
�

�
�
�
�

��������	�
��	���	�	������������	������������
��������	������������������������������

�����	�	���
 

 

 

 

 

 

 
FARSHAD MORADI 

 

 

 

 

 

 

 

 

 

 

 
Doctoral Thesis in Teleinformatics 

Stockholm, Sweden 2008 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISBN 978	91	7178	957	0 
TRITA	ICT/ECS AVH 08:05 
ISSN 1653	6363 
ISRN KTH/ICT/ECS AVH	08/05—SE 
 
Akademisk Avhandling som med tillstånd av Kungliga Tekniska högskolan framlägges till 
offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 23 maj 2008 kl 
13.00 i Sal D, Forum, Isafjordsgatan 39, Kista. 
 
© Farshad Moradi, Maj 2008 
 
Tryck: Universitetservice US AB 



 iii

 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� � � ��������������	������	
����

��
�����
�����������������	������
	�������
 

	 Ferdowsi,  

Persian poet (935–1020) 

 

 

 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�

�

�

�



 v 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
�������
����������������������
 

	 Lady Bird Johnson 

 

 
 

 

 

 

 

 



 vi 

 

 



 vii

���������

 

Modelling and Simulation (M&S) is a multi	disciplinary field that is widely used in various domains. It 
provides a means to study complex systems before actual physical prototyping and helps lowering, 
amongst others, manufacturing and training costs. However, as M&S gains more popularity, the demand 
on reducing time and resource costs associated with development and validation of simulation models has 
also increased. Composing simulation models of reusable and validated simulation components is one 
approach for addressing the above demand. This approach, which is still an open research issue in M&S, 
requires a composition process that is able to support a modeller with discovery and identification of 
components as well as giving feedback on feasibility of a composition.  

Combining components in order to build new simulations raise the non	trivial issue of composability. 
Composability has been defined as the capability to select and assemble reusable simulation components 
in various combinations into simulation systems to meet user requirements. There are three main types of 
composability, syntactic, semantic and pragmatic. Syntactic composability is concerned with the 
compatibility of implementation details, such as parameter passing mechanisms, external data accesses, 
and timing mechanisms. It is the question of whether a set of components can be combined. Semantic 
composability, on the other hand, is concerned with the validity of the composition, and whether the 
composed simulation is meaningful. Pragmatic composability is yet another type which is concerned with 
the context of the simulation, and whether the composed simulation meets the intended purpose of the 
modeller. Of these three types syntactic composability is easiest to accomplish and some significant 
progresses on this issue have been reported in the literature. Semantic and pragmatic composability are 
much harder to achieve and has inspired many researchers to conduct both theoretical and experimental 
research.  

The Base Object Model (BOM) is a new concept identified within M&S community as a potential 
facilitator for providing reusable model components for the rapid construction and modification of 
simulations. Although BOMs exhibit good capabilities for reuse and composability they lack the required 
semantic information for semantic matching and composition. There is little support for defining 
concepts and terms in order to avoid ambiguity, and there is no method for matching behaviour of 
conceptual models (i.e., state machines of the components), which is required for reasoning about the 
validity of BOM compositions. 

In this work we have developed a framework for component	based model development that supports 
both syntactic and semantic composability of simulation models by extending the BOM concept using 
ontologies, Semantic Web and Web Services technologies, and developing a rule	based method for 
reasoning about BOM compositions. The issue of pragmatic composability has not been the focus of this 
work, and it has only been partly addressed. The framework utilises intelligent agents to perform discovery 
and composition of components, according to the modeller needs. It includes a collaborative 
environment, a semantic distributed repository and an execution environment to support model 
development and execution process.  

The basic assumption of this work is that semantic composability should be achieved at conceptual 
level. Through precise definition and specification of components’ semantic and syntax one can capture 
the basic requirements for matching and semantically meaningful composition of those components. This 
requires a common methodology for specification of simulation components. The specification 
methodology consists of meta	models describing simulation components at different levels.  In order to 
enable automatic matching of meta	models they are formalized and structured using Semantic Web 
technology in OWL (Web Ontology Language). Hence, the models are based on ontologies to avoid 
misunderstanding and to provide unambiguous definitions as a basis for reasoning about syntactic and 
semantic validity of compositions. 
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Modellering och Simulering (M&S) är en multidisciplinär metod som används inom olika domäner. Det 
erbjuder medel för att studera komplexa system innan dessa har utvecklats och bidrar till att minska bl a 
utvecklings	 och träningskostnader. Utveckling av modeller och simuleringar kan dock innebära initiala 
kostnader som bör reduceras för att öka metodens användbarhet. Att bygga simuleringar genom 
sammansättning av återanvändbara och validerade simuleringskomponenter är ett sätt att åstadkomma 
detta. Detta tillvägagångssätt, som är föremål för mycken aktuell forskning, kräver en 
sammansättningsprocess som kan stödja en utvecklare med såväl upptäckt och identifiering av lagrade 
komponenter, som validering av sammansatta simuleringar.      

En av de viktigaste frågorna när det gäller komponering av simuleringar är �����������	�, som har 
definierats som förmågan att välja och sätta ihop återanvändbara simuleringskomponenter i olika 
kombinationer och utveckla simuleringar som möter användarens krav och behov. Det finns 
huvudsakligen tre olika typer of composability, syntaktisk, semantisk och pragmatisk. Om 
implementeringsrelaterade detaljer för olika simuleringskomponenter är kompatibla råder syntaktisk 
composability mellan dessa. Exempel på sådana detaljer är mekanismer för parameterutbyte, 
dataöverföring och tidshantering. Semantisk composability handlar däremot om meningsfullheten av den 
sammansatta modellen. Genom semantisk composability kan giltigheten hos den sammansatta modellen 
säkerställas. Pragmatisk composability berör simuleringens kontext, d v s att den sammansatta 
simuleringen uppfyller modellerarens syfte. Av dessa ovanstående typer är syntaktisk composability den 
enklaste att åstadkomma, och där har stora framgångar uppnåtts med många ramverk som kan hantera 
denna typ av composability. Semantisk och pragmatisk composability är däremot svårare att uppnå och 
har inspirerat många forskare att genomföra både teoretisk och tillämpad forskning.  

Base Object Model (BOM) är ett nytt koncept inom M&S med syftet att erbjuda återanvändbara 
modellkomponenter för utveckling och modifiering av simuleringar. BOM	konceptet baserar sig på 
antagandet att en simulerings beståndsdelar kan extraheras och återanvändas som byggblock. Även om 
BOM visar god förmåga och potential för återanvändning, saknar det den nödvändiga informationen för 
att garantera semantisk composability. Det finns för lite stöd för att definiera termer och koncept för att 
undvika tvetydighet, och det saknas metoder för att matcha olika BOM:ars tillståndsdiagram, vilka är 
nödvändiga för att kunna resonera om den sammansatta modellens meningsfullhet.  

   I det här arbetet har vi utvecklat ett ramverk för komponentbaserad modellutveckling som stödjer 
både syntaktisk och semantisk composability av BOM	komponenter genom att bygga ut BOM	konceptet 
m h a ontologier, Semantic Web	 och Web Services	teknologier, samt utveckla en regelbaserad metod för 
att resonera om de sammansatta modellernas meningsfullhet. Frågan om pragmatisk composability har 
inte varit i fokus för det här arbetet och bara delvis behandlats. Ramverket använder sig av intelligenta 
agenter för att genomföra upptäckt och ihopsättning av komponenter, baserat på modellerarens behov 
och mål. Det inkluderar en kollaborativ miljö, ett semantiskt distribuerat modellbibliotek och en 
distribuerad exekveringsmiljö för att stödja processen med modellutveckling och 	exekvering.  

Det grundläggande antagandet i detta arbete är att semantisk composability kan uppnås på konceptuell 
nivå. Genom exakta beskrivningar och specificering av komponenternas semantik och syntax kan man 
fånga de mest grundläggande kraven för att semantiskt matcha och sätta ihop dessa komponenter. Detta 
kräver en gemensam arkitektur för att definiera simuleringskomponenter. Arkitekturen innehåller 
metamodeller som beskriver dessa komponenter på olika nivåer. För att möjliggöra automatisk matchning 
av dessa metamodeller är de strukturerade och formaliserade genom att använda Semantic Web	teknologi 
och OWL (Web Ontology Language). Därmed är metamodellerna baserade på ontologier för att undvika 
missförstånd och erbjuda otvetydiga beskrivningar, så att de kan konstituera basen för att resonera kring 
syntaktisk och semantisk composability av komponenter. 
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This chapter contains general information about the topic, presents the problem definition, explains 
what has been done, what the objectives are, and introduces the research issues, background 
technologies, proposed solution, research activities and the contributions of the thesis.  

! ! ���
��	����

Modelling and Simulation (M&S) is a multi	disciplinary field that is widely used in areas such as, 
engineering, training, education, manufacturing and health care. The basic concepts of M&S are ����� 
and ������	���. A model is a representation of something that might or might not exist in the real world, 
and which might have been developed for the purpose of simulation. Such a model is referred here to 
as a simulation model. Simulation is the process of running a simulation model over a period of time, 
by e.g. using computers. 

M&S provides possibilities to reduce, amongst others, manufacturing and training costs and a means 
to study complex systems before actual physical prototyping. Employing simulations early in the design 
phase of a product life cycle can detect and avoid costly errors in later stages of the development 
process. Also training of personnel using simulated systems can be done at a fraction of the cost of 
running exercises involving real systems. Thus, M&S is a valuable tool at the time of economic cut 
backs and streamlining within and stiff competition between organisations and companies.  

However, development of simulation models can be a time and resource consuming process and 
involves some initial costs. Although, the benefits are many the initial costs may be discouraging to 
decision makers and project managers. Beside the initial cost there is also the issue of quality and 
usability of the simulation models. A simulation model development process involves different phases 
including, requirement specification, conceptual modelling, design, development, test, verification and 
validation. The process requires involvement of different actors such as modellers, subject matter 
experts, validation and verifications experts and end users. Handling the issue of quality and usability 
gets more difficult as simulation models get larger and more complex. 

An approach to reduce the costs associated with the process and to improve the usability of 
simulation models is to compose them through reuse of predefined and already existing, validated 
simulation model components [141]. Using this method the simulation model is built in a component	
based fashion. Component	based approach has been successfully deployed in all engineering 
disciplines, such as manufacturing, hardware and to some extend in software industry. 

The component based methodology will help reducing the costs of development of simulation 
models and improves the quality and user	worth of those models. It has been tried in software 
development process through employment of object	oriented methodology and techniques, which has 
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simplified the development of complex software systems. However, component based software 
development is still an open research issue in both M&S and software engineering [144]. Composing 
sub	models in order to build new models raise the non	trivial issue of composability. Composability is 
the capability to select and assemble reusable simulation components in various combinations into 
simulation systems to meet user requirements [103], [101], [35]. 

A (composable) simulation model component is a software element of a simulation model with well	
defined functionalities and behaviours that conforms to a component model and can be independently 
deployed. It is subject to third	party composition with or without modification and conforms to a 
composition model. There are three main types of composability, syntactic, semantic and pragmatic. 
Syntactic composability is concerned with the compatibility of implementation details, such as 
parameter passing mechanisms, external data accesses, and timing mechanisms. It is the question of 
whether a set of components can be combined [185], [16], [149], [29]. Semantic composability is 
concerned with the validity of the composition [102], and pragmatic composability is concerned with 
the context of the simulation. There have been some significant achievements in syntactic 
composability both within software engineering and simulation communities, but semantic and 
pragmatic composability is a much harder problem [100], [30], [104] and has inspired many researchers 
to conduct both theoretical and experimental research.  

! $ �	��%���	��

The component	based development approach is fairly new within the M&S community. The aim, as 
explained earlier, is to improve reuse and interoperability between simulations and simulation 
components developed by different organizations and stakeholders, and also simplify and leverage 
collaboration and sharing of those components, in order to lower development time and cost. 

Currently, there is a lack of clear understanding of what component based M&S is, how model 
components could be structured, how they are to be specified and what technologies exist to facilitate 
syntactic and semantic composition [118]. Current approaches to component	based simulation model 
development (CBMD) are mainly based on reuse of simulation components i.e. program codes. 
However, it is not trivial to read, understand and modify computer programs, and even more difficult 
to comprehend the semantics of these codes.  

Moreover, the existing simulation composition environments are mainly developed for specific 
simulators (simulation framworks) and within specific domains [29], [141], and components have to 
comply with specific architectures. Hence, their reusability is restricted to architectures they are 
developed for and can not be considered as generic components that could be used in different 
compositions. One the main reasons that is given for doing so is that the issue of reuse and 
interchangeability of components is very hard to tackle and not practically possible if components are 
expected to be used in different compositions. Especially since these compositions can differ from the 
purpose and the context for which the components have been originally developed [44]. 

The High Level Architecture (HLA) standard, which has been promoted by the DoD (Department 
of Defense) is an attempt to provide a general framework for improving reuse and interoperability of 
simulation models. The standard has been widely adopted within the Modelling and Simulation 
community. As this framework has been starting to set, new concepts are being formed to further 
improve reuse of simulations at a component level, in order to speed up and reduce costs of 
developing and implementing new simulations. The Base Object Model (BOM) is one such new 
concept. BOM [158] has been identified within HLA as a potential facilitator for HLA object model 
construction and providing reusable model components used for the rapid construction and 
modification of federates and federations. BOMs are structured into four major parts, Model 
Identification, Conceptual Model, Model Mapping, and HLA Object Model. However, BOM lacks the 
required semantic information to ensure semantic composability of BOM	based components. There is 
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little support for defining concepts and terms in order to avoid ambiguity, and there is no method for 
matching BOM conceptual models (state machines). How the BOM concept can be used to improve 
reuse and interoperability of simulation models is currently a current issue within the M&S community 
[143], [159], [1]. 

In this work it will be shown how one can achieve semantic and syntactic composability of 
simulation models through utilization of meta	models, ontologies, BOMs, and technologies, described 
in this document, and develop a framework, which can support it.  

! & ��	��	�������	�
�

The aim of this work has been developing an environment for component	based model 
development that supports both syntactic and semantic composability. The issue of pragmatic 
composability has not been the focus of this work, and it has only been partly addressed. The basic 
assumption is that semantic composability should be achieved at conceptual level, i. e. model 
specification level. Through precise definition and specification of components’ semantic and syntax 
one can capture the basic requirements for matching and semantically meaningful composition of 
those components. This requires a common architecture for specification of simulation models and 
components. The specification framework contains meta	models describing simulation components at 
different levels.  In order to enable automatic matching of meta	models they should be formalized and 
structured in standard languages. They should also be based on ontologies to avoid misunderstanding 
and provide unambiguous definitions of those models. Consequently, the meta	models should also be 
constructed and structured such that it is possible to automatically generate executable components 
and simulations. The code generation process could provide the modeller the option of choosing 
different simulation architectures as the final product.  

Besides the specification framework, the environment also includes collaborative support, a model 
repository to store and manage the components, and an execution environment to facilitate reuse. 

The scope of the work can be summarized as:  

1. Design of a general framework for CBMD, which supports both syntactic and semantic 
composability based on formal model component description, and includes  

- a semantic	based model repository  
- a collaborative environment for model development 
- an execution environment 
- and a process for component	based development using BOM	based simulation model 

components 
2. Design and development of methods and techniques for supporting simulation model 

component discovery, match and composition  
3. Utilization of BOM, SRML (Simulation Reference Markup Language), HLA, XML (eXtensible 

Meta Language), Semantic Web, Web Services and agent	based technologies for development of 
the proposed framework  

4. Implementation of an agent based environment for realisation of the proposed framework. 

! ' ���
��	���������	�	������

In dealing with the above issues the work has been inspired by different research directions and 
technologies, each contributing in solving the main topic of developing a framework for CBMD. These 
research directions and technologies are briefly presented below, some of which have been directly 
used in this work.  
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In this thesis we have investigated the leverage	potential of BOM and a process has been developed 
on how to utilize BOMS as building blocks and simulation components for component based 
development of simulation models [13]. The concept of BOM has been extended with additional 
semantic information in order to support automatic discovery and composition of BOM based 
simulation model components. 

Different simulation specification formalisms have also been studied, such as DEVS (Discrete Event 
System Specification) [10] and SRML (Simulation Reference Markup Language) [181] as languages for 
formal description of simulation models. DEVS has been chosen for its ability to describe and develop 
models using a mathematical formalism including well	defined separation of concepts supporting 
distinct M&S layers. SRML has been used for describing target simulation scenarios in a formal way.   

The development and structuring of BOMs and ontologies has been done using the Semantic Web 
technology [157], Web Services, OWL (Web Ontology Language) [178], and OWL	S (OWL for 
Services) [131]. We have also studied some of the Web Service Composition techniques and made use 
of them for the purpose of composing simulation model components. The WS language that has been 
utilized in our work is OWL	S, which is an upper ontology to structure WS. In this research 
OWL/OWL	S has been used to structure the semantic annotation that has been added to the BOM 
descriptions as an attachment to enhance the semantic expressiveness of them [36].  

The automatic code generation has been performed by utilizing the Frame Technology and XVCL 
(eXtensible Variant Configuration Language) [184]. XVCL’s ability to capture common parts of 
simulation architectures provides us with the means to ensure syntactic composibility of simulation 
components.  

The agent technology has been utilized in this thesis to develop an environment that glues all pieces 
in our framework together and automate the discovery and composition process. Here some of the 
features of agent based environments such as autonomy, social ability and adaptation has been in 
focus.      

Besides the above mentioned, other technologies have been investigated and utilized in our work for 
development of the semantic	based model repository, collaborative working environment and the 
execution environment. These technologies include XML [174], GRIDS [48] and HLA [56]. 

! ( ����������	��������	���	�������������

The focus of this research has been identifying the main components for CBMD, testing and 
developing technologies for implementing the CBMD framework, defining a process for discovery and 
composition, and developing an agent based environment for realisation of the process. The key 
questions to answer have been: (i) how to structure simulation components, containing ���������	 
semantic information to facilitate automatic/semi	automatic discovery and composition of 
components, (ii) how to identify suitable simulation components based on formal description of the 
target simulation model, and finally, (iii) how to perform model composition and reason about the 
composability of components. The framework should be able to check the compatibility of 
components based on semantic annotation defined in the component model and the related ontology 
information, and verify the resultant behaviours of the composed model. The latter requires a model 
composition process to describe the interactions and dependency of simulation components. 

The automatic/semi	automatic discovery and composition aspects of the framework, aims at 
supporting simulation developers saving a lot of time and effort. This way developers do not have to 
manually find and study hundreds or thousands of components to find out which one is suitable for a 
simulation purpose. Moreover, using the semantic information inside components might ensure that 
the composition – when found – actually is optimal and will yield a better simulation result. Even a 
semi	automated process might provide some assistance to a simulation developer in terms of feedback 
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on compatibility. Finally, an automated process might also support creating missing components 
needed in a simulation. 

The main contributions of this research have been:  

1. Design and development of the CBMD framework (see part II, papers 3 and 4) including 
a. a distributed, semantic	based simulation component repository (see part II, paper 8)  
b. a collaborative working environment (see part II, paper 1 and paper 5) 
c. an execution environment (see part II, paper 2 and paper 6) 
d. and a process for component	based development using BOM	based simulation model 

components and SRML (see part II, paper1 and paper 7) 
2. Enhancement of BOM descriptions with a Semantic BOM Attachment, inspired from research 

within fields of Semantic Web and Web Services (see part II, paper 9) 
3. Development of a rule	based method and three	layered model for discovery and composition of 

BOM	based components, including a method for matching BOM state machines (see part II, 
paper 9)  

4. Design and development of an agent	based environment for discovery and composition of 
BOM	based components (see part II, paper 10)   

! ) ����������	�������������

The thesis is structured in two parts.  

! ) ! "����#��

This part consists of 7 chapters.  

•  In chapter two a survey of the Component	based Modelling and Simulation is presented, 
including an introduction to modelling and simulation, and distributed simulation. 

•  Chapter three is a brief survey of component	based methodology in software engineering, and 
different approaches for achieving this.  

•  Chapter four outlines a short introduction to the field of Semantic Web, Web Services and Web 
Service Composition including different matching techniques.  

•  Chapter five is an introduction to some related technologies that was studied and used in this 
work. 

•  Chapter six introduces NetSim and the CBMD framework that we have developed during this 
work as part of a project within the Swedish Defence Research Agency (FOI). This also includes 
the collaborative working environment, the distributed semantic	based resource repository, and 
the execution environment.  

•  Chapter seven is a description of our discovery and composition process, the Semantic BOM 
Attachment, the three	layered approach to composition of BOM	based components and the 
agent based environment developed to realize the above process including the agent architecture 
and implementation. This chapter also includes the evaluation of the proposed method and the 
conclusions. 

! ) $ "����##�

This part consists of 10 published papers, presenting the main contributions of this thesis. 
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This chapter gives a short survey of the topic of component	based modelling and simulation, and 
motivations behind component based approach to development of simulations/simulation models, as 
well as presenting main concepts and challenges. The survey begins with some background definitions 
regarding modelling and simulation, distributed simulations and related standards. Finally component	
based modelling and simulation, the concept of composability and different techniques are presented.  

$ ! �	��������������������	��

Modelling and Simulation (M&S) is a method and tool that has been utilized throughout business, 
military, and academic community to find solutions to a great range of problems as well as an aid in 
decision making. M&S is a relatively inexpensive method for analysing and studying a system, whether 
it exists in the real world or yet to be built. It provides possibilities to reduce, amongst others, 
manufacturing and training costs and a means to study complex systems before actual physical 
prototyping. For instance, employing simulations early in the design phase of a product life cycle can 
detect and avoid costly errors in later stages of the development process. Furthermore, training of 
personnel using simulated systems can be done at a fraction of the cost of running exercises involving 
real systems. Some of the areas of application for M&S are [6]: 

	 development of military systems and concepts as well as for training, studies and analysis of 
military operations 

	 designing and analysing manufacturing system 

	 designing communication systems and protocols  

	 analysing financial or economic systems 

The two basic concepts in M&S are of course, ����� and ������	���. A model is a representation of 
something, such as a real world phenomenon. It is an abstraction, where those aspects of a system 
which are to be studied are highlighted and other aspects are simplified or omitted. A model can for 
instance be purely mathematical, represented as a Petri net, a queueing net or in a programming 
language. There are different types of models. Models can be static/dynamic, deterministic/stochastic, 
and continuous/discrete [6], [68].  

Simulation is a process of running a model over a period of time, by e.g. using computers in order to 
evaluate the system under study. This way, simulations are used to describe the behaviour of a system 
in a formal way and to draw conclusions from it. A simulation constitutes a collection of entities that 
represent objects in the system, events that represent interactions between the objects and a set of 
states that represent collected information about the objects at each time interval. A simulation is of 
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the same type as the corresponding model, i.e. static/dynamic, deterministic/stochastic, or 
continuous/discrete. In this work the focus is on discrete	event M&S [6].  

A model that is developed for the purpose of simulation here is referred to as a ������	���������. 

$ $ *�������������������	��

As mentioned above, continuous time and discrete time simulation are two separate classes of 
methodologies, which have emerged over the years and are widely used for simulating complex 
systems. As the terms indicate, in a continuous simulation changes in the state of the system occur 
continuously in time, whereas in a discrete simulation changes in the system take place only at selected 
points in time. One kind of discrete simulation is the fixed time increment, or the time	stepped 
approach [6]; the other kind is the discrete event method [6], [147]. Thus, in a discrete event simulation 
(DES) events happen at discrete points in time and are instantaneous [10].  

The traditional DES, as described above, is sequential. However, many practical simulations, e.g. in 
engineering applications, consume several hours (and even days) on a sequential machine. An 
alternative solution would be to use parallel simulation (PDES), where several processors cooperate to 
execute a simulation program and complete it in a fraction of the time that a single processor would 
need [75], [91]. Hence, parallel simulation techniques provide a way for reducing the execution time of 
simulation programs.   

The rationale for distributed simulation (DS) is however different. Computer simulations started as 
simple computer programs that ran a set of predefined calculates and returned a result, but as 
simulations have become more and more complex, the need for distributing the execution of 
simulations has increased [42]. Hence, the focus of DS is to enable several simulations to interact and 
collaborate on a network of computers [25], with the objective of promoting reuse of simulation 
models, interoperability between simulations models and scalability of simulations. Today there are two 
IEEE standards for distributed simulations (Distributed Interactive Simulation 	 DIS and High Level 
Architecture 	 HLA) and it is normal that large simulations exercises are executed on distributed 
platforms. Doing so, several computers aid in processing events and doing calculations. In the 
following sections some of the techniques and standards in DS, such as Simulations Networking 
(SIMNET), DIS and HLA are presented and described. 

$ $ ! ��������	��+���	�
����,�#�+-�.�

The first step toward distributed simulation was taken by ARPA (Advanced Research Projects 
Agency) in 1984 with the start of the SIMNET project [148]. In SIMNET, the simulation models, 
which were originally built as stand	alone simulations, were connected together through network 
protocols to participate in joint simulations. In 1986 two tank simulators were connected for the first 
time to interact with each other in a simulation. A scenario consisted of hundreds of simulators located 
on different parts of USA were developed by April 1988. The initiative proved to be successful. In the 
developed scenario it was even possible to let real live entities with communication and visualization 
equipment, participate in the simulations in the same manner as the simulated entities, [173].  

The success of SIMNET proved that it was technically possible for models to interact, and 
simulations could be used in a much broader sense. The conclusion was that instead of building large 
stand	alone simulation models, for each training or analysis, one could develop small and specialized 
models that would interact with each other. Hence, it would be possible for models to be reused in 
different simulations, which were built in a modular fashion [25].  
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The success of SIMNET and introduction of specialized models that interact with each other raised 
the issue of interoperability and the need for a standardized communication interface, which has been 
the main concern of DS developers and users since 1990. In order to handle the interoperability issue 
DoD (Department of Defense) in USA proposed to adopt DIS as a standard framework for 
communication among simulations. The proposed DIS standard was approved by IEEE as IEEE 1278 
in 1993. 

The idea of DIS was to enable simulation models to broadcast and receive information over a local 
or a wide area network [167]. In the DIS architecture, each simulation model is an autonomous node 
and there is no central node. Nodes can enter or leave an ongoing simulation exercise. The 
communication of information is done, by broadcasting protocol data units (PDUs) over a computer 
network using the User Datagram Protocol/Internet Protocol (UDP/IP) [46]. The PDU formats are 
specified in the DIS protocol standards. A model broadcasts PDUs either in a case of an event 
occurrence or to inform the other models about its status. Other principles and features of DIS are the 
transmission of ground truth information and dead reckoning [97], [167], [168]. Dead reckoning is used 
in DIS to minimize the network communication cost.  

DIS has been mainly used in “synthetic military exercises”, but in the recent years, the work in DIS 
community has been expanding to encompass both military and commercial applications such as 
entertainment, air traffic control and emergency planning. Although DIS has been successful in many 
aspects, it is limited as a framework for distributed simulations. To start with PDUs are very rigid, e.g. 
in a case of new event types, new PDUs must be created and introduced. Moreover, since all PDUs are 
broadcasted (to all simulation nodes) the communication cost in DIS is very high and a lot of irrelevant 
information is communicated between nodes. Another problem with DIS is the lack of time 
management. All simulation models in a DIS exercise must have the same timescale. Hence, it is only 
suitable for real	time simulations. In order to solve the above problems a more general infrastructure 
had to be developed. The result was a shift from the existing DIS infrastructure to the new High Level 
Architecture (HLA). In 1996 DoD reassessed the interoperability issue and mandated that all M&S be 
HLA compliant by 2001. The strength of HLA was that it took advantage of current and emerging 
technologies. �

$ $ & ����������/�%�����������	��"�	�	�	��,�/�".�

ALSP is the DoD’s standard for connecting constructive and time managed military simulations 

supporting analysis and training. The ALSP project was initiated in 1990 through ARPA to examine 
the feasibility of extending the distributed environment utilized by SIMNET to existing, so	called 
“aggregate” combat simulations [140].  

By aggregate level simulations we mean simulations, which represent fundamental military entities 
such as battalions and fighter squadrons. Entity level simulations are used to train on a small scale (e.g., 
for individual soldiers), whereas aggregate level simulations provide a training environment at much 
larger scales for training command and battle staff [97]. ALSP uses an event	oriented approach and has 
mainly been developed for constructive simulation [150]. The protocol guarantees causality by applying 
conservative synchronization mechanisms based on the Chandy	Misra	Algorithm [91]. 

ALSP can be regarded as a first starting point for supporting interoperability among heterogeneous 
systems. In the terminology of ALSP, different participants (called confederates) form a common 
distributed simulation (called confederation). Data transmissions follow a broadcast principle (as under 
the DIS protocol). ALSP (as well as HLA) employs an object	oriented world	view. A confederation 
models objects with attributes. Ownership transfers of objects are possible between confederations. 
ALSP already contains a number of similarities to HLA and can be regarded as a subset of the HLA 
standards. Certain services are still missing (e.g., time management among different kinds of 



 14 

simulations, data distribution management). ALSP Infrastructure Software (AIS) [1] is analogous to 
RTI in HLA and can be regarded as a distributed operative system, which provides a set of basic 
services to confederates, mentioned above. 

$ $ ' ����0����/�%����������������,0/�.�

HLA also provides a framework for simulation models to participate and interact in joint simulation 
exercises [43]. It has adapted ideas from both DIS and ALSP and aimed at addressing the 
shortcomings of those approaches. While DIS is most suited for real	time simulations and ALSP is 
developed to handle constructive aggregate level simulations, simulations in HLA can be of different 
types, developed for different purposes, at different aggregation levels and with different timescales 
[57], [77]. These simulations also referred to as ����
�	�� are connected and communicate with each 
other through a distributed operating system (HLA Runtime Infrastructure, RTI) and build a joint 
simulation, which is referred to as ����
�	���.  

The main purpose of HLA is to facilitate interoperability among simulations and to promote reuse 
of simulations and their components. The HLA is composed of three major components: (1) HLA 
rules, which must be followed in order for the federation and federates to be considered HLA 
compliant; (2) HLA interface specification, figure 1; and (3) HLA object model template (OMT), which 
is used to describe objects and interactions in a federate/federation with their attributes and parameters 
[42]. An object model describing a federate is called Simulation Object Model (SOM), and the object 
model that defines a federation is called Federation Object Model (FOM).  

 

Figure 1 HLA Runtime Infrastructure and the associated services 

 
The HLA Interface Specification is realised in a collection of software called Runtime Infrastructure 

(RTI). RTI provides common services required by multiple simulation systems. The services, which are 
described by the HLA interface specification [57], fall in six categories:  

	 !���
�	���� ���������	6 Provides functions for creating, modifying, controlling and destroying a 
federation execution. After creating a federation execution federates join and resign the federation 
as they wish as long as it serves the purpose of the simulation. 

	 )�2��	� ���������	6� Federates create, modify or delete objects and interactions through Object 
management services. 

	 +����
�	�������������	6�Provides federates with the ability to express their intentions or interests in 
publishing or subscribing to object attributes and/or interactions. 

	 ��������������	6 Provides a flexible and robust means to co	ordinate events between federates. 

	 )���
����� ���������	6 Provides federates with the possibility to exchange ownership of object 
attributes among themselves. 

	 +�	�� ���	
���	���� ���������	6 Provides mechanisms for efficient routing of information among 
federates. 
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As mentioned in section 2.1, simulation models have become more complex, and demand more 
resource and time to develop. Furthermore, there is also the issue of quality and usability of the 
developed simulation models. A simulation model development process involves different phases 
including, requirement specification, conceptual modelling, design, development, test, verification and 
validation, which requires involvement of different actors such as modellers, subject matter experts, 
validation and verifications experts and end users.  

Issues such as, time and resource costs, quality and usability are some of the challenges that may 
prevent proper utilization of M&S. These challenges partly depend on the size and complexity of 
simulation models, but there are also other factors, as they have been pointed out by [5], such as:  

	 Increasing system complexity (e.g., networks of systems) 

	 Decreasing cycle times for system innovations 

	 Increasing lifetimes of systems 

	 Increasing variety of M&S	aspects and purposes, e.g., safety, reliability and so on 

	 User acceptance: Ease of use and credibility 

	 Integration of virtual and augmented reality 

An approach to address the above challenges and reduce the costs associated with the development 
process and improve the usability of models, is to compose simulation models through reuse of 
predefined and already existing, validated simulation components [141], [137]. Using this method the 
simulation model is built in a component	based and modular fashion. The component based 
methodology has the potential to help reducing the costs of development of simulation models and to 
improve the quality and user	worth of those models. This approach has been amongst others pointed 
out by [5], where the author proposes introduction of a model engineering process “based on reusable 
and interoperable model components”. DS techniques as explained in previous section are one method 
for addressing this issue.  

The concept of component	based development has been successfully deployed in engineering 
desciplines, such as manufacturing, hardware and partly software industry. Software engineering has 
adapted this method through e.g. employment of object	oriented methodology and techniques [8], and 
technologies such as CORBA [78], EJB [156] and COM+ [20], which have simplified the development 
of complex software systems. 

However, component based development approach is fairly new within the M&S community and 
developing models through composition is not trivial. Today, there is a lack of clear understanding of 
what component based M&S is, how model components could be structured, how they are to be 
specified and what technologies exist to facilitate syntactic and semantic composition. There are 
various techniques available for component based M&S, but there is no general approach and the 
terminology in the field is not mature. The existing simulation composition environments are mainly 
developed for specific simulators (simulation frameworks) and within specific domains [44], [29], [141]. 
One of the main reasons presented in the literature is that the issue of reuse and ��	�
�����������	� of 
components is very hard to tackle and not practically possible if components are expected to be used in 
different compositions [44]. Especially since these compositions can differ from the purpose and the 
context for which the components have been originally developed [92]. Hence, the suggested solution 
according to those approaches is that components are interchangeable if they have been built with the 
same simulator. However, this is far from being the only issue that this field is faced with. Paul Davis 
in [141] sets up a list of factors affecting the difficulty of component	based M&S, which fall within the 
following four categories: 
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	 Complexity of the system being modelled, including the size of the system being modelled, number 
of interfaces, parameters and messages to be exchanged among components, and the complexity of 
the components themselves. 

	 Difficulty of the objective for the context within which the model or simulation is being composed, 
which may depend on the uncertainty of the objectives, the degree of control needed, the degree of 
flexibility, and the degree of plug	and	play sought. 

	 Strength of the relevant science and technology, including standards. Here lack of knowledge about 
the system to be modelled, legacy modules, and the field of M&S can be contributing factors to the 
increased difficulty of CBMD.  

	 Quality of human considerations, such as the quality of management, the skill and knowledge of 
the work force, and also having an interest community. 

Figure 2 illustrates the above categories in a diagram, where the x	coordinate represents the size and 
complexity of the system to be modelled and the y	coordinate presents the risk of failure.  

In the next sections some of the techniques (architectures and frameworks), which have been 
developed or formulated to overcome the above difficulties are outlined.  

 

 
Figure 2 Diagram illustrating project risk vs. various factors (taken from [141]) 

$ & ! �	�	����2�������	��������������������	��������3����

As mentioned previous section, there is no general approach to component	based M&S, rather 
various techniques exist for handling the issue. In this section two different classifications of these 
techniques are presented and the relation between them is discussed. In [5], Lehmann makes the 
following classification of different current techniques for component	based M&S: 

&��
�
�����������������(������������	�����������
���	���6 Hierarchical modelling can be used and found in 
all aspects of systems modelling, and is the technique of building a larger system from smaller 
subsystems down to basic building blocks [10]. An important concept in this technique is 
decomposition, namely how a system may be broken down into a set of components. A second 
concept is that of composition, i.e., how components may be coupled together to form a larger system. 
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The main objective here is to be able to form an aggregated component by assembling a number of 
other components and hence, reduce complexity and enhance scalability. 

8���
���������������2��	�	�����	���������������������,��2��	����
�
���6 This approach provides a basic structure, 
in the form of an object	oriented framework, to develop models in an easier fashion. DESMO	J [147], 
developed by the University of Hamburg, and JAMES II [85] , developed at the University of Rostock, 
are two examples of such object templates. It is an object	oriented framework for discrete	event 
simulation developed in Java. The general approach is similar to many other simulation systems, where 
models can be inherited from skeletal base classes, offering pre	defined methods which need to be 
overridden and implemented. There are a number of advantages to this approach. First of all there is 
no need to learn a specific simulation language, since many programmers are familiar with object	
oriented development and are proficient in Java. Secondly, simulations written in a framework such as 
DESMO	J can be easily integrated in other software systems. However, there are also some 
disadvantages, such as lack of formal description of the behaviour, which is useful for model 
component composition.  

!���	���,%
��
������
�
���6 The aim of this method is to provide tools and utilities helping modellers, 
such as random number generators, input	data analysis, visualisation of statistical data, etc. These 
utilities are not an integral part of a model, but common to all of them. To express that a model 
component needs a certain service or library to fulfil its task, context dependencies are modelled with 
respect to tools/libraries. 

 �����������������	����������6 This method was partly described in the previous section describing the 
field of distributed simulation. The goal here has been achieving simulation reusability and 
interoperability through the coupling of models, which might be monolithic and not being constructed 
to work with other models in the first place [77], [142].  

 

Another classification of current techniques is done in [29]. These techniques have been referred by 
the authors as engineering approaches to composability. By engineering the authors mean that these 
approaches mainly address the syntactic aspects of the compositions. These techniques are as follows: 

 ������'��
�
��$��
����6 This approach utilizes a library of reusable software modules. The library 
contains components in varying levels of composability, where no component is a stand	alone 
simulation. A single team is responsible for development of components, which are to be combined in 
different combinations. The approach relies on documentation to enable component reuse. It is based 
on open architectures, and provides tools, services, standards and interfaces for component	based 
simulation development. JMASS (Joint Modeling and Simulation System) is an example of the 
Common Library Approach [171].  

%
����	�'����$��
����6 This approach “provides a contained simulation development system utilizing 
layers of products for development of specific simulation systems and enabling comopsability” [29]. It 
includes services and tools for modification and reuse of components, and development, configuration, 
execution and analysis of simulation and models. Components in this approach are at various levels of 
composability, and as in the case of the Common Library Approach, none of the components are 
stand	alone simulations. However, the components may be written by different teams and still work 
together in various combinations. In this approach metadata and documentation is needed to ensure 
component reuse. OneSAF (One Semi	automated Forces) is an example of a system based on this 
approach [1]. OneSAF consists of various products, which all contain a set of standard components. 
These products include military scenario planner product, model and simulation composer product, 
simulation generator product, simulation core product, etc. 

*�	�
���
�����	�� %
�	����� $��
����6 As the name implies this approach utilizes an interoperability 
protocol such as DIS, ALSP or HLA for run	time exchange of data or services between different 
components. Components in this approach are simulations that basically can run independently, except 
for sending and receiving data. Using a standard interoperability protocol provides an open 
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architecture. However, these protocols mainly provide data transfer, and semantic composability may 
be achieved manually. There are a large number of systems that use this approach such as, the 
Combined Arms Tactical Trainer (CATT) [53], the Joint Simulation System (JSIMS) [139], and the 
Close Combat Tactical Trainer (CCTT) [53].  

)�2��	������� $��
����6 The prerequisite of this approach is a standard for model specification, in 
which the models (components) are reusable only after modification or the development of suitable 
interface. Components are not stand	alone simulations, and documentation is needed in order to 
facilitate reuse. The main candidate for this approach is Base Object Model (BOM) [159], which 
provides an open architecture. The main purpose of BOM is to improve interoperability, reuse and 
composability by providing ��		�
�� and ��������	� of simulation interplay to be used as building blocks 
in the assembly of simulations and enterprises of simulations. The BOM is designed to work with 
interoperability protocols such as HLA. However, it is not a requirement. The component	based 
framework which utilizes this approach may include tools, services, interfaces and standards [34].  

!�
���� $��
����6 The purpose of this approach is defining composability in a theoretical and 
mathematical manner using a simulation formalism such as, Discrete Event System Specification 
(DEVS) [10] and the Semantic Composability Theory (SCT) [101]. This approach uses formal methods 
for proving how components can be composed. DEVS is a formalism, introduced by Bernard Zeigler 
et al, for component based model development, which addresses engineering composability i.e. the 
syntactic aspects of compositions without proper support for ensuring validity of those compositions. 
SCT is a formal theory for composability, where a model is defined as a function, a simulation is 
viewed as execution of a function, and model composition is seen as a composition of functions. SCT 
addresses semantic composability of components. However, SCT (as will be explained in 2.4) has a 
limited scope, is still very theoretical and there is no formal language for describing models. 

Please note that this is not a complete list and there are other approaches, which have not been 
covered here. What is notable however is that there are a large number of research and development 
efforts spent in this direction, and many frameworks have been constructed to reduce complexity of 
the M&S development process. Moreover, the two classifications mentioned above overlap and what 
they mainly have in common is that most of the approaches cover syntactic aspects of compositions. 
Semantic is basically achieved within specific application domains through precise specification of 
interfaces, which of course provides limited reusability. Syntactic and semantic aspects of 
compositions, brings us to the next topic, namely composability. 

$ & $ �	�	���������

Composing sub	models to build new models raise the non	trivial issue of composability. There are 
different definitions for composability in the literature. One of the most accepted and quoted 
definitions, is by Petty et al, where composability has been described as “	�����������	��	�������	��������������

��������������	������������	�����(�
������������	�������	��������	�������	����	�����	����
�
�9��
����	�” [30], [101], 
[102], and [103]. What characterizes composability according to this definition is the ability of 
combining and recombining components in different compositions [101]. 

Another view on composability that relates highly to this work can be found in [93]: 

:8�(��� �� ��	� ��� ��������	��� �	
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��� ����
��	����� �
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��� �����������
�����������	�
������� ����� ��	� ���
��������	��������������	�(�������������;�

There are three main types of composability, syntactic, semantic and pragmatic. Syntactic 
composability is concerned with the compatibility of implementation details, such as parameter passing 
mechanisms, external data accesses, and timing mechanisms. It is the question of whether a set of 
components can be combined [101], [16]. Semantic composability, on the other hand, is concerned 
with the validity of the composition [30], i.e. if the components that are composed can have 
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meaningful communication and reach the simulation goal together. Pragmatic composability is yet 
another type which is concerned with the context of the simulation, and whether the composed 
simulation meets the intended purpose of the modeller [104]. 

Within some specific application domains, model components have already been implemented, and 
syntax specifications for composition of model components are available [185], [16], [55]. Hence, there 
have been some significant achievements in syntactic composability both within software engineering 
and simulation communities. However, semantic and pragmatic composability is a much harder 
problem [101], [35], [137] and has inspired many researchers to conduct both theoretical and 
experimental research. In this work the focus is mainly on syntactic and semantic composability and 
pragmatic composability has only been partly adressed.  

A good example regarding syntactic composability is HLA, which provides a simulation 
environment and standards for specifying simulation (federate) via Simulation Object Models (SOMs) 
and interactions between simulations (federation) via Federation Object Models (FOMs). However, the 
problem with HLAs current standards for describing federates and federations using SOM and FOM, 
is that they contain only enough information for an underlying runtime implementation to assure that 
each federate/federation is behaving as it has promised via its SOM and FOM. Although a well	versed 
federate developer might be able to read a FOM or SOM and deduce how it works, neither of the 
formats were designed to contain semantic information about what they intend to simulate. Hence, 
HLA provides interface specifications and rules which only facilitate technical aspects of compositions, 
i.e. syntactic composability [57], and there is little support for semantic composability. As an attempt to 
handle the above issue, the (distributed) simulation community has recently formulated a standard, the 
Base Object Model (BOM), to ease reusability, composability, and interoperability [158]. This is a very 
promising standard, which we have investigated in this work. A detailed description of BOM will be 
presented in the section 2.5. 

However, before we attempt to solve the issue of composability we need to better understand the 
concepts and the kind of approach required to do so. As mentioned before there is a lack of clear 
understanding of what component based M&S is, and how model components could be structured and 
specified. A very interesting initiative for facilitating better understanding of the concepts and laying 
the foundations for component based simulation model  development is taken by [102], where the 
authors describe composability by giving it a clear definition and also clarifying its lexicon. Amongst 
others they depict nine different levels of composability, based on what is being composed, i.e. 
components, and what the result of the composition is. Composability as it has been described and 
referred to in the literature, falls within one of these following levels: 

	 $������	���6 this level comprises applications that are composed together to build simulation events, 
exercises or experiments.   

	 !���
�	�6 a representation of this level is HLA, as explained earlier, where simulations are connected 
together to build distributed simulations that communicate in run	time.  

	 %������6 simulations are being composed through utilization of pre	assembled packages of models, 
which form a subset of the domain of interest. 

	 %�
���	�
6 here is the focus on configuration of pre	existing simulation by using parameters. 

	 ������6 modules are used here to compose executables  

	 �����6 at model level models at smaller scales are put together to develop models at larger scales 

	 +�	�6 databases are developed through composition of sets of data. 

	 7�	�	�6 where units such as military forces are build by composing entities/platforms. 

	 3���(���
6 behaviours at lower level are composed to build higher level behaviours to be used by 
computer generated forces or in constructive simulations. 

These levels are directly related to different initiatives and techniques (partly described in the 
previous section) that have been developed, all aiming at facilitating component based development 
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and in some cases providing architectures and environments for that purpose. Besides their differences 
regarding what a component is and how compositions are accomplished, they support different 
degrees of composability. Realistically the vision of plug	and	play is more of a utopia and in reality we 
would always need some degree of component adjustment and adaptation before we are able to 
compose a set of components [141]. This adaptation is done through reconfiguration of simulations, 
adjusting the models and giving them proper interfaces, making changes in the existing simulation 
code, etc. In either case, these adaptations are hard to make without proper documentation [141], 
[137]. It is much easier for a human to read and understand a textual description of a component than 
a program code, and use it as a basis for selecting and adapting the component. Thus, documentation 
is a critical constituent for supporting successful composition, requiring that composability should be 
pursued at the conceptual and description level. Without proper documentation, incompatibility of 
components can not be discovered until after assembly and testing of compositions. Furthermore, to 
support modellers through automation of the selection and adjustment processes, and formal 
reasoning about the prospects of composability, these descriptions should be presented in a formal 
way.  Experiences from the software engineering community, where this type of documentation and 
formal reasoning has been implemented, have the potential to provide a good support for component	
based simulation/model development and hence provide potential path to progress. One of the 
technologies that can have great benefit for component based modelling and simulation is Semantic 
Web, which has been used in this work. In [144] a comparison between component	based software 
engineering and simulation composability is done. The authors also point out three different 
technologies from the software engineering domain with the potential to support simulation 
developers. These technologies are: 

	 Predictable Assembly from Certifiable Components (PACC) and Prediction	enabled Component 
Technology (PECT) 

	 Web Ontology Language (OWL) and Semantic Web 

	 Unified Modeling Language (UML) and Model Driven Architecture (MDA) 

The above technologies are further explained in chapter 3 of this thesis.  

$ & & #����	����������

The issue of interoperability has been of major concern within the modeling and simulation 
community [167]. The rationale behind interoperability is that connecting systems of various types 
developed for different purposes, during different technological eras and for different platforms, 
inflicts major difficulties. It is required that systems are capable of inter	communication, but also that 
the communication is semantically and syntactically agreed upon. If these basic requirements are not 
met, systems may interoperate for the wrong reasons.  

Luckily, the rapid development of web/network related technologies brings new possibilities for 
overcoming the interoperability barriers and problems related to availability and management of 
resources. For example, through new ways of exchanging data, XML [174], distributing resources such 
as P2P [89] and Grid computing [48], and assuring semantic and syntactic correctness via Semantic 
Web initiative [157]. 

Interoperability in M&S is closely related to composability, and in order to avoid confusion it is of 
interest to separate these concepts. However, it should be noted that interoperability is not only 
restricted to the field of modelling and simulation. Consequently, there are various definitions of 
interoperability available. In the context of IEEE interoperability is defined as “the ability of two or 
more systems or components to exchange information and to use the information that has been 
exchanged” [63]. The Department of Defense in US has several definitions of the term basically all 
related to weapons systems [88]. In [64] interoperability is described as “the ability of a system to use 
parts or equipment from another system”. And finally, in the context of modelling and simulation, 
interoperability has been defined as the ability of different simulations connected in a distributed 
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system to collaboratively simulate a common scenario [100]. Even if the definitions are slightly 
different and represent different disciplines, they are some communalities between them, such as the 
concepts of system, communication, reuse, and mutual understanding, which are of course also 
essential concepts in composability.  

Furthermore, similar to composability there are two types of interoperability, technical and 
substantive. Technical interoperability requires that simulations (components) are compatible with an 
interoperability protocol. The interoperability protocol is responsible for exchange of data between 
simulations. Substantive interoperability on the other hand is satisfied if the exchanged information is 
semantically meaningful [100].   

The difference between composability and interoperability that has been pointed out in the literature 
is that components that are interoperable in one configuration, but cannot be combined and 
recombined in other ways (��	���	�����������	�����
	) are not composable. In other words, interoperability 
is a prerequisite of composability, i.e. components that are composable are also interoperable. 
However, the reverse relation does not hold, i.e. components that are interoperable are not necessarily 
composable.  

$ & ' ��������	���	�����	�	������

So far we described what component	based M&S is in the context of this work and how we define 
composability. But no definition has been given concerning simulation model components, which is 
the purpose of this section. 

We begin with differentiating between ������	���� ��������	� and ������	���� ������ ��������	�. A 
simulation component in our terminology is an executable program, while a simulation model 
component is a description of a model in a formal way. For instance an HLA federate is a simulation 
component, and a BOM is a simulation model component which does not include any program code. 
Now having that in mind when we go through the literature we do not find any clear and unambiguous 
definition of what a simulation model component is. For instance a component can either be a stand	
alone simulation or not. It is also unclear how much a component reveals about its internal functions.  

Since a simulation is a special type of software, a good place to start to get some idea and describe a 
simulation model component is to look at what a software component is. There are different 
definitions of software components in the literature. The most informal definition is given by [14], 
where the author means that a component is :���	�(�
��������	� �	� 	����;. Unfortunately, this definition 
does not help our case that much, but it gives some indication regarding the state of the field.  

A more formal and precise definition is presented in Unified Modelling Language (UML) 
specification [133]: 
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This definition is valid for any type of system, e.g. a simulation system. The two important aspects of 
the components (pointed out in this definition) are the interface that they provide in order to facilitate 
composition, and the fact that their internals are hidden and only accessible through their interfaces. 
Furthermore, the components can be deployed independently, be used and reused through their 
contractual specified interfaces [19].   

A third, not so detailed, definition that has been of interest to us is given by [175]: 

:$����	��
����������	���������	��
��������	�	��	������
���	������������	����������������������������	������������
���������������	���	���������	��������
�����	�����������	�����	����
��;�



 22 

Here it is pointed out that a component should conform to a component model which is quite clear, 
and that components can be used (reused) in different combinations, as in the previous definition. 
However, according to our understanding of composability, the above definition is quite rigorous 
when it states “>��� �����������������	���������������������������	���	���������	���>”. In our opinion some 
degree of component modification is acceptable.   

Another issue to consider is if a component should be perceived as a black	box, which it has 
traditionally been seen in software engineering, and is evident from the above definitions. We believe 
that in order to be able to reason about the composability of components, besides the knowledge 
about the external interfaces of the components, we need to have access to information regarding the 
internal behaviour of the components. It is not about implementation details rather information about 
the internal states of the components, and how and when they change. This is more like looking at the 
component as a white	box [141], rather than a black	box. This view has also been adapted by the 
software engineering community as discussed in chapter 3.     

Based on the definitions above, our discussions, and the concept of composability, presented in the 
previous section, we have adapted the following definition of simulation model component in the 
context of this work.   

“A composable simulation model component is an autonomous element of a simulation model, 
which conforms to a component model, and has well	defined functionalities and behaviours, presented 
via its interface describing its communication with other components and a formalised description of 
its internal behaviour. A simulation model component is not a stand	alone component, but can be 
independently deployed, and it is subject to third	party composition with or without modification.” 

$ ' ���	���	���	�	���������

In this section an introduction of the theory of composability is given. Theory of composability or 
“semantic composability theory” (SCT), which it has also been called, is an initiative developed at the 
Virginia Modeling, Analysis & Simulation Center (VMASC). The aim of the SCT is to check and prove 
the semantic composability of components using formal descriptions and reasoning [101], [103]. For 
this purpose formal definitions of basic concepts such as, model, simulation, composite model and 
validity have been suggested. These definitions act as a basis for building the theory. Furthermore, the 
theory has also two main assumptions. First of all, SCT assumes simple composition (horizontal 
composition), i.e. composition of the form �(�(x)), where the output of one model is the input of the 
next model. Second assumption is that data is passed between the models without same	step loops, i.e. 
output of one model is not input to itself (directly or indirectly) within the same computation step. 
This section gives a short description of SCT. For a complete description of SCT see [101].  
 

 
Figure 3 Presentation of simulation in the context of SCT (taken from [101]) 
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In the context of SCT a model is a computable partial function, which transforms a set of inputs and 
current states (domain) to a set of outputs and consequent states1 (co	domain). A computable function 
is a “����	���� 	��	� ���� ��� �����	��� ��� �� ����	�� �����
� ��� �	���� ��� �� �����	�
� �
��
��� �
� ���� �9��(����	������� ���
�����	�	���; [101]. And what is special about a partial function is that it associates each element of the 
domain at most to one element of the co	domain. This means that not all the elements of the domain 
have to be associated with an element of the co	domain. 

Simulation has been defined in SCT as a sequence of executions of a model, where the output from 
each execution step is the input to the next step of the execution. This definition is equivalent with the 
description of synchronous systems [101]. Figure 3 depicts how simulation is done as an execution of a 
model through different steps, as presented in SCT. In this figure the execution of model ��at each step 
is presented, where the input to the model at each step is partly from the previous execution step, mx, 
and partly from outside, ix.  

 
Figure 4 Composite model (taken from [101]) 

 
In SCT models can be atomic or composite. A composite model is developed through composing 

other models, while an atomic model is developed directly and not through composition. A composite 
model in SCT has a formal description and is defined as set of models, each having a set of inputs and 
outputs. The composite model as a whole has also a set of inputs, outputs, current states and next 
states. Figure 4 illustrates a composite model. Validity in SCT is defined as the relation between a 
model and the real system that the model represents. The validity of the model is based upon how 
closely its behaviour matches the behaviour of the real system. A more formal definition requires 
specifying a perfect model. A perfect model is a notional model of a system, where given a set of 
current states, it produces a set of next states that exactly match the next states of the modelled system. 
Hence, a more formal definition of validity suggests that a model is valid if the difference between the 
model and the perfect model is below an application	specific threshold. There is an even more formal 
definition of validity, which follows the same line as the above definition, but will not be covered here 
[30]. 

SCT also defines validity under composition and presents formal methods for identifying classes of 
models and validity relations for which validity is preserved. However, the theory mainly considers 
validity of compositions of similarly developed models and validity relations [30].  

Another important definition in SCT is the concept of interface, which is a computable function that 
maps (copies) input variables and output variables of component models in a composition without 
changing any of their values. The interface may however, change the order of the input variables or 
ignore a subset of them.  

                                                 
1
 Note that there are formal descriptions of the terms. However, for the sake of simplicity no such 

descriptions are presented here. 
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Besides the definitions SCT includes theorems, and proves that if one has a finite set of component 
models and specification on how to connect them, it is enough to perform simple composition 
together with interfaces, to build any set of compositions from the component models. However, SCT, 
which is in its infancy, is a theoretical approach and in order to be able to use this theory one has to 
describe simulation components as functions, specify how they can be connected and define interfaces 
for compositions. Hence, SCT is the first phase in a four phase research program, where the other 
phases focus on specification of formal meta	models, development of a composability architecture and 
framework, and development of a simulation development framework [103].  

Furthermore, validity of compositions is a general problem. In the context of SCT, there are couple 
of issues which one can point out. First is the question of how to access and develop a perfect model 
of a system, especially considering systems that do not exist. And second, even if we had a perfect 
model defining a threshold value is not a trivial task, particularly if the system under study is dynamic 
and stochastic.  

$ ( �����

In this section a general description of the BOM concept, which is the chosen model for presenting 
simulation model components in this work is presented. As mentioned earlier the HLA standard does 
not provide sufficient semantic information for reasoning about semantic composability of federates. 
SOM and FOM contain only enough information to inform the underlying RTI implementation about 
how a federate/federation is going to behave, e.g. what objects are defined and updated and what 
interactions are being sent. Although a skilled federate developer might be able to read a FOM or SOM 
and deduce how it works, neither of the formats were created to contain information about what they 
intend to simulate, and how it is done. This shortcoming is one of the motivations behind introduction 
of BOM. The BOM concept has been introduced by the HLA community to provide key mechanism 
for reuse, interoperability and composability [159]. Through its formal description BOM also facilitate 
better understanding and management of components and simulations [12]. BOM is based on the 
assumption that piece	parts of simulations and federations can be extracted and reused as modelling 
building	blocks or components. The interplay within a simulation or federation can be captured and 
characterized in the form of reusable patterns. These patterns of simulation interplay are sequences of 
events between simulation components. The BOM standard is intended to influence the following 
seven capabilities within the M&S community [12], [159]:  *�	�
���
�����	�, #��������	�,  ����������	�, 
$���	�����	�, $��
���	���, ���	�"
�����	�������������, and #�����$������	����+�(�������	� <#$+=. BOMs can 
also support migrating from existing system centric solutions to Service	Oriented Architecture (SOA) 
capable modelling and simulation services [159]. 
 

 
Figure 5 BOM structure 
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A BOM is an XML document that encapsulates the information needed to describe a simulation 
component. BOMs are meant to be used as components in a simulation, so that a federation developer 
can select a number of BOMs from for example a repository and compose them together into a 
simulation without needing to know the exact implementation of each component. This is similar to 
the use of components in other fields, as was describe in section 2.3.1. BOMs are the Modelling and 
Simulation community’s proposed component standard. Even though BOMs were created based on 
ideas from HLA, meaning they include HLA OMT information, BOMs may be used without this 
information to describe any type of simulation component, a feature which makes them even more 
versatile. Since BOMs are still in their infancy, there are a limited number of tools available for BOM 
creation and modelling. The most comprehensive tool available is BOMworks [13] from SimVentions. 

$ ( ! ������������� 

BOMs are structured into four major parts [158] as can be seen in figure 5, Model Identification, 
Conceptual Model, Model Mapping and HLA Object Model. The first part, the Model Identification, is 
where metadata about the component is stored. This part includes Point of Contact (POC) 
information, as well as general information about the component itself – what it simulates, how it can 
and has been used as well as descriptions aimed towards helping developers find and reuse it. Figure 6 
shows a complete list of all items in this part. 

The second part is the Conceptual Model, which contains information that describes the patterns of 
interplay of the component. This part includes what types of actions and events that take place in the 
component, and is described by a pattern description, a state	machine, a listing of conceptual entities 
and events (conceptual entities and events correspond to how real	world objects and phenomena are 
modelled in the simulation), together describing the flow and dependencies of events and their 
exceptions. 

 

 
Figure 6 Items of the Model Identification part of BOM 
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The Pattern Description provides a list of all actions taken by the component, and describes what 

conceptual entities and events take part in the action as well as describing different variations and 
exceptions to the action that might occur. Each action in the Pattern Description has a specified Name 
along with a Sender and a Receiver. Figure 7 illustrates the structure of the Pattern Description. 

 

 
Figure 7 Pattern Descsription 

 

The State Machine, which is deterministic, provides means to formalize how the state of an entity is 
changed via actions. The State Machine lists all possible states of an entity, and the conditions, which 
must be satisfied in order to exit one state – via a specified action – and enter a next state (so called 
state transition diagram). This provides the BOM composer with a clear overview to of how a federate 
that is implemented from a BOM will behave and if it satisfies the needs of the end simulation. Figure 
8 illustrates the state machine of a waiter entity, which has the states such as, ready/idle, prepare bill 
for the customer, present menu, and bring food (details of the waiter entity can be found in part II, 
paper 9). 

 

 
Figure 8 State machine of the Waiter entity 

 

The Entity Type is a listing of all the Entities present in a BOM. An entity is, as previously 
explained, a conceptual mapping to a real	life object. In the above example entities might be Waiter, 
Customer and Table, each holding certain information. For example a waiter might have a Name and a 
list of Tables she/he is assigned to, and similarly a “Table” entity might include information indicating 
whether it is occupied/free and whether there are dirty dishes on it, as shown in table 1. 
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Table 1 Example Entity Types 

 

 

The Event Type contains a table of the Events present in a BOM. The BOM Specification contains 
two different types of Events, BOM Trigger and BOM Event. A BOM Trigger is an undirected event 
that is triggered by some entity without a specific receiver. The entity that is sending out a Trigger does 
not care about who receives a notification of the event. This is similar to Interactions and Object 
Attribute updates in HLA, where a federate does not directly notify another federate, but merely 
informs the RTI of the interaction or object attribute update and allows it to handle forwarding to any 
relevant federate. The other type of event, BOM Event is an event sent from one conceptual entity 
directed to another specified entity. This type of event is in fact directed to another entity similarly to 
how a phone call is made from one person to another. 

Examples of Events can be a table announcing a Trigger that it contains dirty dishes. This trigger 
can be noticed by a waiter that would then come and clean up the table. Another example event would 
be an Event where a Customer explicitly asks a Waiter for the check. This would represent a BOM 
Event that is directed between two entities. The table below illustrates these examples in BOM 
representation.  

The third part is the Model Mapping where conceptual entities and events are mapped to their HLA 
Object Model representations. This part essentially bridges the Conceptual Model with the HLA 
Object Model that is described in the fourth part of the BOM, the HLA Object Model. In the Entity 
Type Mapping, each entity is mapped to a HLA Object/Interaction class, and each Characteristic of 
that Entity is mapped to an Attribute or Parameter. In case there is an ambiguity of the Attribute or 
Parameter, a condition can be supplied to explain how the mapping should take place. This condition 
is not formalized in any way, and is a simple freetext explanation. Event Type Mappings are nearly 
identical to Entity Type mappings, but pertain to BOM Triggers and Events instead of Entities. 
 

 
Table  2 Example Event Types 

 

 

The fourth part, the HLA Object Model, contains the information that is found in a normal 
FOM/SOM – objects, attributes, interactions and parameters 	 and should conform to the HLA OMT. 
There are two additional parts in the BOMs that are not mentioned in	depth in this paper, namely 
Notes and Definitions. These two parts contain semantic information about events and entities as well 
as actions that are specified in the Conceptual Model, and are used to provide a human readable 
understanding of the patterns described in the BOM, figure 6. 
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The BOM concept provides a mechanism for combining BOMs and creating High	Level BOMs, 
called BOM Assemblies. A BOM Assembly is built in a hierarchical manner and includes information 
about other BOMs, which in turn provide more detailed information about components. Typically a 
developer of a simulation would search a BOM repository for suitable BOM candidates for use in a 
simulation and combine those into a BOM Assembly (i.e. a simulation model), which is then used to 
create the actual simulation. A BOM assembly is also defined as a BOM document, using the 
constructs described above, as explained in the BOM Guidance document: 

“... a BOM Assembly must contain a Model Identification and a Pattern Description within the 
Conceptual Model view. A BOM Assembly also has associated with it the metadata from each 
integrated BOM, plus an understanding of the interplay among conceptual entities being represented, 
which is provided through the association of BOMs to the various Pattern Description actions that the 
BOM Assembly identifies.” [158] 

Since it references other BOMs, BOM Assemblies often only contain high	level information and not 
specific OMT	information.  

$ ) ��������

In this chapter we discussed the issue of component based M&S, the rationale behind it, and some 
of its main concepts, such as composability and interoperability. We also outlined the challenges and 
different techniques addressing those challenges. One of the main issues regarding component based 
M&S as is shown in this chapter, is ensuring semantic composability and validity of compositions prior 
to the actual implementation.  

Moreover we presented our definition of simulation model component and the concept of BOM. 
BOM is the component model chosen in this work as a basis for developing a process for component 
based simulation development. However, the current BOM standard does not represent a complete 
simulation model component according to our definition. Hence, in order to make use of BOM in our 
process, we have extended the BOM definition with additional information to facilitate discovery and 
composition of components through formal reasoning. In chapter 7 we cover the work that has been 
done to improve the BOM description for our purpose. 
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Component based software development has been in focus for a long time, but has not become 
popular until the 1990’s. It mainly started with different programming languages presenting methods 
for development of generic components/language constructs that could be (in some cases with slight 
modification) reused in different combinations. These language constructs, which are used for 
structuring programs, have various names such as, class, module, package, cluster, etc. For instance 
Ada had the concept of generic packages, which could be viewed as black boxes with well	defined 
interfaces for input and output of data [146]. 

Object Oriented Programming, OOP, paradigm with programming languages such as C++, Java, 
Objective C, C#, etc has been an essential effort in introducing component	based development in 
software engineering. The motivation behind OOP is to provide modularity, flexibility, and reusability 
[99]. In OOP everything in the real world is modeled as an object, with properties and behaviors. For 
instance a square is an object with edge as a property and CalculateArea as a method for calculating the 
area of the square. Such square object can be used and reused in all programs where an object with the 
above property and method is required.   

Originally software components were small with simple semantics and interactions, thus the issue of 
composability was rather straight forward and mainly limited to syntactic compatibility of components.  
Component based simulation development on the other hand started by composing large and mainly 
monolithic simulations using protocols and architectures such as SimNet, DIS and HLA. However, 
these two directions are being converged, and as the complexity of software components and their 
interactions is increased, software engineers are faced with similar composability challenges as 
simulation developers [144]. Hence, several technologies and standards are being developed in the 
software engineering domain to address the issues of semantic validity of composition, which have the 
potential to support component based simulation model development [144]. 

Today component based software development is quite mature and has been accepted across the 
software engineering community. Technologies such as CORBA [133], EJB [156] and COM+ [20] are 
well	established and have simplified the development of complex software systems. These technologies 
however are component architectures mainly supporting syntactic composability. They provide means 
for components to expose their external interfaces and interact with each other, without support for 
ensuring the reliability and consistency of the exchanged information and the validity of the 
component compositions. Furthermore, even though these technologies are basically (in an abstract 
sense) quite similar in the way they function, there is little support for inter	architecture 
communication and building systems across different architectures. This is however something that has 
interested the community and efforts has been done to support interoperability across architectures 
[144].  
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To address to issue of semantic composability the software engineering community has promoted 
some component based development architectures/technologies that aim at separating the 
specification details (i.e. conceptual model) from the implementation, or application logic from 
platform technology [4]. They provide formalism for describing the components thus facilitating 
reasoning about the validity of compositions before actual implementation. This approach to provide 
semantic composability falls within the scope and ambitions of this thesis. Hence, three such 
technologies that promote the component	based development methodology, namely Predictable 
Assembly from Certifiable Components (PACC), Model Driven Architecture (MDA) and Architecture 
Description Language (ADL) are briefly presented in this chapter. It should be noted that this is not a 
comprehensive list, rather some approaches that have been studied here.  

Another technology with great potential that has been in focus in this work is the Semantic Web 
technology, which due to the special roll that it has played in this thesis is being presented in a separate 
chapter (chapter 4). 
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Predictable Assembly from Certifiable Components (PACC) is an initiative from the Software 
Engineering Institute at Carnegie Mellon University (CMU) for automatic prediction and certification 
of runtime behaviour of component assemblies [71], [90]. PACC’s objective is achieved through 
Prediction Enabled Component Technology (PECT) by development and enhancement of component 
technologies and related tools and methods. As opposed to technologies such as COM+ and EJB, 
PACC focuses on proving the validity of component assemblies before actual composition. PACC is 
an abstract and theoretical approach consisting of two main concepts, namely a construction 
framework, and a reasoning framework. The construction framework is responsible for specifying 
component models including their interactions with other components and reactions to input. The 
reasoning framework allows reasoning about component properties and their composability under 
composition.  

The Construction Framework is an abstract component technology (ACT) plus tools that supports 
its utilisation, such as editors, repositories, and constraint checkers. ACT is component	technology	
independent and defines a vocabulary and notation for specifying components, compositions, and their 
runtime environments. It also specifies the constraints, imposed by reasoning frameworks, which must 
be satisfied for predictions to be valid [90].  

Components in PACC are the building blocks of the predictable assembly and quite similar to 
component descriptions in other formalisms, such as DEVS and SCT. The component is seen as a box 
with an interface including input and output channels facilitating communication with other 
components, and component behaviour specified as reactions. The behaviour decides how the 
component reacts to inputs and what outputs are generated. These reaction patterns are described 
using Communicating Sequential Processes (CSP). The input and output channels in PACC are called 
����. $��������� are set of components linked together and ��	�
��	��� through their pins. Assemblies can 
be part of larger assemblies, thus facilitating hierarchical compositions. The construction framework 
also includes a ��������	� 
��	���� ��(�
�����	, which can be regarded as a high level component	aware, 
possibly application	specific virtual machine. The runtime environment provides runtime services that 
may be used by components in an assembly, an implementation for one or more interaction 
mechanisms, and a closure for, and containment of, all assumptions made by a reasoning framework.  

Furthermore, component and assemblies in PACC are assigned some properties to support the 
reasoning process. In simulation terms, a property might be an inter	arrival time, or a lookahead value 
[147]. Construction and Composition Language (CCL) is a construction language proposed by [90] and 
[72] for specifying components, assemblies and their properties. 
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The next concept of PACC is the #���������!
�����
���which aims at supporting the construction 
framework in performing analysis on the properties and behaviour of assemblies. A reasoning 
framework includes the mechanisms needed to use sound analytical theories to analyse the behaviour 
of a system with respect to some quality attribute [95]. In the context of PACC the reasoning 
framework comprises a property theory, an automated reasoning procedure, and a validation 
procedure. This includes a mathematical formalism for describing properties of a system, logic for 
reasoning about the properties, and methods and tools for automatic reasoning about the validity of 
compositions and computing predicted properties. The Reasoning Framework exposes any 
assumptions about the system it models, as a basis for the component technology to ensure that 
components and assemblies satisfy these assumptions. These is done mainly through static checking, 
resulting in a predictable assembly behaviour.  

PACC provides means for defining semantics of components and formal reasoning about 
compositions. This is what we believe to be the best approach for achieving semantic composability of 
simulations, making PACC to be a candidate technology for supporting component based simulation 
development.  

& $ �������������*�������	��/��������,�*/.�

ADLs are a family of languages developed to support a more abstract and formal modelling 
approach to architecture enabling reasoning about architectural properties without considering 
implementation details. ADLs have the potential to support component based systems due to their 
ability to specify context dependencies [118]. Hence, a short description of ADL and one example are 
presented here explaining how it could facilitate component based simulation development.  

Traditional object modelling, where a component is represented by a class and class interfaces, has a 
number of drawbacks, such as lack of context dependency notations and means for specifying meta	
properties by itself like system performance and/or semantics. ADLs address these shortcomings by 
having the ability to formally define components and specify how components interact and what meta	
properties interfaces and their connections exhibit. The main common properties of ADLs are the 
��������	�, ������	�
� representing interactions between components, ���	��� representing 
component/connector configurations, �
���
	��� allowing semantics to be added, ����	
���	��representing 
claims about the architecture which remain true, and �	���� representing “families of related systems” 
[24]. 

There are large number of ADLs available developed for different purposes. One such language is 
CommUniy, which is a parallel design language based on UNITY, incorporating parts from Interacting 
Processes [74]. CommUnity is a formal language used to describe components, their state, actions and 
interactions, locality and how to �.	��� them. Extending is the mechanism for building assemblies of 
components. 

The basic building blocks of the formalism are not programs but abstractions of programs – called 
designs 	 that can be refined into programs in later stages of the development process. Designs have a 
very basic structure, allowing them to specify a set of �������� or ��
	�, and a set of operations, called 
actions. Ports consists of input, output and private channels, necessary for communication with the 
environment (i.e. other designs) as well as to store private data. Actions are either shared or private. 
Only shared actions can be ���� by the environment and therefore used for interaction. 

There are two concepts for extending designs/components defined in the CommUnity, namely 
����
����	��� and 
��������	, where superposition is the one that is interesting for the purpose of 
component based simulation development. 

In superposition a design is extended by overlaying it with additional attributes and behaviour, 
through what is called �������	���� ��
������. Hence, the composition of designs is performed by 
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overlaying their behaviour and properties, facilitating hierarchical component development. 
Furthermore, composition morphism must follow precise rules, not to violate the categorical integrity 
of a design.  

ADLs through their formal modelling approach providing formalism for describing components and 
enabling reasoning about architectural properties without considering implementation details are 
interesting alternatives to investigate for the purpose of semantic composability of simulation models. 
In [118] the potential of these languages for component based M&S has been studied, which provides 
a good basis for further study. 

& & �	����*��%����������������,�*�.�

MDA is a software design approach and framework launched in 2001, but the concepts that 
underpin this approach were first discussed by [155] during the late 80’s. MDA was the second 
framework sponsored by the Object Management Group (OMG), which as opposed to its 
predecessors CORBA and Object Management Architecture (OMA), is not a framework for 
implementing distributed systems, rather an approach to using models in software development 
separating designs from architectures [127]. Furthermore, the term architecture in MDA does not refer 
to the architecture of the system being modelled, but the architecture of various standards making the 
technology basis of MDA. These standards include Unified Modelling Language (UML) [133] below, 
Meta	Object Facility (MOF) [134], XML Metadata Interchange (XMI) [135], etc.  

In MDA’s context a model is a specification and description of a target system and its environment, 
where the system could be a program, a single computer system, or a federation of systems. MDA 
provides a set of guidelines for developing models, which are either computation independent, 
platform independent or platform specific. A Computation Independent Model (CIM) does not 
contain any details about the structure of systems. It focuses on the environment of the system and the 
requirements for the system. It is sometimes referred to as ������������, containing a vocabulary used 
in a specific domain. CIMs are used by practitioners that do not need to have any knowledge about the 
models and tools for realisation of functionalities of which requirements are expressed in the CIM. 

A Platform Independent Model (PIM) is used to define system functionalities in a domain specific 
language or a general purpose modelling language. It focuses on the operation of a system without 
presenting any platform specific details. A PIM is platform independent in a sense that it is suitable for 
use with various platforms of similar types.  

PIMs can be 	
�����
��� to Platform Specific Models (PSM) given a Platform Definition Model 
(PDM) corresponding to CORBA, .Net, etc. PSM is an executable model that computers can run using 
domain specific or general purpose languages such as Java, Python, C#, etc. It combines the platform 
independent specification of a system i.e. PIMs with details about how the system utilises a particular 
platform. One rationale for separating the concepts and developing PIMs is that they represent the 
conceptual description of a system that potentially lasts much longer than the realisation technologies 
and software architectures.  

The 	
�����
��	��� from PIMs to PSMs is a ��
��
�� �������
��� process that produces code from 
abstract specifications. This process can be more or less automatic. There contexts in which a PIM 
contains all the information required for automatic code generation. Component based development is 
one such context as been pointed out in the MDA guidelines [127], where an application developer can 
build a complete PIM with regards to classification, structure, invariants, and pre	 and post	conditions. 
The required behaviour can also be specified directly in the model using an action language [4], making 
the PIM computationally complete. Consequently, tools can interpret the model directly or transform 
the model directly to program code.   
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MDA employs a set of tools for development, transformation, interpretation, verification, etc. of 
models and meta	models. These tools mainly take models as inputs and generate models as outputs, 
such as taking PIMs as input and generating PSMs as output. However, in spite of its potential MDA 
has not gained the deserved industry acceptance, mainly because of incomplete standards, vendor 
reluctant to make their MDA toolsets interoperable, and requiring high level of expertise for using 
tools and methods. Furthermore, MDA’s predecessor, CORBA did not manage to be established as a 
widely used standard, which does not give OMG a good track record. This is of course something that 
could change in the near future as the above shortcomings are being addressed. 

As for the potential of MDA for M&S some efforts have been done to use MDA concepts for 
supporting simulation reuse and interoperability ([7], [23], and [176]) with various degree of success. 
However, these efforts do not solve the issue of semantic composability of simulation models [144]. In 
[141] the authors suggest a combination of UML and DEVS as a viable approach for documentation as 
basis for supporting composability. This is also what we believe to be the right approach, and is similar 
to how we have addressed the issue of composability in this work. 

& ' ��������

The convergence of component based software engineering domain and component based 
simulation development domain provides opportunities for both communities to take advantage of the 
progresses made in the other community. In this chapter three approaches taken by the software 
engineering to address the issue of component based system development are presented and their 
relevance for component based simulation development is discussed. All these approaches aim at 
separating modelling aspects from implementation details, by providing formalisms for describing 
components and mechanisms for composition. Of the technologies presented above PACC, with its 
approach for reasoning about validity of compositions before implementation, is the one that come 
closest to our way of addressing component based simulation development. However, the technology 
that has mainly inspired our work is Semantic Web Services, presented in the next section. 
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Previous chapter outlined some of the software engineering approaches that have the potential to 
support component based M&S. One additional technology which was not covered in that section is 
the Semantic Web technology, including the Semantic Web Services technology. This technology has 
been dedicated a whole chapter, due to the special part that this technology has played in this work. 
Here an overview of the technology, particularly Semantic Web Services Composition and its potential 
for component based M&S, and the research that have inspired our work, is presented. 

' ! �������������

The Semantic Web is an extension of the current Web technology which brings structure to the 
content of Web pages. This is achieved through a set of techniques by making formal description of 
the contents, which is understandable and processable by machines. The reason behind the initiative is 
to improve the ways on how to find, use and reason about the information found on the Internet 
[164]. Originally the available information on the Web was only presented in a human	readable form, 
making it almost impossible for computers to understand and interpret the information. Using the 
Semantic Web technologies the information is given well	defined meaning, better enabling computers 
and people to cooperate.  It should be noted however that the Semantic Web is not about teaching 
machines to process natural language. Rather it structures everything in languages, understandable by 
machines. Moreover, the aim of the Semantic Web is not to build Artificial Intelligence (AI), but 
collecting data in a useful way, like a large database. 

Two aspects have been pointed as characterizing the Semantic Web. Firstly, the Semantic Web is 
about common formats for integration and combination of data drawn from diverse sources, as 
opposed to the original Web which was mainly concentrated on the interchange of documents. Second, 
it is about language for recording how the data relates to real world objects [126].  

Tim Berners	Lee the director of the W3C [178] originally expressed the vision of the semantic web 
as follows: 
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Consider the following example, today if a user wants to list the prices of airplane tickets to a 
specific destination during a certain time period and combine that with information on available hotels, 
she/he has to use search engines that are individually tailored to every website being searched. Using 
the Semantic Web a computer can be instructed to make the list, since the Semantic Web provides 
common standards such as RDF (Resource Description Framework), OWL (Web Ontology Language) 
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for websites to publish the relevant information in a more readily machine	processable and integratable 
form.  

RDF and OWL are two examples of languages and constructs have been specified, to aid in the 
construction of the Semantic Web. Other techniques used in the Semantic Web context include ideas 
from the Artificial Intelligence	field and can be used not only for the Web but for other application 
areas as well. A brief explanation of the main concepts in the Semantic Web initiative is included 
below. More information about these concepts can be obtained from the Semantic Web homepage 
[178]. 

' ! ! ���	�	�����

Internet is a complex and dynamic environment and if computers are to exchange information and 
reason about he contents of the Web, then it is essential that the semantic information of the contents 
are defined explicitly, such that there is an agreement between involved parties. Ontology is one of the 
basic concepts of the Semantic Web, which aims at providing common and unambiguous description 
of terms used in the Web in order to facilitate search and reasoning about the available information.  

According to Tom Gruber: 

:$����	��������������������	���������������	����/�	���; [166]  

The word ontology has a long history within philosophy where it describes a systematic account for 
Existence. 
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Hence, ontology defines the terms used to construct a description of reality in its most general sense 
and how the terms are related. Recently the ontology has been coined as a term within Computer 
Science and in particularly AI [162]. In a computer science context, ontology is an establishment of 
joint terminology/frame of reference between entities that interact, and is used as such to agree upon 
what is communicated between the entities. Hence, the use of Ontologies can create a shared 
understanding of entities and events. For example, ontology can define that there is a concept of an 
object called Vehicle, and that a Vehicle can carry passengers. It can then reason around this object in 
some formal way, to convey that for example a Car is a Vehicle. These terms and properties can be 
declared in a formal system and using logical inference it can be concluded that a Car can carry 
passengers. This is from the fact that a Car is a Vehicle and Vehicles can carry passengers. The point of 
declaring this type of ontology is so that if two entities (for example two computers that try to mimic 
intelligence) have agreed upon using this ontology, and one of the entities can mention the word Car, 
then the other entity knows that this Car they are talking about is a Vehicle and nothing else.  

Ontologies exist at several abstraction levels, which are presented in the literature with some slight 
variations. However, the three main levels are Reference (Upper) ontology, Core ontology, and 
Domain Ontology. Upper	level ontology captures mostly concepts that are basic for the human 
understanding of the world, such as time and space. It represents a framework using which the building 
blocks of reality are described, separated from any specific domain. Hence, concepts defined in the 
upper ontology should be of use in several domains (ideally an arbitrary domain). The upper ontology 
provides a knowledge base which can be used for building more specialized ontologies, such as mid 
and domain ontologies. Hence, knowledge and semantics already specified in the upper ontology is 
reused supporting interoperability between different specialized ontologies. The Core Ontology aims at 
capturing concepts and their relations in a field of practice. The Domain Ontology defines the specific 
reality and specialises the Core Ontology. DeMO is an example of a Core Ontology for modelling and 
simulation [137]. 

In the Semantic Web initiative, Ontologies are described in the RDF and OWL languages, explained 
briefly below. 
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The Resource Description Framework (RDF) is a general	purpose language for representing 
information on the Web. It provides a data model and a syntax to facilitate utilization and exchange of 
the data model. The data model together with RDF Schema 	 which is a vocabulary description 
language used to describe properties and classes of RDF resource and its hierarchies 	 provides a 
means for describing entities, classes and their properties [51]. RDF is a World Wide Web Consortium 
(W3C) Recommendation, written in XML and designed to be read and understood by computers. It 
describes resources in the form subject	predicate	object expressions, which is called a triplet. The 
subject is the resource itself, and the predicate presents a relationship between the resource and the 
object. For instance, the expression “FOI is under the Department of Defence in Sweden” is 
represented in RDF as triple, with “FOI” as the subject, “the Department of Defence in Sweden” as 
object and “is under” as predicate.  

The following example shows how with the help of RDF (written in XML) one can describe that 
“MyCar” is of type “Car” and that it has a “silver” colour. 
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A full description of the RDF and RDF Schema can be found in [177]. 
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The Web Ontology Language (OWL) is a markup	language based on XML and standardized also by 
the W3C that formalizes a syntax in which an ontology can be defined. OWL was developed from 
RDF, and has been designed such that every RDF document is also a valid OWL document.  

Besides this, OWL includes a large number of additional syntax constructs that allow for a greater 
freedom of use than RDF allows. For instance, OWL facilitates building large ontologies, which has 
been a problem before due to lack of clear definitions [178]. This is done by having an explicit logical 
basis, based on Description Logics (DL).  DLs are a family of logics that are decidable fragments of the 
first	order logic [31]. The semantics of OWL are given through translation to a particular DL. Hence, 
OWL is not only a syntax for describing and exchanging ontologies, it also has a formally defined 
semantics for providing the meaning. Furthermore, as for DLs there are complete and terminating 
reasoners for OWL. A reasoner (reasoning engine, rules engine, or semantic inference engine) is a 
system which derives consequences of the knowledge presented in an ontology. 

The following example shows a class “Car” with the property “colour”, defined in OWL.  
�



 38 

�
 

An OWL document, also called a knowledge base, can be queried and modified. Querying can be 
done e. g. using SPARQL, which is an RDF query language standardized by W3C. SPARQL is a 
recursive acronym and stands for “SPARQL Protocol and RDF Query Language” [28]. Modification 
of the document can be done by adding and retracting concepts, roles, and assertions. A restricted 
mechanism to add assertions are rules. Rules are an extension of the logical core formalism, which can 
still be interpreted logically [70]. 

OWL comes in three ‘flavours’ with different levels of expressiveness: OWL Full, OWL DL 
(Description Logic) and OWL Lite. OWL Lite was intended to only support classification hierarchy 
and simple constraints, whilst OWL DL provides the maximum expressiveness possible while retaining 
computational completeness, decidability, and the availability of practical reasoning algorithms. OWL 
Full is based on a different semantics from OWL Lite or OWL DL, and was designed to preserve 
some compatibility with RDF	S. OWL	Lite is not widely used mainly because it is limited and 
development of OWL	Lite tools has thus proven almost as difficult as development of tools for OWL	
DL. And as for OWL Full, it is unlikely that any reasoner will be able to support complete reasoning. 

For a more information on OWL, please see the W3C websites [178]. 

' ! ' #���������

Another important concept and driving principle of the Semantic Web is inference. Basically 
inference is about being able to derive new data from already known data. As mentioned earlier, the 
semantic web is intended to provide "machine	understandable" web resources. Exploitation of these 
resources requires the ability to process and inference ontologies written for instance as OWL 
documents or OWL Knowledge Bases.  

Inference or reasoning can be used for checking the consistency of an OWL ontology and a set of 
data descriptions, finding implicit subclass relationships induced by the declaration in the ontology or 
finding synonyms for resources (either classes or instance names), etc [162]. Querying is also a form of 
inference, i.e. being able to infer some search results from a mass of data. Hence inference facilitates 
creating Semantic Web applications quite easily. 

To demonstrate the potential of inference consider the case when you have an executable program, 
e.g. a simulation, with specific runtime requirements, software and hardware. You also have access to a 
network of heterogeneous executions resources, i.e. computers, which can be used for running your 
simulation. One way to find out which computer is suitable for running your simulation is to go 
through all computers and find the one that matches the runtime requirements of your simulation. This 
is of course surmountable, but this situation gets more difficult as the number of simulations and 
computers grow. One way to solve this problem is to design a software agent that can do the job for 
you. But this requires that the characteristics of the computers and the runtime requirements of the 
simulations are presented in a way that is understandable by your software agent e.g. using a formal 
language such as OWL or RDF. Having this information at hand the software agent must match the 
simulation against the computers. This is where inference can help you.  

Inference can also help in merging databases, e.g. by recording in OWL somewhere that “User” in 
one database is equivalent to “Consumer” in another database, and then putting all this information 
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together and getting a processor to handle it. And indeed, today this is already possible with available 
Semantic Web tools.  

' $ ��������%�����

The introduction of Web Services (WS) extends the current Web from a distributed source of 
information to a distributed source of services. This is a new paradigm, which supports development 
of complex Web based applications. WSs are platform and language independent composable software 
components, which are designed to provide interoperability between diverse applications. Hence, 
enabling users to access business functionalities and support heterogeneous enterprise application 
integration. 

According to IBM [62], Web Services are self	contained, modular applications, accessible via the 
Web through open standard languages, which provide a set of functionalities to businesses or 
individuals.  

This definition presents the basics, but is somewhat unclear. A better definition is provided by the 
World Wide Web consortium (W3C): 
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Figure 9 Web Service roles and operations 

 

A WS is described using a service description, which is a standard, formal XML notation. The 
service description provides all the necessary information to interact with the WS, including message 
formats, location and transport protocols. The descriptions are expressed in Web Service Description 
Language (WSDL), separating service implementation and specification. In the context of WS there are 
three distinct roles: a WS provider, a WS consumer, and WS broker. A WS and its description is 
created by a service provider and then published with a service registry (the broker) based on a 
standard called the Universal Description, Discovery, and Integration (UDDI) specification. A service 
requester (the consumer) may find a published service via the UDDI interface. Since the service 
implementation and specification are decoupled the requester does not need to deal with underlying 
implementation issues. Hence, all the requester has to know is how to address a service, what 
parameters to send and what response to expect. The UDDI registry provides the service requester 
with a WSDL service description and a URL (Uniform Resource Locator) pointing to the service itself. 
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The service requester may then use this information to directly bind to the service, i.e. communicating 
with the provider, and invoke it, as illustrated in figure 9. 

According to [105] the WS architecture is a three	layer stack comprising, basic services, composite 
services and managed services, illustrated in figure 10. The first layer, basic services includes the basic 
operations described above, i.e. publication, discovery, selection and binding, realized with WSDL, 
SOAP and UDDI. The second layer, composite services, encompasses necessary roles and 
functionality for composition of services. Resulting composite services may be used as applications by 
service consumers or as components in future compositions. The issues handled in this layer are 
service cooperation, defining coordination, monitoring, quality of service, etc. Service composition is 
one of the important aspects of WS which will be discussed in the next section. 

The last layer, managed services, deals with the critical issue of managing services, administration 
and integration across a diverse, distributed environment. This layer provides service level agreements 
mechanisms, operation assurance, and certification and reputation systems.  

 
Figure 10 Web Services Architecture Stack 

 
The next section gives a presentation of the Web Ontology Language for Services (OWL	S), which 

is one of the languages used for describing WSs.  

' $ ! ��/2���

OWL	S is based on Web Ontology Language and aims at establishing a framework for describing 
Web Services in the context of the Semantic Web. OWL	S is an extension of the DARPA Agent Meta 
Language for Services (DAML	S). It has been developed to provide support for discovery, 
composition, invocation and interoperation of Services. OWL	S consists of three parts: the service 
�
�����: “for advertising and discovering a service”, the service �
�����������: “for detailed description of a 
service operation”, and finally �
�������: “for describing how to interoperate with a service”, figure 11. 

There are two constraints regarding OWL	S. First, a ��
(��� can be described by at most one ��
(����
������ and second a �
������� must be associated with exactly one service. There is no restriction for 
service �
����� and service �
�������; in fact it is very useful sometimes to have multiple service �
������ 
and/or service �
�������� [131].  

 



 41 

 
Figure 11 OWL-S structure 
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WS can either be invoked thus used as they are, or be composed in different combinations to 
provide new capabilities and services to different users. The process of developing composed services 
includes discovery of appropriate WSs and composition of those to meet desired goals. The challenge 
is that even though WSs are individual components usually implemented at different locations, and 
executed in different contexts, when composed they need to communicate to yield the desired 
behaviour, which is not trivial. This problem gets even harder when we think about automatic or semi	
automatic approaches and techniques for WS discovery and composition [60]. 

Today there are various techniques and approaches presented by different researchers for addressing 
the above issue, such as, template	based [32], interface	based [60], logic	based [154], ontology	driven 
[182], quality	driven [69], automata	based [163] and Petri net	based techniques [153], [183]. These 
approaches are either static or dynamic [151]. Dynamic approaches are model	driven as opposed to 
static approaches which are hard coded.  

The above techniques can also be grouped as industrial	based or based on Semantic Web solutions. 
In the industrial solutions the interaction between different WSs is done using languages BPEL4WS 
(Business Process Execution Language for Web Services) [61] or WSCL (Web Services Conversation 
Language) [180]. The process for composition of WSs based on these languages involves specifying the 
role of each participating WS and the logical flow of messages between them. 

In the Semantic Web solution each WS is annotated based on its functionalities, location, domain, 
etc. using concepts, defined in an ontology, making them machine	readable. Hence enabling software 
agents to ����
�	��� the purpose and capabilities of a WS, and apply logical inferencing techniques to 
compose WSs. The languages that are used for describing the WS are DAML	S (DARPA Agent 
Markup Language for Services) [21] and OWL	S (Web Ontology Language for Services) [131]. These 
WSs have also been referred to as Semantic Web Services. 

The main goal of these techniques is to provide automatic ways to discover and reason about 
combination of services. They often apply software synthesis and composition methods to WS 
composition, which first of all requires a description of the services in formal logic or a formal 
language, such as OWL	S, a synthesis mechanism which automatically selects, adapts and composes 
services using inference, and a manager that invokes the services and transfers data between them. This 
is quite similar to the processes of selection and composition of simulation model components, and 
even though there are some basic differences between a simulation model component and WS (e.g. a 
simulation model component is stateful, while a WS is usually stateless), there are many lessons to be 
learned here. Hence, we have explored Semantic Web and Web Service (WS) technologies to 

improve development of methods for discovery and composition of simulation model components 

[36].  

Two approaches to Semantic Web Service Composition that have inspired part of our work are 
briefly described below.  
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The first approach is a work done by Medjahed et al [9] introducing a multilevel composability 
model in which the composability of Semantic Web Services is checked in four levels: Syntax, Static 
Semantic, Dynamic Semantic and Qualitative level.  

The authors introduce a set of rules for checking the composability at each level and specify what 
characteristics of a WS to be checked at that level. The composability check starts from the syntactic 
features, i.e. the lowest level, of services like mode and binding and finishes at quality of service aspects 
of services such as cost and availability, illustrated in figure 12. The semantic of services is divided into 
two categories: 	�	�������	��, i.e. semantics that is fixed and related to ontology, and +�����������	��, 
i.e. semantics that depends on the execution conditions and varies during the runtime. Furthermore, 
two types of bindings, namely &�
�/��	�� and D�
	���� bindings are studied in this work and the 
influence of each binding type on the composability of services is described. The work also includes a 
composability degree based on the introduced composability levels. 

 

 
Figure 12 Composability Stack 

 
The second approach is a work presented by Arpinar and et al [59], which introduces a novel algorithm 
named “*�	�
�������	������$�	���	��� <*�$=� ������	���” for web service composition. The algorithm is 
based on user requirements comprising input parameters and constraints, and expected output 
parameters and constraints. In this approach�web services are navigated to find a sequence starting 
from the user’s input parameters and go forward by chaining services until they deliver the user’s 
expected outputs��It is claimed that the algorithm has the capability of finding a composition, which 
offers the best quality of service, such as shortest execution time, and also the best matching of input 
and output parameters. 

As a continuation of the work done with IMA, Arpinar and et al in [96] present a novel technique for 
discovering semantic relationship between different services via identifying relationship (similarity) 
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between their pre and post conditions. This technique uses the IMA approach to build a network of 
services, and establishes the semantic relations between these services. Finally, based on these relations 
a semantic network of services with complimentary functions is constructed. The basic idea and 
assumption of this work is that functionality of service can be expressed by pre and post conditions. 
The authors claim that this technique can find semantic relation between web services despite syntactic 
mismatch. It is also mentioned that since there is no strong consensus for representing pre and post 
conditions in a certain specific language� pre and post conditions are expressed in RDF (Resource 
Description Framework) triplets. Degree of similarity between two conditions can be found through 
comparing similarities between triplets (RDFs) of these conditions.  

' ' ��������

In this chapter the concepts of ontology, inference, and Web Services Composition are introduced. 
Ontologies provide distinct and clear definitions of terms, concepts and their relations for any domain 
of interest. Formal and structured languages help software agents (computer programs) to interpret and 
understand statements, and communicate with each other in an unambiguous manner. Combining 
these aspects with the power of logical reasoning provide an excellent candidate for facilitating 
automatic discovery and composition of Web Services, and in similar way for simulation model 
components. In this work we have employed ontologies to extend the BOM standard with semantic 
annotations. Inferencing through inference engines have been used to reason about composability of 
BOMs, and Web Services Composition techniques have inspired development of our rule based 
method for BOM composition that has been briefly presented in chapter 7 of this thesis. A more 
comprehensive presentation is given in part II, paper 9. 



 44 

�

 



 45 

�������( � �

4������������	�	�����

In this chapter some of the technologies, which have been studied and used in the scope of this 
work are introduced. The main idea is not to give a comprehensive presentation of these technologies, 
rather some background information to facilitate better understanding of the thesis work.    

( ! *-6��

Discrete Event System Specification (DEVS) introduced by [10], [11] provides a formalism for 
models and simulations. It is part of a family of formalisms developed by Bernard Zeigler, Herbert 
Prähofer and Tag Gon Kim, which includes other formalisms such as Differential Equation System 
Specification (DESS) and Discrete Time System Specification (DTSS) (as a subsystem of DEVS) [10]. 
DEVS exists in two variations, Classic DEVS and Parallel DEVS with the main difference of handling 
of concurrent events. DEVS is based on dynamic system theory which aims at describing the structure 
and behaviour of systems. It has well	defined concepts for supporting hierarchical and modular model 
construction, coupling of components, and an object	oriented substrate supporting repository reuse. 
Advantages of the DEVS methodology for model development include well	defined separation of 
concerns supporting distinct M&S layers that can be independently verified and reused in later 
combinations with minimal re	verification.  

DEVS is not a simulation language and model implementation has to be done using an executable 
language. Hence, DEVS models can be specified in a formal way but implemented in different 
languages. Furthermore, to support composability between DEVS components and execution of those 
components, all DEVS programs have to comply with an interface specification. Today there are 
different frameworks written in various languages, such as Java and C++ available for development of 
DEVS programs.  

DEVS has not been directly used in this thesis, but its ideas have inspired the work done. In the next 
section the basic DEVS formalism is described and presented. 

( ! ! *-6������������

In order to facilitate hierarchical model construction DEVS supports two kinds of models, a basic, 
called atomic, and a coupled model, which acts as a container for basic models [11].  

An atomic model M in DEVS is defined as: 

 M = (X, S, Y, δint, δext, λ, τ) 

Where  

� 5 is the set of input values 

�  is the set of states 
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� E is the set of output values 

 δint : S � S is the internal transition function 

 δext : Q x S � S is the external transition function, where  

 Q = {(����) | � ∈   , 0 ≤ � ≤ τ(�)} is the total state set  

 e is the time elapsed since last transition 

 λ :  � E is the output function 

 τ :  � ��0,∞ is the 	������(���� function 

According to the above definition, in the context of DEVS a component is described having inputs 
5, outputs E, and a set of states . The state of a component changes through invocation of either an 
internal transition function δ��	 or an external transition function δ�.	 [10]. δ��	�is invoked every τ(�) if no 
externally induced transition occurs.  

Furthermore, in the time advance function τ :  � ��

0,∞, 0 and ∞ have the following meanings. In 
the case of 0 the stay in the state � is too short for an external event to intervene. The state � is regarded 
as a transitory state. In the case of ∞, the system will stay in � forever unless an external event 
interrupts it.  

Finally, when an internal event has executed, i.e. ��= τ(�), an output is generated via the output 
function λ(�) and the state is changed according to δ��	(�).    

In the above definition the state � represents a ����� in which the model component resides and can 
be changed according to either of the state transition functions. However, the total state of the 
component is a combination of both � and other numerical values defining the component. Moreover, 
the atomic DEVS model can be extended to facilitate the modelling process using ports, where each 
port can be assigned a value. Hence, in the extended model the input and output values are replaced by 
(���() which represents a port	value tuple, as shown below. 

 M = (X, S, Y, δint, δext, λ, τ) 
Where  

� 5�F�{(���() | � ∈  *�%�
	�, ( ∈  5�}is the set of input ports and values 

� E�F�{(���() | � ∈  )�	%�
	�, ( ∈  E�}is the set of output ports and values 

�  is a set of ��9���	��� states 

 δint : S � S is the internal transition function 

 δext : Q x S � S is the external transition function, where  

  Q = {(����) | � ∈   , 0 ≤ � ≤ τ(�)} is the total state set  

� � � is the time elapsed since last transition 

 λ :  � E is the output function 

 τ :  � ��0,∞ is the 	������(���� function 

As explained earlier, the DEVS formalism supports hierarchical and modular model construction, 
via coupling of models. The coupled models can in turn be used as components in new combinations. 
In order to facilitate this, DEVS defines a coupled model as: 

 M = (X, Y, D, {Md | d ∈  D}, EIC, EOC, IC, Select) 

Where  
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� 5�F�{(���() | � ∈  *�%�
	�, ( ∈  5�}is the set of input ports and values 

� E�F�{(���() | � ∈  )�	%�
	�, ( ∈  E�}is the set of output ports and values 

� + is the set of component names  

� �� is a DEVS model with  

 Xd = {(p, v) | p ∈  InPortsd, v Є Xp} 

 Yd = {(p, v) | p ∈  OutPortsd, v Є Yp} 

� 7*  is the set of input port couplings  

  EIC ⊆  {((N, ipN), (d, ipd)) | ipN ∈  InPorts, d ∈  D, ipd ∈  InPortsd} 

� 7)  is the set of output port couplings  

  EOC ⊆  {((d, opd), (N, opN)) | opN ∈  OutPorts, d ∈  D, opd ∈  OutPortsd} 

� *  is the set of internal couplings 

  IC ⊆  {((a, opa), (b, ipb)) | a, b ∈  D, opa ∈  OutPortsa, ipb ∈  InPortsb} 

� ����	 is the tie	break function 

 

According to this definition a coupled model comprises a set of input and output ports, a set of 
component names +, a set of DEVS components ��, input and output port couplings, 7*  and 7) , 
a set of internal couplings *  connecting internal components with each other, and a so called 	��"�
��� 
function ����	. The input and output ports can either be connected to corresponding ports of other 
components within the coupled model or externally connected, using another coupling model, to other 
components or coupled models. The 	��"�
��� function decides which component to proceed when two 
or more components have internal transitions scheduled at the same time.  

Figure 13 illustrates a coupled model  � as a combination of models �� and �G. In this figure 
IPCM and OPCM stand for input and output ports of CM, IPM1 and OPM1 stands for input and output 
ports of M1, and IPM2 and OPM2 stands for input and output ports of M2.  

 

 
Figure 13 Composed DEVS Model 

 

The descriptions above show that DEVS has a sound set theoretic approach and is able to describe 
the structure of models in a formal way. It has the potential to be included in a meta	model of a 
component, but only for structural description since it does not include the behaviour (the transition 
function specifications) [118]. The formalism facilitates reasoning about compositions and supports 
hierarchical model development, through coupling of components. However, such reasoning requires 
tools and theories for analysing the compositions, which is not available at the moment. Furthermore, 
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there are no methods for analysing the behaviour of models and it is not possible to specify context 
dependencies other than through input and output. Hence, DEVS mainly supports syntactic 
composability, and as long as there are no methods available for reasoning about the validity of 
compositons, semantic composability is not an issue. 

( $ �4�/�

The Simulation Reference Markup Language (SRML) is a formal language for describing simulation 
models. It is based on XML and has been developed by the World Wide Web Consortium (W3C) with 
support from the Boeing Company. According to the W3C [181]:  
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The main objective of introducing the SRML language is to be a flexible reference standard for 
representing simulations with enough expressive power to model most anything for the purpose of 
simulation. The runtime environment serves as a ������	���������� for running simulations described in 
SRML. The example below shows how a simple SRML document is structured. 
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As any other XML	based language SRML uses a set of tags to create structured representations. The 

<Simulation></Simulation> tags encapsulate an entire Simulation. The first part of the document is a 
<Script></Script> tag	set that contains the main script of the simulation. SRML does not define the 
language in which this script is written in, and can expect JavaScript, VBScript or any other script	
language. The default script language however, is JavaScript. The following tag	set is a number of 
<ItemClass></ItemClass> tags, which define the different types of items that are present in the 
simulation. In the above example an Aircraft is defined. Within the tags you may also define a typical 
instance of the “ItemClass”, defining the properties of the item. The tags can also contain a script 
describing the functionality of the item defined. An interesting attribute that can be added in an 
<ItemClass>	tag is the SourceAttribute that can be used to include outside logic and or definitions. 
The last part of the document, after the <ItemClass>	tags defines a set of instances of items that is 
being used in the simulation. In our example above we have defined two aircraft. In addition to these 
simple constructs, the SRML document contains Events that can be used inside the script	tags, and a 
few other constructs that increase the detail in a simulation.  

The SRML Product Development Group (PDG), is one of the PDGs created by the Simulation 
Interoperability Standardization Organization (SISO), working on standardization of a simulation 
markup language and corresponding simulation engine specification based on SRML [160]. According 
to the group the language specification will include; SRML concept of operations including engine 
description, XML tag set for SRML with descriptive text, and SRML User Guide. The engine 
specification comprises an Engine object model and an Application Program Interface (API) 
reference. For more information on SRML, see the W3C SRML website [181]. 
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In this thesis SRML has been used for representing simulation scenarios in a formal way. The main 
reason has been to facilitate automatic parsing of the contents of the scenario and identifying contained 
entities and events for the purpose of component discovery. However, SRML includes large number of 
features, some of which are not applicable in the scope of this work. Furthermore, we do not wish to 
burden a modeller with designing complex high	level definitions of simulations. Hence, in this work 
only a subset of the language has been utilised. In the next section a brief introduction of this subset, 
referred to a SRML	light is presented.   

( $ ! �4�/2������

As explained above we have specified a subset of SRML called SRML	Light [34]. SRML	Light 
includes only the features of SRML that are relevant for utilisation in the model discovery and 
composition process that is developed in this work. (The process is explained in detail in chapter 7) In 
the process there are mainly two major needs for an SRML definition, namely describing entities and 
connection between them. SRML provides this type of descriptions via the *	�� ����"	��� and the �
��	"
	��� respectively [181]. 

The *	�� ����"	�� is used in SRML to describe entities in a simulation. This is exactly what is needed 
for the purpose of ��������	������(�
�. Thus, we found it suitable to adapt the ItemClass	tag in order to 
facilitate this activity. The ItemClass	tag in SRML can contain mote information than is needed for 
purpose of this work and hence, we made the following changes to limit its scope in SRML	Light. First 
of all, the ItemClasstag allows hierarchical structures of entities, describing inheritance of properties 
and logic. In SRML	Light the ItemClass is limited to being a flat structure without superclasses. If 
these types of relations are important to define, it will be present in the accompanying Ontology. 
Secondly, the ItemClass	tag can contain scripts that describe the internal logic of the item that is being 
defined. Although this is highly useful in a simulation, such logic is intended to be stored in the 
components (in this case BOM), and would be redundant in the SRML	Light document. Therefore we 
have left aside the Script	tag in each ItemClass, with the exception explained below. Left in the SRML	
Light format are the ItemClass	tag with a name, the possibility to specify an arbitrary number of 
properties for the ItemClass, and an optional Source	attribute. The Source attribute of an ItemClass is 
interesting to keep, as it provides the possibility for a developer to name a specific BOM component 
that is known to fit for this component slot. This interesting since it could reduce composition time 
considerably and provide for more flexibility in design. 

One could argue that the internal logic of a component can be useful in locating a BOM that 
includes such logic. Hence, it should be considered in a future version of the SRML	light to include 
this information, as long as it does not increase time of developing the high	level document and 
provide redundant information. 

The second type of tag that was found interesting for this work was the �
��	"	��. Script	tag is 
included in the root of an SRML document as the starting point of a simulation to describe how the 
logical execution of the simulation takes place. As explained earlier, the Script	tag is defined to be 
included as a JavaScript of VBScript (or any other script	language), and for this reason a script parser 
have to be developed. There are a number of projects working on including JavaScript support for 
Java, such as Mozilla Rhino [129] or Jakarta Bean Scripting Framework [84], which could provide good 
libraries to use for this type of parsing. However, in SRML Light parsing and reasoning with a full 
JavaScript is not considered, and only the pre	defined events that are included in SRML to represent 
actions between components are being used. SRML defines four types of events that could be used to 
communicate between items, namely SendEvent, PostEvent, ScheduleEvent and BroadcastEvent. All 
these events are included in the Script	tags and could be used to represent inter	component 
communication. In SRML	Light, these events are therefore defined as the means to convey 
communication between components. Each ItemClass can contain a Script	tag that defines how it 
communicates with other components. 
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The PostEvent, SendEvent and ScheduleEvent are all specified within the Script	tag of each 
component, with a target component, event to call and a number of parameters. They can therefore 
directly represent an action between two components. In this work ScheduleEvent was not included, as 
specific timing of events is hard to translate into events in the conceptual model of BOMs. The 
BroadcastEvent is not straight forward to implement, as it has no explicit target. For this reason, the 
EventSink	tag specified by SRML within the ItemClass was included, which helps to specify that an 
item/entity will be listening to certain broadcasted events. It should be noted that using only these 
built	in events is a major limitation of use of the Script	tag, and does of course limit the expressiveness 
using a script	language. In a future this could be developed further as to make use of the full modelling 
capabilities that a script	language can provide in order to properly express inter	component 
communication. However, these limitations are quite justified with respect to the purpose of 
deployment of SRML	light in this work. 
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The XML	based Variant Configuration Language (XVCL) is a general purpose mark	up language 
designed from the Frame technology ideas of Basset [138], with the aim of enhancing reuse in software 
development and supporting management of changes in software evolution. It is developed at the 
National University of Singapore and available as open source [184]. XVCL was initially intended to be 
used in a product	line fashion where similar components were used in a line of products, and where 
reuse of these components would reduce the development effort. However, it is today applicable 
wherever reuse and maintainability is of essence. XVCL is a complement to existing methodologies 
such as Object Oriented methodology, and not a replacement. It is software and application domain 
independent, thus useful for both software and non	software domains.  

 

 
 

Figure 14 Constructing classes (source code) using XVCL 

 
The idea of XVCL is to identify parts of the software products in the product	line where code is 

identical or very similar. These parts would then be condensed into a single XVCL ��	�"��������	�
�	
��	�
� that would be easier to maintain and reuse [184]. Hence, instead of maintaining several versions 
of a component (one for each product with small alterations that follows a generic design pattern), 
developers would only maintain a single XVCL meta	component structure. This meta	component 
structure could then be used to produce source code and reused in new applications when the same 
design patterns emerge. This is accomplished via employment of a XVCL �
������
, which traverses the 
meta	component structure, parsing the XVCL commands and producing the actual source code. The 
meta	component contains �������� and ���	
��	����, which can be interpreted and processed by the 
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processor in order to produce the code. Figure 14 illustrates the process of converting a meta	
component into an executable component, based on a given specification.  

The meta	component structures are sorted in a tree hierarchy consisting of number of ."�
����, as 
can be seen in the left side of the figure. The root of this tree is called specification frame (SPC), which 
contains the most context sensitive or context aware information about how the system should be 
built. The SPC may include framed information on which sub frames that are to be included in the 
generation of the system. 

XVCL has been studied in this work for the purpose of code generation and development of 
executable simulations (or code skeletons for simulations) using BOM and SOM information, as 
explained in chapter 7. 

( ' �	��������������

Software agents are programs that can with some degree of autonomy perform tasks on behalf of a 
user or another program. The tasks are done based on the user’s (or the program’s) goals and desires. 
Agents have also the ability to learn and adapt their behaviour according to the user’s needs in order to 
assist and support the users more efficiently [161].  

The agent term is a relatively new research topic within AI field. According to [162] an agent is 
anything that can act using its effectors and perceives using its perceptors (i.e. sensors). Various 
definitions of software agents have been proposed by different authors [161]. Some consider any type 
of independent component, such as software, model, and individual, to be an agent [26]. Others mean 
that the behaviour of components must be adaptive in order for them to be considered agents [152]. 
There are also those that emphasize on the autonomous behaviour of the agents [130]. However, most 
of these definitions commonly include features such as, %�
���	����� $�	�����, �����������	�, and #���	�(�	�. 
The feature that has been considered as one of the basic features of an agent is its capability to make 
independent decisions, which requires active behaviour. 

Agents have been used in M&S for providing answers to complex physical and social problems, e.g. 
for modelling intelligent and complex systems by subdividing them into subsystems that interact with 
each other [125]. Agent	based simulations are appropriate for domains characterized by high degree of 
localization, distribution and discrete decision making, such as crowd simulations [149].  

Today majority of agent based systems consist of a single agent [94]. However, the need for systems 
with multiple communicating agents is increasing as the applications get more complex and the 
technology matures. These multi	agent systems (MAS) are a collection of autonomous agents that 
interact with each other and their environments to solve complex problems. A MAS can be regarded as 
a loosely coupled network of autonomous and perhaps heterogeneous agents, each solving a particular 
problem, that communicate with each other in order to solve problems that are beyond the individual 
capabilities or knowledge of each agent [27]. MASs are described to have a number of capabilities such 
as, solving large and complex problems (where information sources or expertise are distributed), 
providing interconnection and interoperability between legacy systems, solving problems that can 
naturally be regarded as a society of autonomous interacting agents, and enhancing performance [94]. 
The performance enhancement is done with regard to computational efficiency, reliability, extensibility, 
robustness, maintainability, flexibility, reuse, etc. 

Agent based simulations (ABS) are special type of MAS, where the focus is on human social 
behaviour and individual decision	making, instead of developing artificial agents [15]. ABS is a 
collection of autonomous and decision	making agents that are able to assess their situations and make 
decisions according to a set of rules. An ABS can provide valuable information about the real	world 
system that it emulates, or reveal unanticipated behaviours. These behaviours emerge from the 
interaction between individual agents, which makes them difficult to understand and predict. An 
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example is a riot situation, which results from the interactions between demonstrators practicing their 
civil rights expressing their opinions, police forces e.g. protecting properties, and malicious rioters 
taking advantage of the situation [149].  

Another benefit of ABS is providing natural description of systems, which means that ABS can 
provide a realistic solution when simulating systems containing ����(���
�� entities. For instance it is 
more natural to simulate how people in a building and fire	fighters are moving and acting during a 
conflagration, instead of setting up equations calculating the density of individuals. Furthermore, ABS 
is flexible and it is easy to add more agents or agent	based models to an existing ABS [15].  

ABS has many areas of application such as flow simulations (e.g. traffic simulations [169]), Stock 
Market simulations [76], and Organisation simulations [106]. Recently, agent environments have also 
been used in development of symbiotic simulation frameworks [17], [52]. In the framework developed 
at Nanyang Technical University (NTU), symbiotic simulations are formed by combining agents, each 
capable of performing a basic functionality that is required for development of specific simulation 
scenarios [52].  

( ' ! ������������	�
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An agent framework is a development and runtime environment inspired by a specific agent 
architecture that is used to develop a variety of simple and complex agents and get populated by them. 
The agents live in that environment, they age (get mature), act and react to their environment and die. 
The framework can conceptually be taken as an API or programming library but it is more than just 
that. It is a runtime environment for complex behavioural software entities that are artificially 
intelligent. Agent frameworks permit creation of common	use components, which other agent	
dependent components can easily make use of. 

Next section presents an overview of the JACK Agent Framework [83], which has been used in this 
work. Different features and components of the system are being outlined and the Jack Framework 
workflow is being briefly described. 
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JACK Agent Framework is developed by the Agent Oriented Software Pty Ltd [83](AOS), and is an 
environment for development, execution and integration of multi	agent systems using a component	
based approach. JACK is a third generation agent system, which according to the AOS has 
incorporated advances in Agent Research and Software Engineering. It provides the core architecture 
and infrastructure for building and running software agents in distributed applications. These software 
agents are called JACK Intelligent agents and model reasoning behaviour according to the theoretical 
Belief Desire Intention (BDI) architecture of distributed artificial intelligence (DAI) [17].  

An agent model in the BDI architecture is event	driven with both reactive and proactive behaviour. 
It mimics simple human intelligence by having a view of the world i.e. Beliefs, goals it wishes to 
achieve i.e. Desires, and plans i.e. Intentions to act upon using its accumulated experience [107]. Thus, 
Jack Agents are autonomous software components that have explicit goals to achieve or events to 
handle, which are their desires. To describe how they should achieve these desires, agents are 
programmed with a set of plans. Each plan describes how to achieve a goal under varying 
circumstances. When executed, the agent pursues its given goals (desires), adopting the appropriate 
plans (intentions) according to its current set of data (beliefs) about the state of the world. For example 
when a goal or event arises the agent decides what course of action to take. If it already believes that 
the goal or event has been handled (as may happen when the agent is asked to do something that it 
believes has already been achieved), it does nothing. Otherwise, it looks through its set of plans to find 
those that meet the request and applicable to the situation. If it has any problem executing this plan, it 
looks for others that might apply and keeps cycling through its alternatives until it succeeds or all 
alternatives are exhausted. 



 53 

The Jack Agent Framework consists of four different types of components: the H����$���	�'��������
<H$'=, the H����$���	� ������
, the H����$���	�I�
���, and a set of H���� ����7�	�	���. JAL is a Java based 
programming language that is used for describing a JACK agent oriented software system. A JAL 
program is pre	processed by the compiler to produce pure Java code, which can be compiled by the 
Java Virtual Machine. The Kernel provides JAL programs with agent oriented functionality and is the 
runtime engine for running those programs. Finally, Jack Agents need a set of code entities (code 
snippets), representing different aspects of the agents, to be able to run in a Jack environment, such as 
H$ I��(��	, H$ I�����, H$ I���������	�, H$ I�(���, and H$ I����������	. 
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A typical JACK project workflow starts by creating an agent given an agent ����, a ���� and an �(��	. 
The agent can either post that �(��	, or handle it. The agent uses the ���� and the �(��	 handles the plan. 
This triangular relationship can be viewed in figure 15. 

 

 
Figure 15 Jack Agent Workflow 

 
Once the above components are in place, they are compiled as a capability component and added it 

in a capability library e.g., in the above example an agent is posting as well as handling a parse event. It 
also has a parse plan to execute. This parsing capability can be compiled in a “Parser” component. 

 

 

Figure 16 Jack Development Environment 
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In a multi	agent system, events are not usually posted and handled by the same agent. One agent 

posts an event and another agent (which has the capability) handles it. Once the event is handled, the 
agent sends/receives more events (event messages) to the requestor or to/from some other agent. This 
is how a process of co	operative co	ordination can be executed. This message handling can be done 
within the same machine or across the network. JACK kernel is capable of handling network 
communication. 
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The JACK Development Environment (JDE) is a cross	platform graphical editor suite for 
developing JACK agent and team based applications. The environment is written in Java and allows 
the definition of projects, aggregate agents and teams, and their component parts under these projects 
[83]. A screen shot of JDE environment is shown in the following figure. 

( ( ��������

In this chapter some of the technologies, which have been used or inspired this thesis, and have not 
been covered in other sections, are presented. The DEVS formalism provides support for reasoning 
about compositions and developing hierarchical model. Even though DEVS mainly supports syntactic 
composability, we believe that it is a well	founded and sound approach, which in combination with for 
instance UML can facilitate semantic composability [141].  

SRML has been used for formal representation of simulation scenarios. SRML as a whole is a 
complete language for defining simulations and includes large number of features, some of which are 
not applicable in the scope of this work. Thus, we introduce a subset of the language called SRML	
Light, which has been used in this thesis (part II, papers 7 and 9). The SRML	Light can be extended in 
the future to better make use of script	languages for expressing inter	component communications.  

Even though the concept of automatic code generation has not been explored as much as we would 
have wanted to, we believe that XVCL is a great candidate for code generation and development of 
executable simulations from formal simulation model descriptions (part II, paper 7, and reference 
[115]).  

Finally, multi	agent systems are the ideal candidates for realization of automatic or semi	automatic 
component based development processes that can support a modeller with identification and discovery 
of components as well as give feedback on feasibility of a composition (part II, paper 10). 



 55 

�������) �

+������

As being pointed out in chapter 2.3, there are some issues that obstruct proper utilization of M&S, 
such as initial development costs, increasing system complexity, and user acceptance. Furthermore, 
simulation development is a multi	disciplinary process, which requires collaboration between experts 
from various domains, such as application domain experts, simulationists, end	users, VV&A agents 
(Validation, Verification and Accreditation), etc. Network	based Modelling and Simulation (NetSim) 
project was started in 2002 at the Swedish Defence Research Agency (FOI) funded by the Swedish 
Armed Forces [41], [113]. The general idea of the project, which ended in 2006, was to provide a 
collection of M&S services to address some of the above issues and hence, support design, 
development, execution and assessment of network	based/distributed simulation models. This general 
idea was the further revised and resulted in outlining a limited number of services with specific 
objectives. The common goal of these services was to facilitate utilisation of simulations in the 
Network Centric Defence (NCD), which is the latest paradigm adapted by the Swedish Defence. 

Component	based simulation model development (CBMD) was one of these services [34], with the 
objective of identifying and developing methods and techniques for implementing a framework for 
CBMD. For this purpose we studied the BOMs standard [159], focusing on the BOM composability 
and BOM	based model development. Besides CBMD, other NetSim services support sharing of M&S 
resources, and collaborative simulation development and execution within and between organizations, 
which all aim at promoting increased use and reuse of simulation models which lead to increased 
quality of work in the M&S development process. 

Figure 17 presents an overview of the service	oriented architecture of NetSim. The uppermost layer 
comprises various NetSim tools, dedicated to M&S	related tasks, for instance tools for composition of 
federations by a single user, or collaborative development of federations by a number of users. The 
NetSim tools derive their functionality from NetSim specific services, denoted CBMD (Component	
Based Model Development), SDR (Semantic	based Distributed Repository), CC (Collaborative Core) 
and DRMS (Distributed Resource Management System). The DRMS provides computing capacity for 
reliable distributed execution of simulations. The CBMD provides a process and services for 
supporting component	based model development. CC provides services for collaborative work, 
whereas the SDR provides services for storage and look	up of available resources on a network. The 
NetSim specific services are based on various overlay network service technologies, such as Web 
Services, Grid Services and the HLA RTI. These are just examples of network technologies that could 
be deployed to achieve the goals of the NetSim environment. 

) ! ������	�����������

The NetSim project was inspired from the latest developments within the fields of M&S and 
Service	Oriented Architecture (SOA). On one hand the advances in Web	 and Internet	technologies 
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are contributing to emergence of a new style of M&S architecture which is characterized by among 
others component	based development and execution methodology with loosely coupled simulation 
models. On the other hand the SOA is evolving in a sense that information, applications, tools, 
computers and other types of network resources are organized as services, such that they can be 
searched, discovered and utilised via networks. Examples of such architectures are the Network 
Centric Defence (NCD) and the Global Information Grid (GIG), which envisions a highly 
interconnected network of what can be generalized as, producers and consumers of information. The 
GIG is initiated by DoD (Department of Defense) and aims at: 
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�����; [47]. 

The GIG vision includes communications and computing systems and services, software (including 
applications), system data, security services, and other associated services. M&S has also been pointed 
out as one the important services to be utilized by the GIG. Hence, research has been conducted 
regarding methods and feasibility of employment of M&S services within the GIG [98].   

However, to be able to integrate M&S into future defence systems, there is a need for developing 
M&S and M&S	related services within NCD. One of the objectives of the NetSim project has been 
facilitating employment of M&S within the NCD. The functions and services that have been designed 
and developed within the project are mainly:  

	 A framework for component	based simulation development 

	 A semantic	based distributed resource repository 

	 A distributed resource management system 

	 A collaborative core 

	 A security architecture 

The project included four phases. The first phase was pre	study and researching different 
technologies and related ideas. During this phase we investigated different technologies and built small 
sample prototypes to test their feasibility [41]. The second phase of the project was design of a general 
service	oriented architecture for the NetSim environment [38]. Figure 17 depicts the multi	layer and 
modular architecture that was produced during this phase. The advantage of having such architecture 
was that it is scalable and could be utilized during a longer period of time in order to test and evaluate 
different current and future technologies, techniques and tools. New tools could be tested without 
needing to rebuild the whole system each time. This approach was also more flexible and would also 
give us the opportunity to employ different techniques at each layer, and not being limited to only one 
technique.  

The third phase of our work was realization of the designed architecture and development of a 
prototype [39]. The realization was partly done by implementing each service and connecting it to the 
underlying layers and partly by development of an application that could join all services together. In 
order to make services interoperable a common information model was implemented. During the last 
phase of the project we tested and evaluated the whole environment using a set of scenarios and end	
users assessments [40].  

The following sections will give an overview of different NetSim services. These services can be 
deployed individually or in combination with each other. The main focus of this chapter however will 
be on the framework for component	based simulation model development and how the other services 
support this framework. These sections are mainly aimed at giving an introduction to different services, 
and for more detailed description of the work, interested readers are directed to different reports and 
papers that have been written by the project.  
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Figure 17 NetSim architecture 
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As mentioned earlier, component	based simulation model development (CBMD) is one of the 
services developed by the NetSim project. The objective here has been investigating and developing 
methods and techniques for implementing a framework for CBMD. The first step toward development 
of such a framework was identifying its constituents. The common denominator for all composition 
infrastructures both within M&S and software engineering is that they all besides the components 
themselves require a component library, composition and query tools and metadata standards [144]. 
Hence the NetSim CBMD framework consists of the following parts: 

	 A common data model for describing resources 

	 The data model, which is based on open standards, in order to promote reuse and interoperability, 
consists of a common terminology for describing simulation components and their relations. For 
this purpose we developed a general ontology for describing simulation components [108], [117]. 
Besides the ontology it contains structured meta	models and components specifications. In our 
case we utilize the BOM structure and OWL descriptions of BOM	based simulation 
components as described in chapter 7. 

	 Library of reusable components 

	 A semantic based repository, which can provide storage, search and retrieval capabilities is one of 
the main constitutes of the framework. The repository should be semantic based in order to 
provide more precise look	up capabilities based on the contents of the components in stead of 
the keywords, specifically when the number of the components in the repository is high. The 
repository is explained in more detail in section 6.3.    

	 Model composition environment 

	 Given a repository and a set of well	described and structured components, we need a process for 
search, discovery, matching, reasoning and composition of those components. This part is 
explained in more detail in chapter 7.   

Furthermore, we have included the whole framework in a collaborative environment in order to 
promote validity, reliability, user	worth of the simulation models developed [81]. Finally the execution 
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environment is employed for managing the invocation of the composite components and transferring 
data between the adherent components [110].  
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Two different approaches for component	based simulation model development were investigated by 
the project. The first approach was inspired by the ideas of hierarchical model development and HLA, 
using HLA federates as components. The goal was to provide an environment for modellers to choose 
federates from a repository and compose them using a graphical composition tool. The object model 
descriptions of components (federates), i.e. SOMs together with ontology documents, were employed 
as basis for reasoning about the composability of those federates, and giving a modeller proper 
feedback [185]. The execution environment provided means for running the composed federations. 
We have developed a prototype environment based on this approach, which is functional and 
facilitates federate composition and federation development [41]. However, we concluded that even 
though SOMs provide enough information to reason about synthetic composability of composed 
federates, they have little to offer when it comes to reasoning about semantic validity of composition 
(federations). Furthermore, we noticed that federates in general are too large as components, and are 
usually developed for specific purposes (federations), which makes it difficult to reuse them in other 
combinations. Generally, a great deal of hands on work is required to adapt federates for reuse in 
federations other than those they have originally been developed to be part of. Deciding what has to be 
altered in order to adopt a federate is not trivial either, if one has not have access to the conceptual 
model describing the federate.    

The second approach, which was perceived parallel to the first one, was slightly different. This effort 
was based on employment of formal description of models and automatic code generation. The first 
step of this track was taken in collaboration with National University of Singapore, NUS [115]. 
Simulation Object Models were used as a model for writing the formal descriptions of models. As for 
automatic code generation eXtensible Variant Configuration Language (XVCL) was used [184], 
explained in section 5.3. 

We have developed an environment based on this approach, which proved the feasibility of the 
chosen path and XVCL as a technique for automatic code generation [115]. However, the conclusions 
regarding SOMs were identical to those from the first approach. Hence, as a continuation of this work, 
we decided to investigate feasibility of Base Object Model (BOM) as a basis for composition of 
simulation models [34], [36]. Chapter 7 gives a complete description of the work and the framework 
that has been developed. 
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Besides the components themselves one the main parts of the framework is a repository facility 
which provides management and storage of, and access to those components. Early in the project it 
was decided that a repository of such should be a distributed service which allows sharing and 
utilization of resources (e.g. simulation components) across organisation boundaries. We also decided 
that it should support advanced search and query, be robust, platform independent, decentralized, and 
scalable. Having these in mind we investigated available related ideas and platforms that could meet 
our requirements. The result is a hybrid called the Semantic Distributed Repository (SDR) [109].  

The aim of the SDR is sharing, exchanging, utilization and modification of resources in a secure and 
(to the user) transparent way. It is designed for collaboration across organizational boundaries in so 
called Virtual Organizations i.e. groups of people belonging to different organizations working 
together, sharing and using the same or similar resources, without regard of organization or underlying 
environment. The SDR works in a dynamic environment where nodes and clients come and go in an 
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ad hoc manner. The management of resources is semantic	based, which means that each resource 
(component) has a metadata description attached to it. This metadata is based on a common ontology. 
A semantic search implies that a user can look for a component based on the definition of the 
concepts and terms involved, and the relation between them. Through semantic search not only the 
number of irrelevant hits are minimized, it is also possible to identify and discover components, which 
one otherwise could miss if the search was only based on keywords. For instance, a search for a vehicle 
with four wheels, which is at least a three	sitter, will discover normal family cars (since they are a 
subclass of the class vehicle) and at the same time eliminate other types of vehicles such as, two	sitter 
sport cars, motorbikes, busses, etc.  
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The first step of the development of the SDR was requirement analysis. The requirements were 
identified partly based on our investigations of available platforms and related technologies and partly 
based on the needs of the NetSim environment. Based on these requirements, we designed an 
architecture that had the potential of meeting them. These requirements include the ����
���������	��
� 
(the underlying platform should be operating system independent, use open source software and 
implement well known standards as much as possible), �
���	��	�
� (the architecture should be easy to 
rebuild and modify, be robust and capable of handling a dynamic environment and provide 
functionality for semantic management and search of resources), ����	������	� (the most important 
functionality requirements besides the semantic management and search of resources were the storage 
and retrieval of objects), and ����
�	� (the security requirements involve issues like integrity and 
confidentiality of data, user authentication, secure communication and access control of objects in the 
repository). 
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Following the requirement analysis a general design for the SDR based on the requirements has been 
constructed. To enable semantic management, search and retrieval two kinds of methods, techniques 
and software are needed. The first kind is needed for description, management, search and 
identification of the repository resources. The second kind is required for localization, storage and 
retrieval. Furthermore, techniques for communication and security with authentication, access control 
and encryption are also needed. A design with these features could be seen as a three	tier architecture 
in figure 16.  

The Data layer consists of metadata and resource data storage. The Logic layer takes care of the 
semantic functionality, resource location, management and transfer. The Interface layer handles 
communications and security issues like authentication, authorization and encryption [123]. 
 

 
 

Figure 18 the three-tier SDR-architecture 
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The SDR has been designed as a network of nodes to which clients can connect. This design, based 
on a Distributed Hash Table (DHT) [3], is decentralized and no node has any administrative rights 
over any other node. The SDR deals with three main components, the nodes, the clients and the 
resources. 

Each participating organization has one or more nodes that it provides to the SDR network, through 
which the clients/users access the network. There is no explicit limit to how many clients a node could 
handle. A client may be an application through which a user may explore the repository, or it may be 
another application that utilizes it for its own purposes. Clients interact with the SDR through a Web 
Service interface that allows the client to perform all available operations on resources in the SDR. 

Resources in the repository have three kinds of objects associated to them, the data for the resource, 
the descriptions and the administrative metadata. The data is optional since it depends on the nature of 
the resource e.g. a computer resource is only represented by a URL. The administrative metadata is set 
by the SDR when the resource is created in the system. The description language for the resources is 
OWL. The description can be comprised of several components that have different focuses, i.e. a 
simulation model can be described from various aspects, purpose of the model, execution 
requirements, interface specifications, etc. The DRONT ontology, which we have developed within the 
project [108], has all of these elements in it. In this way the inference engine [107] can be used to infer 
conclusions about the resources. 

The first prototype implementation of the SDR was done with a combination of Globus Toolkit 
3.2.1 services (RLS [48], GSI [50], and GridFTP [49]) and Grid services as communication interface 
[48]. For the semantic framework the metadata language used was OWL, the ontology editor Protege 
was employed to build the OWL test ontology and Jena 2.2’s internal inference engines MICRO and 
MINI were used [85]. The database management systems utilized were MySQL 4.1.7 for Jena and 
PostgreSQL 7.4.2 for RLS. The web server was Apache tomcat 4.1.31. 

In the second version, SDR was ported to Globus Toolkit 4.0.1, the database systems were reduced 
to only PostgreSQL. Due to the improvements in GT	4, the communication interface is now handled 
by Web Services. The java version has also been updated from version 1.4 to 5.0. The biggest 
difference between these two SDR versions (besides the change to WS	interface) was the introduction 
of the DHT and Fortress modules. This totally changed the network topology of SDR and allowed 
more flexibility in the node availability. 

) ' �	����	����%���	���2����

Collaborative services are another type of services provided by the NetSim environment. The main 
idea here is to support modellers, end	users, M&S experts, VV&A agents, etc, and provide means for 
collaboration during different stages of the M&S process, such as design, development and execution 
of simulation models. These services will not only bring different actors together and make the M&S 
process more efficient, they will also improve the quality and the user	worth of the models developed.  

However, M&S applications are usually specialized for their purposes, and do not naturally provide 
support for collaborative services [80], [81], [82]. A general problem that developers of Computer 
Supported Collaborative Work (CSCW) applications face is the complexity of integrating management 
of collaboration groups and activities within an already existing application. As a result, the majority of 
the software used for computer	related professional tasks are single	user local desktop applications. 
Also the dedicated CSCW software tends to lag behind in other than CSCW functionality [45]. 
Especially within domain specific applications such as M&S applications, this kind of support is rarely 
seen. Thus we have addressed the problem through in	house design and development of the needed 
infrastructure, a foundation we call  ������
�	�(�� �
� (CC). In this regard we have studied techniques 
and methods for developing an infrastructure, which provides collaborative services, and which due to 
the nature of a Network Centric Defence should be distributed.  
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The collaborative services module in NetSim mainly provides support for group management and 
tool sharing. Applications using the services do so without user specific complementary actions. CC 
leverages support and services required for a user to start, administrate, and participate in computer 
based collaboration groups, sharing tools and other functions in NetSim. Moreover, CC offers 
development support for integrating new tools for CSCW. CC comprises three main components 
(groups of services);  ��������	���� �����, $������	���� *�	�
����, 8
���� ���������	� �
(����. The latter 
represents straight	forward services for CSCW group management and administration, including 
shared group status and areas. The second component provides a pluggable interface for collaborative 
applications, and relieves tools of the responsibility for managing user groups, and most of the 
responsibility for communication. Using this approach, developers can easily develop new CSCW 
tools, and modify existing applications to become collaborative. 

The overall requirements for the CC module are as follow: 

	 +��	
���	���   �6� Due to the nature of a distributed defence, the environment should be 
distributed and not centralized. However, this does not exclude future combinations. 

	 ����
��������
�6�The CSCW intended here is immediate and synchronous. 

	 ��
	� %�
���	�����  ������
�	����8
����6�The kind of tasks that will be performed within the NetSim 
collaborative work, are assumed to most often be directly task oriented, i.e. the life time of the 
collaboration is assumed to be short. 

	 ������
������/��6�The groups are assumed to be small, 2	8 persons. Though considering scalability 
and regarding HLA as a candidate technology, larger groups are possible. However that requires a 
high level of social support, to address issues such as virtual conflicts, an issue not handled here. 

	 D�
����� �����	� 	����6�Different client types are considered, such as thin clients with poor network 
connections. In this regard virtual worlds are too complex for the purpose, and hence we focus on 
shared context and space, rather than virtual place. 

) ' $ *����������#����������	��

Figure 19 illustrates the general architecture for the CC. As shown in the figure, users access the 
environment via a NetSim client. The NetSim client is an application at the top layer of the NetSim 
architecture, which provides different users access to the NetSim tools, applications and other services 
in the environment. The CSCW services provided by the CC, namely Tools APIs, Communication 
Support and Group Management Services, can also be seen in the figure. 

In order to avoid unnecessary development during the design phase we investigated various 
architectures, such as Peer	to	Peer (JXTA), Web Services and HLA, for handling communication 
between nods. The architecture that was finally chosen was HLA, which provides an infrastructure 
with essential services that beneficially could be used for CSCW, such as time management, group 
management (!���
�	���� ���������	), efficient information filtering (DDM), and communication 
management. HLA is a mature technology and standardized (IEEE 1516) used for development of 
various military and non	military applications [172], [186], which even have been evaluated for 
development of collaborative virtual environments [45], and since most simulation within our research 
complies with the HLA, it was a natural choice. Furthermore, advanced, flexible consistency 
management has been declared a lacking part in current implementations of CSCW and in existing 
systems [186]. Through utilization of HLA and the RTI, which provide advanced, flexible time 
management, this issue was addressed appropriately. However, HLA was not originally been developed 
for real	time applications, something that CSCW applications highly are. Thus, we evaluated the 
suitability of HLA for the purpose.  
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Figure 19 the general CC design 

 
XML (the 7.	�����������������'�������), which was perceived as suitable for structuring and handling 

information, was used for group definitions. XML provides a way of structuring information in a 
platform independent, human	readable way [132]. A very beneficial feature is that XML efficiently 
separates data from presentation. In CC services a lot of information is managed, such as tool specific 
information, collaboration group information and client information. A design choice could be to 
strictly follow the technology chosen (here HLA), but to accomplish a more generic structure and less 
technology dependent, XML was chosen. Another reason for using XML was that in our environment 
various client types are expected. Using XML, the same information is provided to all participants. At 
the client side, parsing of the XML formatted information can allow for user specific utilization and 
presentation. 

Based on these design choices, we implemented the first CC prototype with focus on collaboration 
services, group services and tool APIs. A simple user GUI was created along with three simple, but 
demonstrative prototype applications, a text editor, a box drawing tool and a game. Additional CC 
features were also implemented, such as a %�
	�����	����%���� (group specific information) and an $�	�(�	��
%���� (alerts tool activity etc.). These were used for practically evaluating the implemented CC 
functionality. In the second implementation of the CC communication support was also developed and 
tested [120]. Communication support included text, voice and video communication. As transport 
medium HLA was employed. The DDM services of RTI was used for efficient routing of information 
by directing information (���	��	� ���������), and forming subgroups for communication within 
collaboration groups. 

Applications in different nodes communicate through exchange of messages, where all messages are 
formatted in XML and validated towards an XML Schema created for this reason. This is provided by 
the Application Interface to support applications in using, parsing and reading XML.  

Overall, results demonstrate feasibility of the CC infrastructure, and of the objective of extending 
the use of HLA to non	simulation applications. HLA proved well suited as communication structure 
for real	time user interactive applications, and the already built	in advanced functionality in HLA was 
beneficially used for CSCW services. Furthermore, XML conversion tests verified efficient use of XML 
for the purpose and combination with HLA for CSCW. For more information see [80], [81], [82], and 
[122]. 
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The main purpose of the execution environment, referred to as DRMS (Distributed Resource 
Management System), has been provision of computing capacity for reliable execution of simulations. 
This is partly achieved through utilization of idle processing capacity in a network of workstations for 
distributed simulations, in stead of having a large number of dedicated computers as execution 
resources. In order to employ DRMS services desktop owners within an organization should be able to 
download and install a small client that under certain circumstances share resources with other 
connected nodes. However, this will result in an environment, where the availability of resources on 
the network is expected to change fast and unpredictably in an Ad	Hoc manner. So, the main question 
here is how to ensure reliable and fault	tolerance execution of simulations in a manner transparent to 
the users.  

) ( ! 4�3�����������

To comply with the above issue and provide fault	tolerance the system should include mechanisms 
for migration, or movement, of federates between available computing resources during a federation 
execution. The dynamic characteristics of the network, also requires redundancy (replication) in storage 
of simulation components to gain access to the same set of federates at all times [110], [111], [112].  

Furthermore, a major aspect to consider when implementing DRMS was discovery and matching of 
resources. The first problem relates to the basic strategy used to discover the presence of other 
nodes/resources on the network. Another problem is how to identify those resources that match 
certain requirements. The reason is that different simulations will most probably have different 
software and hardware requirements, such as the type of the operating system, run	time environment, 
CPU capacity, etc. These two issues, namely discovery and matching of resources, are addressed 
through utilization of SDR, by employing semantic annotation of computing resources and simulation 
models [110].  

) ( $ �����������������#����������	��

DRMS comprises two basic modules, namely a ��
��
��������and a ���
����	�
��������[111]. A worker 
is responsible for execution of one or more jobs, whereas a coordinator is responsible for the 
coordination of one or more workers in managing a batch of jobs. DRMS, as mentioned earlier, is 
dependant on a 
�����	�
�� ��
(���. A repository is used by a worker to advertise its presence on the 
network and also its availability for execution of various jobs. Furthermore, the repository is used by a 
coordinator for localization of available workers. A repository also contains advertisements of other 
resources available on the network and is therefore used as entry point when worker services fetch 
resource files and executable code. 

To enable uniform and semantically rich descriptions of resources within the environment, a +#��
��	����� is needed, which is aligned with the general NetSim ontology describing different concepts in 
the environment and the relation between them. The DRMS ontology should comprise constructs for 
description of simulation models and computing resources. The main purpose of the ontology is to 
promote a shared view of information throughout the environment and facilitate localization and 
matching of resources. The choice of language for its representation is the Web Ontology Language 
(OWL) [178]. As discussed in section 4.1.3, the expressiveness of OWL is sufficient for representation 
of information required by the DRMS, and the ability to inference over information, is ideal for 
matching resources in the implementation.  
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Figure 20 the general architecture of DRMS and the interrelation between different services 

 
The general architecture for DRMS is illustrated in figure 20. For implementing a worker we have 

designed a #���	�H���
(���. When deployed on a workstation, this service will announce its presence on 
the network by registering an announcement in a repository. The announcement is represented by a 
meta	model, which defines the features of the RemoteJobService’s host environment. This includes 
aspects such as the workstation’s hardware configuration, OS type and version etc. The meta	model is 
an instance based on the DRMS ontology.  

The #����
��#�����	�
��
(��� is a representation of the SDR, which has been described in section 6.3. 
This service supports storage of meta	models, such as the meta	model describing the 
RemoteJobService’s host environment. The interface of the ResourceRepositoryService includes 
methods for registering, deletion and lookup of meta	models. The lookup can either respond with the 
entire content of the ResourceRepositoryService, or a subset of registered meta	models, defined by a 
search query.  

In order to implement the coordinator an 7.���	����
(��� has been designed. An ExecutionService is 
utilized by the NetSim environment when a single user, or group, requests execution of a scenario 
(federation). The main tasks of the ExecutionService are to automatically setup a federation and to 
monitor the federation execution.  

 
Table  3 Service interfaces of the DRMS implementation 

Service Method 

RemoteJobService allocateJob(Meta-model) 

 startJob(Id) 

 stopJob(Id) 

 getJobStatus(Id) 

ResourceRepositoryService addModel(Meta-model) 

 deleteModel(Meta-model) 

 getModels() 

 getSubset(Query) 

ExecutionService requestExecution(Scenario) 

 finalizeExecution(Id) 

 getScenarioStatus(Id) 
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The implementation of DRMS is based on Web Services, the Axis platform [170], and Semantic 
Web technology, through use of the Jena toolkit [85]. The components of the architecture which have 
been implemented are: +#����	�������#���	�H���
(�����#����
��#�����	�
��
(�����and�7.���	����
(��� [110], 
[111].  

Table3 outlines the service interface of the RemoteJobService, the ExecutionService, and the 
ResourceRepositoryService. 

To enable fault	tolerant execution of federations the ExecutionService comprises a stable storage 
and a fault detector component [110]. These components are members of concerned federation 
through a common federate. The stable storage stores checkpoints reported from federates in the 
federation, whereas the fault detector detects failed federates in the federation and initiates preventive 
measures to resolve these errors. The error detector detects the failure of a federate by means of the 
HLAfederate object of the MOM (Management Object Model) [145], which is deleted if the link to the 
RTI is broken. As an additional measure the error detector calculates the time passed from the last 
reported checkpoint and if this value exceeds a pre	defined time, the federate is not longer considered 
active. When a test federate crashes, or its network connection is simply lost, the fault	detector initiates 
re	distribution of the lost component in the inference engine. The inference engine finds a new host 
environment for the federate under consideration, given the requirements of the federate as defined by 
its meta	model, and allocates the job to the RemoteJobService node. More information about DRMS 
can be found in [110], [111], and [112]. 

) ) ��������

This chapter presents a brief introduction of the NetSim project and the general framework for 
component based simulation development that we have designed and implemented. The services that 
are developed to support the framework are also presented and discussed. Even though these services 
can be employed to facilitate component based design and development of simulations/simulation 
models, they have been designed in such way that it is possible to deploy them individually to support 
utilization of M&S in network centric infrastructures such as NCD.  

Our second approach to development of the CBMD framework which we have briefly touched 
upon in this chapter is discussed in detail in the next chapter. 
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As explained in the previous chapter, component based simulation model development (CBMD) 
was one of the services provided by the NetSim environment. In the framework that we developed for 
this purpose two different (still closely related) approaches were pursued. The first approach was 
focused on simulation (federate) reuse and composition (federation development), while the second 
approach was based on employment of reusable BOM	based model components and automatic code 
generation. This chapter will describe the work that we performed regarding BOM discovery and 
composition, and the framework, which has been developed for the purpose. The framework including 
the discovery and composition process was designed and developed iteratively during different steps. 
Below two distinct steps are presented, followed by a description of the agent based environment that 
we developed to implement the framework. However, before doing so, to make the presentations 
more clear and understandable, the rationale and the modelling and composition assumptions are 
described in the next section.  

; ! ���2��������������	��*�%��	�����

Developing simulations through reuse of existing simulation components requires a fair amount of 
adjustment and adaptation of the components, especially if the components are planned to be used in 
combinations and for purposes, other than what they have originally been intended to. This conclusion 
was easily drawn after our first implementation of the CBMD framework in the NetSim project [41], 
[38]. Furthermore, it was deducted that the larger and more complex the components get the harder 
the adaptation work is. And for real complex components the adaptation is almost impossible (or 
impractical) without proper component documentation. Hence, in order to compose a simulation out 
of components, the components need to contain (and expose) some information about their internal 
structure and how they can be used. This information is called metadata and contributes to simplified 
use of a component by others [93]. Generally, the concepts and terminologies used in various 
components may vary substantially and thus can lead to misunderstanding. Therefore the concepts and 
terminologies should be defined in an unambiguous way to avoid misunderstandings, particularly if the 
composition process is automated. 

However, even having good documentation requires tedious labour to understand how a component 
works, how it has been implemented and what changes are required. Moreover the adjustments mainly 
ensure that components in a composition can communicate (i.e. syntactically) and the semantic validity 
of the composition can not be guaranteed. The validity is mainly checked after composition and by 
running the simulation and performing validity tests [144].  

One approach to test and ensure the validity of composed simulation before actual composition is to 
provide (simulation) components with formal descriptions, i.e. structured models, which can be 
reasoned about and be used as a basis for selection and compositions. As mentioned in previous 
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chapter this is the method that we used in the second approach for realisation of a component based 
simulation development framework in NetSim. This approach is based on model composition with the 
help of formal descriptions, automatic code generation and simulation development.  

The first step toward this direction was taken in collaboration with National University of Singapore 
(NUS) [115]. In that work, since we had already worked with HLA federates and federation 
development in our first approach, it was natural to take a closer look at SOMs. The idea was to study 
SOM’s feasibility for providing information for reasoning about composability of federates ahead of 
composing them. However, composability tests based on SOMs could easily be ruled out [39] [115]. 
SOM mainly provides information about the data that a federate exchanges with other federates. Even 
though there are some metadata available in a SOM, they can only provide very basic semantic 
information. Adding semantic information to SOMs in order to improve their usability is not feasible 
either, since a SOM is not a simulation model description and lacks the basic mechanism for providing 
information about the internal behaviour a simulation component [56]. And finally, automatic code 
generation based on SOM/FOM can only result in a code skeleton, which certainly can assist a 
simulation programmer, but is far from a complete simulation code [115].   

Hence, it is desirable to identify another formalism for presenting models and describing simulation 
components. The BOM concept, as described in chapter 2, has been introduced by the HLA 
community and is the Modelling and Simulation community’s proposed component standard. In 
BOMs, the interplay within a simulation or federation is captured and characterized in the form of 
reusable patterns. These patterns of simulation interplay are sequences of events between simulation 
elements [158].  

Even though BOMs were created based on ideas from HLA, meaning they include HLA OMT 
information, BOMs may be used without this information to describe any type of simulation 
component, a feature which makes them even more versatile. Hence, BOMs could be suitable 
candidates for implementing a component based simulation model development framework. The first 
step to investigate the above assumption is to study the feasibility of BOM for describing simulation 
components and supporting semantic validity checks of compositions. In this work we also 
investigated whether BOMs could be used to create code	skeletons for federates and a whole 
federation (part II, paper 7). As BOMs contain high	level information as well as HLA OMT 
information it is possible to reduce the time needed to develop code that is not included in the actual 
simulation logic. This would be done by developing tools that use BOM information to automate the 
generation of such code and reduce development time and effort.  

To create the above process it is required to set up some modelling and composition assumptions, 
which could be used as a basis for the work.  

; ! ! �	�������������	�	����	���������	���

The main assumptions considered in this work are as followed. First of all simulation models are 
seen as combinations of ��	�	��� and �(��	�. A composed model consists of a number of event	driven 
components, which communicate by sending messages. An event is something that happens at certain 
point in time such as, receiving information about the status of an airplane by another airplane. And an 
action is the service, or operation that is triggered after an event has happened, e.g. the computation 
done by the airplane and its change of state can be considered as the corresponding action to the above 
event. Basically, we define an action in terms of its effects on the environment and itself. 

It is also assumed that the actions (components) are combined in a &�
�/��	�� manner. Two 
operations/actions can be combined &�
�/��	���� if they model a supply	chain like combination [1]. In 
order to describe Horizontal composition we introduced the concept of ����. The ���� of an action 
shows whether the action initiates an interaction, via sending a message ()�	 mode), or it is invoked as 
a result of receiving a message (*� mode). An action is either in *� mode or )�	 mode and the mode 
can not be changed dynamically. The Horizontal composition is a combination of an )�	 action 
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belonging to message sender entity with the respective *� action of the entity (ies) receiving that 
message. Detailed information about the assumptions can be found in part II, paper 9. 

In the two framework development steps that are presented in this thesis slightly different 
composition assumptions are considered. The composition in the first step is simpler and basically 
utilises the information presented by each BOM (including metadata and use history) and the 
accompanying ontology (written in OWL) to reason about compositions. In step two however we 
check compositions through matching of the Semantic BOM Attachments, which is an extension to 
the BOM description developed in this work. The Semantic BOM Attachments which is based on the 
ideas from Semantic Web and Web Services, as will be explained later. 

In the next section the process that we developed during the first step and our conclusions are 
presented. 

; ! $ �	�	����	��������	�
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In the composition framework we assume that a simulation developer describes the target scenario 
(simulation to be developed) in a formal manner using SRML	Light, described in section 5.2.1. This is 
followed by the development process consisting of three phases, +����(�
�, ��	����� and  ������	��� 
(abbreviated as DMC). 

The BOM Discovery phase starts by processing the provided SRML document and identifying the 
type of components (BOMs) that are required in the simulation. It is done by parsing out all the 
components mentioned in the SRML document, along with an Ontology that accompanies the SRML	
Light document and stated its frame of reference. Consequently, the list of identified components 
together with Ontology	information is used to fetch candidate BOMs from a repository. The BOMs 
fetched have to be relevant to the simulation in some way, either as explicit components or 
components related to the simulation in some other way, such as loggers, rendering components etc. 
How this fetching is done depends on the BOM Repository and its interface. (In our work we 
originally deployed a simple file based repository, since the SDR was not available at the time.) The 
Discovery phase only identifies BOMs that roughly suite the intent of the simulation or match the 
components specified in the simulation document.  

Following the first phase, the list of candidate BOMs are used as input to the BOM Matching phase. 
In this the fetched set of BOMs are compared and decides which BOMs might be suitable for the 
simulation. This is a more complex operation that needs to take into account the simulation intent, as 
described in the SRML document, and handles issues such as, what components fit together 
semantically and syntactically. In order to compare BOMs, additional information such as ontologies 
and reference documents is also used in this phase. The first step in this phase is to find suitable set of 
downloaded BOMs, and build different combinations each containing all the BOMs required by the 
SRML document. The reason is that we could discover more than one BOM for each identified 
component type in the SRML document, resulting in a number of combinations. Later each 
combination is analysed and their composability is checked. In our implementation the actual 
compatibility check utilized available metadata inside the BOMs and reference documents such as 
Ontologies to create a Composability score between each pair of BOMs. 

This score indicates if two BOMs refer to the same types of events and entities, and if they publish 
or subscribe to events that had been specified in the SRML document. The score is also affected by 
previous use history, overlapping application domain and other general metadata, which is used to 
reinforce Composability Scores between BOMs. Figure 21 illustrates the logical flow of how matching 
of BOMs is done and a score is for each combination. 
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Figure 21 Matching flow of BOMs 

 
 

In the last part of the process i.e. the BOM Composition phase, the selected components are 
assembled into a composite BOM, a BOM Assembly. This phase takes a number of BOMs as input, as 
well as the SRML document and mapping data to determine how to merge the BOMs together (as 
parsed out from the Mapping Suitability step). This information is used to create a BOM Assembly. 
This BOM Assembly is later intended to be used to either produce code for the execution of the 
simulation, or serve as a blue	print for composing BOM	implementations associated with the identified 
BOMs.  

The component	based simulation development process, where the DMC part is highlighted, is 
illustrated in Figure 22. 
 

 

 
Figure 22 BOM Discovery, Matching and Composition process 

 
Based on the above description an implementation of the BOM DMC process is made (part II, 

paper 7) and tested. The implementation and the test scenario in themselves are quite straight	forward, 
and do not represent significant discovery of any kind. For instance, determining that any simulation 
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scenario could be modelled using SRML Light is of course impossible, but being able to formulate a 
simple and typical scenario from a component based view of simulation development in a formal way, 
and being able to make sense of it both visually and pragmatically, proves that the idea of composing 
simulations from components, for example BOMs, is indeed feasible.  

The conclusion that is drawn from our study is that BOMs contain a great deal of information that 
greatly support a component based simulation process. This is due to the fact that BOMs contain 
numerous useful metadata and definitions of events and entities, as well as a state machine describing 
the internal behaviour of the components. However, we consider it essential to include semantic 
definitions and frame of reference (via ontologies) to avoid misunderstanding of terms and concepts. 
Since BOMs do not specify how this type of information should be included we have to find the best 
feasible way to do it.  

The main weakness of the method used in this step is that the semantic matching is complete and 
there is no proper way of matching behaviour of the conceptual models of BOMs.   

; ! & �	�	����	��������	�
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The rule	based approach aims at overcoming the weaknesses of the previous framework described 
in section 7.1.2 by refining the development process, extending the BOM description with semantic 
information to avoid misunderstanding of terms and concepts, and providing a proper method for 
discovery and matching of BOMs (part II, paper 9). 

As for refining the process, the composition framework from last phase is improved in this step, but 
the original idea is more or less the same. The process that is developed here contains four phases: a) 
#�'�%�
�����b) 3)��+����(�
��c) 3)����	���������� ������	���, and d) 3)��$��������3�������. As in 
the previous case, the first phase starts with a description of the target simulation written in SRML 
Light [181]. The simulation model contains simulation components, and events, as connectors of those 
components. The SRML item classes are seen as representation of BOM candidates while events 
(script	tag of SRML) represent actions between components. In the SRML parsing phase we parse the 
simulation scenario and extract information about candidate components (part II, paper 9), [36]. The 
output of the parsing step is a collection of entity names and their corresponding send/receive events. 
This collection is called #�'�)�2��	������.  

During the BOM discovery phase a query is built based on the SRML Object Model and is sent to 
the BOM repository. The repository returns a set of potential candidates corresponding to the query. 
Afterwards, through utilisation of a set of rules, the candidate BOMs are matched syntactically (number 
of parameters and event name) and semantically (parameter data type and entity type) against the 
SRML object model and the irrelevant BOMs are filtered.  

The BOM matching and composition phase is more comprehensive and is about finding the right 
combination of components that satisfy the target simulation description (the scenario). Again as in the 
previous case this phase starts by making different combinations of candidate BOMs. Next, the 
composer adjusts the combinations based on received feedback from syntactic and semantic BOM 
matching, which is done according to the three	layer model, including a set of rules (part II, paper 9).   

Finally, having in hand a right set of components, their interactions and the order of those, we enter 
the BOM assembly building phase during which a BOM assembly can be created from the current set 
of BOMs. Figure 23 depicts the BOM discovery and composition process in a flow chart format. This 
figure is an extension of figure 22, where the DMC process has been refined. 

In chapter 4 we described the concept of ontology and Semantic Web. Semantic Web and ontologies 
have been pointed out by M&S experts as having the potential to support semantic composability 
[144], [66]. DeMO is one of the efforts that have been done in this direction, and is a taxonomy of 
simulation objects with the aim of supporting component based simulation development [137].  
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Figure 23 The BOM Discovery and Composition process 

 
Another field of interest that is also mentioned in chapter 4 is Web Services (WS). As in the case of 

component based simulation development, WSs can be composed together and aggregated to deliver 
functionalities according to user requirements. There are well	adapted standards for publication, 
registration and discovery of WSs, while in the case of simulation components the M&S	community 
has just started to set up standards, which are not yet generally adapted. In [22] the potential of 
employment of WS for achieving semantic composability has been investigated and a method has been 
developed.  

Based on the above discussion and in order to provide a proper basis for discovery and composition 
BOMs, we suggest an extension to the BOM description through utilization of Web Service technology 
and Semantic Web/OWL [35].  This extension, called Semantic BOM Attachment (SBA), provides the 
metadata required for discovering and composition of BOMs. In SBA the BOM description is mapped 
into the OWL	S upper ontology. Doing so OWL is used as the underlying language for describing 
BOMs. This is to support the ontology based reasoning process. Furthermore, features of OWL	S are 
also captured to improve the semantic expressiveness of BOMs and hence to facilitate semantic 
discovery and composition of them. Figure 24 depicts the items of BOM metadata converted into 
semantic BOM attachment plus the supportive ontology.  

 

 
 

Figure 24 Semantic BOM Attachment 
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As for the matching of BOMs, in this step we introduce a three	layer model, utilising the SBAs of 
the BOMs and a set of rules for reasoning about the compositions. The model has been inspired by the 
work done in [9] where a composition stack for aggregating Semantic Web Services is presented. The 
model and the rules are part of an architecture that we proposed for implementing the component	
based simulation model development process, as presented in part II, paper 9. The rules are divided 
into discovery and composition rules. The goal of discovery rules are to filter out irrelevant BOMs, 
using syntactic and semantic data.  

The composition rules are divided in three layers. Each layer has a one or more composition rules 
verifying the composability of different items (data type, unit, component, state	machine, etc).  The 
three layers are denoted as syntactic, static semantic and dynamic semantic. As the name suggests 
syntactic layer is concerned with the matching of syntactic information, such as message name, mode 
of action and number of parameters. Static semantic checks the entity and data types, while dynamic 
semantic handles matching of the components behaviour, i.e. state machines.  

The mapping of the State Machine, i.e. the dynamic semantic matching, differs from the other items. 
State machine of each BOM represents the events that a component can send or receive in each state. 
It represents the internal behaviour of components, i.e. dynamic data. State Machine matching 
provides a means to ensure the causality of the compositions. Causality issue is considered as one of 
the main differences between component	based development in software engineering and M&S, since 
the state of simulation components might change between different time steps. Non	causal 
components are easier to define as one does not need to foresee how these components will be used 
[54]. Thus, causality introduces an important challenge when composing simulation model 
components. Detailed information regarding SBA and mapping different parts of BOM to 
OWL/OWL	S can be found in part II, paper 9.  

Please note that simulation model development through composition might require some amount of 
component adaptation meaning that the composition process, as explained above, most probably will 
not present perfect matches. Hence, we need to somehow indicate how well a set of components 
match. This is done by defining a �����������	�� ���
��� for each candidate combination. In order to 
calculate the composability degree, each rule is given a weight value, indicating the significance of the 
corresponding rule from the composer’s point of view [9]. The composability degree of components is 
based on the composability degree of events i.e. a send event in one component with the 
corresponding receive event in the peer component. The composability degree for an event is 
computed after finding the degree of similarity at each rule and level. If the degree is greater than or 
equal to some threshold value, then the components are potential candidates. 

Each level � is assigned a weight Wi, and each rule Rij belonging to level � is assigned a weight Wij. The 
function �	������<#���.=�is defined for each pair of events and returns 1 if the Rulex is satisfied between 
the two events and zero otherwise. The following formula is used to calculate the Composability 
Degree.  

 
 

Where: 

 L = number of composability layers, 

 Ri = number of rules in layer i 

 W = weight assigned to a composability layer or a rule 
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The composition framework described above, has been implemented and evaluated. We have 
implemented the application in Java, and utilized Jena inference engine and the Jess rule engine for 
reasoning about matching and composition of BOMs. The BOMs are supported by Semantic BOM 
Attachments (SBAs) including related ontology. SBAs provide an important constitute for reasoning 
about the composability of BOMs. We believe that development of SBAs by employing techniques and 
methods from Semantic Web and Web Services is feasible, and the three	layered	scheme is promising 
and can improve composition of BOM	based components. However, the methods used in this 
approach can be refined, especially the algorithm for matching conceptual models can be further 
developed to handle more complex state	machines. For more details on this example see part II, paper 
9. 

In the next section another important part of our framework, namely the agent	based environment 
that has been developed to automate the execution of the proposed process, is presented. 

; $ ��������������%��	������

The aim of the developed composition process is to support a modeller with identification and 
discovery of components as well as giving feedback on feasibility of a composition. This process could 
be automatic or semi	automatic depending on the level of support that a modeller may require [103]. 
Hence, the process has to be encapsulated in an execution environment that is able to execute all the 
steps in the process on behalf of the modeller, and deliver required feedback at each step. In order to 
manage the complexity and for the purpose of maintenance the system has to be modular handling 
each step as a separate task communicating with other tasks.  

Traditional software development approaches are difficult to use for building complex intelligent 
systems that posses multiple behaviours when operated in real	time environments. As presented in 
section 5.4, agent	oriented software engineering addresses the need for software systems to exhibit 
rational, human	like behaviour in their domains of expertise [162]. Software agents are autonomous 
entities that can communicate with each other to solve complex problems. These agents can evolve, i.e. 
their abilities can improve in time, and they can adapt to the environment they act within and the needs 
of the users [161]. Hence, we investigate the feasibility of agents as an alternative for development of 
the environment for discovery and composition of simulation models. In the environment that we 
have developed, the agents traverse through the component based simulation model development 
process, presented in the previous section, and execute all steps according to the needs of the 
modellers (part II, paper 10). 

; $ ! *����������#����������	���

The agent framework that was deployed for development of the environment is the JACK agent 
framework [83], presented in section 5.4.1.1. The environment is designed based on a modular 
software development approach (part II, paper 10). The system architecture can be seen from two 
perspectives; ��
�/��	��� ��
����	�(�, which indicates the modules that the system contains of and (�
	�����
��
����	�(�, which indicates the layers system is comprised of (part II, paper 10). The business layer in the 
vertical perspective is the core of the system and deals with the business logic. This layer contains 
different agents handling the seven	step process composition process. 

There are six types of agents available in our system:  ������
�$���	, %�
��
�$���	, +����(�
��$���	, 
 ������	����$���	,  ������	����$���	 and  ����
�����$���	. Manager Agent is the first agent to be called 
when the process is started. This agent is responsible for governing all the tasks.  

The Parser Agent is the first agent to be contacted by the Manager Agent and is responsible for 
parsing an SRML file (simulation description) and creating a list of entity types with associated events 
and actions. The next agent is the Discovery Agent, which performs discovery on all the entities 
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identified by querying the component repository and retrieving a list of BOMs. This agent also 
performs filtration based on the discovery rules utilising the Jena inference engine. 

After the filtration, the Combination Agent creates the combinations of discovered BOMs, which 
are used by the Composition Agent to apply the composition rules upon and calculate their 
composability degrees. Jena OWL API is used inside the code body of the Composition Agent in order 
to traverse through the SBA of BOMs and perform semantic matching. As for matching the state 
machines the Jess rule engine is used. Finally, the comparison Agent sorts the list of combinations 
according to the logic defined by the simulation modeller and publishes the results accordingly. 

The agent	based environment has been implemented and evaluated (part II, paper 10). The 
evaluation proved that with the help of agent technology, the entire process of BOM discovery and 
composition is streamlined. The approach provides support for a modeller and gives relevant feedback 
during different steps of the process. 

The modular design of the agent framework provides a solid basis for further development and 
improvement of the environment, since it is possible to introduce new agent plans, beliefs and 
capabilities in order to deal with more complex situations, such as adding new discovery and 
composition rules, or more complex algorithms for combining components, without altering the 
architecture of the environment. Moreover, it is possible to deploy the environment on various 
platforms. It can be executed in a single desktop machine or can be deployed over a distributed 
network environment and be executed across different machines. Hence, our results indicate that the 
environment provides portability, adaptability and flexibility. More information about the agent based 
environment can be found in part II, paper 10. 

; & ��������������������	�
�

This research initiative has been an effort to implement an agent based environment for automated 
discovery and composition of BOM based simulation components. The work includes:  

	 design and development of a framework for component based simulation development 
comprising a collaborative working environment, a semantic based distributed repository, and 
an execution environment 

	 investigating two different approaches for component based simulation development 

	 development of a process for component based simulation development based on BOMs 

	 suggesting an extension to the current BOM specification using Semantic Web and Web 
Services technologies 

	 development of a method for discovery and composition of BOMs 

	 development of a novel method for matching BOM state machines 

	 design and implementation of an agent based environment for realisation of the developed 
process  

The work that has been conducted is not finished by any means and further development and 
improvements are needed. Some of the suggested improvements and areas of future research are 
mentioned below. 

The BOM matching method needs to be validated using a formal approach such as the semantic 
composability theory (SCT). For instance, at the moment simple state machines, with no internal loops, 
are considered. Hence, the algorithm for matching needs to be further developed using more complex 
state machines. 

It is desirable to investigate whether the collaborative modelling environment, which was used in the 
first approach to develop a framework for component based simulation development, can support a 
modeller using the agent based environment. If this is the case some effort is needed to couple the 
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agent based environment with the modelling environment. This could include development of an 
automated SRML modelling GUI tool to support the modeller.  

The agent system can be redesigned to achieve parallelism in the matching pipeline, hence increasing 
its performance. This involves a great deal of negotiation, co	ordination and communication (which are 
already known features of the agent technology), to serve parallel tasks.  

It is also required to model more complex simulation scenarios in order to test and evaluate the 
system thoroughly. For this purpose new ontologies and new BOM descriptions need to be developed. 

The SRML	Light document can be extended to include more features (script	tags) for representing 
simulation scenarios resulting in better queries thus improving the discovery of BOMs. A better 
description of the simulation scenario will also help identifying BOMs which do not represent (update) 
any entities, but provide services required by other BOMs.   

More research and implementation is also required regarding the automated code generation step of 
the process.   

 



 77 

�������< �

4����������

[1] A. J. Courtemanche, R. L. Wittman, OneSAF : A Product Line Approach for a Next-Generation CGF, 
Proceedings of the Eleventh Conference on Computer-Generated Forces and Behavior Representation, Orlando 
FL, May 2002. 

[2] A. Adams Zabek, A. Wilson, and M. Fischer, The ALSP Joint Training Confederation and the DOD High 

Abstraction Architecture, In Proceedings of the 14th DIS Workshop, March. 1996.  

[3] A. Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash Tables, Royal Institute of Technology, 
KTH, 2006. 

[4] A. Kleppe, J. Warmer, W. Bast, MDA Explained, The Model Driven Architecture: Practice and Promise, 
Addison-Wesley, 2003.  

[5] A. Lehmann, Component-based modeling and simulation - status and perspectives, In Proceedings of the 
Eighth IEEE International Symposium on Distributed Simulation and Realtime Applications, Budapest, 
Hungary, October 2004. 

[6] A. M. Law, W. David Keaton, Simulation Modeling and Analysis, McGraw-Hill, 2
nd

 edition, 1991.  

[7] A. Tolk, Avoiding Another Green Elephant – A Proposal For the Next Generation HLA Based On the Model 
Driven Architecture, in Proceedings of the 2002 Fall Simulation Interoperability Workshop, Orlando, FL, 
September 2002. 

[8] B. Meyer, Object-Oriented Software Construction, Prentice Hall. ISBN 0-13-629155-4. 

[9] B. Mojtahed, A. Bouguettaya, A Multilevel Composability Model for Semantic Web Services, Journal of IEEE 
Transactions on Knowledge and Data Engineering, VOL. 17, No. 7, July 2006.  

[10] B. P. Zeigler, H. Prähofer, T. Gon Kim, Theory of Modeling and Simulation, Academic Press, 2nd edition, 
2000.  

[11] B. P. Zeigler, H. S. Sarjoughian, Introduction to DEVS Modeling and Simulation with JAVA: Developing 
Component-Based Simulation Models, Arizona Center for Integrative Modeling and Simulation, University of 
Arizona and Arizona State University, Tucson, Arizona, USA, January 2005.  

[12] Base Object Model, http://www.boms.info.   

[13] BOMworks, http://www.simventions.com/bomworks/.  

[14] B. Powel Douglass, Components, states and interfaces, oh my!, The Unified Software Development Process, 
Addison-Wesley April 2000. 

[15] C. M. Macal, M. J. North, Toturial on Agent-Based Modelling and Simulation, in Proceedings of the 2005 
Winter Simulation Conference, Orlando Florida, USA, 2005. 

[16] C. Szabo, Y. M. Teo, On Syntactic Composability and Model Reuse, in Proceedings of the first Asia Modelling 
Symposium, AMS 2007, March 2007.  

[17] C. Hewitt, J. Inman. DAI Betwixt and Between: From "Intelligent Agents" to Open Systems Science, IEEE 
Transactions on Systems, Man, and Cybernetics. Nov./Dec. 1991. 

[18] C. Kennedy, G. K. Theodoropoulos, Intelligent management of data driven simulations to support model 
building in the social sciences, Computational Science - ICCS 2006, 6th International Conference, Reading, 
UK, May 28-31, 2006, Proceedings, Part III, volume 3993 of Lecture Notes in Computer Science, Springer, 
2006.  

[19] C. Szyperski, Component Software, Addison-Wesley, 2nd edition, 2002. 



 78 

[20] COM+, http://msdn2.microsoft.com/en-us/library/ms685978(VS.85).aspx. 

[21] DAML-S Coalition: Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, Drew McDermott, D. 
Martin, Sh. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, DAML-S: Web Service Description 

for the Semantic Web, in Proceedings of The First International Semantic Web Conference (ISWC), 2002. 

[22] D. Bell, et al, Sematic Web Service Architecture for Simulation Model Reuse, in Proceedings of the 11
th

  
International Symposium on Distributed Simulation and Real Time Applications, DS-RT ’07, Crete, Greece, 
October 2007.   

[23] D. Brutzman, A. Tolk, JSB Composability and Web Services Interoperability Via Extensible Modeling & 
Simulation Framework (XMSF), Model Driven Architecture (MDA), Component Repositories, and Web-based 
Visualization, Technical Report, Naval Postgraduate School and Old Dominion University, November 2003. 

[24] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural description of component-based systems, In G. T. 
Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, pages 47–68, Cambridge 
University Press, 2000.  

[25] Distributed Interactive Simulation (DIS) Master Plan, Headquarters Department of the Army, September 1994.  
[26] E. Bonabeau, Agent-based modelling: methods and techniques for simulating human systems. In Proceedings 

of National Academy of Sciences 99(3): 7280-7287, 2001. 

[27] E. H. Durfee, V. Lesser, Negotiating Task Decomposition and Allocation Using Partial Global Planning, In 
Distributed Artificial Intelligence, Volume 2, 229–244. San Francisco, California, 1989.  

[28] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF: W3C Working Draft, October 2006. 

[29] E. W. Weisel , M. D. Petty, and R. R. Mielke, A Survey of Engineering Approaches to Composability, 
Proceedings of the Spring 2004 SIW, Arlington VA , April 18-23, 2004. 

[30] E. W. Weisel, M. D. Petty, and R. R. Mielke, Validity of Models and Classes of Models in Semantic 
Composability, in Proceedings of the Fall 2003 SIW, Orlando FL, Sept 14-19 2003.  

[31] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider: The Description Logic Handbook: 

Theory, Implementation, Applications. Cambridge University Press, Cambridge, UK, 2003.  

[32] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M. C. Shan, Adaptive and Dynamic Service Composition 

in eFlow, Proc. of the Intl. Conf. on Adv. Info. Systems Engineering, Sweden, 2000.  

[33] F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An Introduction to High Level 
Architecture, Prentice Hall PTR, 2000. 

[34] F. Moradi, R. Ayani, P. Nordvaller, Simulation Model Composition using BOMs, in Proceedings of The 10-th 
International Symposium on Distributed Simulation and Real Time Applications, DS-RT ’06, October 2006. 

[35] F. Moradi, Component-based Simulation Model Development using BOMs and Web Services, in Proceedings of 
the first Asia Modelling Symposium, AMS 2007, March 2007.  

[36] F. Moradi, R. Ayani, G. Tan, H. Akbari, Sh. Mokarizadeh, A Rule-based Approach to Syntactic and Semantic 
Composition of BOMs, in Proceedings of the 11

th
  International Symposium on Distributed Simulation and Real 

Time Applications, DS-RT ’07, Crete, Greece, October 2007.  

[37] F. Moradi, R. Ayani, I. Mahmood, An Agent based Environment for Simulation Model Composition, to appear 
in Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation 
PADS 2008, June 2008, Rome, Italy. 

[38] F. Moradi, M. Eklöf, M. Garcia Lozano, D. Nordqvist, J. Ulriksson, Nätverksbaserad Modellering och 

Simulering – Arkitekturen, FOI metodrapport, FOI-R--1439—SE.  

[39] F. Moradi, M. Eklöf, M. Garcia Lozano, D. Nordqvist, J. Ulriksson, Nätverksbaserad Modellering och 

Simulering – Prototypen, FOI metodrapport, FOI-R--1767–SE.  

[40] F. Moradi, M. Eklöf, L. Ferrara, M. Garcia Lozano, D. Nordqvist, M. Persson, Nätverksbaserad Modellering 
och Simulering – Utvärdering, FOI metodrapport, FOI-R--2144–SE.  

[41] F. Mordi, M. Eklöf, J. Ulriksson, A network based environment for modelling and simulation, in Proceedings of 
SimSafe Conference, June 15-17, 2004, Karlskoga, Sweden.  

[42] F. Moradi, R. Ayani, Parallel and distributed simulation, Applied system simulation – Methodologies and 
applications, 2003, p. 457-486. 

[43] F. Moradi, R. Ayani, G. Tan, Some Ownership Management in Distributed Simulation using HLA/RTI, Parallel 
and Distributed Computing Practices, Vol. 4, No. 1, June 2001, Nova Science Publishers.  

[44] G. Chen, B. K. Szymanski, Component-oriented Simulation Architecture: Toward Interoperability and 
Interchangeability, In proceedings of the 2001 Winter Simulation Conference, Arlington, VA, USA, 2001. 



 79 

[45] G. Chung, P. Dewan, Towards Dynamic Collaboration Architectures, Proceedings of ACM conference on 
Computer Supported Cooperative Work, Chicago, USA, November 2004. 

[46] G. M. Pearman, Naval Postgraduate School, Monterey, CA, Comparison Study of Janus and Jlink, June 1997.  

[47] GIG, Department of Defense Global Information Grid Architectural Vision, Prepared by DoD CIO,Version 1.0 
June 2007, Available at http://www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf. 

[48] Globus. http://www.globus.org/.  

[49] GridFTP, http://www-unix.globus.org/toolkit/docs/4.0//data/gridftp/.  

[50] Grid Security, http://www.unix.globus.org/toolkit/docs/ 3.2/security.html.  

[51] G. Antoniou, F. van Harmelen, A Semantic Web Primer, The MIT Press, 2004. 

[52] H. Aydt, S. J. Turner, W. Cai, M. Yoke Hean Low, An Agent-Based Generic Framework for Symbiotic 
Simulation Systems, Book Chapter in Agents, Simulation and Applications, to appear in 2008, by Taylor and 
Francis.  

[53] H. A. Marshall, SAF in CATT Training Systems, Update 1999, Proceedings of the Eighth Conference on 
Computer Generated Forces and Behavioral Representation, 8TH-CGF-032. 

[54] H. Praehofer, J. Sametinger, A. Stritzinger, Building Reusable Simulation Components, Proceedings of 
WEBSIM2000, Web-Based Modelling & Simulation, San Diego 2000.  

[55] H. S. Sarjoughian, Model Composability, In Proceedings of the 2006 Winter Simulation Conference, Monterey, 
California, 2006. 

[56] HLA at DMSO, https://www.dmso.mil.  

[57] HLA Interface Specification, Version 1.3 (April 02, 1998) (http://hla.dmso.mil/hla/tech/ifspec/). 

[58] HP-Lab. Jena: Semantic web framework. http://jena.sourceforge.net/documentation.html.  

[59] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko, Ontology-driven Web Services Composition 

Platform, Journal of Information Systems and e-Business Management, 3(2):175-199, July 2005. 

[60] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko., Ontology-driven Web Services Composition 
Platform, IEEE Intl. Conf. on e-Commerce Technology, San Diego, California, July 6-9, 2004.  

[61] IBM, Business Process Execution Language for Web Services version 1.1, 
http://www.ibm.com/developerworks/library/specification/ws-bpel/. 

[62] IBM Web services tutorial. Online : http://www-106.ibm.com/developerworks/webservices/.  

[63] Institute of Electrical and Electronics Engineers: IEEE Standards Computer Dictionary: A compilation of IEEE 

Standard Computer Glossaries, NewYork 1990. 

[64] Interoperability Development for Interprise Application and Software, IDEAS, European project, 2002.  

[65] J. A. Miller, G. Baramidze, Simulation and the Semantic Web, in Proceedings of the Winter Simulation 
Conference, 2005.  

[66] J. A. Miller, G. T. Baramidze, A. P. Sheth, P. A. Fishwick, Investigating Ontologies for Simulation Modeling, 
Annual Simulation Symposium, Arlington, VA, USA, 2004.  

[67] J. Bachman, P. Gustavson, R. Lutz, R. Scrudder, Understanding the BOM Metadata and Making It Work For 

You, 2005 Simulation Interoperability Workshop, 2005. 

[68] J. Banks, Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, Wiley 
Interscience Publication, 1998.  

[69] J. Cardoso, Quality of Service and Semantic Composition of Workflows, Ph.D. Dissertation, Dept. of Computer 
Science, Univ. of Georgia, Athens, GA, 2002.  

[70] J. Davies, D. Fensel, F. van Harmelen, Towards the Semantic Web: Ontology-Driven Knowledge Management, 
John Wiley & Sons, 2003.  

[71] J. Ivers, G. A. Moreno, Model-Driven Development with Predictable Quality, in Proceedings of Conference on 
Object Oriented Programming Systems Languages and Applications, Montreal, Quebec, Canada, 2007. 

[72] J. Ivers, N. Sinha, K. Wallnau, A basis for composition language CL, Technical report, Carnegie Mellon 
University, Software Engineering Institute, September 2002.  

[73] J. Kim, E. Sosa, Metaphysics: An Anthology, Blackwell Publisher, 1999. 

[74] J. L. Fiadeiro, A. Lopes, M. Wermelinger, A mathematical semantics for architectural connectors, Lecture 
Notes in Computer Science, 2793:190–234, 2003.  



 80 

[75] J. Misra, Distributed discrete event simulation, ACM Computing Surveys, Vol. 18, No. 1, pp. 39--65, March 
1986. 

[76] J. O. Kephart, J. E. Hanson, A. R. Greenwald, Dynamic pricing by software agents, Computer Networks 
Volume 32, Issue 6, Pages 731-752, May 2000.  

[77] J. S. Dahmann, R. M. Fujimoto, R. M. Weatherly, The department of defense high level architecture, In 
Proceedings of the 1997 Winter Simulation Conference, 1997.  

[78] J. Siegel, CORBA 3 - Fundamentals and Programming, John Wiley & Sons, ISBN 0-471-29518-3. 

[79] J. Ulriksson, F. Moradi, O. Svensson, A Web-based Environment for building Distributed Simulations, in 
Proceedings of the European  Simulation Interoperability Workshop, 02E-SIW-036, June 2002. 

[80] J. Ulriksson, R. Ayani, Consistency Overhead using HLA for Cooperative Work, 9:e IEEE International 
Symposium on Distributed Simulation and Real Time Applications (DS-RT 2005), Montreal, Kanada, oktober, 
2005. 

[81] J. Ulriksson, R. Ayani, F. Moradi, Collaborative Modelling and Simulation in a Distributed Environment. 
Proceedings of European Simulation Interoperability Workshop, Stockholm, Juni 2003. 

[82] J. Ulriksson, F. Moradi, M Liljeström, N Montgomerie-Neilson, Building a CSCW Infrastructure based on an 
M&S Architecture and XML, Published in the Springer lecture notes of the 2:nd conference on Cooperative 
Design, Visualization and Engineering (CDVE2005), Palma de Mallorca, September, 2005. Springer ISSN: 
0302-9743.  

[83] JACK Agent Framework, Autonomous Decision-Making Software, 
http://www.aosgrp.com/products/jack/index.html. 

[84] Jakarta Bean Scripting Framework, http://jakarta.apache.org/bsf/.  

[85] JAMES II, Java-based Agent Modeling Environmnet for Simulation II, http://wwwmosi.informatik.uni-
rostock.de/mosi/projects/cosa/james-ii.    

[86] Jena - Verktyg (API) för hantering av RDF och OWL strukturer. http://jena.sourceforge.net. 

[87] Jess web site,  http://herzberg.ca.sandia.gov/jess/.  

[88] Joint Chiefs of Staff Publication, Department of Defense Dictionary of Military and Associated Terms, No 1-
02, 1999.  

[89] K.  Aberer et al., The essence of P2P: A refernce architecture for overlay networks, In Proceedings of the 5th 
IEEE International Conference on Peer-to-Peer Computing, August 2005, Konstanz, Germany. 

[90] K. C. Wallnau, Volume iii: A technology for predictable assembly from certifiable components, Technical 
report, Carnegie Mellon University, April 2003.  

[91] K. Chandy, and J. Misra, Distributed simulation: A case study in design and verification of distributed 

programs, IEEE Transactions on Software Engineering SE-Vol. 5, No. 5, pp. 440--452, Sept. 1979. 

[92] K. Houston, D. Norris, Software Components and the UML, Component Based Software Engineering: Putting 
the Pieces Together, Addison-Wesley, 2001.  

[93] K. Morse, M. Petty, P. Reynolds, W. Waite, P. Zimmerman, Findings and Recommendations from the 2003 
Composable Mission Space Environments Workshop, 2004. 

[94] K. P. Sycara, Multiagent Systems, The American Association for Artificial Intelligence, 1998.  

[95] L. Bass, J. Ivers, M. Klein, P. Merson, Reasoning frameworks, Technical report, Carnegie Mellon University, 
Software Engineering Institute, July 2005. 

[96] L. Lin, I. B. Arpinar, Discovery of Semantic Relations between Web Services, IEEE International Conference on 
Web Services, ICWS 2006, Chicago, IL, September 2006. 

[97] L. Mellon, and D. West, Architectural optimizations to advanced distributed simulation, In Proceedings of the 
1995 Winter Simulation Conference, Arlington, USA, pp 634-641, December 1995. 

[98] L. Winters, A. Tolk, The Integration of Modeling and Simulation With Joint Command and Control on the 
Global Information Grid, Proceedings of the Spring Simulation Interoperability Workshop, San Diego, CA, 
IEEE Press, Apr 2006.  

[99] M. Abadi, L. Cardelli, A Theory of Objects, ACM, 1996. 

[100] M. D. Petty, Semantic Composability and XMSF, XMSF Technical Challenges Workshop 2002, Monterey CA, 
August 19-20 2002.  

[101] M. D. Petty, Simple Composition Suffices to Assemble any Composite Model, Proceedings of the Spring 2004 
Simulation Interoperability Workshop, Orlando FL, April 18-23 2004.  



 81 

[102] M. D. Petty, Eric W. Weisel, A Composability Lexicon, Proceedings of the Spring 2003 Simulation 
Interoperability Workshop, Orlando FL, April, 2003. 

[103] M. D. Petty, E. W. Weisel, R. R. Mielke, Overview of a Theory of Composability, Virginia Modeling Analysis 
& Simulation Center, Old Dominion University, 2004. 

[104] M. Hofmann, Introducing pragmatics into VV&A, in Proceeding of the European Simulation Interoperability 
Workshop, ESIW 2002, London, UK. 

[105] M. P. Papazoglou and D. Georgakopoulos, Service Oriented Computing, Communications of the ACM, 
46(10):25–28, 2003. 

[106] M. Prietula, L. Gasser, K. Carley, Simulating Organizations: Computational Models of Institutions and Groups, 
MIT Press, Cambridge, MA, 1998. 

[107] M. Wooldridge, Reasoning About Rational Agents, MIT Press, 2000.  

[108] M. Garcia Lozano, M. Chenine, V. Kabilan, A Pattern for Designing Distributed Heterogeneous Ontologies for 
Facilitating Application Interoperability, Proceedings of 18:th Conference on Advanced Information Systems 
Engineering 2006, Caise’06 Luxembourg, June 5-9, 2006. 

[109] M. Garcia Lozano, F. Moradi, R. Ayani, SDR: A Semantic Based Distributed Repository for Simulation Models 

and Resources, in Proceedings of the first Asia Modelling Symposium, AMS 2007, March 2007.  

[110] M. Eklöf, F. Moradi, R. Ayani, A Framework for Fault-Tolerance in HLA-based Distributed Simulations, 
Proceedings of the 2005 Winter Simulation Conference, M.E. Kuhl, N.M. Steiger, F.B. Armstrong and J.A. 
Joines, eds. Orlando, USA, December, 2005. 

[111] M. Eklöf, R. Ayani, F. Moradi, Evaluation of a fault-tolerance Mechanism for HLA-Based Distributed 
Simulations, Proceedings of the 20

th
 Workshop on Parallell and Distributed Simulations, PADS, Singapore 

2006. 

[112] M. Eklöf, M. Sparf, F. Moradi, R. Ayani, Peer-to-Peer-Based Resource Management in Support of HLA-Based 
Distributed Simulations, SIMULATION, Vol. 80, p. 181-190, maj 2004. 

[113] M. Eklöf, J. Ulriksson, F. Moradi, NetSim – A Network Based Environment for Modelling and Simulation, 
NATO Modeling and Simulation Group, Symposium on C3I and M&S Interoperability, Antalya, Turkey, 2003. 

[114] M. Eklöf, R. M. Gustavsen, A. Hjulstad, O. M. Mevassvik, An Execution Enviroment for Distributed 
Simulations, Collaborative project between FOI and FFI, FOI/rapport, FOI-R-2114--SE. 

[115] Master thesis: A Software Engineering Approach to HLA-Based Simulation Development, HLA – XVCL, 
Andersson, Carl-Johan, Krantz, Mattias, KTH 2005.  

[116] Master thesis: Carbonara - a semantically searchable distributed repository, Baymani S, Stridsfeldt E, 
Institutionen för tillämpad IT. KTH Kista, Maj 2005. http://www.imit.kth.se/~rassul/exjobb/rapporter/sima-
emil.pdf. 

[117] Master thesis: Distributed Repository Ontology and a Design Pattern for Application Ontologies, Chenine M, 
Royal Institute of Technology, Stockholm, Sweden, 2006. 

[118] Master thesis: Component-based Modelling and Simulation, H. G. Moser, KTH, January 2006. 

[119] Master thesis: Generic XML-based Interface for Computer Supported Collaborative Work in an HLA 
Environment, M Liljeström, FOI-S--1776--SE March 2005. 

[120] Master thesis: Kommunikationsmedel för datorbaserad distribuerad samverkan. L. Ferrara, Institutionen för 
tillämpad IT. FOI-S- -0232—SE, KTH Kista, September 2005. 

[121] Master thesis: En implementation av PKI-baserad Single Sign-On för Web Services, A. Frey, KTH 2005.  

[122] Master thesis: Collaborative software infrastructure based on the High Level Architecture and XML, N. A. 
Montgomerie-Neilson, ,  FOI-S--1775--SE March 2005. 

[123] Master thesis: Authorization in Semantic based Distributed Repository, Z. A. Shah, Institutionen för tillämpad 
IT, 2006. 

[124] Master thesis: Merging RLS-based Resource Indexing and Management with a DHT, D Torres, J Pan, KTH 
Kista, December 2006. Available at: http://web.it.kth.se/~rassul/exjobb/rapporter/jun-pan.pdf.  

[125] M. Luck, et al, Agent Technology: Computing as Interaction, European Coordination Action for Agent Based 
Computing (IST-FP6-002006CA) AgentLink III, ISBN 0854328459, September 2005.  

[126] M. C. Daconta, L. J. Obrst, K. T. Smith. The Semantic Web: A Guide to the Future of XML,Web Services 

andKowledge Managment. John Wiley & Sons, 2003. 

[127] MDA Guide Version 1.0.1, Object Management Group 2003, http://www.omg.org/docs/omg/03-06-01.pdf. 



 82 

[128] Model Driven Architecture in Wikipedia, The Free Encyclopedia, Date of last revision: 13 January 2008, 
http://en.wikipedia.org/wiki/Model-driven_architecture.  

[129] Mozilla Rhino Home Page, http://www.mozilla.org/rhino/.  
[130] N. R. Jennings, On agent-based software engineering, Artificial Intelligence, 117:277-296, 2000. 

[131] OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/.  

[132] Object Management Group, eXtensible Markup Language, http://www.w3.org/XML/.  

[133] Object Management Group, Unified modeling language: Superstructure, URL, http://www.omg.org/cgi-
bin/doc?formal/05-07-04, August 2005. 

[134] Object Management Group, Meta-Object Facility, http://www.omg.org/technology/documents/formal/-
mof.htm.  

[135] Object Management Group, XML Metadata Interchange, http://www.omg.org/technology/documents/-
formal/xmi.htm.  

[136] P. A. Fishwick, Simulation Model Design and Execution: Building Digital Worlds, Prentice Hall, 1995. 

[137] P. A. Fishwick, J. A. Miller, Ontologies for modeling  and simulation: Issues and approaches, in Proceedings 
of Winter Simulation Conference, Washington, DC, USA, 2004.  

[138] P. G. Basset, Framing Software Reuse – Lessons from the Real World, Prentice Hall, 1997. 

[139] P. Carlisle, W. Babineau, and R. Wuerfel, The Joint Simulation System (JSIMS) Federation Management 
Toolbox, Proceedings of the Fall 2003 Simulation Interoperability Workshop, 03F-SIW-048.  

[140] E. H. Page, B. S. Canova, J. A. Tufarolo, A case study of verification, validation, and accreditation for 
advanced distributed simulation, ACM Transactions on Modeling and Computer Simulation, Valume 7, Issue 
3, pp. 393-424, 1997. 

[141] P. K. Davis, R. H. Anderson, Improving the Composability of Department of Defence Models and Simulations, 
Prepared for the Defence Modeling and Simulation Office, RAND 2003.  

[142] P. Davidson. Multi agent based simulation: Beyond social simulation, Lecture Notes in Computer Science, 
1979:97–107, 2000. 

[143] P. Gustavason, L. Root, Ph. Zimmerman, Ch. Turrell, Conceptual to Composable: Driving Towards Rapid 
Development of Simulation Spaces, In proceedings of the Interservice/Industry Training, Simulation & 
Education Conference (I/ITSEC), Orlando, USA, 2003.  

[144] R. G. Bartholet, D. C. Brogan, Paul F. Reynolds, Jr., Joseph C. Carnahan, In Search of the Philosopher’s Stone: 
Simulation Composability Versus Component-Based Software Design, Proceedings of the 2004 Fall SIW, 
Orlando, FL, September 2004.  

[145] R. H. Nelson, A Next-Generation Federation Management Tool: Using the Management Object Model (MOM) 
and FOM-specific Data to Monitor an HLA Federation, in Proceedings of the Fall Simulation Interoperability 
Workshop, 00F-SIW-155, Fall 2000.  

[146] R. H. Wallace, Practitioner’s Guide to Ada, McGraw-Hill, NY, 1986. 

[147] R. M. Fujimoto. Parallel and Distributed Simulation Systems. Parallel and Distributed Computing. Wiley-
Interscience, 2000.  

[148] R. R. Ropelewski, SIMNET Training Concept Hones Battlefields Skills, Armed Forces Journal International, 
June 1989.  

[149] R. Suzić, Embedded Simulation Systems for Network Based Defense, User Report FOI-R--1828--SE, Swedish 
Defence Research Agency, Stockholm, Sweden, 2006. 

[150] R. Weatherly, D. Seidel, and J. Weissman, Aggregate abstraction simulation protocol, In Proceedings of the 
Summer Computer Simulation Conference, Baltimore, Maryland, USA, 1991. 

[151] S. Dustdar, W. Schreiner, A survey on web services composition, International Journal of Web and Grid 
Services, 1(1), 1 - 30, 2005. 

[152] S. Mellouli, G. Mineau, et al., Laying the foundations for an agent modelling methodology for fault-tolerant 
multi-agent systems, in Fourth International Workshop Engineering Societies in the Agents World, Imperial 
College London, UK, 2003. 

[153] S. Narayanan and S. Mcllraith, Simulation, Verification and Automated Composition of Web Services, Proc. of 
the 11th Intl Conf. on WWW, Hawaii, 2002 

[154] S. R. Ponnekanti, and A. Fox, SWORD: A Developer Toolkit for Web Service Composition, Proc. of the 11th 
Intl Conf. on WWW, Hawaii, 2002. 



 83 

[155] S. Shlaer, S. J. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon Press, 1988.  

[156] S. W. Ambler, T. Jewell, E. Roman, Mastering Enterprise JavaBeans, John Wiley & Sons, 2002. 

[157] Semantic Web, http://www.w3.org/2001/sw/. 

[158] Simulation Interoperability Standards Organization (SISO), Guide for Base Object Model (BOM) Use and 

Implementation, SISO-STD-003.0-DRAFT-V0.11, SISO, 2005.  

[159] Simulation Interoperability Standards Organization (SISO), Base Object Model (BOM) Template Specification, 
SISO-STD-003-2006, 31 March 2006. 

[160] Simulation Interoperability Standards Organization (SISO), SRML Product Development Group,  
http://www.sisostds.org/index.php?tg=articles&idx=More&article=441&topics=104.  

[161] Software Agents in Wikipedia, The Free Encyclopedia, Date of last revision: 13 December 2007, 
http://en.wikipedia.org/wiki/Software_agent. 

[162] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall Series in Artificial Intelligence, 
1995.  

[163] T. Bultan, X. Fu, R. Hull, and J. Su, Conversation Specification: A New Approach to Design and Analysis of E-
Service Composition, in Proceedings of WWW Conference, 2003. 

[164] Tim Berners-Lee, Mark Fischetti, Weaving the Web, Chapter 12, HarperSanFrancisco, 1999.  

[165] T. Erl, Service-oriented Architecture: Concepts, Technology, and Design, Upper Saddle River, Prentice Hall 
PTR, 2005.  

[166] T. Gruber, What is an Ontology?, Stanford university pages. 

[167] The DIS Vision, A Map to the Future of Distributed Simulation, prepared by the DIS Steering Committee, 
Comment Draft, October 1993, Institute for Simulation and Training, University of Central Florida. 

[168] The DIS Vision, prepared by the DIS Steering Committee, Institute for Simulation and Training, University of 
Central Florida, May 1994.  

[169] Transportation Analysis Simulation System, TRANSIMS, http://transims.tsasa.lanl.gov/.  

[170] U. Saleem, Developing java web services with AXIS, 2004, Available via 
http://www.developer.com/java/web/article.php/3443951. 

[171] V. K. Handley, P. M. Shea, and M. Morano, An Introduction to the Joint Modeling and Simulation System 

(JMASS), Proceedings of the Fall 2000 Simulation Interoperability Workshop, Orlando FL, 00F-SIW-018.  

[172] S. Vuong, C. Scratchley, C. Le, X. J. Cai, I. Leong, L. Li, J. Zeng, S. Sigharian, Towards a Scalable 
Collaborative Environment (SCE) for Internet Distributed Application: A P2P Chess Game System as an 
Example [online], Available via http://www.magnetargames.com/Technology/DAIS-Vuong-Chess-
230603R.doc. Last accessed February 2005.  

[173] W. Schneider, SIMNET, a breakthrough in combat simulator technology, International Defense Review, No. 4 
1989. 

[174] W. S. Means, E. R. Harald, XML in a Nutshell: A Desktop Quick Reference, O'Reilly 2002. 

[175] W. T. Councill, G. T. Heineman, Definition of a Software Component and its Elements, Component Based 
Software Engineering: Putting the Pieces Together, Addison-Wesley, 2001. 

[176] W. T. Ng, S. J. Thio, Ch. H. Teo, A MDA-Based Translation Approach to Component-Level Reuse, in 
Proceedings of the Spring 2004 Simulation Interoperability Workshop, Arlington, VA, April 2004. 

[177] World Wide Web Consortium, Resource Description Framework, http://www.w3.org/RDF/.  

[178] World Wide Web Consortium, Web Ontology Language, http://www.w3.org/2004/OWL/.  

[179] World Wide Web Consortium, Web services architecture requirements, http://www.w3.org/TR/wsa-reqs.  

[180] World Wide Web Consortium, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl. 

[181] World Wide Web Consortium, Simulation Reference Markup Language, http://www.w3.org/TR/2002/NOTE-
SRML- 2002121.  

[182] WSDL-S, World Wide Web Consortium Member Submission on Web Service Semantics, 
http://www.w3.org/Submission/WSDL-S/. 

[183] X. Yi and K. Kochut, Process Composition of Web Services with Complex Conversation Protocols: a Colored 
Petri Nets Based Approach, in Proceedings of Design, Analysis, and Simulation of Dist. Sys. Symposium, 
2004. 

[184] XVCL Project Homepage, http://xvcl.comp.nus.edu.sg/.  



 84 

[185] Y. Hu, G. Tan, F. Moradi, Automatic SOM Compatibility Check and FOM Development, in Proceedings of 7th 
IEEE Distributed Simulation and Real-time Applications, Delft, The Netherlands, October 2003.  

[186] H. Zhao, N. D. Georganas, Collaborative Virtual Environments: Managing the Shared Spaces, Networking and 
Information Systems Journal, 3(2), 1-23 2003.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


