binding operation. For example, let us consider two

hypervectors randomly generated, i.e., each component has

either -1 or +1 with 50:50 chance. Since they are near-

orthogonal, their binding has approximately zero similarity

each other, i.e., δ (A∗B,A) ≈ 0 where δ is a function that

computes the cosine similarity. (ii) Bundling operation is

denoted as A⊙B and preserves similarity to its component

hypervectors. The component-wise addition implements the
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Figure 3. Overview of SecureHD

bundling for bipolar hypervectors. For example, the bundling

of two random hypervectors keeps the information, i.e.,

δ (A⊙B,A)≈ cos(π/4).
Many learning tasks can be implemented in the HD

domain. To implement a simple classification algorithm, a

data point in a given training dataset is first converted into a

hypervector. This step is often referred to as encoding. The

encoding exploits a set of orthogonal hypervectors, called

base hypervectors, to map each data point into the HD space.

Then, it bundles the encoded hypervectors for each class.

The reasoning (inference) can be performed by choosing

the class whose bundled hypervector presents the highest

similarity to an unseen hypervector [18].

III. SECURE LEARNING IN HD SPACE

A. Security Model

In SecureHD, we consider the server and other clients to be

untrusted. More precisely, we consider Honest-but-Curious

(HbC) adversary model where each party, server or a client, is

untrusted but follows the protocol. Both the server and other

clients are not able to extract any information based on the

data that they receive and send during the secure computation

protocol. For the task of key generation and distribution, we

utilize a secure MPC protocol which is proven to be secure in

the HbC adversary model [25]. We also use two-party Yao’s

Garbled Circuits (GC) protocol which is also to be secure

in the HbC adversary model as well [30]. The intermediate

results are stored as additive unique shares of PKey by each

client and the server.

B. Proposed Framework

In this section, we describe the proposed SecureHD frame-

work which enables trustworthy, collaborate HD computing.

Figure 3 illustrates the overview of SecureHD. The first

step is to create different keys for each user and cloud-

based on an MPC protocol. As discussed in Section II-B,

to perform a HD learning task, the data are encoded with

a set of base hypervectors. The MPC protocol creates the

base hypervectors for the learning application, called global

keys (GKeys). Instead of sharing the original GKeys with

clients, the server distributes permutations of each GKey,

i.e., a hypervector whose dimensions are randomly shuffled.

Since each user has different permutations of GKeys, called

personal keys (PKeys), no one can decode encoded data of

others. The cloud has dimension indexes used in the GKey

shuffling, called shuffling keys (SKeys). Since the cloud does
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Figure 4. MPC-based key generation

not have the GKeys, it cannot decrypt the encoded data of

clients. This MPC-based key generation runs only once.

After the key generation, each client can encode their data

with its PKeys. SecureHD securely injects a small amount of

information into the encoded data. We exploit this technique

to store the metadata, e.g., data types, which are important

to recover the entire original data. Once the encoded data is

sent to the cloud, the cloud reshuffles the encoded data with

the SKeys for the client. This allows the cloud to perform the

learning task with no need for accessing GKeys and PKeys.

With the SecureHD framework, the client can also decode

the data from the encoded hypervectors. For example, once

a client fetches the encoded data from the cloud storage

service, it can exploit the framework to recover the original

data using its own PKeys. Each client may also utilize the

specialized hardware to accelerate both the encoding and

decoding procedures.

C. Secure Key Generation and Distribution

Figure 4 illustrates how our protocol securely create the

key hypervectors. The protocol runs two phases: Phase 1

that all clients and the cloud participate, and Phase 2 that

two parties, a single client and cloud, participate. Recall that

in order for the cloud server to be able to learn the model,

all have to be projected based on the same base hypervectors.

Given the base hypervector and the encoded result, one can

reconstruct the plaintext data. Therefore, all clients have to

use the same key without anyone having access to the base

hypervectors. We realize these two constraints at the same

time with a novel hybrid secure computation solution.

In the first phase, we generate the base hypervectors,

which we denote by GKey. The main idea is that the

base hypervectors are generated collaboratively inside the

secure Multi-Party Computation (MPC) protocol. At the

beginning of the first phase, each party i inputs two sets of

random strings called Si and S∗i . Each stream length is D,

where D is the dimension size of a hypervector. The MPC

protocol computes element-wise XOR (⊕) of all the provided

bitstreams, and the substream of D elements represent the

global base hypervector, i.e., GKey. Then, it performs XOR

for the GKeys again with S∗i provided by each client. At

the end of the first MPC protocol phase, the cloud receives

S∗i ⊕GKey corresponding to each user i and stores these

secret keys. Note that since Si and S∗i are inputs from each

user to the MPC protocol, it is not revealed to any other

party during the joint computation. It can be seen that the

server has a unique XOR-share of the global key GKey for

each user. This, in turn, enables the server and each party

to continue their computation in a point-to-point manner

without involving other parties during the second phase.

Our approach has a strong property that even if all other

clients are dishonest and provide zero vectors as their share to

generate the Gkey, the security of our system is not hindered.

The reason is that the Gkey is generated with XOR of Si

for all clients. That is, if one generates its seed randomly,

the global key will have a uniform random distribution. In

addition, the server only receives an XOR-share of the global

key. The XOR-sharing technique is equivalent to One-Time

Pad encryption and is information-theoretic secure which

is superior to the security against computationally-bounded

adversaries in standard encryption schemes such as Advanced

Encryption Standard (AES). We only use XOR gates in MPC

which are considerably less costly than non-XOR gates [31].

In the second phase, the protocol distributes the secret

key for each user. Each party engages in a two-party secure

computation using the GC protocol. Server’s inputs are SKeyi

and S∗i ⊕GKey, while the client’s input is S∗i . The global key

GKey is securely reconstructed inside the GC protocol by XOR

of the two shares: GKey = S∗i ⊕ (S∗i ⊕GKey). The global key

is then shuffled based on the unique permutation bits held by

the server (SKeyi). In order to avoid costly random accesses

inside the GC protocol, we use the Waksman permutation

network with SKeyi being the permutation bits [32]. The

shuffled global key is sent back to the user, and we perform

a single rotational shift for the GKey to generate the next

base hypervector. We repeat this n times where n is the

required number of base hypervectors, e.g., the feature size.

The permuted base hypervectors serve as user’s personal

keys, called PKey, for the projection. Once a user performs

the projection with PKey, she can send the result to the server,

and the server permutes back based on the SKeyi for the

learning process.

IV. SECUREHD ENCODING AND DECODING

Figure 5 shows how the SecureHD framework performs the

encoding and decoding of a client with the generated PKeys.

The example has been shown for an image input data with

n pixel values, { f1, . . . , fn}. Our design encodes each input

data into a high-dimensional vector from the feature values

(•A ). It exploits the PKeys, i.e., a set of the base hypervectors

for the client, where 0 and 1 in the PKeys correspond to -1

and 1 to form a bipolar hypervector ({−1,+1}D). We denote

them by PKeys = {B1, . . . ,Bn}. To store the metadata with

negligible impact on the encoded hypervector, we devise a

method which injects several metadata to small segments

of an encoded hypervector. This method exploits another

set of base vectors, {M1, . . . ,Mk} (•B ). We call them as
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Figure 5. Illustration of SecureHD encoding and decoding procedures

metavector. The encoded data are sent to the cloud to perform

HD learning.

Once the encoded data is received from the cloud, Se-

cureHD can also decode them back to the original domain.

This is useful for other cloud services, e.g., cloud storage.

This procedure starts with identifying the injected metadata

(•C ). Based on the injected metadata, it figures out the base

hyperevectors that will be used in the decoding. Then, it

reconstructs the original data from the decoded data (•D ).

The key of the data recovery procedure is the value extraction

algorithm, which retrieves both metadata and data.

A. Encoding in HD Space

1) Data Encoding: The first step of SecureHD is to encode

input data into hypervector, where an original data point has

n features. We associate each feature with a hypervector. The

features can have discrete value (e.g., alphabets in the text),

in which we perform a straight mapping to hypervectors, or

they can have a continuous range, in which case the values

can be quantized and then mapped similar to discrete features.

Our goal is to encode each feature vector to a hypervector

that has D dimensions, e.g. D = 10,000.

To differentiate each feature, we exploit a PKey for each

feature value, i.e., {B1,B2, . . . ,Bn}, where n is the feature

size of an original data point. Since the PKeys are generated

from the random bit streams, the similarity of different base

hypervectors are nearly orthogonal [29]:

δ (Bi, B j)≃ 0 (0 < i, j ≤ n, i �= j).

The orthogonality of feature hypervectors is ensured as long

as the hypervector dimension, D, is large enough compared

to the number of features (D >> n) in the original data.

Different features are combined by multiplying feature val-

ues with the corresponding base hypervector, Bi ∈{−1,+1}D

and adding them for all the features. For example, where

fi is a feature value, the following equation represents the

encoded hypervector, H:1

H = f1 ∗ B1 + f2 ∗ B2 + . . . + fn ∗Bn.

1The scalar multiplication, denoted by *, can make a hypervector that
has integer elements, i.e., H ∈ N

D.
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If two original feature values are similar, their encoded

hypervectors are also similar, thus providing the learning

capability for the cloud without any knowledge for the PKeys.

Please note that, with this encoding scheme, although an

attacker intercepts sufficient hypervectors, the upper bound

of the information leakage is the distribution of the data. It is

because the hypervector does not preserve any information of

the feature order, e.g., pixel positions in an image, and there

are extremely large combinations of values in hypervector

elements which exponentially grow as n increases. In the case

that n is small, e.g., n < 20, we can simply add extra features

drawn from a uniform random distribution, and it does not

affect the data recovery accuracy and HD computation results.

2) Metadata Injection: A client may receive an encoded

hypervector where SecureHD processes multiple data types.

In this case, to identify base hypervectors used in the prior

encoding, it needs to embed additional information of the

data identifier and metadata, such as data type (e.g., image or

text) and color depth. One naive way is to store this metadata

as attached bits to the original hypervector. However, this

does not keep the metadata secure.

To embed the additional metadata into hypervectors, we

exploit the fact that HD computing is robust to small

modification of hypervector elements. Let us consider a

data hypervector as a concatenation of several partial vectors.

For example, a single hypervector with the D dimension can

be viewed as the concatenation of different d-dimensional

vectors, A1, . . . ,AN :

H = A1 � A2 � · · ·� AN

where D = N ×d, and each Ai vector is called as a segment.



We inject the metadata in a minimal number of segments.

Figure 5 shows the concatenation of a hypervector to

N = 200 segments with d = 50 dimensions. We first generate

a random d dimensional vector with bipolar values, Mi, i.e.,

metavector. A metavector corresponds to a metadata type.

For example, M1 and M2 can correspond to the image and

text types, while M3, M4, and M5 correspond to each color

depth, e.g., 2-bit, 8-bit, and 32-bit. Our design injects each

Mi into one of the segments in the data hypervector. We add

the metavector multiple times to better distinguish it against

the values already stored in the segment. For example, if

we inject the metavector in the first segment, the following

equation denotes the metadata injection procedure:

A′
1 = A1 + C ∗M1 + C ∗M2 + . . . + C ∗Mk

where C is the number of injections for each metavector.

B. Decoding in HD Space

1) Value Extraction: In many of today’s applications, the

clouds are used as a storage, so the clients should be able

to recover the original data from encoded ones. The key

component of the decoding procedure is a new data recovery

method that extracts the feature values stored in the encoded

hypervectors. Let us consider an example of H = f1 ∗B1 +
f2 ∗B2 + f3 ∗B3, where Bi is a base hypervector with D

dimensions and fi is a feature value. The goal of the decoding

procedure is to find a fi for a given Bi and H. A possible way

is to exploit the cosine similarity metric, δ . For example, if

we measure the cosine similarity of H and B1 hypervectors,

δ (H, B1), the higher δ value represents higher chance of

the existence of B1 in H. Thus, one method may iteratively

subtracts one instance of B1 from H to check when the cosine

similarity is zero, i.e., δ (H′,B1) where H′ = H−m∗B1.

Figure 6a shows an example of the cosine similarity for

each Bi when f1 = 50, f2 = 26 and f3 = 77 and m changes

from 1 to 120. The result shows that the similarity decreases

as subtracting more instances of B1 from H. For example,

the similarity is zero when m is close to fi as expected, and

it gets negative values for further subtractions, since H′ has

the term of −B1. Regardless of the initial similarity of H

with B, the cosine similarity is around zero when m is close

to each feature value fi.

However, there are two main issues in the cosine similarity-

based value search. First, finding the feature values in this

way needs iterative procedures, slowing down the runtime

of data recovery. In addition, it is more challenging when

feature values are represented in floating points. Second, the

cosine similarity metric may not give accurate results in the

recovery. In our earlier example, the similarity of each fi is

zero, when mi is 49, 29 and 78 respectively.

To efficiently estimate fi values, we exploit another ap-

proach that utilizes the random distribution of the hypervector

elements. Let us consider the following equation:

H ·Bi = fi ∗ (Bi ·Bi)+ ∑
j,∀ j �=i

f j ∗ (Bi ·B j).

Bi ·Bi is D since each element of the base hypervector is
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Figure 7. Iterative error correction procedure

either 1 or -1, while Bi ·B j is almost zero due to their near-

orthogonal relationship. Thus, we can estimate fi with the

following equation, called value discovery metric:

fi ≃ H ·Bi/D.

This metric yields an initial estimate of all feature values,

say F1 = { f 1
1 , ..., f 1

n }. Starting with the initial estimation,

SecureHD minimizes the error through an iterative procedure.

Figure 7 shows the iterative error correction mechanism.

We encode the estimated feature vector, F1, into the high

dimensional space, H1 = {h1
1, ...,h

1
D}. We then compute

∆H1 = H−H1, and apply the value extraction metric for

∆H1. Since this yields the estimated error, E1, in the original

domain, we add it to the estimated feature vector for the

better estimate of the actual features, i.e., F2 = F1 +E1. We

repeat this procedure until the estimated error converges. To

determine the termination condition, we compute the variance

of the error hypervector, ∆Hi, at the end of each iteration.

Figure 6b shows the variance changes when decoding four

example hypervectors. For this experiment, we used two

feature vectors whose size is either n = 1200 or 1000,

where the feature values are uniform-randomly generated.

We encoded each feature vector to two hypervectors with

either D = 7,000 or D = 10,000. As shown in the results, the

iterations required for accurate recovery depends on both the

number of features in the original domain and hypervector

dimensions. In the rest of the paper, we use the ratio of

the hypervector dimension to the number of features in the

original domain, i.e., R = D/n, to evaluate the quality of the

data recovery for different feature sizes. The larger R ratio,

the larger the retraining iterations are expected to sufficiently

recover the data.

2) Metadata Recovery: We utilize the value extraction

method to recover the metadata. We calculate how many

times each metavector {M1, ...,Mk} presents in a segment.

If the extracted instances of metavector are similar to the

actual C value that we injected, such metavector is considered

to be in the segment. However, since the metavector has a

small number of elements, i.e., d << D dimensions, it might

have a large error in finding the exact C value. Let’s assume

that, when injecting a metavector C times, the value extraction

method identifies a value, Ĉ, in a range of [Cmin,Cmax]. The

range also includes C. If the metavector does not exist, the
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value Ĉ will be approximately zero, i.e., a range of [−ε,ε].
The amount of ε depends on the other information stored in

the segment.

Figure 8a shows the distribution of extracted values,

Ĉ, when injecting 5 metadata 10 times (C = 10) into a

single segment of a hypervector. These distributions are

reported using a Monte Carlo simulation with 1500 randomly

generated metavectors. The results show that the distributions

of the existing and non-existing cases are overlapped, making

the estimation difficult. However, as shown in Figure 8b,

when using C = 128, there is a clear margin between these

two distributions which identify the existence of a metadata.

Figure 8c shows the distributions when we inject 8 metadata

into a single segment with C = 128. In that case, two

distributions overlap, i.e., there are a few cases when we

cannot fully recover the metadata.

We determine C so that the distance between Cmin and ε
is larger than 0. We define the distance as the noise margin,

NM =Cmin −ε . Figure 8d shows how many metavectors can

be injected for different C values. The results show that the

number of meta vectors that we can inject saturates for larger

C values. Since the large number of C and segment size, d,

also have a higher chance to influence on the accuracy of

the data recovery, we choose C = 128 and d = 50 for our

evaluation. In Section VI-E, we present a detailed evaluation

for different settings of the metavector injection.

3) Data Recovery: After recovering the metadata, Se-

cureHD can recognize the data types and choose the base

hypervectors for decoding. We subtract the metadata from

the encoded hypervector and start decoding the main data.

SecureHD utilizes the same value extraction method to

identify the values for each base hypervector. The quality of

data recovery depends on the dimension of hypervectors in

the encoded domain (D) and the number of features in the

original space (n), i.e., R = D/n defined in Section IV-B1.

Intuitively, with the larger the R value, we can achieve a

higher accuracy during the data recovery at the expense

of the size of encoded data. For instance, when storing an
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Figure 9. Illustration of the classification in SecureHD

image with n= 1000 pixels in a hypervector with D= 10,000

dimensions (R = 10), it is expected to achieve high accuracy

for the data recovery. In our evaluation, we observed that,

with R = 7, it is enough to ensure lossless data recovery in

the worst case. In Section VI-D, we explore more detailed

discussion about how R impacts on the accuracy of the

recovery procedure.

V. LEARNING IN HD SPACE

A. Secure Collaborative Learning

Figure 9 shows the HD-based collaborative learning in

the high-dimensional space. In this paper, we show two

training approaches, centralized and federated training, which

performs classification learning with a large amount of data

provided by many clients. The cloud can perform the training

procedures using the encoded hypervectors without explicit

decoding. It only needs to permute the encoded data using

the SKey of each client. Note that the permutation aligns the

encoded data on the same GKey base, even though the cloud

does not have the GKeys. It reduces the cost of the learning

procedure, and the data can be securely classified even on the

untrustworthy cloud. The training procedure creates multiple

hypervectors as the trained model, where each hypervector

represents the pattern of data points in one class. We refer

them to class hypervectors.

1) Approach 1: Centralized Training: In this approach,

the clients send the encoded hypervectors to the cloud.

The cloud permutes them with the SKeys, and a trainer

module combines the permuted hypervectors. The training

is performed with the following sub-procedures.

(i) Initial training: At the initial stage, it creates the class

hypervectors for each class. As an example, for a face

recognition problem, SecureHD creates two hypervectors

representing “face” and “non-face”. These hypervectors are

generated with element-wise addition for all encoded inputs

which belong to the same class, i.e., one for ”face” and the

other one for ”non-face”.

(ii) Multivector expansion: After training the initial HD

model, we expand the initial model with cross-validation,

so that each class has multiple hypervectors of the size of

ρ . The key idea is that, when training with larger data, it

may need to capture more distinct patterns with different

hypervectors. To this end, we first check cosine similarity for

each encoded hypervector again to the trained model. If an

encoded data does not correctly match with its corresponding

class, it means that the encoded hypervector has a distinct



pattern as compared to the majority of all the inputs in the

class. For each class, we create a set that includes such

mismatched hypervectors and the original model. We then

choose two hypervectors, whose similarity is the highest

among all pairs in the set, and update the set by adding the

selected two into a new hypervector. This is repeated until

the set includes only ρ hypervectors.

(iii) Retraining: As the last step, we iteratively adjust the

HD model over the same dataset to give higher weights for

misclassified samples that may often happen in a large dataset.

We check the similarity for each encoded hypervector again

with all existing classes. Let us assume that C
p
k is one of

the class hypervectors belonging to kth class, where p is the

index of multiple hypervectors in the class. If an encoded

hypervector Q belonging to ith class is incorrectly classified

to Cmiss
j , we update the model by

Cmiss
j = Cmiss

j − αQ and Cτ
i = Cτ

i + αQ

where τ = argmaxt δ (Ct
i,Q) and α is a learning rate in

a range of [0.0, 1.0]. In other words, in the case of

misclassification, we subtract the encoded hypervector from

the class which it is incorrectly classified to, while adding it

to the class hypervector which has the highest similarity in

the correct class. This procedure is repeated for predefined

iterations, and the final class hypervectors are used for the

future inference.

2) Approach 2: Federated Training: The clients may not

have enough network bandwidth to send every encoded

hypervector. To address this issue, we present the second

approach, called federated training, as an edge computing. In

this approach, the clients individually train initial models, i.e.,

one hypervector for each class, only using their own encoded

hypervectors. Once the cloud receives the initial models of

all the clients, it permutes the models with the SKeys and

performs element-wise additions to create a global model,

Ck, for each kth class.

Since the cloud only knows the initial models for each

client, the multivector expansion procedure is not performed

in this approach, but we can still execute the retraining

procedure explained in Section V-A1. To this end, the cloud

re-permutes the global model and sends it back to each

client. With the global model, each client performs the

same retraining procedure. Let us assume that C̃i
k is the

retrained model by the ith client. After the cloud aggregates

all C̃i
k with the permutation, it updates the global models by

Ck = ∑i C̃i
k − (n−1)∗Ck. This is repeated for the predefined

iterations. This approach allows the clients to send the trained

class hypervectors only for each retraining iteration, thus

significantly reducing the network usage.

B. HD Model-Based Inference

With the class hypervectors generated by either approach,

we can perform the inference in any device including

the cloud and clients. For example, the cloud can receive

an encoded hypervector from a client, and permute the

dimension with the SKey in the same way to the training

procedure. Then, it checks cosine similarity of the permuted

hypervector to all trained class hypervectors to label with the

corresponding class to the most similar class hypervector. In

the case of the client-based inference, once the cloud sends

re-permuted class hypervectors to a client, the client can

perform the inference for its encoded hypervector with the

same similarity check.

VI. EVALUATION

A. Experimental Setup

We have implemented the SecureHD framework including

encoding, decoding, and learning in high-dimensional space

using C++. We evaluated the system on three different

platforms: Intel i7 7600 CPU with 16GB memory, Raspberry

Pi 3, and Kintex-7 FPGA KC705. We also exploit a network

simulator, NS-3 [33], for large-scale simulation. We verify

the FPGA timing and the functionality of the encoding and

decoding by synthesizing Verilog using Xilinx Vivado Design

Suite [34]. The synthesis code has been implemented on the

Kintex-7 FPGA KC705 Evaluation Kit. We compare the

efficiency of the proposed SecureHD with SEAL, the state-

of-the-art C++ implementation of a homomorphic library,

Microsoft SEAL [27]. For SEAL, we used the default

parameters: polynomial modulus of n = 2048, coefficient

modulus of q = 128− bit, plain modulus of t = 1 << 8,

noise standard deviation of 3.9, and decomposition bit count

of 16. We evaluate the proposed SecureHD framework with

real-world datasets including human activity recognition,

phone position identification, and image classification. Table I

summarizes the evaluated datasets. The tested benchmarks

range from relatively small datasets collected in a small IoT

network, e.g., PAMAP2, to a large dataset which includes

hundreds of thousands of images of facial and non-facial data.

We also compare the classification accuracy of SecureHD for

the datasets with the state-of-the-art learning models shown

in the table.

B. Encoding and Decoding Performance

As explained in Section III-C, SecureHD performs a one-

time key generation to distribute the PKeys to each user

using the MPC and GC protocols. Table II listed the number

of required logic gates evaluated in the protocol and the

amount of required communication between clients. This

overhead comes mostly from the first phase of the protocol,

since the second phase has been simplified with the two-

party GC protocol. The cost of the protocol is dominated by

network communication. In our simulation conducted under

our in-house network of 100 Mbps, it takes around 9 minutes

to create D = 10,000 keys for 100 participants. Note that

the runtime overhead is negligible since the key generation

happens only once before all future computation.

We have also evaluated the encoding and decoding

procedure running on each client. We compare the efficiency

of SecureHD with the Microsoft SEAL [27]. We run both

the SecureHD framework and homomorphic library on ARM

Cortex 53 and Intel i7 processors. Figure 10 shows the
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Figure 10. Comparison of SecureHD efficiency to homomorphic algorithm in encoding and decoding
Table I

DATASETS (n: FEATURE SIZE, K: NUMBER OF CLASSES)

n K
Data
Size

Train
Size

Test
Size Description/State-of-the-art Model

MNIST 784 10 220MB 60,000 10,000 Handwritten Recognition/DNN [35], [36]
ISOLET 617 26 19MB 6,238 1,559 Voice Recognition/DNN [37], [38]
UCIHAR 561 12 10MB 6,213 1,554 Activity recognition(Mobile)/DNN [38], [39]
PAMAP2 75 5 240MB 611,142 101,582 Activity recognition(IMU)/DNN [40]
EXTRA 225 4 140MB 146,869 16,343 Phone position recognition/AdaBoost [41]
FACE 608 2 1.3GB 522,441 2,494 Face recognition/Adaboost [42]

Table II
OVERHEAD FOR KEY GENERATION AND DISTRIBUTION

Phases Phase 1
Phase 2

# of Clients 10 50 100

D=1000
# of Gates 11K 51K 101K 8.9K

Communication 7.1MB 160MB 650MB 284MB

D=5000
# of Gates 55K 255K 505K 56.4K

Communication 35MB 813MB 3.24GB 1.8MB

D=10,000
# of Gates 110K 510K 101K 122.9K

Communication 70.34MB 1.64GB 6.46GB 3.93MB

execution time of the SecureHD and homomorphic library to

process a single data point. For SecureHD, we used R = 7 to

ensure 100% data recovery rate for all benchmark datasets.

Our evaluation shows that SecureHD achieves on average

133× and 14.7× (145.6× and 6.8×) speedup for the encoding

and decoding, respectively, as compared to the homomorphic

technique running on the ARM architecture (Intel i7). The

encoding of SecureHD running on embedded devices (ARM)

is still 8.1× faster than the homomorphic encryption running

on the high-performance client (Intel i7). We also compare

the SecureHD efficiency on the FPGA implementation. We

observe that the encoding and decoding of SecureHD achieve

626.2× and 389.4× (35.5× and 20.4×) faster execution as

compared to the SecureHD execution on the ARM (Intel i7).

For example, the proposed FPGA implementation is able to

encode 2,600 data points and decode 1,335 for the MNIST

images in a second.

C. Evaluation of SecureHD Learning

1) Learning Accuracy: Based on the proposed SecureHD,

clients can share the information with the cloud in a secure

way, such that the cloud cannot understand the original data

while still performing the learning tasks. Along with the

proposed two learning approaches, we also evaluate the state-

of-the-art HD classification approach, called one-shot HD

model, which trains the model using a single hypervector per

class with no retraining [22], [26]. For the centralized training,

we trained two models, one that has 64 class hypervectors

for each class and the other one that has 16 for each class.

We call them as Centralized-64 and Centralized-16. The

retraining procedure was performed for 100 times with α =
0.05, since the classification accuracy was converged with

this configuration for all the benchmarks.

Figure 11 shows the classification accuracy of the Se-

cureHD for the different benchmarks. The results show that

the centralized training approach achieves high classification

accuracy comparable to the state-of-the-art learning methods

such as DNN models. We also observed that, by training more

hypervectors per class, it can provide higher classification

accuracy. For example, for the federated training approach,

which does not use multivectors, the classification accuracy

is 90% on average, which is 5% lower than the Centralized-

64. As compared to the state-of-the-art one-shot HD model

which does not retrain models, Centralized-64 achieves 15.4%

higher classification accuracy on average.

2) Scalability of SecureHD Learning: As discussed in

Section V-A, the proposed learning method is designed to

effectively handle a large amount of data. To understand

the scalability of the proposed learning method, we evaluate

how the accuracy is changed when the training data are

come from different numbers of clients, with simulation on

NS-3 [33]. In this experiment, we exploit three datasets,

PAMAP2, EXTRA, and FACE, which include information

of where data points are originated. For example, PAMAP2

and EXTRA are gathered from 7 and 56 individual users.

Similarly, the FACE dataset includes 100 clients that have

different facial images with each other. Figure 12a and b

show the accuracy changes for the centralized and federated

training approaches. The result shows that increasing the

number of clients improves classification accuracy by training

with more data. Furthermore, as compared to the one-shot HD

model, the two proposed approaches show better scalability

in terms of accuracy. For example, the accuracy difference

between the proposed approach and the one-shot model

grows as more clients engage in the training. Considering the

centralized training, the accuracy difference for the FACE

dataset is 5% when trained with one client, while it is

14.7% for the 60-client case. This means that the multivector

expansion and retraining techniques are effective to learn

with a large amount of data.

We also verify how the SecureHD learning methods work

with constrained network conditions that often happen in IoT

systems. In our network simulation, we assume the worst-

case network condition, i.e., all clients share the bandwidth

of a standard WiFi 802.11 network. Note that it is a worst-

case scenario and in practice, each embedded device may not

share the same network. Figure 12c shows that the network

bandwidth limits the number of hypervectors that can be sent

for each second as multiple clients involve the learning task.
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For example, a network with 100 clients can send the lower

number of hypervectors by 23.6× than a single-client case.

As discussed before, the federated learning can be ex-

ploited to overcome the limited network bandwidth at the

expense of the accuracy loss. Another solution is to use a

reduced dimension in the centralized learning. As shown in

Figure 12c, when D = 1,000, clients can send the data to the

cloud with 353 samples per second, which is 10 times higher

than the case of D = 10,000. Figure 12d shows how learning

accuracy changes for different dimension settings. The results

show that reducing the hypervector dimensions to 4000 and

1000 dimensions has less than 1.4% and 5.3% impact on the

classification accuracy. This strategy gives another choice of

the trade-off between accuracy and network communication

cost.

D. Data Recovery Trade-offs

As discussed in Section IV-B3, the proposed SecureHD

framework provides a decoding method for the authorized

user that has the original Pkeys used in the encoding.

Figure 13a shows the data recovery rate on images with

different pixel sizes. To verify the proposed recovery method

in the worst case scenario, we created 1000 images whose

pixel values are randomly chosen, and report the average error

when we map the 1000 images to D = 10,000 dimension.

The x-axis shows the ratio R, i.e., D/n where the number of

hypervector dimension (D) to the number of pixels (n) in an

image. The data recovery rate depends on the precision of

the pixel values. Using high-resolution images, SecureHD

requires a larger R value to ensure 100% accuracy. For

instance, for images with 32-bit pixel resolution, SecureHD

can achieve 100% data recovery using R = 7, while lower
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resolution images (e.g., 16 and 8-bits) requires R = 6 to

ensure 100% data recovery. Our evaluation shows that our

method can decode any input image with 100% data recovery

rate using R = 7. This means that we can securely encode

data with 4× smaller size compared to the homomorphic

encryption library which increases the data size by 28 times

through the encryption.

We also evaluate the SecureHD framework with a text

dataset written in three different European languages [43].

Figure 13b shows the accuracy of data recovery for the three

languages. The x-axis is the ratio between the length of

hypervectors to the number of characters in the text when

D = 10,000. Our method assigns a single value to each

alphabet letter and encodes the texts with the hypervectors.

Since the number of characters in these languages is less than

49, we require at most 6 bits to represent each alphabet. In

terms of the data recovery, it is equal to encoding the same

size image with the 6-bit pixel resolution. Our evaluation

shows that SecureHD can provide 100% data recovery rate

with R = 6.

Figure 14 shows the quality of the data recovery for two

example images. The Lena and MNIST image have 100×100

pixels and 28×28 pixels, respectively. Our encoding maps

the input data to hypervectors with different dimensions.

For example, the Lena image with R = 6 means that the

image has been encoded with D = 60,000 dimensions. Our

evaluation shows that SecureHD can achieve lossless data

recovery on Lena photo when R ≥ 6, while using R = 5 and

R = 4 the data recovery rates are 93% and 68%. Similarly,

R = 5 and R = 4 provide 96% and 56% data recovery for

the MNIST images.

E. Metadata Recovery Trade-offs

As discussed in Section IV-B2, the metadata injection

method needs to be performed such that it ensures 100%

metadata recovery and it has minimal impacts on the original

hypervector for the learning and data recovery. The solid

line in Figure 15a shows the noise margin when injecting

multiple metavectors into a single segment of hypervector

when the number of elements in the segment is chosen by

50(= d). We report the results based on the worst case for
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Figure 15. Data recovery rate for different settings of metavector injection

5000 Monte Carlo simulation. The results show that each

segment can store 6 metavectors at most to take a positive

noise margin that ensures 100% metadata recovery. The

dotted line shows the data recovery error rate for different

numbers of metavectors injected into a single segment. Our

evaluation shows that adding 6 metavectors has less than

0.005% impact on the data recovery rate.

Since the number of metavectors which can be injected

in one segment is limited, we may need to distribute the

metadata in different segments. Figure 15b presents the

impact of the metadata injection on the data recovery error

rate. When we inject 6 metadata into each of all 200 segments,

i.e., 1200 metavectors in total, the impact on the recovery

accuracy is still minimal, i.e., less than 0.12%.

VII. RELATED WORK

Secure Learning Privacy-preserving deep learning and

classification has been an active research area in recent

years [17], [44], [45], [46], [47], [48], [49]. Shokri and

Shmatikov [45] have proposed a solution for collaborative

deep learning where the training data is distributed among

many parties. Each party locally trains her model and sends

the parameter updates to the server. However, it has been

shown that Generative Adversarial Networks (GANs) can be

used to attack this method [50].

SecureML [47] is a framework for secure training of

machine learning models. All of the computation of Se-

cureML is performed by the two servers using MPC protocols,

whereas, SecureHD only relies on the MPC protocol for

secure key generation and distribution. Chameleon [44] is a

privacy-preserving machine learning framework that utilizes

different cryptographic protocols for different operations

within the machine learning task. In contrast to SecureML and

Chameleon, our solution does not require two non-colluding

servers and only involves one server.

Google has also proposed a federated learning ap-

proach [17] for collaborative learning. In their approach,

each client needs to learn the local model based on the

private training data to update the central model in the cloud.

However, our solution is more light-weight to be run on

less-powerful IoT devices and also applicable to other cloud-

oriented tasks, e.g., data storage services.

Hyperdimensional Computing Since the Finnish compu-

tational neuroscientist P. Kanerva introduced the field of

hyperdimensional computing [18], prior research have applied

the idea into diverse cognitive tasks, such as analogy-

based reasoning [19], latent semantic analysis [20], language

recognition [21], speech/object recognition [23], [24], activity

recognition [51], [52], and clustering [53] . However, most

of the existing works assume that the HD learning tasks are

performed on a single system. To the best of our knowledge,

this paper is the first work that securely performs the HD

learning tasks on a cloud scale. In addition, we also focus

on how to accurately recover the encoded data in the HD

space.

Some existing works have presented the hardware accel-

erator design to efficiently perform HD tasks [26], [54],

[55]. Work in [56] proposed a framework for enabling

model sparsity in HD computing. Several works showed new

memory architectures that perform the HD operations inside

the memory array [26], [57], [58]. Our design is orthogonal

in this view that it can exploit any of these hardware for

hardware acceleration.

VIII. CONCLUSION

In this paper, we propose a novel framework, called

SecureHD, which provides secure data encoding and learning

solution based on HD computing. With our framework,

clients can securely send their data to untrustworthy clouds,

while the cloud can perform the learning tasks without

the knowledge of the original data. Our proof-of-concept

implementation demonstrates that the proposed SecureHD

framework successfully performs the encoding and decoding

tasks with high efficiency, e.g., 145.6× and 6.8× faster than

the state-of-the-art encryption/decryption library. Our learning

method achieves accuracy of 95% on average for diverse

practical learning tasks. In addition, SecureHD provides

lossless data recovery with 4× reduction in the data size

compared to the existing encryption solution.
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